JP2017039062A - Boron removal method and boron removal device - Google Patents

Boron removal method and boron removal device Download PDF

Info

Publication number
JP2017039062A
JP2017039062A JP2015160450A JP2015160450A JP2017039062A JP 2017039062 A JP2017039062 A JP 2017039062A JP 2015160450 A JP2015160450 A JP 2015160450A JP 2015160450 A JP2015160450 A JP 2015160450A JP 2017039062 A JP2017039062 A JP 2017039062A
Authority
JP
Japan
Prior art keywords
boron
concentration
water
concentrated water
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015160450A
Other languages
Japanese (ja)
Other versions
JP6888798B2 (en
Inventor
慈聖 小林
Shigemi Kobayashi
慈聖 小林
祐司 和田
Yuji Wada
祐司 和田
とみ子 斎藤
Tomiko Saitou
とみ子 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Facilities Ltd
Original Assignee
NEC Facilities Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Facilities Ltd filed Critical NEC Facilities Ltd
Priority to JP2015160450A priority Critical patent/JP6888798B2/en
Publication of JP2017039062A publication Critical patent/JP2017039062A/en
Application granted granted Critical
Publication of JP6888798B2 publication Critical patent/JP6888798B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Removal Of Specific Substances (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a boron removal method from boron-containing water excellent in boron removability, capable of reducing the using amount of a medicine, and also, capable of reducing sludge generation.SOLUTION: Provided is a boron removal method comprising: a concentration step where boron-containing water 1 is concentrated into concentrated water 2 with a boron concentration of 2,000 mg/L or higher and non-concentrated water 6 having a boron concentration of 10 mg/L or lower; a reaction step where the concentrated water is added with a calcium compound without adding an aluminum compound to form a reaction liquid 3 in which insoluble precipitates are dispersed; a sludge dehydration step where the reaction liquid is separated into a dehydrated filtrate 5 and dehydrated sludge 4; a mixing step where a part or the whole quantity of the dehydrated filtrate 5 is mixed with the non-concentrated water to obtain a mixed liquid 7; and a step where the remaining part 5' of the dehydrated filtrate not introduced into the mixing step in the hydrated filtrate is introduced into the concentration step.SELECTED DRAWING: Figure 1

Description

本発明は、ホウ素含有水からのホウ素除去方法及びホウ素除去装置に関する。   The present invention relates to a boron removal method and a boron removal apparatus from boron-containing water.

従来、ホウ素含有水からのホウ素を除去する方法としては、アルミニウム化合物及びカルシウム化合物を用いた凝集沈殿法、ホウ素を選択的に吸着するイオン交換樹脂などのホウ素吸着材を用いた吸着法などが知られている。しかし、従来の凝集沈殿法では大量の薬剤を用いる必要があり、薬剤使用量の増大に伴い汚泥発生量も増大するという問題がある。吸着法においては、市販されている吸着材のホウ素吸着容量が小さいため、大量の吸着材が必要になるという問題がある。また、定期的に吸着材からホウ素を脱離して再生するため、排出されるホウ素が高濃度に濃縮された再生廃液の処理が別途必要である。   Conventional methods for removing boron from boron-containing water include coagulation and precipitation using an aluminum compound and calcium compound, and adsorption using a boron adsorbent such as an ion exchange resin that selectively adsorbs boron. It has been. However, in the conventional coagulation sedimentation method, it is necessary to use a large amount of chemicals, and there is a problem that the amount of sludge generated increases as the chemical usage increases. In the adsorption method, there is a problem that a large amount of adsorbent is required because the adsorption capacity of commercially available adsorbent is small. Further, since boron is periodically desorbed from the adsorbent and regenerated, it is necessary to separately treat a regenerated waste liquid in which the discharged boron is concentrated to a high concentration.

これらの課題を解決するため、ホウ素含有水を濃縮してホウ素濃度を高めた後、濃縮水にアルミニウム化合物を添加してホウ素を数百mg/L程度まで粗処理する方法が知られている(特許文献1、2)。また、濃縮水に多価金属イオン(アルミニウム化合物、マグネシウム化合物など)を添加して凝集沈殿処理した後、処理液を吸着材で処理する方法も知られている(特許文献3)。濃縮水を粗処理することにより、薬剤使用量及び汚泥発生量の低減が期待できるが、これらの方法であっても依然として大量の薬剤を使用する必要があり、ホウ素除去量に対して多量の汚泥が発生する。   In order to solve these problems, a method is known in which boron-containing water is concentrated to increase the boron concentration, and then an aluminum compound is added to the concentrated water to roughly treat boron to about several hundred mg / L ( Patent Documents 1 and 2). Also known is a method of treating a treatment liquid with an adsorbent after adding a polyvalent metal ion (aluminum compound, magnesium compound, etc.) to concentrated water and aggregating and precipitating (Patent Document 3). By reducing the amount of chemicals used and sludge generation by roughing the concentrated water, it is still necessary to use a large amount of chemicals even with these methods. Will occur.

一方、金属化合物の中でアルミニウム化合物やマグネシウム化合物などと比較して安価なカルシウム化合物を使用する方法が知られている。例えば特許文献4では、ホウ素を高濃度に含む放射性廃液の処理方法として、カルシウム化合物を添加し熟成させ、液のpHを12以上にして処理する方法が開示されている。この方法では薬剤コストは低減可能であるが、熟成のため反応を長時間行う必要があり装置が大型化するという課題がある。また、処理水のホウ素濃度は5,000mg/L程度かそれ以上であり、高濃度のホウ素が残留するという課題がある。   On the other hand, a method using a calcium compound that is less expensive than an aluminum compound or a magnesium compound among metal compounds is known. For example, Patent Document 4 discloses a method of treating a radioactive waste liquid containing boron at a high concentration by adding a calcium compound and aging the mixture so that the pH of the liquid is 12 or more. Although this method can reduce the cost of medicine, there is a problem that the apparatus needs to be reacted for a long time for aging and the apparatus becomes large. Further, the boron concentration of the treated water is about 5,000 mg / L or more, and there is a problem that a high concentration of boron remains.

また、ホウ素含有水にカルシウム化合物を添加して凝集処理する第一工程と、上澄み水にカルシウム化合物及びアルミニウム化合物を添加して凝集処理する第二工程とを組み合わせる方法が知られている(特許文献5)。しかし、特許文献5で検討されているホウ素含有水はインクジェット記録用材料の工程排水であり、シリカやポリビニルアルコールが含まれている。シリカやポリビニルアルコールはホウ素除去に寄与する物質として知られており(特許文献6、7)、第一工程でのホウ素除去はこれらの物質の効果である。従ってシリカやポリビニルアルコールが含まれていないホウ素含有水には適用できない。   Further, a method is known in which a first step of adding a calcium compound to boron-containing water and aggregating treatment and a second step of adding a calcium compound and an aluminum compound to supernatant water and aggregating the same are performed (Patent Document). 5). However, the boron-containing water studied in Patent Document 5 is a process wastewater for inkjet recording materials, and contains silica and polyvinyl alcohol. Silica and polyvinyl alcohol are known as substances that contribute to boron removal (Patent Documents 6 and 7), and boron removal in the first step is an effect of these substances. Therefore, it cannot be applied to boron-containing water that does not contain silica or polyvinyl alcohol.

特開2011−218338号公報JP 2011-218338 A 特開2001−198581号公報JP 2001-198581 A 特開平10−314798号公報Japanese Patent Laid-Open No. 10-314798 特開昭59−12400号公報JP 59-12400 A 特開2003−236562号公報JP 2003-236562 A 特開2001−079564号公報JP 2001-079564 A 特開2002−186976号公報JP 2002-186976 A

このように、従来技術においては、薬剤使用量の低減、汚泥発生量の低減は十分とはいえず、効果的な方法の探求が必要である。   As described above, in the prior art, it is not sufficient to reduce the amount of chemical used and the amount of sludge generated, and it is necessary to search for an effective method.

本発明は、ホウ素除去性に優れ、薬剤使用量を低減でき、かつ汚泥発生量を低減可能な効率的なホウ素含有水からのホウ素除去方法及びホウ素除去装置を提供することを目的とする。   An object of the present invention is to provide an efficient method for removing boron from boron-containing water and an apparatus for removing boron that are excellent in boron removability, can reduce the amount of chemicals used, and can reduce the amount of sludge generated.

本発明の一形態に係るホウ素含有水からのホウ素除去方法は、ホウ素含有水をホウ素濃度が2,000mg/L以上の濃縮水とホウ素濃度が10mg/L以下の非濃縮水とに分離する濃縮工程と、前記濃縮水にアルミニウム化合物を添加することなくカルシウム化合物を添加して不溶性析出物が分散した反応液を形成させる反応工程と、前記反応液を脱水ろ液と脱水汚泥とに分離する汚泥脱水工程と、前記脱水ろ液の一部又は全量を前記非濃縮水と混合して混合液を得る混合工程と、前記脱水ろ液のうち前記混合工程に導入されなかった脱水ろ液の残部を前記濃縮工程へと導入する工程とを含む。 A method for removing boron from boron-containing water according to an embodiment of the present invention is a method for separating boron-containing water into concentrated water having a boron concentration of 2,000 mg / L or more and non-concentrated water having a boron concentration of 10 mg / L or less. A reaction step of adding a calcium compound without adding an aluminum compound to the concentrated water to form a reaction solution in which insoluble precipitates are dispersed; and sludge for separating the reaction solution into dehydrated filtrate and dehydrated sludge A dehydration step, a mixing step in which a part or all of the dehydrated filtrate is mixed with the non-concentrated water to obtain a mixed solution, and a remaining portion of the dehydrated filtrate that has not been introduced into the mixing step in the dehydrated filtrate. And introducing into the concentration step.

又、本発明の一形態に係るホウ素除去装置は、ホウ素含有水をホウ素濃度が2,000mg/L以上の濃縮水とホウ素濃度が10mg/L以下の非濃縮水とに分離する濃縮装置と、前記濃縮水にカルシウム化合物を添加して不溶性析出物が分散した反応液を形成させる反応槽と、前記反応液を脱水ろ液と脱水汚泥とに分離する汚泥脱水機と、前記脱水ろ液の一部又は全量を前記非濃縮水と混合して混合液を得る混合槽と、前記脱水ろ液のうち前記混合槽に導入されなかった脱水ろ液の残部を前記濃縮装置へと導入する機構とを備える。   Moreover, the boron removing apparatus according to an aspect of the present invention includes a concentrating apparatus that separates boron-containing water into concentrated water having a boron concentration of 2,000 mg / L or more and non-concentrated water having a boron concentration of 10 mg / L or less, A reaction vessel for forming a reaction solution in which a calcium compound is added to the concentrated water to disperse insoluble precipitates; a sludge dehydrator for separating the reaction solution into dehydrated filtrate and dehydrated sludge; and one of the dehydrated filtrates. A mixing tank for mixing a part or the whole amount with the non-concentrated water to obtain a mixed liquid, and a mechanism for introducing the remaining portion of the dehydrated filtrate that has not been introduced into the mixing tank among the dehydrated filtrate into the concentrator. Prepare.

本発明によれば、少ないカルシウム化合物の添加量で高いホウ素除去率が得られ、その結果、発生する汚泥量も低減できる。また、固液分離後の脱水ろ液と非濃縮水を混合することで、所定の排水基準を満足する排水を容易に得られる。   According to the present invention, a high boron removal rate can be obtained with a small amount of added calcium compound, and as a result, the amount of generated sludge can be reduced. Further, by mixing the dehydrated filtrate after solid-liquid separation and non-concentrated water, waste water that satisfies a predetermined drainage standard can be easily obtained.

本発明に係るホウ素除去方法の概略を説明するフローチャートである。It is a flowchart explaining the outline of the boron removal method which concerns on this invention. 本発明のホウ素含有水からのホウ素除去方法の第一の実施形態を示した工程説明、及びその実施に用いられるホウ素含有水からのホウ素除去装置の概略構成を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows schematic structure of the process description which showed 1st embodiment of the boron removal method from the boron containing water of this invention, and the boron removal apparatus from the boron containing water used for the implementation. 本発明のホウ素含有水からのホウ素除去方法の第二の実施形態を示した工程説明、及びその実施に用いられるホウ素含有水からのホウ素除去装置の概略構成を示す図である。It is a figure which shows schematic structure of the process description which showed 2nd embodiment of the boron removal method from the boron containing water of this invention, and the boron removal apparatus from the boron containing water used for the implementation. 実施例1〜6及び比較例1〜9における薬剤添加量とホウ素除去率との関係を表した図である。It is the figure showing the relationship between the chemical | medical agent addition amount and boron removal rate in Examples 1-6 and Comparative Examples 1-9. 実施例1〜6及び比較例1〜9における反応液SS濃度とホウ素除去率との関係を表した図である。It is the figure showing the relationship between the reaction liquid SS density | concentration and the boron removal rate in Examples 1-6 and Comparative Examples 1-9. 比較例13、21及び実施例7〜12における濃縮水ホウ素濃度とホウ素除去率との関係を表した図である。It is the figure showing the relationship between the concentrated water boron density | concentration and the boron removal rate in Comparative Examples 13 and 21 and Examples 7-12. 実施例3及び実施例13〜17における反応pHとホウ素除去率との関係を表した図である。It is a figure showing the relationship between reaction pH and the boron removal rate in Example 3 and Examples 13-17. 実施例18〜22における反応時の水温とホウ素除去率との関係を表した図である。It is the figure showing the relationship between the water temperature at the time of reaction in Examples 18-22, and a boron removal rate.

本発明者等は、カルシウム化合物、アルミニウム化合物、マグネシウム化合物、鉄化合物などの複数の金属化合物を用いてホウ素含有水からホウ素を除去する方法について鋭意検討した結果、以下の新しい知見を得た。すなわち、ホウ素濃度が2,000mg/L未満の場合、カルシウム化合物によるホウ素除去反応はほとんど起こらず、アルミニウム化合物など他の金属化合物と比較してホウ素除去率が著しく低いこと、しかし、ホウ素濃度を2,000mg/L以上に濃縮すると、カルシウム化合物によるホウ素除去率は飛躍的に上昇し、他の金属化合物よりも少ない薬剤添加量で高いホウ素除去率が得られること、また発生する汚泥量も低減可能なこと、さらにこれらの現象は多くの金属化合物の中でカルシウム化合物のみに起こる特異的な現象であることを見出した。これは、ホウ素濃度を2,000mg/L以上に濃縮した後にカルシウム化合物を添加することにより、不溶性のホウ酸カルシウムが生成するようになるからである。本発明者等は、ホウ酸カルシウムを効率よく生成させる方法についてさらに検討し、ホウ酸カルシウムが効率よく生成可能な条件(ホウ素濃度、反応pH、カルシウム添加量、水温)が存在すること、さらにその条件が従来ホウ酸カルシウムの生成に適しているとされていた高水温(40℃以上)・高pH(12以上)と異なっていることとを見出した。   As a result of intensive studies on a method for removing boron from boron-containing water using a plurality of metal compounds such as a calcium compound, an aluminum compound, a magnesium compound, and an iron compound, the present inventors have obtained the following new findings. That is, when the boron concentration is less than 2,000 mg / L, the boron removal reaction by the calcium compound hardly occurs and the boron removal rate is remarkably low as compared with other metal compounds such as an aluminum compound, but the boron concentration is 2 When concentrated to 2,000 mg / L or more, the boron removal rate by calcium compounds increases dramatically, and a high boron removal rate can be obtained with less chemical addition than other metal compounds, and the amount of generated sludge can be reduced. Furthermore, it has been found that these phenomena are specific phenomena that occur only in calcium compounds among many metal compounds. This is because insoluble calcium borate is generated by adding a calcium compound after concentrating the boron concentration to 2,000 mg / L or more. The present inventors further examined a method for efficiently producing calcium borate, and that there exist conditions (boron concentration, reaction pH, calcium addition amount, water temperature) that can produce calcium borate efficiently, and that The present inventors have found that the conditions are different from high water temperature (40 ° C. or higher) and high pH (12 or higher), which are conventionally suitable for the production of calcium borate.

また、本発明者等が見出したホウ酸カルシウムが効率よく生成する条件下においては、従来ホウ素除去に使用されているアルミニウム化合物を併用すると、ホウ酸カルシウムの生成効率を悪化させるという特異的な現象が発現することを発見した。原因については明らかになっていないが、生成する水酸化アルミニウムがホウ酸カルシウムの生成を妨害していると推測される。   In addition, under the conditions that the calcium borate found by the present inventors is efficiently generated, the use of an aluminum compound that is conventionally used for removing boron, a specific phenomenon in which the generation efficiency of calcium borate is deteriorated. Was found to be expressed. Although the cause has not been clarified, it is assumed that the produced aluminum hydroxide hinders the formation of calcium borate.

以上の知見に基づいて本発明はなされたものである。以下、本発明のホウ素含有水からのホウ素除去方法の実施を、図面を用いて説明する。   The present invention has been made based on the above findings. Hereinafter, implementation of the method for removing boron from boron-containing water according to the present invention will be described with reference to the drawings.

図1は、本発明に係るホウ素除去方法の概略を説明するフローチャートである。図1に示すように、本発明に係るホウ素除去方法は、ホウ素含有水1をホウ素濃度が2,000mg/L以上の濃縮水2とホウ素濃度が10mg/L以下の非濃縮水6とに分離する濃縮工程Aと、濃縮水2にアルミニウム化合物を添加することなくカルシウム化合物を添加して不溶性析出物が分散した反応液3を形成させる反応工程Bと、反応液3を脱水ろ液5と脱水汚泥4とに分離する汚泥脱水工程Cと、脱水ろ液5の一部又は全量を非濃縮水6と混合して混合液7を得る混合工程Dと、脱水ろ液のうち混合工程Dに導入されなかった脱水ろ液の残部5’を再度濃縮工程Aへと導入する工程とを含む。   FIG. 1 is a flowchart for explaining the outline of the boron removing method according to the present invention. As shown in FIG. 1, the boron removal method according to the present invention separates boron-containing water 1 into concentrated water 2 having a boron concentration of 2,000 mg / L or more and non-concentrated water 6 having a boron concentration of 10 mg / L or less. A concentration step A, a reaction step B in which a calcium compound is added to the concentrated water 2 without adding an aluminum compound to form a reaction solution 3 in which insoluble precipitates are dispersed, and the reaction solution 3 is dehydrated with a dehydrated filtrate 5. Sludge dewatering step C to be separated into sludge 4, mixing step D in which a part or all of the dehydrated filtrate 5 is mixed with non-concentrated water 6 to obtain a mixed solution 7, and introduction into the mixing step D of the dehydrated filtrate A step of introducing the remaining 5 ′ of the dehydrated filtrate that has not been introduced into the concentration step A again.

以下に、本発明に係るホウ素除去方法について、除去装置の違いによる実施形態を示す。なお、この形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。   In the following, embodiments of the boron removal method according to the present invention will be described based on differences in removal devices. This embodiment is specifically described for better understanding of the gist of the invention, and does not limit the present invention unless otherwise specified.

(1)第一の実施形態
図2は、本発明のホウ素含有水からのホウ素除去方法の第一の実施形態を示した工程説明、及びその実施に用いられるホウ素含有水からのホウ素除去装置の概略構成を示す図である。この実施形態におけるホウ素含有水からのホウ素除去装置100は、pH調整槽10と、蒸発濃縮装置20と、反応槽30と、汚泥脱水機40と、混合槽50とから概略構成されている。
(1) First Embodiment FIG. 2 is a process explanation showing a first embodiment of a method for removing boron from boron-containing water according to the present invention, and an apparatus for removing boron from boron-containing water used in the embodiment. It is a figure which shows schematic structure. The boron removing apparatus 100 from boron-containing water in this embodiment is generally configured by a pH adjusting tank 10, an evaporation concentrating apparatus 20, a reaction tank 30, a sludge dehydrator 40, and a mixing tank 50.

pH調整槽10は、ホウ素含有水1(原水)が導入され、必要に応じてpH調整剤8が投入され、ホウ素含有水1のpHを調整するところである。また、後述する汚泥脱水機から回収される脱水ろ液のうち、混合槽50に導入されない残部5’が原水と混合されるところでもある。   The pH-adjusting tank 10 is where the boron-containing water 1 (raw water) is introduced, and a pH adjuster 8 is introduced as necessary to adjust the pH of the boron-containing water 1. Further, among the dehydrated filtrate recovered from the sludge dehydrator described later, the remaining portion 5 'that is not introduced into the mixing tank 50 is also mixed with the raw water.

蒸発濃縮装置20は、pH調整槽10からpHが調整されたホウ素含有水1が導入され、水分を蒸発させてホウ素濃度が2,000mg/L以上となるように濃縮するところである(濃縮工程A)。濃縮工程Aで用いる装置(濃縮装置ともいう)は、蒸発濃縮装置の他、後述する第二の実施形態のようにホウ素吸着材を用いる吸着濃縮装置や膜分離装置などを適用することができる。蒸発濃縮装置20は、水分を蒸発させて濃縮水2を得る蒸発槽と、蒸発槽から濃縮水を排出する排出口と、蒸発した水分を凝縮してホウ素を殆ど含まない非濃縮水6を得る凝縮器と、得られた非濃縮水6を排出する排出口とを有する。   The evaporative concentrator 20 is where the pH-adjusted boron-containing water 1 is introduced from the pH adjusting tank 10 to evaporate the water and concentrate it so that the boron concentration becomes 2,000 mg / L or more (concentration step A). ). As an apparatus (also referred to as a concentrating apparatus) used in the concentration step A, an adsorption concentrating apparatus or a membrane separation apparatus using a boron adsorbent as in a second embodiment to be described later can be applied in addition to an evaporation concentrating apparatus. The evaporative concentration apparatus 20 evaporates the water to obtain the concentrated water 2, the discharge port for discharging the concentrated water from the evaporation tank, and the non-concentrated water 6 containing almost no boron by condensing the evaporated water. It has a condenser and a discharge port for discharging the obtained non-concentrated water 6.

反応槽30は、蒸発濃縮装置20から濃縮水2が導入され、カルシウム化合物9を投入して、不溶性析出物を生成する槽である。この時、不溶性析出物が生成しやすいpHに調整するため、pH調整剤8も投入される。これにより、反応槽30内に不溶性析出物が分散した反応液3が形成される(反応工程B)。また、反応槽30の前段に蒸発濃縮装置20から濃縮水2の温度を調整するための温調槽を設けても良く、また、濃縮水2内のホウ素濃度を一定濃度に調整するための濃度調整槽を設けても良い。   The reaction tank 30 is a tank in which the concentrated water 2 is introduced from the evaporative concentration apparatus 20 and the calcium compound 9 is introduced to generate insoluble precipitates. At this time, in order to adjust to a pH at which insoluble precipitates are easily generated, a pH adjuster 8 is also added. Thereby, the reaction liquid 3 in which insoluble precipitates are dispersed in the reaction tank 30 is formed (reaction step B). In addition, a temperature control tank for adjusting the temperature of the concentrated water 2 from the evaporation concentrator 20 may be provided in the front stage of the reaction tank 30, and the concentration for adjusting the boron concentration in the concentrated water 2 to a constant concentration. An adjustment tank may be provided.

汚泥脱水機40は、反応槽30から不溶性析出物を含む反応液3が導入され、この反応液3を脱水処理し、脱水汚泥4と脱水ろ液5に分離するところである(汚泥脱水工程C)。   The sludge dewatering machine 40 is where the reaction liquid 3 containing insoluble precipitates is introduced from the reaction tank 30, and this reaction liquid 3 is dehydrated and separated into dehydrated sludge 4 and dehydrated filtrate 5 (sludge dewatering step C). .

汚泥脱水機40としては、フィルタープレスやベルトプレスなど加圧式脱水機が好適であるが、遠心分離機や真空ろ過器なども適用することができる。   As the sludge dehydrator 40, a pressure dehydrator such as a filter press or a belt press is suitable, but a centrifugal separator, a vacuum filter, or the like can also be applied.

混合槽50は、汚泥脱水機40からの脱水ろ液5と、また蒸発濃縮装置20からの非濃縮水6とを混合して混合液7を得るところである(混合工程D)。混合槽50では、必要に応じてpH調整剤8が投入されて、混合槽50内の液体のpHを中性付近に調整し、混合液7を排水に適した処理水とするところでもある   The mixing tank 50 is where the dehydrated filtrate 5 from the sludge dewatering machine 40 and the non-concentrated water 6 from the evaporative concentration apparatus 20 are mixed to obtain a mixed liquid 7 (mixing step D). In the mixing tank 50, the pH adjusting agent 8 is introduced as necessary to adjust the pH of the liquid in the mixing tank 50 to near neutrality, and the mixed liquid 7 is used as treated water suitable for drainage.

次に、本実施形態に係るホウ素除去装置100を用いたホウ素含有水からのホウ素除去方法を説明する。   Next, a method for removing boron from boron-containing water using the boron removing apparatus 100 according to the present embodiment will be described.

まず、pH調整槽10に、ほうろう工場からの排水や石炭火力発電所の排煙脱硫装置からの排水、ごみ焼却場からの洗煙排水、ニッケルめっき工場からの排水、ガラス製造工場からの排水、海水、塩湖かん水などのホウ素含有水1を導入し、pH調整剤8を添加してpH調整を行う。
pH調整剤8としては、水酸化ナトリウム(NaOH)などの塩基、塩酸(HCl)、硫酸(HSO)などの酸を用いることができる。
First, in the pH adjustment tank 10, wastewater from the enamel factory, wastewater from the flue gas desulfurization unit of the coal-fired power plant, smoke drainage from the incineration plant, wastewater from the nickel plating factory, wastewater from the glass manufacturing factory, Boron-containing water 1 such as seawater or salt lake brine is introduced, and a pH adjuster 8 is added to adjust pH.
As the pH adjuster 8, a base such as sodium hydroxide (NaOH), an acid such as hydrochloric acid (HCl), sulfuric acid (H 2 SO 4 ), or the like can be used.

pH調整槽10では、ホウ素含有水のpHを7〜10に調整することが好ましい。ホウ素含有水のpHを7〜10に調整することで、後段の蒸発濃縮装置20の腐食を防止することができる。   In the pH adjustment tank 10, it is preferable to adjust the pH of the boron-containing water to 7 to 10. By adjusting the pH of the boron-containing water to 7 to 10, corrosion of the subsequent evaporation and concentration apparatus 20 can be prevented.

次いで、pH調整槽10から蒸発濃縮装置20に、pHが調整されたホウ素含有水1を導入し、ホウ素濃度が2,000mg/L以上となるように蒸発濃縮する。   Next, the boron-containing water 1 whose pH has been adjusted is introduced from the pH adjusting tank 10 to the evaporation concentrating device 20, and is evaporated and concentrated so that the boron concentration becomes 2,000 mg / L or more.

次いで、蒸発濃縮装置20から反応槽30に、ホウ素を2,000mg/L以上含む濃縮水2を導入し、濃縮水2にカルシウム化合物9を添加し、必要に応じてpH調整剤8を添加し、不溶性析出物が分散した反応液3を形成させる。反応槽30では、生成した不溶性析出物の表面に、濃縮水2に含まれるホウ素が吸着されるか、または不溶性析出物の内部に、濃縮水2に含まれるホウ素が取り込まれる。   Next, concentrated water 2 containing 2,000 mg / L or more of boron is introduced from the evaporative concentration apparatus 20 to the reaction tank 30, a calcium compound 9 is added to the concentrated water 2, and a pH adjuster 8 is added as necessary. Then, a reaction solution 3 in which insoluble precipitates are dispersed is formed. In the reaction tank 30, boron contained in the concentrated water 2 is adsorbed on the surface of the generated insoluble precipitate, or boron contained in the concentrated water 2 is taken into the inside of the insoluble precipitate.

カルシウム化合物9としては、消石灰(水酸化カルシウム:Ca(OH))、塩化カルシウム(CaCl)、炭酸カルシウム(CaCO)、生石灰(酸化カルシウム:CaO)などを用いることができる。 As the calcium compound 9, slaked lime (calcium hydroxide: Ca (OH) 2 ), calcium chloride (CaCl 2 ), calcium carbonate (CaCO 3 ), quick lime (calcium oxide: CaO) and the like can be used.

カルシウム化合物9の添加量は、濃縮水2に存在するホウ素に対して、質量比でCa/B=0.5〜5.0程度が好ましい。濃縮水2にカルシウム化合物と反応する成分(炭酸イオン:CO 2−、硫酸イオン:SO 2−など)が含まれている場合、カルシウム化合物9の添加量を増加させることが好ましい。 The addition amount of the calcium compound 9 is preferably about Ca / B = 0.5 to 5.0 by mass ratio with respect to boron present in the concentrated water 2. When the concentrated water 2 contains a component that reacts with a calcium compound (such as carbonate ion: CO 3 2− , sulfate ion: SO 4 2− ), it is preferable to increase the amount of calcium compound 9 added.

反応槽30では、反応槽30内の液体のpHを7〜12に調整することが好ましく、8〜10に調整することがより好ましい。   In the reaction tank 30, it is preferable to adjust the pH of the liquid in the reaction tank 30 to 7 to 12, and more preferably to 8 to 10.

次いで、反応槽30から汚泥脱水機40に反応液3を導入し、この反応液3を脱水処理し、脱水汚泥4と脱水ろ液5に分離する。   Next, the reaction liquid 3 is introduced from the reaction tank 30 to the sludge dewatering machine 40, the reaction liquid 3 is dehydrated, and separated into the dehydrated sludge 4 and the dehydrated filtrate 5.

次いで、汚泥脱水機40から脱水ろ液5を混合槽50に導入し、また蒸発濃縮装置20から非濃縮水6を混合槽50に導入し、必要に応じて脱水ろ液5と非濃縮水6の混合液にpH調整剤8を添加し、この混合液のpHを中性付近に調整し、混合液7を得る。   Next, the dehydrated filtrate 5 is introduced into the mixing tank 50 from the sludge dehydrator 40, and the non-concentrated water 6 is introduced into the mixing tank 50 from the evaporation concentrator 20, and the dehydrated filtrate 5 and the non-concentrated water 6 are introduced as necessary. A pH adjuster 8 is added to the mixed solution, and the pH of the mixed solution is adjusted to near neutrality to obtain a mixed solution 7.

混合槽50に導入する脱水ろ液5の水量は、処理水として排水できる混合液7のホウ素濃度要求値に併せて調整する。脱水ろ液5の水量は以下の式の範囲内であることが望ましい。
A×(B−10)/(2,000−B)〜A×B/(500−B)
(ただし、Aは非濃縮水水量、Bは混合液7のホウ素濃度(求める水質により任意に設定))
混合槽50に導入されなかった脱水ろ液5の残部5’はpH調整槽10に導入する。
The amount of water of the dehydrated filtrate 5 introduced into the mixing tank 50 is adjusted in accordance with the required boron concentration of the mixed solution 7 that can be drained as treated water. The amount of water in the dehydrated filtrate 5 is preferably within the range of the following formula.
A * (B-10) / (2,000-B) to A * B / (500-B)
(However, A is the amount of non-concentrated water, and B is the boron concentration of the liquid mixture 7 (arbitrarily set according to the desired water quality))
The remaining portion 5 ′ of the dehydrated filtrate 5 that has not been introduced into the mixing tank 50 is introduced into the pH adjustment tank 10.

(2)第二の実施形態
図3は、本発明のホウ素含有水からのホウ素除去方法の第二の実施形態を示した工程説明、及びその実施に用いられるホウ素含有水からのホウ素除去装置の概略構成を示す図である。図3において、図2に示した第一の実施形態の構成要素と同じ構成要素には同一符号を付して、その説明を省略する。この実施形態におけるホウ素含有水からのホウ素除去装置200は、pH調整槽10と、吸着塔60と、反応槽30と、汚泥脱水機40と、混合槽50とから概略構成されている。
(2) Second Embodiment FIG. 3 is a process explanation showing a second embodiment of the method for removing boron from boron-containing water according to the present invention, and an apparatus for removing boron from boron-containing water used in the embodiment. It is a figure which shows schematic structure. 3, the same components as those of the first embodiment shown in FIG. 2 are denoted by the same reference numerals, and the description thereof is omitted. The apparatus 200 for removing boron from boron-containing water in this embodiment is generally composed of a pH adjustment tank 10, an adsorption tower 60, a reaction tank 30, a sludge dehydrator 40, and a mixing tank 50.

本実施形態では、濃縮工程Aにおける濃縮装置としてホウ素吸着材を用いる吸着塔60を使用する。吸着塔60には、pH調整槽10からpHが調整されたホウ素含有水1が導入され、この中に充填された吸着材に、ホウ素含有水1に含まれるホウ素を吸着させるところである(吸着工程E)。   In the present embodiment, an adsorption tower 60 using a boron adsorbent is used as the concentrating device in the concentration step A. Boron-containing water 1 whose pH has been adjusted is introduced into the adsorption tower 60 from the pH adjusting tank 10, and boron contained in the boron-containing water 1 is adsorbed to the adsorbent filled therein (adsorption process). E).

吸着塔60に充填させる吸着材としては、アニオン交換樹脂、希土類元素の含水酸化物を担持した造粒体、N−メチルグルカミン基を導入したイオン交換樹脂、または、N−メチルグルカミン基を導入した繊維状吸着材の群から選択される1種または2種以上の公知の吸着材を用いることができる。   As an adsorbent to be packed in the adsorption tower 60, an anion exchange resin, a granule carrying a rare earth element hydrated oxide, an ion exchange resin into which an N-methylglucamine group is introduced, or an N-methylglucamine group are used. One kind or two or more kinds of known adsorbents selected from the group of introduced fibrous adsorbents can be used.

なお、ホウ素含有水1に吸着塔60にて目詰まりの原因となる微粒子(不溶物)が含まれている場合、吸着塔60の前段に微粒子を除去するろ過装置を設置してもよい。   In addition, when the boron-containing water 1 contains fine particles (insoluble matter) that cause clogging in the adsorption tower 60, a filtration device that removes the fine particles may be installed in the front stage of the adsorption tower 60.

吸着塔60は、ホウ素含有水1を通水し続けると、吸着材におけるホウ素の吸着量が飽和するため、定期的に吸着塔60内へ溶離薬剤61を通液して、吸着材からホウ素を溶離させて、高濃度のホウ素を含む濃縮水2を取り出す(再生工程F)。なお、前述した吸着工程E及び再生工程Fを併せた工程が、濃縮工程Aに相当する。吸着塔60を通過したホウ素含有水1はホウ素濃度が10mg/L以下の非濃縮水6となる。つまり、溶離薬剤61の通液は吸着塔からの出口水のホウ素濃度を監視し、ホウ素濃度が10mg/Lを超えた時点あるいは超える前に行えばよい。   If the adsorption tower 60 continues to pass the boron-containing water 1, the adsorption amount of boron in the adsorbent is saturated. Therefore, the elution agent 61 is periodically passed through the adsorption tower 60 to remove boron from the adsorbent. Elution is performed to remove concentrated water 2 containing high-concentration boron (regeneration step F). In addition, the process combining the adsorption process E and the regeneration process F described above corresponds to the concentration process A. The boron-containing water 1 that has passed through the adsorption tower 60 becomes non-concentrated water 6 having a boron concentration of 10 mg / L or less. That is, the flow of the eluting drug 61 may be performed by monitoring the boron concentration in the outlet water from the adsorption tower and before or when the boron concentration exceeds 10 mg / L.

溶離薬剤61としては、吸着塔60内に充填される吸着材に応じて適宜選択すればよいが、例えば、塩酸、硫酸などの酸、水酸化ナトリウムなどのアルカリなどが挙げられる。   The eluting agent 61 may be appropriately selected according to the adsorbent filled in the adsorption tower 60, and examples thereof include acids such as hydrochloric acid and sulfuric acid, and alkalis such as sodium hydroxide.

本実施形態では、ホウ素含有水に含まれる成分のうち、ホウ素のみを選択的に濃縮することができる。そのため、塩濃度が高いホウ素含有水や、石膏(硫酸カルシウム:CaSO)のようなスケールを生成しやすい成分を含むホウ素含有水など、蒸発濃縮を行うのが困難なホウ素含有水にも適用することができる。 In this embodiment, only the boron can be selectively concentrated among the components contained in the boron-containing water. Therefore, it is also applied to boron-containing water that is difficult to evaporate and concentrate, such as boron-containing water having a high salt concentration and boron-containing water containing a component that easily generates scale such as gypsum (calcium sulfate: CaSO 4 ). be able to.

反応槽30は、吸着塔60から濃縮水2が導入され、カルシウム化合物9及び必要に応じてpH調整剤8が投入され、反応槽30内の液体のpHを調整して不溶性析出物が分散した反応液3を形成させるところである(反応工程B)。   In the reaction tank 30, the concentrated water 2 is introduced from the adsorption tower 60, the calcium compound 9 and the pH adjuster 8 are introduced as necessary, and the pH of the liquid in the reaction tank 30 is adjusted to disperse insoluble precipitates. The reaction solution 3 is to be formed (reaction step B).

汚泥脱水機40は、反応槽30から不溶性析出物を含む反応液3が導入され、この反応液3を脱水処理し、脱水汚泥4と脱水ろ液5に分離するところである(汚泥脱水工程C)。   The sludge dewatering machine 40 is where the reaction liquid 3 containing insoluble precipitates is introduced from the reaction tank 30, and this reaction liquid 3 is dehydrated and separated into dehydrated sludge 4 and dehydrated filtrate 5 (sludge dewatering step C). .

混合槽50は、汚泥脱水機40から脱水ろ液5が導入され、また吸着塔60からホウ素が吸着除去された非濃縮水6が導入され、必要に応じてpH調整剤8が投入されて、混合槽50内の液体のpHを中性付近に調整し、混合液7とするところである(混合工程D)。   In the mixing tank 50, the dehydrated filtrate 5 is introduced from the sludge dehydrator 40, the non-concentrated water 6 from which the boron is adsorbed and removed is introduced from the adsorption tower 60, and the pH adjuster 8 is introduced as necessary. The pH of the liquid in the mixing tank 50 is adjusted to near neutral to obtain a mixed liquid 7 (mixing step D).

次に、本実施形態のホウ素除去装置200を用いたホウ素含有水からのホウ素除去方法を説明する。   Next, a method for removing boron from boron-containing water using the boron removing apparatus 200 of the present embodiment will be described.

まず、pH調整槽10にホウ素含有水1を導入し、ホウ素含有水1にpH調整剤8を添加してpH調整を行う。pH調整槽10では、ホウ素含有水1のpHを、後段の吸着塔60におけるホウ素の吸着に適したpHに調整する。   First, the boron-containing water 1 is introduced into the pH adjusting tank 10, and the pH adjusting agent 8 is added to the boron-containing water 1 to adjust the pH. In the pH adjusting tank 10, the pH of the boron-containing water 1 is adjusted to a pH suitable for boron adsorption in the adsorption tower 60 at the subsequent stage.

次いで、pH調整槽10から吸着塔60に、pHが調整されたホウ素含有水1を導入し、吸着塔60に充填された吸着材に、ホウ素含有水1に含まれるホウ素を吸着させることでホウ素を除去した非濃縮水6を得る。   Next, boron-containing water 1 with adjusted pH is introduced from the pH adjusting tank 10 to the adsorption tower 60, and boron contained in the boron-containing water 1 is adsorbed to the adsorbent filled in the adsorption tower 60. The non-concentrated water 6 from which is removed is obtained.

吸着塔60内の吸着材におけるホウ素の吸着量が飽和して、吸着材がホウ素を吸着する能力が低下する前に、定期的に、吸着塔60内へ溶離薬剤61を通液して、吸着材からホウ素を溶離させて、濃縮水2を取り出すことにより、吸着材を再生する。ここで取り出された濃縮水2は、2,000mg/L程度か、それ以上の高濃度のホウ素を含有する。   Before the adsorption amount of boron in the adsorbent in the adsorption tower 60 is saturated and the ability of the adsorbent to adsorb boron decreases, the elution agent 61 is periodically passed through the adsorption tower 60 to adsorb. The adsorbent is regenerated by eluting boron from the material and taking out the concentrated water 2. The concentrated water 2 taken out here contains boron at a high concentration of about 2,000 mg / L or more.

吸着塔60内へ溶離薬剤61を通液する間隔は、吸着塔60内に充填された吸着材のホウ素の飽和吸着量(吸着可能なホウ素の総量)と、pH調整槽10から吸着塔60に導入されたホウ素含有排水1に含まれるホウ素の量とに応じて、適宜調整する。   The interval at which the eluting agent 61 is passed into the adsorption tower 60 is determined based on the saturated adsorption amount of boron (the total amount of boron that can be adsorbed) of the adsorbent filled in the adsorption tower 60 and the pH adjustment tank 10 to the adsorption tower 60. It adjusts suitably according to the quantity of the boron contained in the introduce | transduced boron containing waste water 1. FIG.

次いで、吸着塔60から反応槽30に、ホウ素を2,000mg/L程度か、それ以上含む濃縮水2を導入し、濃縮水2にカルシウム化合物9を添加し、必要に応じてpH調整剤8を添加し、不溶性析出物が分散した反応液3を形成させる。   Then, the concentrated water 2 containing about 2,000 mg / L or more of boron is introduced from the adsorption tower 60 to the reaction tank 30, and the calcium compound 9 is added to the concentrated water 2, and the pH adjusting agent 8 is added as necessary. To form a reaction solution 3 in which insoluble precipitates are dispersed.

その後は、第一の実施形態と同様にして汚泥脱水機40での汚泥脱水工程C、混合槽50での混合工程Dを経て、混合液7を処理水として排水する。脱水ろ液5の残部5’はpH調整槽10に導入され、新たなホウ素含有水1と共に再度一連の工程に供される。   Thereafter, similarly to the first embodiment, the mixed liquid 7 is drained as treated water through the sludge dewatering process C in the sludge dewatering machine 40 and the mixing process D in the mixing tank 50. The remaining portion 5 ′ of the dehydrated filtrate 5 is introduced into the pH adjustment tank 10 and is again subjected to a series of steps together with new boron-containing water 1.

以下、実施例及び比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further more concretely, this invention is not limited to a following example.

(実施例1〜6)
実験にはホウ酸を純水に溶解させてホウ素濃度を500mg/Lに調整したホウ素含有水を10倍に蒸発濃縮し、ホウ素濃度を5,000mg/Lとした濃縮水を使用した。濃縮水の水温が室温(20〜30℃)になるまで放冷後、カルシウム化合物を所定量添加した後、水酸化ナトリウムまたは塩酸を用いてpHを9.0に調整し、60分間反応させた。この反応液の一部を採取し懸濁物質(SS)濃度を測定した。また、前記反応液の一部を採取し、JIS P 3801に規定されている5種Aのフィルターによりろ過し、得られた清澄なろ液のホウ素濃度を測定した。また、実施例3については、前記反応液をフィルタープレス型脱水機で脱水し、得られた脱水汚泥の含水率を測定した。また、濃縮水ホウ素濃度、ろ液ホウ素濃度、反応液SS濃度、及び脱水汚泥の含水率から脱水汚泥中のホウ素含有率及びホウ素除去率を算出した。
(Examples 1-6)
In the experiment, boron-containing water in which boric acid was dissolved in pure water and the boron concentration was adjusted to 500 mg / L was evaporated 10 times, and concentrated water with a boron concentration of 5,000 mg / L was used. After standing to cool until the water temperature of the concentrated water reaches room temperature (20-30 ° C.), a predetermined amount of calcium compound was added, the pH was adjusted to 9.0 using sodium hydroxide or hydrochloric acid, and the mixture was reacted for 60 minutes. . A part of this reaction solution was collected and the suspended solid (SS) concentration was measured. A part of the reaction solution was sampled and filtered through a 5 A filter specified in JIS P 3801, and the boron concentration of the obtained clear filtrate was measured. Moreover, about Example 3, the said reaction liquid was dehydrated with the filter press type dehydrator, and the moisture content of the obtained dewatered sludge was measured. Further, the boron content and boron removal rate in the dewatered sludge were calculated from the concentrated water boron concentration, the filtrate boron concentration, the reaction solution SS concentration, and the water content of the dehydrated sludge.

フィルタープレス型脱水機による脱水は、ろ過圧力0.4MPa、ろ過時間15分、圧搾圧力0.7MPa、圧搾時間30分で行った。
カルシウム化合物の種類及びその添加量、反応液SS濃度、ろ液ホウ素濃度、脱水汚泥含水率、脱水汚泥中のホウ素含有率、及びホウ素除去率を表1に示す。
Dehydration by a filter press type dehydrator was performed at a filtration pressure of 0.4 MPa, a filtration time of 15 minutes, a pressing pressure of 0.7 MPa, and a pressing time of 30 minutes.
Table 1 shows the type and amount of calcium compound added, reaction solution SS concentration, filtrate boron concentration, dehydrated sludge moisture content, boron content in dehydrated sludge, and boron removal rate.

Figure 2017039062
Figure 2017039062

(比較例1〜9)
実施例1〜6に用いたホウ素濃度5,000mg/Lの濃縮水に、硫酸アルミニウム(Al(SO)、塩化マグネシウム(MgCl)、または塩化第二鉄(FeCl)のいずれか1種の金属化合物を所定量添加した後、水酸化ナトリウムを用いてpHを調整し、60分間反応させた。この反応液の一部を採取しSS濃度を測定した。また、前記反応液の一部を採取し、JIS P 3801に規定されている5種Aのフィルターによりろ過し、得られた清澄なろ液のホウ素濃度を測定した。また、比較例2,5,8については、前記反応液をフィルタープレス型脱水機で脱水し、得られた脱水汚泥の含水率を測定した。また、濃縮水ホウ素濃度、ろ液ホウ素濃度、反応液SS濃度、及び脱水汚泥の含水率から脱水汚泥のホウ素含有率及びホウ素除去率を算出した。
フィルタープレス型脱水機による脱水は、ろ過圧力0.4MPa、ろ過時間60分、圧搾圧力0.7MPa、圧搾時間30分で行った。
金属化合物の種類及びその添加量、反応液SS濃度、ろ液ホウ素濃度、脱水汚泥含水率、及びホウ素除去率を表2に示す。
(Comparative Examples 1-9)
In the concentrated water having a boron concentration of 5,000 mg / L used in Examples 1 to 6, any of aluminum sulfate (Al 2 (SO 4 ) 3 ), magnesium chloride (MgCl 2 ), or ferric chloride (FeCl 3 ) After adding a predetermined amount of one kind of metal compound, the pH was adjusted with sodium hydroxide and reacted for 60 minutes. A part of this reaction solution was sampled and the SS concentration was measured. A part of the reaction solution was sampled and filtered through a 5 A filter specified in JIS P 3801, and the boron concentration of the obtained clear filtrate was measured. For Comparative Examples 2, 5, and 8, the reaction solution was dehydrated with a filter press dehydrator, and the moisture content of the obtained dewatered sludge was measured. Further, the boron content and boron removal rate of the dewatered sludge were calculated from the concentrated water boron concentration, the filtrate boron concentration, the reaction solution SS concentration, and the water content of the dehydrated sludge.
Dehydration by a filter press type dehydrator was performed at a filtration pressure of 0.4 MPa, a filtration time of 60 minutes, a pressing pressure of 0.7 MPa, and a pressing time of 30 minutes.
Table 2 shows the types and addition amounts of the metal compounds, the reaction solution SS concentration, the filtrate boron concentration, the dehydrated sludge moisture content, and the boron removal rate.

Figure 2017039062
Figure 2017039062

(比較例10〜12)
実施例1〜6に用いたホウ素濃度5,000mg/Lの濃縮水に、硫酸アルミニウム及び消石灰を添加した後、水酸化ナトリウムまたは塩酸を用いてpHを9.0に調整し、60分間反応させた。この反応液の一部を採取し懸濁物質(SS)濃度を測定した。また、前記反応液の一部を採取し、JIS P 3801に規定されている5種Aのフィルターによりろ過し、得られた清澄なろ液のホウ素濃度を測定した。また、前記反応液をフィルタープレス型脱水機で脱水し得られた脱水汚泥の含水率を測定した。また、濃縮水ホウ素濃度、ろ液ホウ素濃度、反応液SS濃度、及び脱水汚泥の含水率から脱水汚泥のホウ素含有率及びホウ素除去率を算出した。
フィルタープレス型脱水機による脱水は、ろ過圧力0.4MPa、ろ過時間60分、圧搾圧力0.7MPa、圧搾時間30分で行った。
カルシウム化合物の種類及びその添加量、反応液SS濃度、ろ液ホウ素濃度、脱水汚泥含水率、脱水汚泥中のホウ素含有率、及びホウ素除去率を表3に示す。
(Comparative Examples 10-12)
After adding aluminum sulfate and slaked lime to the concentrated water having a boron concentration of 5,000 mg / L used in Examples 1 to 6, the pH is adjusted to 9.0 using sodium hydroxide or hydrochloric acid and reacted for 60 minutes. It was. A part of this reaction solution was collected and the suspended solid (SS) concentration was measured. A part of the reaction solution was sampled and filtered through a 5 A filter specified in JIS P 3801, and the boron concentration of the obtained clear filtrate was measured. Further, the moisture content of the dewatered sludge obtained by dehydrating the reaction solution with a filter press dehydrator was measured. Further, the boron content and boron removal rate of the dewatered sludge were calculated from the concentrated water boron concentration, the filtrate boron concentration, the reaction solution SS concentration, and the water content of the dehydrated sludge.
Dehydration by a filter press type dehydrator was performed at a filtration pressure of 0.4 MPa, a filtration time of 60 minutes, a pressing pressure of 0.7 MPa, and a pressing time of 30 minutes.
Table 3 shows the type and amount of calcium compound added, reaction solution SS concentration, filtrate boron concentration, dehydrated sludge moisture content, boron content in dehydrated sludge, and boron removal rate.

Figure 2017039062
Figure 2017039062

表1、2に示した各薬剤の添加量とホウ素除去率との関係を図4に示した。
表1、2の反応液SS濃度とホウ素除去率との関係を図5に示した。
図4より、カルシウム化合物(実施例)は、他の薬剤(比較例)よりも少ない薬剤添加量にもかかわらず、ホウ素除去率が高いことが確認された。
図5より、ホウ素除去率が同等な場合のSS濃度はカルシウム化合物(実施例)の方が他の薬剤(比較例)よりも低いことが確認された。
FIG. 4 shows the relationship between the added amount of each agent shown in Tables 1 and 2 and the boron removal rate.
The relationship between the reaction solution SS concentration in Tables 1 and 2 and the boron removal rate is shown in FIG.
From FIG. 4, it was confirmed that the calcium compound (Example) had a high boron removal rate despite the smaller amount of drug added than the other drugs (Comparative Example).
From FIG. 5, it was confirmed that the SS concentration when the boron removal rate is equivalent is lower in the calcium compound (Example) than in the other drugs (Comparative Example).

また、実施例3の脱水汚泥含水率は、比較例2、比較例5、及び比較例8の脱水汚泥含水率よりも低く、実施例で生成する汚泥は脱水性が良いことが確認された。
以上より、実施例では比較例よりも汚泥発生量を低減可能なことが確認された。
Moreover, the dehydrated sludge moisture content of Example 3 was lower than the dehydrated sludge moisture content of Comparative Example 2, Comparative Example 5, and Comparative Example 8, and it was confirmed that the sludge produced | generated in an Example has good dehydration property.
From the above, it was confirmed that the amount of sludge generation can be reduced in the example as compared with the comparative example.

表3の実施例3及び比較例10より、硫酸アルミニウムを添加しても、ほう素除去率はほとんど変わらないことがわかる。一方で比較例10では水酸化アルミニウムが生成したことによりSS濃度が上昇した。また、水酸化アルミニウムは脱水性が悪いため、含水率も増加している。以上より硫酸アルミニウムの添加はホウ素除去にほとんど寄与しないが、汚泥発生量を増加させることがわかる。さらに比較例11、12より、硫酸アルミニウム添加量を増加させると逆にホウ素除去率は低下する傾向が認められることから、実施例のホウ素除去原理は、従来のアルミニウム化合物及びカルシウム化合物を併用する処理方法とは異なっていることが分かる。   From Example 3 and Comparative Example 10 in Table 3, it can be seen that the boron removal rate hardly changes even when aluminum sulfate is added. On the other hand, in Comparative Example 10, the SS concentration increased due to the formation of aluminum hydroxide. In addition, since aluminum hydroxide has poor dewaterability, the water content is also increasing. From the above, it can be seen that the addition of aluminum sulfate hardly contributes to boron removal, but increases the amount of sludge generated. Further, from Comparative Examples 11 and 12, since the boron removal rate tends to decrease when the amount of aluminum sulfate added is increased, the boron removal principle of the example is a treatment using a conventional aluminum compound and calcium compound in combination. It turns out that it is different from the method.

(比較例13〜20)
実施例1〜6に用いたホウ素濃度500mg/Lのホウ素含有水に、消石灰、硫酸アルミニウム、塩化マグネシウム、または塩化第二鉄のいずれか1種の金属化合物を所定量添加した後、水酸化ナトリウムまたは塩酸を用いてpHを調整し、60分間反応させた。この反応液を、JIS P 3801に規定されている5種Aのフィルターによりろ過し、得られた清澄なろ液のホウ素濃度を測定した。また、ホウ素含有水ホウ素濃度及びろ液ホウ素濃度からホウ素除去率を算出した。
金属化合物の種類及びその添加量、ろ液ホウ素濃度、及びホウ素除去率を表4に示す。
(Comparative Examples 13 to 20)
After adding a predetermined amount of any one metal compound of slaked lime, aluminum sulfate, magnesium chloride or ferric chloride to boron-containing water having a boron concentration of 500 mg / L used in Examples 1 to 6, sodium hydroxide Alternatively, the pH was adjusted with hydrochloric acid and reacted for 60 minutes. The reaction solution was filtered through a 5 A filter specified in JIS P 3801, and the boron concentration of the obtained clear filtrate was measured. Further, the boron removal rate was calculated from the boron-containing water boron concentration and the filtrate boron concentration.
Table 4 shows the types and addition amounts of the metal compounds, the filtrate boron concentration, and the boron removal rate.

Figure 2017039062
Figure 2017039062

表4の結果から、ホウ素濃度500mg/Lのホウ素含有水に対しては、硫酸アルミニウム、塩化マグネシウム、または塩化第二鉄を用いた方が効率的であり、さらに添加量の増加によってホウ素除去率が向上している。一方、消石灰の場合、他の薬剤に比べて除去効果が小さく、添加量を増加させてもホウ素除去率の向上が少ないことが分かった。   From the results in Table 4, it is more efficient to use aluminum sulfate, magnesium chloride, or ferric chloride for boron-containing water having a boron concentration of 500 mg / L, and further, the boron removal rate is increased by increasing the addition amount. Has improved. On the other hand, in the case of slaked lime, it was found that the removal effect was small compared with other chemicals, and the improvement of the boron removal rate was small even when the addition amount was increased.

(実施例7)
実験にはホウ酸を純水に溶解させてホウ素濃度を2,000mg/Lに調整した模擬濃縮水を用いた。この模擬濃縮水に消石灰を質量比がCa/B=2となるように添加した後、水酸化ナトリウムまたは塩酸を用いてpHを9.0に調整し、60分間反応させた。この反応液を、JIS P 3801に規定されている5種Aのフィルターによりろ過し、得られた清澄なろ液のホウ素濃度を測定した。また、濃縮水ホウ素濃度及びろ液ホウ素濃度からホウ素除去率を算出した。
濃縮水ホウ素濃度、消石灰添加量、ろ液ホウ素濃度及びホウ素除去率を表5に示す。
(Example 7)
In the experiment, simulated concentrated water in which boric acid was dissolved in pure water and the boron concentration was adjusted to 2,000 mg / L was used. After adding slaked lime to the simulated concentrated water so that the mass ratio was Ca / B = 2, the pH was adjusted to 9.0 using sodium hydroxide or hydrochloric acid and reacted for 60 minutes. The reaction solution was filtered through a 5 A filter specified in JIS P 3801, and the boron concentration of the obtained clear filtrate was measured. Further, the boron removal rate was calculated from the concentrated water boron concentration and the filtrate boron concentration.
Concentrated water boron concentration, slaked lime addition amount, filtrate boron concentration and boron removal rate are shown in Table 5.

(実施例8)
実験に用いた模擬濃縮水のホウ素濃度が3,000mg/Lであること以外は、実施例7と同じ操作を行った。
濃縮水ホウ素濃度、消石灰添加量、ろ液ホウ素濃度及びホウ素除去率を表5に示す。
(Example 8)
The same operation as in Example 7 was performed except that the boron concentration of the simulated concentrated water used in the experiment was 3,000 mg / L.
Concentrated water boron concentration, slaked lime addition amount, filtrate boron concentration and boron removal rate are shown in Table 5.

(実施例9)
実験に用いた模擬濃縮水のホウ素濃度が5,000mg/Lであること以外は、実施例7と同じ操作を行った。
濃縮水ホウ素濃度、消石灰添加量、ろ液ホウ素濃度及びホウ素除去率を表5に示す。
Example 9
The same operation as in Example 7 was performed except that the boron concentration of the simulated concentrated water used in the experiment was 5,000 mg / L.
Concentrated water boron concentration, slaked lime addition amount, filtrate boron concentration and boron removal rate are shown in Table 5.

(実施例10)
実験に用いた模擬濃縮水のホウ素濃度が8,000mg/Lであること以外は、実施例7と同じ操作を行った。
濃縮水ホウ素濃度、消石灰添加量、ろ液ホウ素濃度及びホウ素除去率を表5に示す。
(Example 10)
The same operation as in Example 7 was performed except that the boron concentration of the simulated concentrated water used in the experiment was 8,000 mg / L.
Concentrated water boron concentration, slaked lime addition amount, filtrate boron concentration and boron removal rate are shown in Table 5.

(実施例11)
実験に用いた模擬濃縮水のホウ素濃度が10,000mg/Lであること以外は、実施例7と同じ操作を行った。
濃縮水ホウ素濃度、消石灰添加量、ろ液ホウ素濃度及びホウ素除去率を表5に示す。
(Example 11)
The same operation as in Example 7 was performed except that the boron concentration of the simulated concentrated water used in the experiment was 10,000 mg / L.
Concentrated water boron concentration, slaked lime addition amount, filtrate boron concentration and boron removal rate are shown in Table 5.

(実施例12)
実験に用いた模擬濃縮水のホウ素濃度が20,000mg/Lであること以外は、実施例7と同じ操作を行った。
濃縮水ホウ素濃度、消石灰添加量、ろ液ホウ素濃度及びホウ素除去率を表5に示す。
(Example 12)
The same operation as in Example 7 was performed except that the boron concentration of the simulated concentrated water used in the experiment was 20,000 mg / L.
Concentrated water boron concentration, slaked lime addition amount, filtrate boron concentration and boron removal rate are shown in Table 5.

(比較例21)
実験に用いた模擬濃縮水のホウ素濃度が1,000mg/Lであること以外は、実施例7と同じ操作を行った。
濃縮水ホウ素濃度、消石灰添加量、ろ液ホウ素濃度及びホウ素除去率を表5に示す。
(Comparative Example 21)
The same operation as in Example 7 was performed except that the boron concentration of the simulated concentrated water used in the experiment was 1,000 mg / L.
Concentrated water boron concentration, slaked lime addition amount, filtrate boron concentration and boron removal rate are shown in Table 5.

Figure 2017039062
Figure 2017039062

表5の濃縮水ホウ素濃度とホウ素除去率との関係を図6に示す。
図6より、濃縮水のホウ素濃度が2,000mg/L以上であれば、ホウ素除去率が飛躍的に上昇することがわかった。
FIG. 6 shows the relationship between the concentrated water boron concentration in Table 5 and the boron removal rate.
FIG. 6 shows that the boron removal rate dramatically increases when the boron concentration of the concentrated water is 2,000 mg / L or more.

(実施例13〜17)
実施例1〜6に用いたホウ素濃度5,000mg/Lの濃縮水に、消石灰をカルシウムとして8,000mg/L添加した後、水酸化ナトリウムまたは塩酸を用いて所定のpHに調整し、60分間反応させた。この反応液をJIS P 3801に規定されている5種Aのフィルターによりろ過し、得られた清澄なろ液のホウ素濃度を測定した。また、濃縮水ホウ素濃度及びろ液ホウ素濃度からホウ素除去率を算出した。
反応pHとホウ素除去率との関係を、表6及び図7に示す。
図7より、本発明によるホウ素除去方法は、pH8〜10の範囲で特に効率的であることが確認された。
(Examples 13 to 17)
After adding 8,000 mg / L of slaked lime as calcium to the concentrated water having a boron concentration of 5,000 mg / L used in Examples 1 to 6, it was adjusted to a predetermined pH using sodium hydroxide or hydrochloric acid, and then for 60 minutes. Reacted. This reaction solution was filtered through a 5A filter specified in JIS P 3801, and the boron concentration of the obtained clear filtrate was measured. Further, the boron removal rate was calculated from the concentrated water boron concentration and the filtrate boron concentration.
The relationship between the reaction pH and the boron removal rate is shown in Table 6 and FIG.
From FIG. 7, it was confirmed that the boron removing method according to the present invention is particularly efficient in the range of pH 8-10.

Figure 2017039062
Figure 2017039062

(実施例18〜22)
実施例1〜6に用いたホウ素濃度5,000mg/Lの濃縮水を所定の水温に調整後、水温を維持しながら消石灰をカルシウムとして8,000mg/L添加した後、水酸化ナトリウムまたは塩酸を用いてpH9.0に調整し、60分間反応させた。この反応液をJIS P 3801に規定されている5種Aのフィルターによりろ過し、得られた清澄なろ液のホウ素濃度を測定した。また、濃縮水ホウ素濃度及びろ液ホウ素濃度からホウ素除去率を算出した。
反応時の水温とホウ素除去率との関係を、表7及び図8に示す。
図8より、本発明によるホウ素除去方法は反応時の水温が低温なほど効果的であり、40℃以下の条件では80%以上の高いホウ素除去率が得られることがわかった。
(Examples 18 to 22)
After adjusting the concentrated water having a boron concentration of 5,000 mg / L used in Examples 1 to 6 to a predetermined water temperature, adding 8,000 mg / L of slaked lime as calcium while maintaining the water temperature, sodium hydroxide or hydrochloric acid was added. The pH was adjusted to 9.0 and reacted for 60 minutes. This reaction solution was filtered through a 5A filter specified in JIS P 3801, and the boron concentration of the obtained clear filtrate was measured. Further, the boron removal rate was calculated from the concentrated water boron concentration and the filtrate boron concentration.
The relationship between the water temperature during the reaction and the boron removal rate is shown in Table 7 and FIG.
From FIG. 8, it was found that the boron removal method according to the present invention is more effective as the water temperature during the reaction is lower, and a high boron removal rate of 80% or more can be obtained under the condition of 40 ° C. or lower.

Figure 2017039062
Figure 2017039062

(実施例23)
ホウ素を800mg/L含む石炭火力発電所の排煙脱硫排水を10倍に蒸発濃縮し、8,000mg/Lの濃縮水を得た。濃縮水の水温が室温(20〜30℃)になるまで放冷後、消石灰をカルシウムとして15,000mg/L添加した後、塩酸を用いてpHを9.0に調整し、60分間反応させた。この反応液を、JIS P 3801に規定されている5種Aのフィルターによりろ過し、得られた清澄なろ液のホウ素濃度を測定した。また、濃縮水ホウ素濃度及びろ液ホウ素濃度からホウ素除去率を算出した。
結果を表8に示す。
(Example 23)
The flue gas desulfurization effluent of a coal-fired power plant containing 800 mg / L of boron was evaporated and concentrated 10 times to obtain 8,000 mg / L of concentrated water. After allowing the concentrated water to cool to room temperature (20-30 ° C.), 15,000 mg / L of slaked lime as calcium was added, and then the pH was adjusted to 9.0 using hydrochloric acid and reacted for 60 minutes. . The reaction solution was filtered through a 5 A filter specified in JIS P 3801, and the boron concentration of the obtained clear filtrate was measured. Further, the boron removal rate was calculated from the concentrated water boron concentration and the filtrate boron concentration.
The results are shown in Table 8.

(実施例24)
ホウ素を200mg/L含む塩湖かん水を、JIS P 3801に規定されている5種Aのフィルターによりろ過した後、塩酸を添加してpHを7.0に調整し、pH調整後の塩湖かん水を、吸着材を充填した吸着塔に、120mL/hで通水した。
吸着材としては、キレスト株式会社製キレート繊維「GRY−HW」(商品名)を0.35g/mLの密度で、容積40mLの空間に充填したものを用いた。
吸着塔への通水倍率を25倍(25Bed Volume)とし、吸着塔出口のホウ素濃度が10mg/Lを超えた時点で塩湖かん水の通水を停止し、溶離薬剤として1NのHClを用いて、吸着材に吸着されたホウ素を溶離させ、吸着塔からホウ素を高濃度に含む濃縮水を取り出した。
得られた濃縮水のホウ素濃度は3,400mg/Lであった。
この濃縮水に消石灰をカルシウムとして7,000mg/L添加した後、水酸化ナトリウムを用いてpHを9.0に調整し、60分間反応させた。この反応液を、JIS P 3801に規定されている5種Aのフィルターによりろ過し、得られた清澄なろ液のホウ素濃度を測定した。また、濃縮水ホウ素濃度及びろ液ホウ素濃度からホウ素除去率を算出した。
結果を表8に示す。
(Example 24)
Salt lake brine containing 200 mg / L of boron is filtered through 5 types A filter specified in JIS P 3801, and hydrochloric acid is added to adjust the pH to 7.0. Was passed through an adsorption tower filled with an adsorbent at 120 mL / h.
As the adsorbent, a chelate fiber “GRY-HW” (trade name) manufactured by Kirest Co., Ltd., having a density of 0.35 g / mL and a space of 40 mL in volume was used.
The water flow rate to the adsorption tower was set to 25 times (25 Bed Volume), and when the boron concentration at the outlet of the adsorption tower exceeded 10 mg / L, the water flow of the salt lake was stopped, and 1N HCl was used as the eluting agent. Then, boron adsorbed on the adsorbent was eluted, and concentrated water containing boron at a high concentration was taken out from the adsorption tower.
The boron concentration of the obtained concentrated water was 3,400 mg / L.
After adding 7,000 mg / L of slaked lime as calcium to this concentrated water, the pH was adjusted to 9.0 using sodium hydroxide and reacted for 60 minutes. The reaction solution was filtered through a 5 A filter specified in JIS P 3801, and the boron concentration of the obtained clear filtrate was measured. Further, the boron removal rate was calculated from the concentrated water boron concentration and the filtrate boron concentration.
The results are shown in Table 8.

Figure 2017039062
Figure 2017039062

表8より、本発明によるホウ素除去方法は石炭火力発電所の排煙脱硫排水や塩湖かん水に対して有効であることが確認された。   From Table 8, it was confirmed that the boron removal method according to the present invention is effective for flue gas desulfurization effluent and salt lake brine in a coal-fired power plant.

本発明に関わるホウ素含有水からのホウ素除去方法は、ほうろう製造工場からの排水や石炭火力発電所の排煙脱硫装置からの排水、ごみ焼却場からの洗煙排水、ニッケルめっき工場からの排水、ガラス製造工場からの排水、海水、塩湖かん水などのホウ素含有水からのホウ素除去に適用される   Boron removal method from boron-containing water according to the present invention includes wastewater from enamel manufacturing plants, wastewater from flue gas desulfurization equipment at coal-fired power plants, smoke washing wastewater from waste incineration plants, wastewater from nickel plating plants, Applicable for removing boron from water containing boron, such as wastewater from glass manufacturing plants, seawater, salt water

1 ホウ素含有水
2 濃縮水
3 反応液
4 脱水汚泥
5 脱水ろ液
6 非濃縮水
7 混合液
8 pH調整剤
9 カルシウム化合物
100 第一の実施形態におけるホウ素含有水からのホウ素除去装置
200 第二の実施形態におけるホウ素含有水からのホウ素除去装置
10 pH調整槽
20 蒸発濃縮装置
30 反応槽
40 汚泥脱水機
50 混合槽
60 吸着塔
61 溶離薬剤
DESCRIPTION OF SYMBOLS 1 Boron-containing water 2 Concentrated water 3 Reaction liquid 4 Dehydrated sludge 5 Dehydrated filtrate 6 Non-concentrated water 7 Mixture 8 pH adjuster 9 Calcium compound 100 The boron removal apparatus 200 from the boron-containing water in 1st embodiment 2nd Boron removal device 10 from boron-containing water in the embodiment 10 pH adjustment tank 20 Evaporation concentration apparatus 30 Reaction tank 40 Sludge dehydrator 50 Mixing tank 60 Adsorption tower 61 Eluent

Claims (14)

ホウ素含有水をホウ素濃度が2,000mg/L以上の濃縮水とホウ素濃度が10mg/L以下の非濃縮水とに分離する濃縮工程と、前記濃縮水にアルミニウム化合物を添加することなくカルシウム化合物を添加して不溶性析出物が分散した反応液を形成させる反応工程と、前記反応液を脱水ろ液と脱水汚泥とに分離する汚泥脱水工程と、前記脱水ろ液の一部又は全量を前記非濃縮水と混合して混合液を得る混合工程と、前記脱水ろ液のうち前記混合工程に導入されなかった脱水ろ液の残部を前記濃縮工程へと導入する工程とを含むホウ素除去方法。   A concentration step of separating the boron-containing water into concentrated water having a boron concentration of 2,000 mg / L or more and non-concentrated water having a boron concentration of 10 mg / L or less; and a calcium compound without adding an aluminum compound to the concentrated water A reaction step of forming a reaction solution in which insoluble precipitates are dispersed by addition, a sludge dehydration step of separating the reaction solution into a dehydrated filtrate and a dehydrated sludge, and a part or all of the dehydrated filtrate is non-concentrated. A boron removal method comprising: a mixing step of mixing with water to obtain a mixed solution; and a step of introducing the remaining portion of the dehydrated filtrate that has not been introduced into the mixing step into the concentration step. 前記濃縮水が、ホウ素含有水を蒸発濃縮したものである請求項1に記載のホウ素除去方法。   The boron removal method according to claim 1, wherein the concentrated water is obtained by evaporating and concentrating boron-containing water. 前記濃縮水が、ホウ素含有水をアニオン交換樹脂、希土類元素の含水酸化物を担持した造粒体、N−メチルグルカミン基を導入したイオン交換樹脂、または、N−メチルグルカミン基を導入した繊維状吸着材の群から選択される1種または2種以上の吸着材に接触させて、前記ホウ素含有水からホウ素を吸着除去し、ホウ素を吸着した前記吸着材から酸またはアルカリでホウ素を溶離させたものである、請求項1に記載のホウ素除去方法。   In the concentrated water, boron-containing water is anion exchange resin, a granule carrying a rare earth element hydrous oxide, an ion-exchange resin having an N-methylglucamine group introduced therein, or an N-methylglucamine group is introduced. Contact with one or more adsorbents selected from the group of fibrous adsorbents, adsorb and remove boron from the boron-containing water, and elute boron with acid or alkali from the adsorbent adsorbed boron The boron removal method according to claim 1, wherein 前記濃縮水のアルミニウム濃度が、1,000mg/L以下であることを特徴とする請求項1〜3のいずれか一項に記載のホウ素除去方法。   The boron concentration method according to any one of claims 1 to 3, wherein an aluminum concentration of the concentrated water is 1,000 mg / L or less. 前記反応工程でカルシウム化合物を添加後、pHを8〜10に調整する工程を含む、請求項1〜4のいずれか一項に記載のホウ素除去方法。   The boron removal method as described in any one of Claims 1-4 including the process of adjusting pH to 8-10 after adding a calcium compound at the said reaction process. 前記反応工程における前記反応液の水温が40℃以下であることを特徴とする請求項1〜5のいずれか一項に記載のホウ素除去方法。   The boron temperature removal method according to any one of claims 1 to 5, wherein a water temperature of the reaction solution in the reaction step is 40 ° C or lower. 前記反応工程で添加するカルシウム化合物の添加量が、前記濃縮水に存在するホウ素に対して質量比でCa/B=0.5〜5.0の範囲である、請求項1〜6のいずれか一項に記載のホウ素除去方法。   The amount of the calcium compound added in the reaction step is in a range of Ca / B = 0.5 to 5.0 by mass ratio with respect to boron present in the concentrated water. The method for removing boron according to one item. 前記混合工程に導入する前記脱水ろ液の水量が以下の式で表せる範囲内である請求項1〜7のいずれか一項に記載のホウ素除去方法。
A×(B−10)/(2,000−B)〜A×B/(500−B)
(ただし、Aは非濃縮水水量、Bは混合液ホウ素濃度(求める水質により任意に設定))
The boron removal method according to any one of claims 1 to 7, wherein an amount of water of the dehydrated filtrate introduced into the mixing step is within a range represented by the following formula.
A * (B-10) / (2,000-B) to A * B / (500-B)
(However, A is the amount of non-concentrated water, B is the boron concentration of the mixed solution (arbitrary setting depending on the desired water quality)
前記脱水汚泥のホウ素含有率が、4%以上であることを特徴とする請求項1〜8のいずれか一項に記載のホウ素除去方法。   The boron removal method according to any one of claims 1 to 8, wherein the boron content of the dewatered sludge is 4% or more. ホウ素含有水をホウ素濃度が2,000mg/L以上の濃縮水とホウ素濃度が10mg/L以下の非濃縮水とに分離する濃縮装置と、前記濃縮水にカルシウム化合物を添加して不溶性析出物が分散した反応液を形成させる反応槽と、前記反応液を脱水ろ液と脱水汚泥とに分離する汚泥脱水機と、前記脱水ろ液の一部又は全量を前記非濃縮水と混合して混合液を得る混合槽と、前記脱水ろ液のうち前記混合槽に導入されなかった脱水ろ液の残部を前記濃縮装置へと導入する機構とを備えたホウ素除去装置。   A concentration device that separates the boron-containing water into concentrated water having a boron concentration of 2,000 mg / L or more and non-concentrated water having a boron concentration of 10 mg / L or less, and a calcium compound is added to the concentrated water to form insoluble precipitates. A reaction tank for forming a dispersed reaction liquid, a sludge dewatering machine that separates the reaction liquid into dehydrated filtrate and dewatered sludge, and a mixed liquid obtained by mixing a part or all of the dehydrated filtrate with the non-concentrated water And a mechanism for introducing a remaining portion of the dehydrated filtrate that has not been introduced into the mixing vessel into the concentrator. 前記濃縮装置が、蒸発濃縮装置である請求項10に記載のホウ素除去装置。   The boron removing apparatus according to claim 10, wherein the concentrating device is an evaporation concentrating device. 前記濃縮装置が、アニオン交換樹脂、希土類元素の含水酸化物を担持した造粒体、N−メチルグルカミン基を導入したイオン交換樹脂、または、N−メチルグルカミン基を導入した繊維状吸着材の群から選択される1種または2種以上の吸着材を充填した吸着塔であり、前記吸着材に吸着したホウ素を溶離薬剤で溶離して前記濃縮液を得る、請求項10に記載のホウ素除去装置。   The concentrator is an anion exchange resin, a granule carrying a rare earth element-containing hydrous oxide, an ion exchange resin having an N-methylglucamine group introduced therein, or a fibrous adsorbent having an N-methylglucamine group introduced thereinto. The boron according to claim 10, which is an adsorption tower packed with one or more adsorbents selected from the group of the above, wherein the concentrated liquid is obtained by eluting boron adsorbed on the adsorbent with an eluting agent. Removal device. 前記濃縮装置の前段にホウ素含有水のpHを調整するpH調整槽を有し、前記混合槽に導入されなかった脱水ろ液の残部を前記濃縮装置へと導入する機構は、前記pH調整槽に前記脱水ろ液の残部を導入するものである請求項10〜12のいずれか一項に記載のホウ素除去装置。   A mechanism for introducing a remaining portion of the dehydrated filtrate that has not been introduced into the mixing tank into the concentrating apparatus is provided in the pH adjusting tank. The boron removing apparatus according to any one of claims 10 to 12, wherein the remainder of the dehydrated filtrate is introduced. 前記反応槽及び混合槽の少なくとも一方は、pH調整剤を導入する機構を有する請求項10〜13のいずれか一項に記載のホウ素除去装置。   The boron removal apparatus according to any one of claims 10 to 13, wherein at least one of the reaction tank and the mixing tank has a mechanism for introducing a pH adjusting agent.
JP2015160450A 2015-08-17 2015-08-17 Boron removal method and boron removal device Active JP6888798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015160450A JP6888798B2 (en) 2015-08-17 2015-08-17 Boron removal method and boron removal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015160450A JP6888798B2 (en) 2015-08-17 2015-08-17 Boron removal method and boron removal device

Publications (2)

Publication Number Publication Date
JP2017039062A true JP2017039062A (en) 2017-02-23
JP6888798B2 JP6888798B2 (en) 2021-06-16

Family

ID=58203155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015160450A Active JP6888798B2 (en) 2015-08-17 2015-08-17 Boron removal method and boron removal device

Country Status (1)

Country Link
JP (1) JP6888798B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109678167A (en) * 2019-03-05 2019-04-26 李洪岭 A method of boric acid is produced from lithium borate waste solution is mentioned

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912400A (en) * 1982-07-12 1984-01-23 日揮株式会社 Radioactive liquid waste treating process
JPH10314798A (en) * 1997-05-14 1998-12-02 Kurita Water Ind Ltd Method for treatment of boron containing water
JPH11315005A (en) * 1998-05-01 1999-11-16 Kubota Corp Production of exterminate against sanitary insect pest using boron contained in sewage
JP2001079564A (en) * 1999-09-10 2001-03-27 Sumitomo Metal Mining Co Ltd Treatment of boron-containing water
JP2001198581A (en) * 2000-01-14 2001-07-24 Kurita Water Ind Ltd Method for treating boron-containing water
JP2005007388A (en) * 2003-05-22 2005-01-13 Nikkiso Co Ltd Reaction promoting apparatus and apparatus for lowering concentration of organic matter
US20150175448A1 (en) * 2013-12-19 2015-06-25 Benq Materials Corporation System for treating wastewater containing boron and iodine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912400A (en) * 1982-07-12 1984-01-23 日揮株式会社 Radioactive liquid waste treating process
JPH10314798A (en) * 1997-05-14 1998-12-02 Kurita Water Ind Ltd Method for treatment of boron containing water
JPH11315005A (en) * 1998-05-01 1999-11-16 Kubota Corp Production of exterminate against sanitary insect pest using boron contained in sewage
JP2001079564A (en) * 1999-09-10 2001-03-27 Sumitomo Metal Mining Co Ltd Treatment of boron-containing water
JP2001198581A (en) * 2000-01-14 2001-07-24 Kurita Water Ind Ltd Method for treating boron-containing water
JP2005007388A (en) * 2003-05-22 2005-01-13 Nikkiso Co Ltd Reaction promoting apparatus and apparatus for lowering concentration of organic matter
US20150175448A1 (en) * 2013-12-19 2015-06-25 Benq Materials Corporation System for treating wastewater containing boron and iodine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109678167A (en) * 2019-03-05 2019-04-26 李洪岭 A method of boric acid is produced from lithium borate waste solution is mentioned

Also Published As

Publication number Publication date
JP6888798B2 (en) 2021-06-16

Similar Documents

Publication Publication Date Title
Abdulkarim et al. Adsorption of lead ions from aqueous solution onto activated carbon and chemically-modified activated carbon prepared from date pits
CN104860461B (en) A kind of desulfurization wastewater zero-emission prepares the method and device of NaCl Nacls
CN110759571B (en) Fly ash leachate treatment system and treatment method
JP6865434B2 (en) Treatment method of boron-containing water
EP2792645B1 (en) Process for removing fluorides from water
CN106517624B (en) Desulfurization wastewater treatment method and system based on multistage fluidized bed crystallization
JP4693128B2 (en) Phosphorus recovery method and phosphorus recovery system
JP2013104723A (en) METHOD AND APPARATUS FOR TREATING Sr-CONTAINING WATER
CN104934089A (en) Radioactive wastewater treatment method
JP2005193167A (en) Drainage purification method and purification method
CN110548477B (en) Adsorbing material and preparation method and application thereof
JP2006341139A (en) Harmful inorganic anion fixing and removing method, and fixing agent used therefor
CN107055886B (en) A kind of depth graded divides salt technique
WO2013136677A1 (en) Ammoniacal nitrogen and phosphorus recovery agent and method for producing same
JP6888798B2 (en) Boron removal method and boron removal device
JP5214756B2 (en) Boron-containing water treatment method and boron-containing water treatment apparatus
JP2010274206A (en) Water purifying material, water purifying method, phosphatic fertilizer precursor, and method of manufacturing phosphatic fertilizer precursor
JP2006130420A (en) Phosphorus component recovery method
WO2018230489A1 (en) Adsorption method
JPH10314798A (en) Method for treatment of boron containing water
JP5483431B2 (en) Method for removing boron from boron-containing wastewater
TWI531543B (en) Method for treatment of boron-containing waste water
WO2022210468A1 (en) Waste water volume reduction process
JP6989840B2 (en) Phosphoric acid recovery method
EP4317084A1 (en) High-performance pretreatment system for desulfurized wastewater for reverse osmosis membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200127

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200127

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200203

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200204

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200221

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200303

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20201208

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210316

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210420

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210513

R150 Certificate of patent or registration of utility model

Ref document number: 6888798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250