JP2017038123A - Multiple frequency antenna device - Google Patents

Multiple frequency antenna device Download PDF

Info

Publication number
JP2017038123A
JP2017038123A JP2015156753A JP2015156753A JP2017038123A JP 2017038123 A JP2017038123 A JP 2017038123A JP 2015156753 A JP2015156753 A JP 2015156753A JP 2015156753 A JP2015156753 A JP 2015156753A JP 2017038123 A JP2017038123 A JP 2017038123A
Authority
JP
Japan
Prior art keywords
directivity
elements
reflector
periodic antennas
log periodic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015156753A
Other languages
Japanese (ja)
Other versions
JP6634237B2 (en
Inventor
滉司 三田部
Koji Mitabe
滉司 三田部
翔 澁谷
Sho Shibuya
翔 澁谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Yagi Solutions Inc
Original Assignee
Hitachi Kokusai Yagi Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Yagi Solutions Inc filed Critical Hitachi Kokusai Yagi Solutions Inc
Priority to JP2015156753A priority Critical patent/JP6634237B2/en
Publication of JP2017038123A publication Critical patent/JP2017038123A/en
Application granted granted Critical
Publication of JP6634237B2 publication Critical patent/JP6634237B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To allow for easy adjustment of the directivity for each frequency, without taking extensive measures.SOLUTION: First and second log periodic antennas 2a, 2b are placed while inclining the whole dielectric substrate 21, so that the distance to a reflector 1 increases as the element length from elements on the side of feeding points 61, 62 becomes longer. The angle of tilt of the dielectric substrate 21 for the reflector 1 and the distance of the feeding points 61, 62 are set so that the distance of respective elements 22, 23 and the reflector 1 become substantially constant, when converted to the wavelength of resonance frequency of respective elements.SELECTED DRAWING: Figure 1

Description

この発明は、対数周期型アンテナを使用した多周波アンテナ装置に関する。   The present invention relates to a multi-frequency antenna device using a log periodic antenna.

例えば、トンネル内の壁面に取り付けられるアンテナ装置としては、相反する2方向に指向性を持つ八木式アンテナ装置が知られている。この種のアンテナ装置を用いると、トンネルの長手方向に電波を効率良く放射することができる。   For example, as an antenna device attached to a wall surface in a tunnel, a Yagi type antenna device having directivity in two opposite directions is known. When this type of antenna device is used, radio waves can be efficiently radiated in the longitudinal direction of the tunnel.

ところで、携帯電話通信システムは利用者の需要の拡大やさらなる通信品質向上のために広帯域にわたる多周波化が進められており、使用するアンテナ装置にも広帯域な特性が求められている。このような広帯域な特性を持つ指向性アンテナ装置としては、対数周期型アンテナ(ログペリアンテナとも呼ばれる)を使用したアンテナ装置が知られている。対数周期型アンテナは、例えば基板の両面に、素子長が対数周期的に順次長くなるように設計された複数のダイポール素子を配置したもので、アンテナ装置はこのような対数周期型アンテナを2個使用する。そして、この2個の対数周期型アンテナを反射板に対し一定の距離を隔て、かつ素子長の短い側が互いに向き合う状態で逆向きに対向配置し、かつ各アンテナの素子長が最も短い素子が配置された側に給電を行うように構成される。このような対数周期型アンテナを使用したアンテナ装置によれば、対数周期型アンテナを構成する各素子がそれぞれ異なる周波数に共振することで、アンテナ装置全体として多周波に渡り広帯域な特性を実現することができる(例えば特許文献1を参照)。   By the way, mobile phone communication systems are being increased in frequency over a wide band in order to increase user demand and further improve communication quality, and broadband characteristics are also required for antenna devices to be used. As a directional antenna device having such a broadband characteristic, an antenna device using a log periodic antenna (also called a log-peri antenna) is known. For example, a logarithmic periodic antenna has a plurality of dipole elements designed so that the element length is sequentially increased logarithmically on both surfaces of a substrate. The antenna apparatus has two such log periodic antennas. use. The two log-periodic antennas are arranged opposite to each other with a certain distance from the reflector, with the short element lengths facing each other, and the elements with the shortest element length are arranged. It is comprised so that electric power may be supplied to the done side. According to the antenna device using such a log periodic antenna, each element constituting the log periodic antenna resonates at a different frequency, so that the antenna device as a whole can achieve wideband characteristics over multiple frequencies. (For example, refer to Patent Document 1).

特開2006−229337号公報JP 2006-229337 A

ところが、対数周期型アンテナを使用したアンテナ装置は、周波数ごとの指向性が反射板と各素子との距離に依存する。このため、2個の対数周期型アンテナを素子長が短い側が互いに向き合う状態で逆向きに対向配置し、かつ反射板に対し一定距離を隔てて平行する状態に配置した構成では、周波数により指向性が乱れることから、周波数ごとに指向性を調整することが難しい。   However, in an antenna device using a log periodic antenna, the directivity for each frequency depends on the distance between the reflector and each element. For this reason, in a configuration in which two log periodic antennas are arranged opposite to each other with their short element lengths facing each other in the opposite direction and arranged parallel to the reflector with a certain distance, directivity depends on the frequency. It is difficult to adjust the directivity for each frequency.

この発明は上記事情に着目してなされたもので、その目的とするところは、周波数ごとの指向性の調整を大掛かりな対策を講じることなく簡単に行えるようにする対数周期型アンテナを使用した多周波アンテナ装置を提供することにある。   The present invention has been made paying attention to the above circumstances, and the object of the present invention is to use a multi-logarithmic periodic antenna that makes it possible to easily adjust the directivity for each frequency without taking a major measure. The object is to provide a frequency antenna device.

上記目的を達成するためにこの発明の第1の態様は、素子長が対数周期的に順次長くなるように設定された複数の素子を誘電体基板の両面に配列した第1および第2の対数周期型アンテナを、前記複数の素子の配列方向が互いに逆向きとなるように配置したアンテナユニットと、前記第1および第2の対数周期型アンテナに対し高周波信号を給電する給電回路と、前記第1および第2の対数周期型アンテナに対し離間して配置される反射板とを具備する多周波アンテナ装置にあって、前記第1および第2の対数周期型アンテナを、その複数の素子の素子長が長くなるに従い当該複数の素子と前記反射板との間隔が大きくなるように前記反射板に対し傾斜する状態に配置し、かつ前記複数の素子と前記反射板との間隔を、当該複数の素子の共振周波数の波長に換算した場合に予め設定した範囲内で一定となるように設定したものである。   To achieve the above object, according to a first aspect of the present invention, there is provided a first logarithm and a second logarithm in which a plurality of elements whose element lengths are sequentially increased in a logarithmic period are arranged on both surfaces of a dielectric substrate. An antenna unit in which a periodic antenna is arranged so that arrangement directions of the plurality of elements are opposite to each other; a feeding circuit that feeds a high-frequency signal to the first and second log periodic antennas; A multi-frequency antenna apparatus comprising: a reflector disposed apart from the first and second log periodic antennas, wherein the first and second log periodic antennas are elements of the plurality of elements. As the length becomes longer, the plurality of elements and the reflecting plate are disposed so as to be inclined with respect to the reflecting plate so that the distance between the plurality of elements and the reflecting plate is increased. Element resonance In which was set to be constant within a range set in advance when converted to a wavelength of the wave number.

この発明の第2の態様は、前記反射板上の、前記第1および第2の対数周期型アンテナの前記複数の素子の配列方向と直交する方向に補助反射板を、さらに立設するようにしたものである。   In a second aspect of the present invention, an auxiliary reflector is further erected on the reflector in a direction perpendicular to the arrangement direction of the plurality of elements of the first and second log periodic antennas. It is a thing.

この発明の第3の態様は、前記第1および第2の対数周期型アンテナの複数の素子の配列方向の延長上に、それぞれ無給電素子からなる一対の導波器を、さらに配置するようにしたものである。   According to a third aspect of the present invention, a pair of waveguides each made of a parasitic element is further arranged on an extension in the arrangement direction of the plurality of elements of the first and second log periodic antennas. It is a thing.

この発明の第4の態様は、前記第1および第2の対数周期型アンテナの前記複数の素子のうち、指向性の調整対象となる周波数に共振する素子と隣接する位置に、前記複数の素子の対数周期と異なる素子長を有するマッチング素子を、さらに配置するようにしたものである。   According to a fourth aspect of the present invention, among the plurality of elements of the first and second log-periodic antennas, the plurality of elements are positioned adjacent to an element that resonates at a frequency that is a target of directivity adjustment. Matching elements having element lengths different from the logarithmic period are further arranged.

この発明の第1の態様によれば、対数周期型アンテナごとにその各素子と反射板との間隔、すなわち反射板に対する各対数周期型アンテナの傾斜角を調整するだけで、各周波数の指向性を最適な状態に調整することが可能となる。   According to the first aspect of the present invention, the directivity of each frequency can be obtained only by adjusting the distance between each element and the reflector for each log periodic antenna, that is, the inclination angle of each log periodic antenna with respect to the reflector. Can be adjusted to an optimum state.

この発明の第2の態様によれば、反射板上の第1および第2の対数周期型アンテナの素子の配列方向と直交する方向に補助反射板を立設したことで、反射板自体を大型化することなく反射板の有効面積を増加させることが可能となり、これにより多周波アンテナ装置の小型化を維持しつつ第1および第2の対数周期型アンテナの指向性をさらに向上させることができる。   According to the second aspect of the present invention, the auxiliary reflector is erected in a direction orthogonal to the arrangement direction of the elements of the first and second log periodic antennas on the reflector, so that the reflector itself is made large. It is possible to increase the effective area of the reflector without reducing the size of the reflector, thereby further improving the directivity of the first and second log periodic antennas while maintaining the miniaturization of the multi-frequency antenna device. .

この発明の第3の態様によれば、第1および第2の対数周期型アンテナの素子の配列方向の延長上に無給電素子からなる導波器をそれぞれ配置したことで、多周波アンテナ装置の小型化を維持した上で、使用周波数帯の内の特定の周波数帯に対して指向性を制御することが可能となり、これにより対数周期型アンテナの素子の配列方向における指向性を所望の状態に調整することができる。   According to the third aspect of the present invention, by arranging the directors made of parasitic elements on the extension of the arrangement direction of the elements of the first and second log periodic antennas, While maintaining the miniaturization, it becomes possible to control the directivity for a specific frequency band in the use frequency band, and thereby the directivity in the array direction of the elements of the log periodic antenna is set to a desired state. Can be adjusted.

この発明の第4の態様によれば、第1および第2の対数周期型アンテナの各素子のうち指向性の調整対象となる周波数に共振する素子と隣接する位置に、対数周期と異なる素子長を有するマッチング素子を配置することで、大掛かりなマッチング回路を別途設けることなく電圧定在波比(Voltage Standing Wave Ratio:VSWR)を制御することができ、これにより広帯域性を向上させることができる。   According to the fourth aspect of the present invention, the element length different from the logarithmic period is located at a position adjacent to the element that resonates at the frequency whose directivity is to be adjusted among the elements of the first and second log periodic antennas. By arranging the matching elements having the above, it is possible to control the voltage standing wave ratio (VSWR) without separately providing a large matching circuit, thereby improving the broadband property.

すなわちこの発明によれば、周波数ごとの指向性の調整を大掛かりな対策を講じることなく簡単に行えるようにした対数周期型アンテナを使用した多周波アンテナ装置を提供することができる。   That is, according to the present invention, it is possible to provide a multi-frequency antenna device using a log-periodic antenna that can easily adjust the directivity for each frequency without taking a large measure.

この発明の第1の実施形態に係る多周波アンテナ装置の構成の概要を示す斜視図。The perspective view which shows the outline | summary of a structure of the multifrequency antenna apparatus which concerns on 1st Embodiment of this invention. 図1に示した多周波アンテナ装置の具体的な構造を示すもので、(a)はその正面図、(b)は長辺側から見た側面図、(c)は短辺側から見た側面図。1 shows a specific structure of the multi-frequency antenna device shown in FIG. 1, (a) is a front view thereof, (b) is a side view seen from the long side, and (c) is seen from the short side. Side view. 図1に示した対数周期型アンテナにおける素子の配列パターンの一例を示す図。The figure which shows an example of the arrangement | sequence pattern of the element in the logarithmic periodic antenna shown in FIG. 図1に示した多周波アンテナ装置において、対数周期型アンテナを反射板に対し傾斜させ、かつ補助反射板および導波器を設置しなかった場合のアンテナ動作を示す図。The figure which shows antenna operation | movement at the time of making a logarithmic periodic antenna incline with respect to a reflecting plate in the multifrequency antenna apparatus shown in FIG. 1, and not installing an auxiliary reflecting plate and a director. 対数周期型アンテナを反射板に対し傾斜させて配置した場合の対数周期型アンテナと反射板との間隔を示す図。The figure which shows the space | interval of a log periodic antenna and a reflecting plate at the time of arrange | positioning a log periodic antenna with respect to a reflecting plate. 対数周期型アンテナと反射板との間隔を一定にした場合を示す図。The figure which shows the case where the space | interval of a logarithmic periodic antenna and a reflecting plate is made constant. 図4に示した条件で得られる750MHzにおけるE面およびH面それぞれの指向性の一例を示す図。The figure which shows an example of the directivity of each of E surface and H surface in 750 MHz obtained on the conditions shown in FIG. 図4に示した条件で得られる950MHzにおけるE面およびH面それぞれの指向性の一例を示す図。The figure which shows an example of the directivity of each of E surface and H surface in 950 MHz obtained on the conditions shown in FIG. 対数周期型アンテナを反射板に対し150mmの間隔を隔てて平行に配置した場合の750MHzにおけるE面およびH面それぞれの指向性の一例を示す図。The figure which shows an example of the directivity of each of E surface and H surface in 750 MHz at the time of arrange | positioning a logarithmic periodic antenna in parallel with 150 mm space | interval with respect to the reflecting plate. 対数周期型アンテナを反射板に対し150mmの間隔を隔てて平行に配置した場合の950MHzにおけるE面およびH面それぞれの指向性の一例を示す図。The figure which shows an example of the directivity of each of E surface and H surface in 950 MHz at the time of arrange | positioning a logarithmic periodic antenna in parallel with 150 mm space | interval with respect to the reflecting plate. 対数周期型アンテナを反射板に対し120mmの間隔を隔てて平行に配置した場合の750MHzにおけるE面およびH面それぞれの指向性の一例を示す図。The figure which shows an example of the directivity of each of E surface and H surface in 750 MHz at the time of arrange | positioning a logarithmic periodic antenna in parallel with the space | interval of 120 mm with respect to a reflecting plate. 対数周期型アンテナを反射板に対し120mmの間隔を隔てて平行に配置した場合の950MHzにおけるE面およびH面それぞれの指向性の一例を示す図。The figure which shows an example of the directivity of each of the E surface and H surface in 950 MHz at the time of arrange | positioning a logarithmic periodic antenna in parallel with the space | interval of 120 mm with respect to the reflecting plate. 図7乃至図12に示したE面およびH面それぞれの指向性の半値幅の計測値とその判定結果を一覧表示した図。The figure which displayed as a list the measurement value of the half value width of the directivity of each of the E surface and the H surface shown in FIGS. 図1に示した多周波アンテナ装置において、対数周期型アンテナを反射板に対し傾斜させ、かつ補助反射板を設置し導波器を設置しなかった場合のアンテナ動作を示す図。The figure which shows antenna operation | movement at the time of making a logarithmic period type antenna incline with respect to a reflecting plate, installing an auxiliary reflecting plate, and not installing a director in the multifrequency antenna device shown in FIG. 図14に示した条件で得られるE面およびH面それぞれの指向性を示すもので、(a)は750MHzのときの指向性を、(b)は950MHzのときの指向性をそれぞれ示す図。FIGS. 15A and 15B show the directivities of the E plane and the H plane obtained under the conditions shown in FIG. 14. FIG. 15A shows the directivity at 750 MHz, and FIG. 15B shows the directivity at 950 MHz. 図1に示した多周波アンテナ装置において、対数周期型アンテナを反射板に対し傾斜させ、かつ補助反射板および導波器を設置した場合のアンテナ動作を示す図。The figure which shows antenna operation | movement at the time of making a logarithmic periodic antenna incline with respect to a reflecting plate, and installing an auxiliary reflecting plate and a director in the multifrequency antenna device shown in FIG. 図16に示した条件で得られるE面およびH面それぞれの指向性を示すもので、(a)は750MHzのときの指向性を、(b)は950MHzのときの指向性をそれぞれ示す図。FIGS. 17A and 17B show the directivities of the E plane and the H plane obtained under the conditions shown in FIG. 16, wherein FIG. 17A shows the directivity at 750 MHz, and FIG. 17B shows the directivity at 950 MHz. 図3に示したようにマッチング素子を配置した場合のVSWR特性を示す図。The figure which shows the VSWR characteristic at the time of arrange | positioning a matching element as shown in FIG. マッチング素子を配置しない場合のVSWR特性を示す図。The figure which shows the VSWR characteristic when not arrange | positioning a matching element. この発明の第2の実施形態に係る多周波アンテナ装置の構成を示す斜視図。The perspective view which shows the structure of the multifrequency antenna apparatus which concerns on 2nd Embodiment of this invention. 図20に示した多周波アンテナ装置の構成を別の角度から見たときの斜視図。The perspective view when the structure of the multifrequency antenna apparatus shown in FIG. 20 is seen from another angle. 図20に示した多周波アンテナ装置で使用される4分配用の電力分配器の構成を示す図。The figure which shows the structure of the power divider | distributor for 4 distributions used with the multifrequency antenna apparatus shown in FIG. 従来の4分配用の電力分配器の構成を示す図。The figure which shows the structure of the conventional power divider | distributor for 4 distributions. 図22に示した4分配用の電力分配器によるVSWR特性を示す図。The figure which shows the VSWR characteristic by the power divider | distributor for 4 distributions shown in FIG. 図22に示した4分配用の電力分配器によるアイソレーションの性能を示す通過特性を示す図。The figure which shows the passage characteristic which shows the performance of isolation by the power divider | distributor for 4 distributions shown in FIG. 図22に示した4分配用の電力分配器による位相特性を示す図。The figure which shows the phase characteristic by the power divider | distributor for 4 distributions shown in FIG.

以下、図面を参照してこの発明に係わる実施形態を説明する。
[第1の実施形態]
この発明の第1の実施形態に係る多周波アンテナ装置は、トンネル内を走行中の新幹線などの鉄道車両との間で携帯電話通信用の無線高周波を送受信するもので、トンネル内の壁面に固定され、トンネルの長手方向、つまり鉄道車両の走行方向に対応する2方向に指向性を持つように構成される。多周波アンテナ装置は、LowBand用とHighBand用の2種類が用意され、LowBand用の装置は700、800、900MHzをカバーする。一方HighBand用の装置は1.5、1.7、2.1GHzをカバーする。なお、本実施形態ではLowBand用の装置を例にとって説明する。
Embodiments according to the present invention will be described below with reference to the drawings.
[First Embodiment]
The multi-frequency antenna device according to the first embodiment of the present invention transmits and receives radio high-frequency for mobile phone communication with a railway vehicle such as a Shinkansen traveling in a tunnel, and is fixed to a wall surface in the tunnel. And configured to have directivity in two directions corresponding to the longitudinal direction of the tunnel, that is, the traveling direction of the railway vehicle. Two types of multi-frequency antenna devices, LowBand and HighBand, are prepared, and LowBand devices cover 700, 800, and 900 MHz. On the other hand, HighBand devices cover 1.5, 1.7, and 2.1 GHz. In the present embodiment, a device for LowBand will be described as an example.

図1は、この発明の第1の実施形態に係る多周波アンテナ装置の構成の概要を示す斜視図である。この多周波アンテナ装置は、接地された導電材料からなる反射板1と、当該反射板1に対し離間して配置される第1及び第2の対数周期型アンテナ2a,2bと、上記反射板1上に立設される一対の補助反射板3a,3bと、上記第1及び第2の対数周期型アンテナ2a,2bの遠端側に配置される一対の導波器4a,4bとを備える。この多周波アンテナ装置は、トンネル内の壁面5に図示しない架台により固定され、装置前面部には図示しない保護カバーが取り付けられる。   FIG. 1 is a perspective view showing an outline of the configuration of the multi-frequency antenna device according to the first embodiment of the present invention. The multi-frequency antenna device includes a reflector 1 made of a grounded conductive material, first and second log periodic antennas 2a and 2b that are spaced apart from the reflector 1, and the reflector 1 described above. A pair of auxiliary reflectors 3a and 3b erected on the top and a pair of waveguides 4a and 4b disposed on the far end side of the first and second log periodic antennas 2a and 2b are provided. This multi-frequency antenna device is fixed to the wall surface 5 in the tunnel by a gantry (not shown), and a protective cover (not shown) is attached to the front surface of the device.

第1及び第2の対数周期型アンテナ2a,2bは、図3(a),(b)に示すように、誘電体基板21の表面および裏面に、素子長が対数周期的に順次長くなるように設計された複数の素子22,23の配列パターンを形成したもので、最も短い素子が配置される側の端部にはそれぞれ給電点61,62が設けられている。各配列パターンは、誘電体基板21を挟んで互い違いに対向するように形成され、これにより素子22、23の各々がトンネルの長手方向に指向性を持つダイポール素子として動作するようになっている。   As shown in FIGS. 3A and 3B, the first and second log-periodic antennas 2a and 2b are configured such that the element length is sequentially increased in a logarithmic period on the front and back surfaces of the dielectric substrate 21. An arrangement pattern of a plurality of elements 22 and 23 designed in the above is formed, and feed points 61 and 62 are provided at end portions on the side where the shortest element is arranged, respectively. Each arrangement pattern is formed so as to alternately face each other with the dielectric substrate 21 in between, so that each of the elements 22 and 23 operates as a dipole element having directivity in the longitudinal direction of the tunnel.

図2は、上記多周波アンテナ装置の具体的な構成を示すもので、(a)は正面図、(b)は長辺側から見た側面図、(c)は短辺側から見た側面図である。同図に示すように、第1及び第2の対数周期型アンテナ2a,2bは、最も長い素子が配置された側が向き合う状態で互いに逆向きとなるように配置される。そして、対数周期型アンテナ2a,2bの先端部に設けられた給電点61,62には、図示しない給電線路を介して高周波電力が供給される。なお、図中6は外部の無線ユニットに多周波アンテナ装置を接続するためのコネクタである。   FIG. 2 shows a specific configuration of the multi-frequency antenna device, where (a) is a front view, (b) is a side view seen from the long side, and (c) is a side view seen from the short side. FIG. As shown in the figure, the first and second log periodic antennas 2a and 2b are arranged so as to be opposite to each other in a state in which the side on which the longest element is arranged faces each other. And the high frequency electric power is supplied to the feed points 61 and 62 provided in the front-end | tip part of the logarithmic periodic antenna 2a, 2b via the feed line which is not shown in figure. In the figure, reference numeral 6 denotes a connector for connecting the multi-frequency antenna device to an external wireless unit.

また第1及び第2の対数周期型アンテナ2a,2bは、反射板1に対しハ型に傾斜する状態に配置される。すなわち、給電点61,62側の素子から素子長が長くなるに従い徐々に反射板1との間の距離が大きくなるように、誘電体基板21全体に傾斜をつけて配置される。このとき、反射板1に対する誘電体基板21の傾斜角および給電点61,62の距離は、各素子と反射板1との距離が各素子が共振する周波数の波長に換算した場合にほぼ一定となるように設定される。なお、上記した反射板1に対する対数周期型アンテナ2a,2bの傾斜角および給電点61,62の距離は、スペーサ5a,5bにより規定される。   The first and second log periodic antennas 2 a and 2 b are arranged in a state of being inclined in a C shape with respect to the reflector 1. That is, the entire dielectric substrate 21 is inclined so that the distance from the reflecting plate 1 gradually increases as the element length increases from the elements on the feeding points 61 and 62 side. At this time, the inclination angle of the dielectric substrate 21 with respect to the reflecting plate 1 and the distance between the feeding points 61 and 62 are substantially constant when the distance between each element and the reflecting plate 1 is converted to the wavelength of the frequency at which each element resonates. Is set to be Note that the inclination angles of the logarithmic periodic antennas 2a and 2b and the distances between the feeding points 61 and 62 with respect to the reflecting plate 1 are defined by the spacers 5a and 5b.

また、上記対数周期型アンテナ2a,2bの素子配列方向と直交する方向、つまり対数周期型アンテナ2a,2bの短辺方向の両側には、一対の補助反射板3a,3bが配置されている。これらの補助反射板3a,3bは反射板1上にネジ止めにより立設される。補助反射板3a,3bの幅方向の長さは、指向性の調整対象となる低周波域に対応する素子に対向するように設定され、また高さ方向の寸法は対数周期型アンテナ2a,2bと反射板1との距離よりも短くなるように設定される。   In addition, a pair of auxiliary reflectors 3a and 3b are disposed in a direction orthogonal to the element arrangement direction of the logarithmic periodic antennas 2a and 2b, that is, on both sides in the short side direction of the logarithmic periodic antennas 2a and 2b. These auxiliary reflecting plates 3a and 3b are erected on the reflecting plate 1 by screws. The length in the width direction of the auxiliary reflectors 3a and 3b is set so as to face the element corresponding to the low frequency range whose directivity is to be adjusted, and the dimension in the height direction is the log periodic antenna 2a and 2b. Is set to be shorter than the distance from the reflector 1.

さらに、上記対数周期型アンテナ2a,2bの長手方向の延長上には、一対の導波器4a,4bが配置されている。これらの導波器4a,4bは対数周期型アンテナ2a,2bの各先端部を支持するスペーサ5a,5bの外側面に取り付けられ、対数周期型アンテナ2a,2bに対し無給電素子として動作する。   Further, a pair of waveguides 4a and 4b are disposed on the longitudinal extension of the logarithmic periodic antennas 2a and 2b. These waveguides 4a and 4b are attached to the outer surfaces of the spacers 5a and 5b that support the tip portions of the log periodic antennas 2a and 2b, and operate as parasitic elements with respect to the log periodic antennas 2a and 2b.

またさらに、対数周期型アンテナ2a,2bにおいて、誘電体基板21の裏面側に形成された素子23の配列パターンには、素子長が最も長い素子と2番目に長い素子との間に、マッチング素子24が形成されている。このマッチング素子24の素子長は、素子23の対数周期と異なる長さに設定される。   Furthermore, in the log periodic antennas 2a and 2b, the arrangement pattern of the elements 23 formed on the back side of the dielectric substrate 21 includes a matching element between the element with the longest element length and the element with the second longest element length. 24 is formed. The element length of the matching element 24 is set to a length different from the logarithmic period of the element 23.

以上のように構成された多周波アンテナ装置によれば、以下のような作用効果が奏せられる。
(1)第1及び第2の対数周期型アンテナ2a,2bは、給電点61,62側の素子から素子長が長くなるに従い徐々に反射板1との間の距離が大きくなるように、誘電体基板21全体を傾斜させて配置される。このとき、反射板1に対する誘電体基板21の傾斜角および給電点61,62の距離は、各素子と反射板1との距離が各素子の共振周波数の波長に換算した場合にほぼ一定となるように設定される。この結果、いずれの周波数に対しても指向性の乱れを抑制して周波数ごとの指向性を容易に調整することが可能となる。
According to the multi-frequency antenna device configured as described above, the following operational effects can be obtained.
(1) The first and second log periodic antennas 2a, 2b are dielectric so that the distance from the reflecting plate 1 gradually increases as the element length increases from the element on the feeding points 61, 62 side. The entire body substrate 21 is disposed to be inclined. At this time, the inclination angle of the dielectric substrate 21 with respect to the reflecting plate 1 and the distance between the feeding points 61 and 62 are substantially constant when the distance between each element and the reflecting plate 1 is converted to the wavelength of the resonance frequency of each element. Is set as follows. As a result, it becomes possible to easily adjust the directivity for each frequency by suppressing the disturbance of directivity for any frequency.

以上の効果を指向性の計測結果により例示する。いま図4に示すように電界面E(E面)および磁界面H(H面)における指向性をそれぞれ計測する。なお、電界面Eの指向性は磁界面H(H面)の最大放射方向において計測した。   The above effect is illustrated by the measurement result of directivity. Now, as shown in FIG. 4, the directivities on the electric field plane E (E plane) and the magnetic field plane H (H plane) are measured. The directivity of the electric field plane E was measured in the maximum radiation direction of the magnetic field plane H (H plane).

先ず、図5に示すように反射板1に対し第1及び第2の対数周期型アンテナ2a,2bを傾斜させて配置し、素子長が最も長い素子と反射板1との間の距離をh1=150mm、素子長が最も短い素子と反射板1との間の距離をh2=120mmとしたとき、750MHzにおけるE面の指向性E11およびH面の指向性H11はそれぞれ図7(a),(b)に示すようになる。そして、E面の指向性E11に対し最大放射方向から−3dBの位置における指向性範囲はE11′となり、その半値幅は83.2°となる。同様に、H面の指向性H11に対し最大放射方向から−3dBの位置における指向性範囲はH11′となり、その半値幅は44.7°となる。   First, as shown in FIG. 5, the first and second log periodic antennas 2a and 2b are inclined with respect to the reflector 1, and the distance between the element having the longest element length and the reflector 1 is h1. When the distance between the element having the shortest element length and the reflector 1 is h2 = 120 mm, the directivity E11 on the E plane and the directivity H11 on the H plane at 750 MHz are respectively shown in FIGS. As shown in b). The directivity range at a position of −3 dB from the maximum radiation direction with respect to the directivity E11 of the E plane is E11 ′, and the half-value width is 83.2 °. Similarly, the directivity range at a position of −3 dB from the maximum radiation direction with respect to the directivity H11 of the H plane is H11 ′, and the half value width is 44.7 °.

また、同じ条件で950MHzにおけるE面の指向性E12およびH面の指向性H12を計測すると図8(a),(b)に示すようになる。そして、E面の指向性E12に対し最大放射方向から−3dBの位置における指向性範囲はE12′の半値幅は64.0°となり、またH面の指向性H12に対し最大放射方向から−3dBの位置における指向性範囲はH12′の半値幅は49.0°となる。   Further, when the directivity E12 of the E plane and the directivity H12 of the H plane at 950 MHz are measured under the same conditions, the results are as shown in FIGS. The directivity range at the position of −3 dB from the maximum radiation direction with respect to the directivity E12 of the E plane is 64.0 ° in the half width of E12 ′, and −3 dB from the maximum radiation direction with respect to the directivity H12 of the H plane. The directivity range at the position of H12 ′ has a full width at half maximum of 49.0 °.

すなわち、反射板1に対し第1及び第2の対数周期型アンテナ2a,2bを傾斜させて配置することで、750MHzに代表される比較的低い周波数帯に対しても、また950MHz以上の比較的高い周波数帯においても、E面およびH面のいずれにおいても良好な指向性を得ることができる。   That is, by arranging the first and second log periodic antennas 2a and 2b so as to be inclined with respect to the reflector 1, even for a relatively low frequency band typified by 750 MHz, a relatively high frequency of 950 MHz or more. Good directivity can be obtained on both the E plane and the H plane even in a high frequency band.

ちなみに、図6に示すように反射板1に対し第1及び第2の対数周期型アンテナ2a,2bを平行に配置させ、その離間距離をh1,h2=150mmとしたとき、750MHzにおけるE面の指向性E13およびH面の指向性H13はそれぞれ図9(a),(b)に示すようになる。そして、E面の指向性E13に対し最大放射方向から−3dBの位置における指向性範囲はE13′となり、その半値幅は80.0°となる。同様に、H面の指向性H13に対し最大放射方向から−3dBの位置における指向性範囲はH13′となり、その半値幅は41.2°となる。   Incidentally, as shown in FIG. 6, when the first and second log periodic antennas 2a and 2b are arranged in parallel to the reflector 1, and the distance between them is h1, h2 = 150 mm, the E plane at 750 MHz The directivity E13 and the directivity H13 of the H plane are as shown in FIGS. 9 (a) and 9 (b), respectively. Then, the directivity range at a position of −3 dB from the maximum radiation direction with respect to the directivity E13 of the E plane is E13 ′, and its half-value width is 80.0 °. Similarly, the directivity range at a position of −3 dB from the maximum radiation direction with respect to the directivity H13 of the H plane is H13 ′, and the half width is 41.2 °.

また、同じ条件で950MHzにおけるE面の指向性E14およびH面の指向性H14を計測すると図10(a),(b)に示すようになる。そして、E面の指向性E14に対し最大放射方向から−3dBの位置における指向性範囲はE14′の半値幅は66.7°となり、またH面の指向性H14に対し最大放射方向から−3dBの位置における指向性範囲はH14′の半値幅は52.3°となる。   Further, when the directivity E14 on the E plane and the directivity H14 on the H plane at 950 MHz are measured under the same conditions, the results are as shown in FIGS. 10 (a) and 10 (b). The directivity range at the position of −3 dB from the maximum radiation direction with respect to the directivity E14 of the E plane is 66.7 ° in the half width of E14 ′, and −3 dB from the maximum radiation direction with respect to the directivity H14 of the H plane. As for the directivity range at the position of H14 ′, the half width of H14 ′ is 52.3 °.

すなわち、第1及び第2の対数周期型アンテナ2a,2bと反射板1との距離をh1,h2=150mmとした場合、950MHzにおけるE面およびH面の指向性の半値幅がいずれも大きくなり過ぎる。   That is, when the distance between the first and second log periodic antennas 2a, 2b and the reflector 1 is h1, h2 = 150 mm, the half-value widths of the directivity on the E plane and the H plane at 950 MHz are both increased. Pass.

同様に、反射板1に対し第1及び第2の対数周期型アンテナ2a,2bを平行に配置させ、その離間距離をh1,h2=120mmとしたとき、750MHzにおけるE面の指向性E15およびH面の指向性H15はそれぞれ図11(a),(b)に示すようになる。そして、E面の指向性E15に対し最大放射方向から−3dBの位置における指向性範囲はE15′となり、その半値幅は87.3°となる。同様に、H面の指向性H15に対し最大放射方向から−3dBの位置における指向性範囲はH15′となり、その半値幅は79.5°となる。   Similarly, when the first and second log periodic antennas 2a and 2b are arranged in parallel to the reflector 1, and the separation distances are h1 and h2 = 120 mm, the directivity E15 and H of the E plane at 750 MHz The surface directivity H15 is as shown in FIGS. 11 (a) and 11 (b), respectively. The directivity range at a position of −3 dB from the maximum radiation direction with respect to the directivity E15 on the E plane is E15 ′, and the half-value width is 87.3 °. Similarly, the directivity range at a position of −3 dB from the maximum radiation direction with respect to the directivity H15 of the H plane is H15 ′, and the half width is 79.5 °.

また、同じ条件で950MHzにおけるE面の指向性E16およびH面の指向性H16を計測すると図12(a),(b)に示すようになる。そして、E面の指向性E16に対し最大放射方向から−3dBの位置における指向性範囲はE16′の半値幅は60.0°となり、またH面の指向性H16に対し最大放射方向から−3dBの位置における指向性範囲はH16′の半値幅は48.5°となる。   Further, when the directivity E16 of the E plane and the directivity H16 of the H plane at 950 MHz are measured under the same conditions, the results are as shown in FIGS. The directivity range at the position of −3 dB from the maximum radiation direction with respect to the directivity E16 of the E plane is 60.0 ° in the half width of E16 ′, and −3 dB from the maximum radiation direction with respect to the directivity H16 of the H plane. In the directivity range at the position of H16 ′, the half width of H16 ′ is 48.5 °.

すなわち、第1及び第2の対数周期型アンテナ2a,2bと反射板1との距離をh1,h2=120mmとした場合、750MHzにおけるE面およびH面の指向性の半値幅がいずれも大きくなり過ぎる。
図13は、上記図7乃至図12に示した各指向性の半値幅に対する判定結果を一覧表示したものである。同図からも明らかなように、反射板1に対し第1及び第2の対数周期型アンテナ2a,2bを傾斜させて配置し、素子長が最も長い素子と反射板1との間の距離をh1=150mm、素子長が最も短い素子と反射板1との間の距離をh2=120mmとすることで、750MHzにおいても、また950MHzにおいても指向性を良好な状態に調整することができる。すなわち、反射板1に対する各対数周期型アンテナ2a,2bの傾斜角を調整するだけで、各周波数の指向性を最適な状態に調整することが可能となる。
That is, when the distance between the first and second log periodic antennas 2a, 2b and the reflector 1 is h1, h2 = 120 mm, the half-value widths of the directivity on the E plane and the H plane at 750 MHz are both increased. Pass.
FIG. 13 shows a list of determination results for the half-value widths of the directivities shown in FIGS. As can be seen from the figure, the first and second log periodic antennas 2a and 2b are inclined with respect to the reflector 1, and the distance between the element having the longest element length and the reflector 1 is determined. By setting the distance between the element having the shortest element length of h1 = 150 mm and the reflector 1 to h2 = 120 mm, the directivity can be adjusted to be in a good state both at 750 MHz and 950 MHz. That is, it is possible to adjust the directivity of each frequency to an optimum state only by adjusting the inclination angle of each log periodic antenna 2a, 2b with respect to the reflecting plate 1.

(2)対数周期型アンテナ2a,2bの素子配列方向と直交する方向、つまり対数周期型アンテナ2a,2bの短辺方向の両側に、一対の補助反射板3a,3bが配置されている。このため、反射板1自体を大型化することなく反射板1の有効面積を増加させることが可能となり、これにより多周波アンテナ装置の小型化を維持しつつ第1および第2の対数周期型アンテナ2a,2bの指向性をさらに向上させることができる。この効果は、例えばトンネル内の壁面のように設置スペースが制限される場所に設置する場合に特に有効である。   (2) A pair of auxiliary reflectors 3a and 3b are arranged in a direction orthogonal to the element arrangement direction of the log periodic antennas 2a and 2b, that is, on both sides in the short side direction of the log periodic antennas 2a and 2b. For this reason, it is possible to increase the effective area of the reflector 1 without increasing the size of the reflector 1 itself, thereby maintaining the downsizing of the multi-frequency antenna device and the first and second log periodic antennas. The directivity of 2a and 2b can be further improved. This effect is particularly effective when installed in a place where the installation space is restricted, such as a wall surface in a tunnel.

いま、図14に示すように電界面E(E面)および磁界面H(H面)における指向性をそれぞれ計測したとする。なお、電界面Eの指向性は磁界面H(H面)の最大放射方向において計測した。   Now, as shown in FIG. 14, it is assumed that the directivities on the electric field plane E (E plane) and the magnetic field plane H (H plane) are measured. The directivity of the electric field plane E was measured in the maximum radiation direction of the magnetic field plane H (H plane).

図5に示したように反射板1に対し第1及び第2の対数周期型アンテナ2a,2bを傾斜させて配置し、かつ反射板1上の上記対数周期型アンテナ2a,2bの両側部に相当する位置に補助反射板3a,3bを立設するものとする。なお、上記対数周期型アンテナ2a,2bの傾斜角は、素子長が最も長い素子と反射板1との間の距離がh1=150mm、素子長が最も短い素子と反射板1との間の距離がh2=120mmとなるように設定している。   As shown in FIG. 5, the first and second log periodic antennas 2 a and 2 b are arranged to be inclined with respect to the reflector 1, and on both sides of the log periodic antennas 2 a and 2 b on the reflector 1. It is assumed that the auxiliary reflectors 3a and 3b are erected at the corresponding positions. The inclination angles of the log periodic antennas 2a and 2b are such that the distance between the element with the longest element length and the reflector 1 is h1 = 150 mm, and the distance between the element with the shortest element length and the reflector 1 is as follows. Is set so that h2 = 120 mm.

この条件下で、750MHzにおけるE面の指向性E21およびH面の指向性H21を計測すると、図15(a)に示すようになる。そして、E面の指向性E21に対し最大放射方向から−3dBの位置における指向性範囲はE21′となり、その半値幅は45.1°となる。同様に、H面の指向性H21に対し最大放射方向から−3dBの位置における指向性範囲はH21′となり、その半値幅は57.4°となる。   When the directivity E21 of the E plane and the directivity H21 of the H plane at 750 MHz are measured under this condition, the result is as shown in FIG. The directivity range at a position of −3 dB from the maximum radiation direction with respect to the directivity E21 on the E plane is E21 ′, and the half-value width is 45.1 °. Similarly, the directivity range at a position of −3 dB from the maximum radiation direction with respect to the directivity H21 of the H plane is H21 ′, and its half-value width is 57.4 °.

また、同じ条件で950MHzにおけるE面の指向性E22およびH面の指向性H22を計測すると図15(b)に示すようになる。そして、E面の指向性E22に対し最大放射方向から−3dBの位置における指向性範囲はE22′の半値幅は62.8°となり、またH面の指向性H22に対し最大放射方向から−3dBの位置における指向性範囲はH22′の半値幅は49.2°となる。   Further, when the directivity E22 of the E plane and the directivity H22 of the H plane at 950 MHz are measured under the same conditions, the result is as shown in FIG. Then, the directivity range at the position of −3 dB from the maximum radiation direction with respect to the directivity E22 of the E plane is 62.8 ° in the half width of E22 ′, and the directivity H22 of the H plane is −3 dB from the maximum radiation direction. In the directivity range at the position of H22 ′, the half width of H22 ′ is 49.2 °.

すなわち、反射板1に対し第1及び第2の対数周期型アンテナ2a,2bを傾斜させて配置し、かつ補助反射板3a,3bを設けることで、特に750MHzに代表される比較的低い周波数帯において、E面およびH面のいずれに対しても指向性をさらに向上させることができる。   That is, the first and second log periodic antennas 2a and 2b are inclined with respect to the reflector 1 and the auxiliary reflectors 3a and 3b are provided, so that a relatively low frequency band represented by 750 MHz in particular. The directivity can be further improved for both the E plane and the H plane.

(3)対数周期型アンテナ2a,2bの長手方向の延長上には、一対の導波器4a,4bが配置される。これらの導波器4a,4bは、対数周期型アンテナ2a,2bに対し無給電素子として動作する。このため、反射板1のサイズを大型化することなく、対数周期型アンテナ2a,2bの素子配列方向における指向性をさらに高めることが可能となる。   (3) A pair of waveguides 4a and 4b are arranged on the longitudinal extension of the log periodic antennas 2a and 2b. These directors 4a and 4b operate as parasitic elements for the log-periodic antennas 2a and 2b. For this reason, the directivity in the element arrangement direction of the log periodic antennas 2a and 2b can be further increased without increasing the size of the reflecting plate 1.

いま、図16に示すように電界面E(E面)および磁界面H(H面)における指向性をそれぞれ計測したとする。なお、電界面Eの指向性は磁界面H(H面)の最大放射方向において計測した。   Now, assume that the directivities on the electric field plane E (E plane) and the magnetic field plane H (H plane) are measured as shown in FIG. The directivity of the electric field plane E was measured in the maximum radiation direction of the magnetic field plane H (H plane).

反射板1に対し第1及び第2の対数周期型アンテナ2a,2bを傾斜させて配置し、かつ反射板1上の上記対数周期型アンテナ2a,2bの両側部に相当する位置に補助反射板3a,3bを立設すると共に、対数周期型アンテナ2a,2bの長手方向の延長上に一対の導波器4a,4bを配置するものとする。なお、上記対数周期型アンテナ2a,2bの傾斜角は、素子長が最も長い素子と反射板1との間の距離がh1=150mm、素子長が最も短い素子と反射板1との間の距離がh2=120mmとなるように設定する。   The first and second log periodic antennas 2a and 2b are inclined with respect to the reflector 1, and the auxiliary reflector is located on the reflector 1 at positions corresponding to both sides of the log periodic antennas 2a and 2b. 3a and 3b are erected, and a pair of directors 4a and 4b are disposed on the longitudinal extension of the log periodic antennas 2a and 2b. The inclination angles of the log periodic antennas 2a and 2b are such that the distance between the element with the longest element length and the reflector 1 is h1 = 150 mm, and the distance between the element with the shortest element length and the reflector 1 is as follows. Is set so that h2 = 120 mm.

この条件下で、750MHzにおけるE面の指向性E31およびH面の指向性H31を計測すると、図17(a)に示すようになる。そして、E面の指向性E31に対し最大放射方向から−3dBの位置における指向性範囲はE31′となり、その半値幅は46.2°となる。同様に、H面の指向性H31に対し最大放射方向から−3dBの位置における指向性範囲はH31′となり、その半値幅は56.2°となる。   When the directivity E31 on the E surface and the directivity H31 on the H surface at 750 MHz are measured under this condition, the result is as shown in FIG. The directivity range at a position of −3 dB from the maximum radiation direction with respect to the directivity E31 on the E plane is E31 ′, and the half-value width is 46.2 °. Similarly, the directivity range at a position of −3 dB from the maximum radiation direction with respect to the directivity H31 of the H plane is H31 ′, and its half-value width is 56.2 °.

また、同じ条件で950MHzにおけるE面の指向性E32およびH面の指向性H32を計測すると図17(b)に示すようになる。そして、E面の指向性E32に対し最大放射方向から−3dBの位置における指向性範囲はE32′の半値幅は44.7°となり、またH面の指向性H32に対し最大放射方向から−3dBの位置における指向性範囲はH32′の半値幅は37.6°となる。   Further, when the directivity E32 of the E plane and the directivity H32 of the H plane at 950 MHz are measured under the same conditions, the result is as shown in FIG. The directivity range at the position of −3 dB from the maximum radiation direction with respect to the directivity E32 of the E plane is 44.7 ° in the half width of E32 ′, and −3 dB from the maximum radiation direction with respect to the directivity H32 of the H plane. The directivity range at the position of H32 ′ has a half width of 37.6 °.

すなわち、反射板1に対し第1及び第2の対数周期型アンテナ2a,2bを傾斜させて配置し、かつ対数周期型アンテナ2a,2bの両側に補助反射板3a,3bを配置すると共に、対数周期型アンテナ2a,2bの長手方向の延長上に導波器4a,4bを配置したことで、特に750MHzに代表される比較的低い周波数帯において、E面およびH面のいずれに対しても指向性をさらに向上させることができる。   That is, the first and second log periodic antennas 2a and 2b are inclined with respect to the reflector 1, and the auxiliary reflectors 3a and 3b are disposed on both sides of the log periodic antennas 2a and 2b. By arranging the directors 4a and 4b on the longitudinal extensions of the periodic antennas 2a and 2b, the antenna is directed to both the E plane and the H plane, particularly in a relatively low frequency band typified by 750 MHz. The property can be further improved.

(4)対数周期型アンテナ2a,2bの誘電体基板21の裏面側に形成された素子23の配列パターンにおいて、図3(b)に示したように、素子長が最も長い素子と2番目に長い素子との間に、対数周期とは異なる素子長を有するマッチング素子24を形成している。このマッチング素子24は、それ自体でスタブとして動作し得るほか、隣接する対数周期素子と電磁的に結合してある種の装荷素子として動作する。すなわち、マッチング素子24の特徴は、対数周期型アンテナの一方の極(基板の片面)にのみ設けられ、電気的な言い方をすれば、平衡回路中に非対称(不平衡)に設けられていることである。この結果、大掛かりなマッチング回路を別途設けることなくVSWRを制御することができ、これにより広帯域性を向上させることができる。   (4) In the arrangement pattern of the elements 23 formed on the back surface side of the dielectric substrate 21 of the logarithmic periodic antennas 2a and 2b, as shown in FIG. A matching element 24 having an element length different from the logarithmic period is formed between the long elements. The matching element 24 can operate as a stub by itself, and also operates as a kind of loading element that is electromagnetically coupled to an adjacent log periodic element. That is, the feature of the matching element 24 is that it is provided only on one pole (one side of the substrate) of the log periodic antenna, and in terms of electrical terms, it is provided asymmetrically (unbalanced) in the balanced circuit. It is. As a result, it is possible to control the VSWR without separately providing a large matching circuit, thereby improving the broadband property.

図18は、本実施形態に係るアンテナ装置のVSWR特性の計測結果の一例を示すもので、750MHz〜950MHzの広帯域に渡り良好な特性を得ることができる。ちなみに、図19はマッチング素子24を設けなかったときのVSWR特性を示す。図18および図19から明らかなように、本実施形態によれば750MHz帯のVSWR特性を改善することが可能となり、これにより750MHzから950MHzの広帯域に渡り良好なVSWR特性を得ることができる。   FIG. 18 shows an example of the measurement result of the VSWR characteristics of the antenna device according to the present embodiment, and good characteristics can be obtained over a wide band of 750 MHz to 950 MHz. Incidentally, FIG. 19 shows the VSWR characteristics when the matching element 24 is not provided. As is apparent from FIGS. 18 and 19, according to the present embodiment, it is possible to improve the 750 MHz band VSWR characteristic, thereby obtaining a good VSWR characteristic over a wide band from 750 MHz to 950 MHz.

[第2の実施形態]
この発明の第2の実施形態は、第1の実施形態で述べたように素子長が最も長い素子同士が向き合う状態で互いに逆向きに配置された一対の対数周期型アンテナを2対設け、これらの対数周期型アンテナの対を反射板に対し屋根状に傾けた状態で並行して配置したものである。
[Second Embodiment]
In the second embodiment of the present invention, as described in the first embodiment, two pairs of logarithmic periodic antennas arranged in opposite directions with the elements having the longest elements facing each other are provided. A pair of logarithmic periodic antennas are arranged in parallel in a state of being inclined like a roof with respect to the reflector.

図20はこの発明の第2の実施形態に係る多周波アンテナ装置の外観を正面方向から見た斜視図、図21は側面方向から見た斜視図である。これらの図に示すように、第2の実施形態に係る多周波アンテナ装置は、素子長が最も長い素子同士が向き合う状態で互いに逆向きに配置された一対の対数周期型アンテナ2a,2bに加え、同様の構成を有する対数周期型アンテナ2c,2dをもう一対備えている。対数周期型アンテナ2a,2bと対数周期型アンテナ2c,2dは、素子の配列方向と直交する方向に並べて配置され、かつ並行する対数周期型アンテナ2aと2c、および対数周期型アンテナ2bと2dがそれぞれ屋根状に傾斜した状態で配置される。なお、図中8は多周波アンテナ装置をトンネル壁面に固定するための架台である。   FIG. 20 is a perspective view of the appearance of the multi-frequency antenna device according to the second embodiment of the present invention as seen from the front, and FIG. 21 is a perspective view as seen from the side. As shown in these figures, the multi-frequency antenna device according to the second embodiment is in addition to a pair of log periodic antennas 2a and 2b arranged in opposite directions with the elements having the longest elements facing each other. A pair of log periodic antennas 2c and 2d having the same configuration is provided. The log periodic antennas 2a and 2b and the log periodic antennas 2c and 2d are arranged side by side in a direction orthogonal to the arrangement direction of the elements, and the log periodic antennas 2a and 2c and the log periodic antennas 2b and 2d are arranged in parallel. Each is arranged in a state of being inclined like a roof. In the figure, reference numeral 8 denotes a frame for fixing the multi-frequency antenna device to the tunnel wall surface.

このように構成された多周波アンテナ装置であれば、対数周期型アンテナ2a,2bと2c,2dとが同方向に同相でスタックされることになり、指向性を良好に保持した上でアンテナ利得を高めることが可能となる。   In the multi-frequency antenna device configured as described above, the log periodic antennas 2a, 2b and 2c, 2d are stacked in the same direction and in the same phase, and the antenna gain is maintained while maintaining good directivity. Can be increased.

また、反射板1上には上記対数周期型アンテナ2a,2bおよび2c,2dに対し高周波電力を給電するための4分配用の電力分配器7が配置されている。この電力分配器7は、図22に示すように誘電体基板の一方の面に接地パターンを形成すると共に、他方の面に導体線路パターンを形成している。この導体線路パターンは、図示しない無線ユニットに接続される入力端子P1から、線路幅が3段階に渡りW1,W2,W3と順次大きくなるように構成された階段状の導電線路を有し、各導電線路の線路長は1/4波長以下に設定されている。また線路幅が最も大きい導電線路(線路幅=W3)の先端辺には4本の突起線路が形成され、これらの突起線路の先端部にはそれぞれ給電端子P2〜P5が設けられている。これらの給電端子P2〜P5は、図示しない同軸ケーブルまたはマイクロストリップ線路を介して、上記対数周期型アンテナ2a,2bおよび2c,2dの給電端子に接続される。ちなみに、図23は従来使用されている4分配用の電力分配器の一構成を示すもので、4分配された各線路は同一の線路幅に設定されている。   On the reflection plate 1, a power distribution unit 7 for four distributions for supplying high frequency power to the log periodic antennas 2a, 2b and 2c, 2d is disposed. As shown in FIG. 22, the power distributor 7 has a ground pattern formed on one surface of a dielectric substrate and a conductor line pattern formed on the other surface. This conductor line pattern has a step-like conductive line configured so that the line width gradually increases as W1, W2, and W3 over three stages from an input terminal P1 connected to a wireless unit (not shown). The line length of the conductive line is set to ¼ wavelength or less. Further, four protruding lines are formed at the front end side of the conductive line having the largest line width (line width = W3), and feed terminals P2 to P5 are provided at the front end portions of these protruding lines, respectively. These feed terminals P2 to P5 are connected to the feed terminals of the log-periodic antennas 2a, 2b and 2c, 2d via coaxial cables or microstrip lines (not shown). Incidentally, FIG. 23 shows a configuration of a 4-distribution power divider that has been conventionally used, and each of the 4-distributed lines is set to have the same line width.

このように構成された4分配用の電力分配器7を用いると、線路幅が段階的に大きくなるように形成された導電線路の線路長L1,L2,L3と線路幅W1,W2,W3を適宜調整することで、各対数周期型アンテナ2a,2bおよび2c,2dに対する電力分配器7のインピーダンスを整合させ、かつ出力側の4本の突起線路の長さを変更することで、各対数周期型アンテナ2a,2bおよび2c,2dの給電端子に供給する無線信号の位相を調整することが可能となる。   When the power divider 7 for four distributions configured in this way is used, the line lengths L1, L2, and L3 and the line widths W1, W2, and W3 of the conductive lines formed so that the line width increases stepwise are obtained. By adjusting the logarithmic periodic antennas 2a, 2b and 2c, 2d, the impedance of the power divider 7 is matched with each other, and the lengths of the four protruding lines on the output side are changed to adjust the logarithmic period. It becomes possible to adjust the phase of the radio signal supplied to the power supply terminals of the mold antennas 2a, 2b and 2c, 2d.

図24、図25および図26はそれぞれ、図22に示したように電力分配器7のサイズを縦が88mm、横が50mmとし、線路長をL1=27mm、L2=15mm、L3=16.2mmに設定すると共に、線路幅をW1=7mm、W2=14mm、W3=18mmに設定した場合の、VSWR特性、アイソレーションの性能を示す通過特性、および位相特性を示したものである。   24, 25, and 26, as shown in FIG. 22, the size of the power distributor 7 is 88 mm in length and 50 mm in width, and the line length is L1 = 27 mm, L2 = 15 mm, and L3 = 16.2 mm. The VSWR characteristics, the transmission characteristics indicating the isolation performance, and the phase characteristics when the line width is set to W1 = 7 mm, W2 = 14 mm, and W3 = 18 mm are shown.

[その他の実施形態]
第1の実施形態では、対数周期型アンテナ2a,2bを反射板1に対し傾斜させ、かつ補助反射板3a,3bに加えて導波器4a,4bを設置した場合について説明したが、対数周期型アンテナ2a,2bを反射板1に対し傾斜させた状態で補助反射板3a,3bのみを設けた場合や、対数周期型アンテナ2a,2bを反射板に対し傾斜させた状態で導波器4a,4bのみを設けた場合も、本発明の範囲に含まれる。
[Other Embodiments]
In the first embodiment, the case where the logarithmic periodic antennas 2a and 2b are inclined with respect to the reflector 1 and the directors 4a and 4b are installed in addition to the auxiliary reflectors 3a and 3b has been described. When the auxiliary antennas 3a and 3b are provided with the antennas 2a and 2b tilted with respect to the reflector 1, or the waveguide 4a with the log periodic antennas 2a and 2b tilted with respect to the reflector. , 4b are also included in the scope of the present invention.

第1の実施形態では、第1及び第2の対数周期型アンテナ2a,2bの両側部にそれぞれ1個の補助反射板3a,3bを配置した場合を例にとって説明したが、第1及び第2の対数周期型アンテナ2a,2bのそれぞれに対し独立して計4個の補助反射板を設置するようにしてもよい。その他、カバー対象の周波数帯や対数周期型アンテナ自体の構成、補助反射板、導波器、マッチング素子および電力分配器のサイズや形状、数などについても、この発明の要旨を逸脱しない範囲でどのように選択してもよい。   In the first embodiment, the case where one auxiliary reflector 3a, 3b is disposed on each side of the first and second log periodic antennas 2a, 2b has been described as an example. A total of four auxiliary reflectors may be installed independently for each of the log periodic antennas 2a and 2b. Other than this, the frequency band to be covered, the structure of the log periodic antenna itself, the size, shape, and number of auxiliary reflectors, waveguides, matching elements, and power distributors are within the scope of the present invention. You may choose as follows.

要するにこの発明は、上記各実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記各実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、各実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態に亘る構成要素を適宜組み合せてもよい。   In short, the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the components without departing from the scope of the invention in the implementation stage. Moreover, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be deleted from all the components shown in each embodiment. Furthermore, you may combine suitably the component covering different embodiment.

1…反射板、2a,2b,2c,2d…対数周期型アンテナ、3a,3b…補助反射板、4a,4b…導波器、5…トンネル壁面、6…コネクタ、7…電力分配器、8…架台、21…誘電体基板、22,23…素子、24…マッチング素子、61,62…給電点。   DESCRIPTION OF SYMBOLS 1 ... Reflector plate, 2a, 2b, 2c, 2d ... Log periodic antenna, 3a, 3b ... Auxiliary reflector, 4a, 4b ... Waveguide, 5 ... Tunnel wall surface, 6 ... Connector, 7 ... Power divider, 8 Reference numeral 21: Dielectric substrate, 22, 23: Element, 24: Matching element, 61, 62: Feed point.

Claims (4)

素子長が対数周期的に順次長くなるように設定された複数の素子を誘電体基板の両面に配列した第1および第2の対数周期型アンテナを、前記複数の素子の配列方向が互いに逆向きとなるように配置したアンテナユニットと、
前記第1および第2の対数周期型アンテナに対し高周波信号を給電する給電回路と、
前記第1および第2の対数周期型アンテナに対し離間して配置される反射板と
を具備し、
前記第1および第2の対数周期型アンテナは、その複数の素子の素子長が長くなるに従い当該複数の素子と前記反射板との間隔が大きくなるように前記反射板に対し傾斜する状態に配置され、かつ前記複数の素子と前記反射板との間隔が当該複数の素子の共振周波数の波長に換算した場合に予め設定した範囲内で一定となるように設定されることを特徴とする多周波アンテナ装置。
The first and second log periodic antennas in which a plurality of elements whose element lengths are set to be logarithmically increased sequentially are arranged on both surfaces of the dielectric substrate, and the arrangement directions of the plurality of elements are opposite to each other. An antenna unit arranged so that
A power feeding circuit that feeds a high-frequency signal to the first and second log periodic antennas;
A reflector disposed apart from the first and second log periodic antennas,
The first and second log periodic antennas are arranged in a state of being inclined with respect to the reflection plate so that the distance between the plurality of elements and the reflection plate is increased as the element length of the plurality of elements is increased. And the frequency between the plurality of elements and the reflecting plate is set to be constant within a preset range when converted to the wavelength of the resonance frequency of the plurality of elements. Antenna device.
さらに、前記反射板上の、前記第1および第2の対数周期型アンテナの前記複数の素子の配列方向と直交する方向に、補助反射板を立設したことを特徴とする請求項1記載の多周波アンテナ装置。   The auxiliary reflector is erected on the reflector in a direction perpendicular to the arrangement direction of the plurality of elements of the first and second log periodic antennas. Multi-frequency antenna device. さらに、前記第1および第2の対数周期型アンテナの前記複数の素子の配列方向の延長上に、それぞれ無給電素子からなる導波器を配置したことを特徴とする請求項1または2記載の多周波アンテナ装置。   3. The waveguide according to claim 1, further comprising a parasitic element disposed on an extension of the array direction of the plurality of elements of the first and second log periodic antennas. Multi-frequency antenna device. さらに、前記第1および第2の対数周期型アンテナの前記複数の素子のうち、指向性の調整対象となる周波数に共振する素子と隣接する位置に、前記複数の素子の対数周期と異なる素子長を有するマッチング素子を配置したことを特徴とする請求項1乃至3のいずれかに記載の多周波アンテナ装置。   Further, among the plurality of elements of the first and second log-periodic antennas, an element length different from the logarithmic period of the plurality of elements at a position adjacent to an element that resonates at a frequency whose directivity is to be adjusted. The multi-frequency antenna device according to claim 1, wherein a matching element having the above is arranged.
JP2015156753A 2015-08-07 2015-08-07 Multi-frequency antenna device Active JP6634237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015156753A JP6634237B2 (en) 2015-08-07 2015-08-07 Multi-frequency antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015156753A JP6634237B2 (en) 2015-08-07 2015-08-07 Multi-frequency antenna device

Publications (2)

Publication Number Publication Date
JP2017038123A true JP2017038123A (en) 2017-02-16
JP6634237B2 JP6634237B2 (en) 2020-01-22

Family

ID=58048509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015156753A Active JP6634237B2 (en) 2015-08-07 2015-08-07 Multi-frequency antenna device

Country Status (1)

Country Link
JP (1) JP6634237B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108232467A (en) * 2017-12-20 2018-06-29 深圳市航天华拓科技有限公司 Micro-strip Quasi-Yagi antenna
CN113488781A (en) * 2021-06-09 2021-10-08 上海铂联通信技术有限公司 Direction-finding antenna system suitable for multiple environments

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4005432A (en) * 1975-11-11 1977-01-25 Rockwell International Corporation Commutated log periodic antenna array for automatic direction finding
US5093670A (en) * 1990-07-17 1992-03-03 Novatel Communications, Ltd. Logarithmic periodic antenna
US5274390A (en) * 1991-12-06 1993-12-28 The Pennsylvania Research Corporation Frequency-Independent phased-array antenna
JPH08181538A (en) * 1994-12-22 1996-07-12 Denki Kogyo Co Ltd Antenna system for two frequencies in common
JPH11168323A (en) * 1997-12-04 1999-06-22 Mitsubishi Electric Corp Multi-frequency antenna device and multi-frequency array antenna device using multi-frequency sharing antenna
JP2006229337A (en) * 2005-02-15 2006-08-31 Nippon Dengyo Kosaku Co Ltd Multiple frequency common antenna
JP2007502049A (en) * 2003-08-07 2007-02-01 キルダル・アンテナ・コンサルティング・アーベー Wideband multidipole antenna with frequency independent radiation characteristics
JP2014143682A (en) * 2012-12-25 2014-08-07 Sumitomo Electric Ind Ltd Multi-frequency shared antenna and antenna device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4005432A (en) * 1975-11-11 1977-01-25 Rockwell International Corporation Commutated log periodic antenna array for automatic direction finding
US5093670A (en) * 1990-07-17 1992-03-03 Novatel Communications, Ltd. Logarithmic periodic antenna
US5274390A (en) * 1991-12-06 1993-12-28 The Pennsylvania Research Corporation Frequency-Independent phased-array antenna
JPH08181538A (en) * 1994-12-22 1996-07-12 Denki Kogyo Co Ltd Antenna system for two frequencies in common
JPH11168323A (en) * 1997-12-04 1999-06-22 Mitsubishi Electric Corp Multi-frequency antenna device and multi-frequency array antenna device using multi-frequency sharing antenna
JP2007502049A (en) * 2003-08-07 2007-02-01 キルダル・アンテナ・コンサルティング・アーベー Wideband multidipole antenna with frequency independent radiation characteristics
JP2006229337A (en) * 2005-02-15 2006-08-31 Nippon Dengyo Kosaku Co Ltd Multiple frequency common antenna
JP2014143682A (en) * 2012-12-25 2014-08-07 Sumitomo Electric Ind Ltd Multi-frequency shared antenna and antenna device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108232467A (en) * 2017-12-20 2018-06-29 深圳市航天华拓科技有限公司 Micro-strip Quasi-Yagi antenna
CN108232467B (en) * 2017-12-20 2021-02-12 深圳市航天华拓科技有限公司 Microstrip quasi-yagi antenna
CN113488781A (en) * 2021-06-09 2021-10-08 上海铂联通信技术有限公司 Direction-finding antenna system suitable for multiple environments

Also Published As

Publication number Publication date
JP6634237B2 (en) 2020-01-22

Similar Documents

Publication Publication Date Title
JP2870940B2 (en) In-vehicle antenna
US6759990B2 (en) Compact antenna with circular polarization
US7843389B2 (en) Complementary wideband antenna
US7868842B2 (en) Base station antenna with beam shaping structures
US7903030B2 (en) Planar antenna device and radio communication device using the same
US7602340B2 (en) Antenna device and wireless terminal using the antenna device
US6975278B2 (en) Multiband branch radiator antenna element
US6606067B2 (en) Apparatus for wideband directional antenna
TWI411160B (en) Antenna and communication device having same
US8766866B2 (en) Log periodic antenna
GB2402552A (en) Broadband dielectric resonator antenna system
US9263807B2 (en) Waveguide or slot radiator for wide E-plane radiation pattern beamwidth with additional structures for dual polarized operation and beamwidth control
WO2007015583A1 (en) Broad band antenna
JP4188549B2 (en) antenna
US7791554B2 (en) Tulip antenna with tuning stub
US20030103015A1 (en) Skeleton slot radiation element and multi-band patch antenna using the same
CN108832287B (en) Three-frequency-band WiFi antenna
JPH08204431A (en) Multi-resonance antenna device
JPH07202562A (en) Printed dipole antenna
JP4112136B2 (en) Multi-frequency antenna
JP6634237B2 (en) Multi-frequency antenna device
JP4516246B2 (en) antenna
JP6087419B2 (en) Array antenna and radar device
JP3804878B2 (en) Dual-polarized antenna
JPH07336133A (en) Antenna device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191216

R150 Certificate of patent or registration of utility model

Ref document number: 6634237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250