JP2017037165A - Optical system and image projection device having the same - Google Patents

Optical system and image projection device having the same Download PDF

Info

Publication number
JP2017037165A
JP2017037165A JP2015158017A JP2015158017A JP2017037165A JP 2017037165 A JP2017037165 A JP 2017037165A JP 2015158017 A JP2015158017 A JP 2015158017A JP 2015158017 A JP2015158017 A JP 2015158017A JP 2017037165 A JP2017037165 A JP 2017037165A
Authority
JP
Japan
Prior art keywords
subgroup
optical system
lens
refractive power
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015158017A
Other languages
Japanese (ja)
Other versions
JP6579858B2 (en
Inventor
高橋 真
Makoto Takahashi
真 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2015158017A priority Critical patent/JP6579858B2/en
Publication of JP2017037165A publication Critical patent/JP2017037165A/en
Application granted granted Critical
Publication of JP6579858B2 publication Critical patent/JP6579858B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lenses (AREA)
  • Projection Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical system in which good optical performance can be easily obtained over the whole projection distance, and an image projection device using the optical system.SOLUTION: The optical system is composed of, successively from an enlargement conjugate side to a reduction conjugate side, a first lens group having a negative refractive power and a rear group comprising at least one lens group. The first lens group is composed of, from the enlargement conjugate side to the reduction conjugate side, a subgroup B1a having a negative refractive power, a subgroup B1b having a negative refractive power, a subgroup B1c having a negative refractive power, and a subgroup B1d having a positive refractive power. Upon focusing from an infinite distance to a close distance, the subgroup B1a is immobile and the subgroup B1b, the subgroup B1c and the subgroup B1d move to the reduction conjugate side while enlarging an interval between the subgroup B1b and the subgroup B1c and reducing an interval between the subgroup B1c and the subgroup B1d.SELECTED DRAWING: Figure 1

Description

本発明は光学系に関し、例えば画像表示素子に表示された画像を拡大投射する画像投射装置(プロジェクター)に用いる投射光学系やデジタルカメラ等に用いる撮像光学系として好適なものである。   The present invention relates to an optical system, and is suitable, for example, as a projection optical system used in an image projection apparatus (projector) that magnifies and projects an image displayed on an image display element, an imaging optical system used in a digital camera, or the like.

画像表示素子に表示された画像を大画面に投影する画像投射装置に用いられる投射光学系には画像表示素子に形成される画像全体をスクリーン面上に種々な投射距離から高解像度で投射できることが要望されている。更に近距離より広い画面にわたり投射できるように広画角であること等が要望されている。   The projection optical system used in the image projection apparatus that projects the image displayed on the image display element onto a large screen can project the entire image formed on the image display element from various projection distances with high resolution on the screen surface. It is requested. Further, there is a demand for a wide angle of view so that it can be projected over a screen wider than a short distance.

従来より、これらの要望を満足する画像投射装置用の投射光学系として、拡大共役側から縮小共役側へ順に、負の屈折力の第1レンズ群と1以上のレンズ群を含む後群より構成されるレトロフォーカス型の投射光学系が知られている。またスクリーンが拡大共役側の無限遠にあったときから至近距離に変化したときの距離変化に対して複数のレンズ群を移動させてフォーカシングに際しての収差変動を軽減するようにした投射光学系が知られている(特許文献1)。   2. Description of the Related Art Conventionally, a projection optical system for an image projection apparatus that satisfies these demands is composed of a first lens group having a negative refractive power and a rear group including one or more lens groups in order from the magnification conjugate side to the reduction conjugate side. A retrofocus type projection optical system is known. Also known is a projection optical system that reduces aberration fluctuations during focusing by moving a plurality of lens groups in response to a change in distance when the screen changes from infinity on the magnification conjugate side to a close distance. (Patent Document 1).

特許文献1では拡大共役側から縮小共役側に順に、ズーミングに際して固定の負の屈折力の第1レンズ群、ズーミングに際して移動する複数のレンズ群よりなるズームレンズを開示している。そして第1レンズ群を拡大側から順に負の屈折力の第1a群、負の屈折力の第1b群、正又は負の屈折力の第1f群、負の屈折力の第1c群の4つのレンズより構成している。そして無限遠から近距離へのフォーカシングに際して第1a群と第1f群を不動とし、第1b群を縮小共役側へ移動し、第1c群を拡大共役側へ移動するズームレンズを開示している。   Patent Document 1 discloses a zoom lens including a first lens unit having a negative refractive power that is fixed during zooming and a plurality of lens units that move during zooming in order from the magnification conjugate side to the reduction conjugate side. Then, the first lens unit is divided into four elements, ie, a negative refractive power 1a group, a negative refractive power 1b group, a positive or negative refractive power 1f group, and a negative refractive power 1c group in order from the magnification side. It consists of a lens. A zoom lens is disclosed in which the first a group and the first f group are fixed during focusing from infinity to a short distance, the first b group is moved to the reduction conjugate side, and the first c group is moved to the enlargement conjugate side.

特開2013−68690号公報JP 2013-68690 A

プロジェクターに用いられる投射光学系には、投射距離全般にわたり、投射画像が高画質で高い光学性能を有することが要望されている。前述の投射光学系においてこれらの要望を満足するには、全系のレンズ構成及びフォーカシングに際して移動するレンズ群の選択及びそれらのレンズ群の屈折力等を適切に設定することが重要になってくる。このときのレンズ群の選択や選択したレンズ群の屈折力やレンズ構成等が不適切であると、投射距離全般にわたり良好なる光学性能を得るのが困難になる。   A projection optical system used in a projector is required to have a high-quality optical image with high image quality over the entire projection distance. In order to satisfy these demands in the above-mentioned projection optical system, it is important to select the lens configuration of the entire system, the selection of lens groups that move during focusing, and the appropriate setting of the refractive power of those lens groups. . If the selection of the lens group at this time, the refractive power of the selected lens group, the lens configuration, etc. are inappropriate, it will be difficult to obtain good optical performance over the entire projection distance.

特許文献1では負の屈折力の第1レンズ群を4つのレンズ群より構成し、フォーカシングに際して第1a群と第1f群を不動とし、第1b群と第1c群を移動させている。しかしながらフォーカシングに際して第1f群を不動としたときの各レンズ群の屈折力分担が必ずしも十分でないため、フォーカシングに際して収差変動が増大する傾向があった。   In Patent Document 1, the first lens group having a negative refractive power is composed of four lens groups. During focusing, the first a group and the first f group are fixed, and the first b group and the first c group are moved. However, since the refractive power sharing of each lens group is not always sufficient when the first f group is fixed during focusing, there is a tendency for aberration fluctuation to increase during focusing.

本発明は、投射距離全般にわたり良好なる光学性能が容易に得られる光学系及びそれを用いた画像投射装置の提供を目的とする。   An object of the present invention is to provide an optical system in which good optical performance can be easily obtained over the entire projection distance and an image projection apparatus using the same.

本発明の光学系は、拡大共役側から縮小共役側へ順に、負の屈折力の第1レンズ群、1以上のレンズ群を含む後群より構成される光学系において、
前記第1レンズ群は拡大共役側から縮小共役側へ順に、負の屈折力の部分群B1a、負の屈折力の部分群B1b、負の屈折力の部分群B1c、正の屈折力の部分群B1dより構成され、無限遠から至近へのフォーカシングに際して前記部分群B1aは不動で、前記部分群B1bと前記部分群B1cと前記部分群B1dはいずれも縮小共役側へ、前記部分群B1bと前記部分群B1cとの間隔を拡大しつつ、前記部分群B1cと前記部分群B1dとの間隔を減少しつつ移動することを特徴としている。
The optical system of the present invention is an optical system composed of a first lens group having a negative refractive power and a rear group including one or more lens groups in order from the magnification conjugate side to the reduction conjugate side.
The first lens unit includes, in order from the magnification conjugate side to the reduction conjugate side, a negative refractive power subgroup B1a, a negative refractive power subgroup B1b, a negative refractive power subgroup B1c, and a positive refractive power subgroup. B1d, the subgroup B1a does not move during focusing from infinity to the nearest, and the subgroup B1b, the subgroup B1c, and the subgroup B1d are all on the reduction conjugate side, and the subgroup B1b and the subgroup It is characterized by moving while decreasing the distance between the partial group B1c and the partial group B1d while increasing the distance between B1c.

本発明によれば、投射距離全般にわたり良好なる光学性能が容易に得られる光学系が得られる。   According to the present invention, it is possible to obtain an optical system that can easily obtain good optical performance over the entire projection distance.

(A)、(B) 本発明の実施例1の光学系のレンズ断面図(A), (B) Lens sectional view of the optical system of Example 1 of the present invention (A)、(B) 実施例1の広角端におけるレンズ断面図(A), (B) Lens cross-sectional view at the wide-angle end of Example 1 (A)、(B) 実施例1の光学系の収差図(A), (B) aberration diagrams of the optical system of Example 1 (A)、(B) 実施例1の光学系の収差図(A), (B) aberration diagrams of the optical system of Example 1 (A)、(B) 実施例1の光学系の収差図(A), (B) aberration diagrams of the optical system of Example 1 (A)、(B) 実施例1の光学系の倍率色収差図(A), (B) Chromatic aberration diagram of the optical system of Example 1 (A)、(B) 実施例1の光学系の倍率色収差図(A), (B) Chromatic aberration diagram of the optical system of Example 1 (A)、(B) 実施例1の光学系の倍率色収差図(A), (B) Chromatic aberration diagram of the optical system of Example 1 (A)、(B) 本発明の実施例2の光学系のレンズ断面図(A), (B) Lens sectional view of the optical system of Example 2 of the present invention (A)、(B) 実施例2の広角端におけるレンズ断面図(A), (B) Lens cross-sectional view at the wide-angle end of Example 2 (A)、(B) 実施例2の光学系の収差図(A), (B) aberration diagrams of the optical system of Example 2 (A)、(B) 実施例2の光学系の収差図(A), (B) aberration diagrams of the optical system of Example 2 (A)、(B) 実施例2の光学系の収差図(A), (B) aberration diagrams of the optical system of Example 2 (A)、(B) 実施例2の光学系の倍率色収差図(A), (B) Chromatic aberration diagrams of the optical system of Example 2 (A)、(B) 実施例2の光学系の倍率色収差図(A), (B) Chromatic aberration diagrams of the optical system of Example 2 (A)、(B) 実施例2の光学系の倍率色収差図(A), (B) Chromatic aberration diagrams of the optical system of Example 2 (A)、(B) 本発明の実施例3の光学系のレンズ断面図(A), (B) Lens sectional view of the optical system of Example 3 of the present invention (A)、(B)、(C) 実施例3の光学系の収差図(A), (B), (C) Aberration diagrams of the optical system of Example 3 (A)、(B)、(C) 実施例3の光学系の倍率色収差図(A), (B), (C) chromatic aberration of magnification of the optical system of Example 3 本発明の画像投射装置の要部概略図Schematic diagram of main parts of the image projection apparatus of the present invention

以下に、本発明の好ましい実施の形態を添付の図面に基づいて詳細に説明する。本発明は画像投射装置(プロジェクター)に好適な投射用の光学系である。本発明の光学系は、拡大共役側(物体側)から縮小共役側(像側)へ順に、負の屈折力の第1レンズ群、1以上のレンズ群を含む後群より構成される。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The present invention is a projection optical system suitable for an image projection apparatus (projector). The optical system according to the present invention includes, in order from the magnification conjugate side (object side) to the reduction conjugate side (image side), a first lens group having a negative refractive power and a rear group including one or more lens groups.

本発明の光学系は、単一焦点距離の投射レンズ又は投射用のズームレンズである。第1レンズ群は拡大共役側から縮小共役側へ順に、負の屈折力の部分群B1a、負の屈折力の部分群B1b、負の屈折力の部分群B1c、正の屈折力の部分群B1dより構成される。無限遠から至近へのフォーカシングに際して部分群B1bと部分群B1cと部分群B1dは縮小共役側へ、隣接する部分群の間隔を変えて移動する。尚、本発明の光学系はデジタルカメラ等の撮像装置用の撮像光学系としても適用できる。   The optical system of the present invention is a single focal length projection lens or a projection zoom lens. In the first lens unit, in order from the magnification conjugate side to the reduction conjugate side, the negative refractive power subgroup B1a, the negative refractive power subgroup B1b, the negative refractive power subgroup B1c, and the positive refractive power subgroup B1d. Consists of. At the time of focusing from infinity to close, the subgroup B1b, the subgroup B1c, and the subgroup B1d move to the reduction conjugate side while changing the interval between adjacent subgroups. The optical system of the present invention can also be applied as an imaging optical system for an imaging apparatus such as a digital camera.

図1(A)、(B)は本発明の実施例1の光学系の投射距離1205mmでの広角端と望遠端におけるレンズ断面図である。ここで投射距離とは、後述する数値データをmm単位で表したときの第1レンズ面からの距離である。このことは以下全て同じである。図2(A)、(B)は実施例1の広角端での投射距離3443mmと投射距離861mmにおけるレンズ断面図である。図3(A)、(B)は実施例1の光学系の投射距離1205mmでの広角端と望遠端における収差図である。図4(A)、(B)は実施例1の光学系の広角端での投射距離861mmと投射距離3443mmにおける収差図である。   FIGS. 1A and 1B are lens cross-sectional views at the wide-angle end and the telephoto end of the optical system according to Embodiment 1 of the present invention at a projection distance of 1205 mm. Here, the projection distance is a distance from the first lens surface when numerical data described later is expressed in mm. This is all the same below. 2A and 2B are lens cross-sectional views at the projection distance 3443 mm and the projection distance 861 mm at the wide angle end according to the first embodiment. FIGS. 3A and 3B are aberration diagrams at the wide-angle end and the telephoto end when the projection distance of the optical system of Example 1 is 1205 mm. 4A and 4B are aberration diagrams at the projection distance 861 mm and the projection distance 3443 mm at the wide angle end of the optical system according to the first embodiment.

図5(A)、(B)は実施例1の光学系の望遠端での投射距離1076mmと投射距離4304mmにおける収差図である。図6(A)、(B)は実施例1の光学系の投射距離1205mmでの広角端と望遠端における倍率色収差図である。図7(A)、(B)は実施例1の光学系の広角端での投射距離861mmと投射距離3443mmにおける倍率色収差図である。図8(A)、(B)は実施例1の光学系の望遠端での投射距離1076mmと投射距離4304mmにおける倍率色収差図である。   FIGS. 5A and 5B are aberration diagrams at the projection distance 1076 mm and the projection distance 4304 mm at the telephoto end of the optical system according to the first embodiment. 6A and 6B are chromatic aberration diagrams of magnification at the wide-angle end and the telephoto end at the projection distance of 1205 mm of the optical system of Example 1. FIG. FIGS. 7A and 7B are chromatic aberration diagrams of magnification at the projection distance 861 mm and the projection distance 3443 mm at the wide angle end of the optical system according to the first embodiment. FIGS. 8A and 8B are chromatic aberration diagrams of magnification at the projection distance of 1076 mm and the projection distance of 4304 mm at the telephoto end of the optical system of the first embodiment.

図9(A)、(B)は本発明の実施例2の光学系の投射距離1205mmでの広角端と望遠端におけるレンズ断面図である。図10(A)、(B)は実施例2の広角端での投射距離3443mmと投射距離861mmにおけるレンズ断面図である。図11(A)、(B)は実施例2の光学系の投射距離1205mmでの広角端と望遠端における収差図である。図12(A)、(B)は実施例2の光学系の広角端での投射距離861mmと投射距離3443mmにおける収差図である。図13(A)、(B)は実施例2の光学系の望遠端での投射距離1076mmと投射距離4304mmにおける収差図である。   FIGS. 9A and 9B are lens cross-sectional views at the wide-angle end and the telephoto end at a projection distance of 1205 mm of the optical system according to Example 2 of the present invention. 10A and 10B are lens cross-sectional views at the projection distance 3443 mm and the projection distance 861 mm at the wide angle end according to the second embodiment. FIGS. 11A and 11B are aberration diagrams at the wide-angle end and the telephoto end when the projection distance of the optical system according to the second embodiment is 1205 mm. FIGS. 12A and 12B are aberration diagrams at the projection distance 861 mm and the projection distance 3443 mm at the wide angle end of the optical system according to the second embodiment. FIGS. 13A and 13B are aberration diagrams at the projection distance 1076 mm and the projection distance 4304 mm at the telephoto end of the optical system according to the second embodiment.

図14(A)、(B)は実施例2の光学系の投射距離1205mmでの広角端と望遠端における倍率色収差図である。図15(A)、(B)は実施例2の光学系の広角端での投射距離861mmと投射距離3443mmにおける倍率色収差図である。図16(A)、(B)は実施例2の光学系の望遠端での投射距離1076mmと投射距離4304mmにおける倍率色収差図である。   FIGS. 14A and 14B are chromatic aberration diagrams of magnification at the wide-angle end and the telephoto end at the projection distance 1205 mm of the optical system of the second embodiment. 15A and 15B are chromatic aberration diagrams of magnification at a projection distance 861 mm and a projection distance 3443 mm at the wide-angle end of the optical system according to the second embodiment. FIGS. 16A and 16B are chromatic aberration diagrams of magnification at a projection distance of 1076 mm and a projection distance of 4304 mm at the telephoto end of the optical system according to the second embodiment.

図17(A)、(B)は本発明の実施例3の光学系の投射距離3443mmと投射距離861mmにおけるレンズ断面図である。図18(A)、(B)、(C)は実施例3の光学系の投射距離1205mmと投射距離861mmと投射距離3443mmにおける収差図である。図19(A)、(B)、(C)は実施例3の光学系の投射距離1205mmと投射距離861mmと投射距離3443mmにおける倍率色収差図である。図20は本発明の光学系を有する画像投射装置(プロジェクター)の要部概略図である。   FIGS. 17A and 17B are lens cross-sectional views at the projection distance 3443 mm and the projection distance 861 mm of the optical system according to Example 3 of the present invention. 18A, 18B, and 18C are aberration diagrams of the optical system of Example 3 at a projection distance of 1205 mm, a projection distance of 861 mm, and a projection distance of 3443 mm. FIGS. 19A, 19B, and 19C are chromatic aberration diagrams of magnification at the projection distance 1205 mm, the projection distance 861 mm, and the projection distance 3443 mm of the optical system of Example 3. FIG. FIG. 20 is a schematic diagram of a main part of an image projection apparatus (projector) having the optical system of the present invention.

各実施例の光学系は画像投射装置(プロジェクター)に用いられる投射レンズ(投射光学系)である。レンズ断面図において、左方がスクリーン(拡大共役側)、(物体側)、右方が被投射画像側(画像表示素子側)、(縮小共役側)、(像側)である。レンズ断面図において、LAは光学系である。   The optical system of each embodiment is a projection lens (projection optical system) used in an image projection apparatus (projector). In the lens cross-sectional view, the left side is the screen (enlarged conjugate side), (object side), and the right side is the projected image side (image display element side), (reduced conjugate side), and (image side). In the lens cross-sectional view, LA is an optical system.

実施例1、2の光学系はズームレンズより構成され、実施例3の光学系は単一焦点距離の投射レンズである。iは拡大共役側からのレンズ群の順番を示し、Biは第iレンズ群である。LRは1以上のレンズ群よりなる後群である。B1a、B1b、B1c、B1dは各々第1レンズ群B1を構成する部分群である。STは開口絞りである。IPは液晶パネル(画像表示素子)等の原画像(被投射画像)に相当している。   The optical systems of the first and second embodiments are configured by a zoom lens, and the optical system of the third embodiment is a single focal length projection lens. i indicates the order of the lens groups from the magnification conjugate side, and Bi is the i-th lens group. LR is a rear group composed of one or more lens groups. B1a, B1b, B1c, and B1d are partial groups constituting the first lens group B1. ST is an aperture stop. IP corresponds to an original image (projected image) such as a liquid crystal panel (image display element).

本実施例では原画を形成する画像表示素子が配置される。Sはスクリーン面である。PRは色分解、色合成用のプリズム、光学フィルター、フェースプレート(平行平板ガラス)、水晶ローパスフィルター、赤外カットフィルター等に相当する光学ブロックである。   In this embodiment, an image display element for forming an original image is arranged. S is the screen surface. PR is an optical block corresponding to a prism for color separation and color synthesis, an optical filter, a face plate (parallel plate glass), a quartz low-pass filter, an infrared cut filter, and the like.

図1、図9において矢印は広角端から望遠端へのズーミングの際のレンズ群の移動方向(移動軌跡)を示している。図2、図10において矢印は広角端において無限遠から至近へのフォーカシングに際しての部分群の移動方向を示している。図17において矢印は無限遠から至近へのフォーカシングに際しての部分群の移動方向を示している。   1 and 9, arrows indicate the moving direction (movement locus) of the lens group during zooming from the wide-angle end to the telephoto end. 2 and 10, the arrows indicate the moving direction of the subgroup during focusing from infinity to close at the wide angle end. In FIG. 17, the arrow indicates the moving direction of the subgroup during focusing from infinity to close.

実施例1、2のズームレンズよりなる光学系について説明する。実施例1、2のズームレンズは、ズーミングに際して第1レンズ群は不動で、隣り合うレンズ群の間隔が変化する。実施例1、2のズームレンズにおいて広角端と望遠端は変倍用のレンズ群が機構上光軸上を移動可能な範囲の両端に位置したときのズーム位置をいう。実施例1、2のズームレンズは拡大共役側から縮小共役側へ順に、負の屈折力の第1レンズ群B1(レンズL11〜レンズL17)、後群LR(レンズL18〜L26)よりなっている。   An optical system including the zoom lenses of Examples 1 and 2 will be described. In the zoom lenses of Examples 1 and 2, the first lens unit does not move during zooming, and the interval between adjacent lens units changes. In the zoom lenses of Embodiments 1 and 2, the wide-angle end and the telephoto end are zoom positions when the zooming lens groups are positioned at both ends of the range in which the mechanism can move on the optical axis. The zoom lenses of Embodiments 1 and 2 include, in order from the magnification conjugate side to the reduction conjugate side, a first lens unit B1 (lens L11 to L17) having a negative refractive power and a rear unit LR (lenses L18 to L26). .

後群LRは正の屈折力の第2レンズ群B2(レンズL18)、正の屈折力の第3レンズ群B3(レンズL19、レンズL20)より成る。更に負の屈折力の第4レンズ群B4(レンズL21〜レンズL25)、正の屈折力の第5レンズ群B5(レンズL26)より成る。そしてズーミングに際して第1レンズ群B1と、第5レンズ群B5は不動である。広角端から望遠端へのズーミングに際して第2レンズ群B2と、第3レンズ群B3、第4レンズ群B4が互いに異なった軌跡で拡大共役側へ移動する。   The rear group LR includes a second lens unit B2 (lens L18) having a positive refractive power and a third lens unit B3 (lens L19, lens L20) having a positive refractive power. Further, it includes a fourth lens unit B4 (lens L21 to L25) having a negative refractive power and a fifth lens unit B5 (lens L26) having a positive refractive power. During zooming, the first lens unit B1 and the fifth lens unit B5 do not move. During zooming from the wide-angle end to the telephoto end, the second lens unit B2, the third lens unit B3, and the fourth lens unit B4 move toward the magnification conjugate side along different paths.

第1レンズ群B1は拡大共役側から縮小共役側へ順に、負の屈折力の部分群B1a(レンズL11)、負の屈折力の部分群B1b(レンズL12〜レンズL14)より構成される。更に負の屈折力の部分群B1c(レンズL15)、正の屈折力の部分群B1d(レンズL16、レンズL17)より構成される。無限遠から至近へのフォーカシングに際して(投射距離が遠方から近距離になるに従って)部分群B1bと部分群B1c、部分群B1dは縮小共役側へ隣接する部分群の間隔を変化させつつ移動する。   The first lens unit B1 includes, in order from the magnification conjugate side to the reduction conjugate side, a negative refractive power subgroup B1a (lens L11) and a negative refractive power subgroup B1b (lenses L12 to L14). Further, it is composed of a sub-group B1c (lens L15) having a negative refractive power and a sub-group B1d (lens L16, L17) having a positive refractive power. At the time of focusing from infinity to the close (as the projection distance is changed from the far distance), the subgroup B1b, the subgroup B1c, and the subgroup B1d move while changing the interval between the subgroups adjacent to the reduction conjugate side.

第1レンズ群B1は拡大共役側から縮小共役側へ順に、負レンズ、正レンズ、負レンズ、負レンズ、負レンズ、負レンズ、正の7枚のレンズL11〜L17で構成されている。第2レンズ群B2は1枚の正レンズL18で構成されている。第3レンズ群B3は拡大共役側から縮小共役側へ順に、正レンズ、負レンズの2枚のレンズL19〜L20で構成されている。第4レンズ群B4は拡大共役側から縮小共役側へ順に、負レンズ、正レンズ、負レンズ、正レンズ、正レンズの5枚のレンズL21〜L25で構成されている。第5レンズ群B5は1枚の正レンズL26で構成されている。   The first lens unit B1 includes, in order from the magnification conjugate side to the reduction conjugate side, a negative lens, a positive lens, a negative lens, a negative lens, a negative lens, a negative lens, and seven positive lenses L11 to L17. The second lens group B2 is composed of a single positive lens L18. The third lens unit B3 includes two lenses L19 to L20, which are a positive lens and a negative lens, in order from the magnification conjugate side to the reduction conjugate side. The fourth lens unit B4 includes five lenses L21 to L25 in order from the magnification conjugate side to the reduction conjugate side, a negative lens, a positive lens, a negative lens, a positive lens, and a positive lens. The fifth lens unit B5 includes one positive lens L26.

実施例3の光学系は拡大共役側から縮小共役側へ順に負の屈折力の第1レンズ群B1(レンズL11〜L17)、後群LR(レンズL18〜レンズL26)よりなっている。後群LRは正の屈折力のレンズ群よりなっている。第1レンズ群B1は拡大共役側から縮小共役側へ順に、負の屈折力の部分群B1a、負の屈折力の部分群B1b、負の屈折力の部分群B1c、正の屈折力の部分群B1dより構成される。無限遠から至近へのフォーカシングに際して(投射距離が遠方から近距離になるに従って)部分群B1bと部分群B1c、部分群B1dは縮小共役側へ隣接する部分群の間隔を変化させつつ移動する。   The optical system of Example 3 includes a first lens unit B1 (lenses L11 to L17) and a rear unit LR (lens L18 to L26) having negative refractive power in order from the magnification conjugate side to the reduction conjugate side. The rear group LR includes a lens group having a positive refractive power. The first lens unit B1 includes, in order from the magnification conjugate side to the reduction conjugate side, a negative refractive power subgroup B1a, a negative refractive power subgroup B1b, a negative refractive power subgroup B1c, and a positive refractive power subgroup. B1d. At the time of focusing from infinity to the close (as the projection distance is changed from the far distance), the subgroup B1b, the subgroup B1c, and the subgroup B1d move while changing the interval between the subgroups adjacent to the reduction conjugate side.

具体的には無限遠から至近へのフォーカシングに際して部分群B1bと部分群B1cとの間隔を増大させつつ、また部分群B1cと部分群B1dとの間隔を減少させつつ、縮小共役側へ移動する。第1レンズ群B1のレンズ構成は実施例1と同じである。第2レンズ群B2は拡大共役側から縮小共役側へ順に、正レンズ、正レンズ、負レンズ、負レンズ、正レンズ、負レンズ、正レンズ、正レンズ、正レンズL18〜L26で構成される。   Specifically, during focusing from infinity to the closest distance, the distance between the subgroup B1b and the subgroup B1c is increased, and the distance between the subgroup B1c and the subgroup B1d is decreased while moving toward the reduction conjugate side. The lens configuration of the first lens unit B1 is the same as that of the first embodiment. The second lens group B2 includes, in order from the magnification conjugate side to the reduction conjugate side, a positive lens, a positive lens, a negative lens, a negative lens, a positive lens, a negative lens, a positive lens, a positive lens, and positive lenses L18 to L26.

球面収差図において実線は波長550nmを示している。非点収差図において点線はメリディオナル像面、実線はサジタル像面を示す。FnoはFナンバー、ωは半画角(度)である。また、収差図において球面収差は0.1mm、非点収差は0.1mm、歪曲は0.5%のスケールで描いている。倍率色収差図においては、基準波長(550nm)に対する各色(波長620nm、波長470nm)を表わしている。   In the spherical aberration diagram, the solid line indicates the wavelength of 550 nm. In the astigmatism diagram, the dotted line indicates the meridional image plane, and the solid line indicates the sagittal image plane. Fno is an F number, and ω is a half angle of view (degrees). In the aberration diagrams, spherical aberration is drawn at a scale of 0.1 mm, astigmatism is drawn at a scale of 0.1 mm, and distortion is drawn at a scale of 0.5%. In the lateral chromatic aberration diagram, each color (wavelength 620 nm, wavelength 470 nm) with respect to the reference wavelength (550 nm) is shown.

次に本発明の光学系より好ましい構成について説明する。各実施例では被投射画像をスクリーンに投射するものであるが、説明を簡単にするために光束の通過順として拡大共役側のスクリーン(物体)からの光束が縮小共役側の被投射画像(像面)に入射して結像するものとして説明する。各実施例では無限遠から至近へのフォーカシングに際して部分群B1aは不動で、部分群B1bと部分群B1cと部分群B1dはいずれも縮小共役側へ移動する。具体的には、部分群B1bと部分群B1cとの間隔を拡大しつつ部分群B1cと部分群B1dとの間隔を減少しつつ移動する。   Next, a more preferable configuration than the optical system of the present invention will be described. In each embodiment, the projected image is projected onto the screen. However, in order to simplify the explanation, the light flux from the screen (object) on the enlargement conjugate side is projected on the reduction conjugate side (image) as the order of passage of the light flux. In the following description, it is assumed that an image is formed by being incident on the surface. In each embodiment, the subgroup B1a does not move during focusing from infinity to the closest position, and the subgroup B1b, the subgroup B1c, and the subgroup B1d all move toward the reduction conjugate side. Specifically, the distance between the partial group B1b and the partial group B1c is increased while the distance between the partial group B1c and the partial group B1d is decreased.

フォーカシングに際して軸外光線の入射高さが高くなる部分群B1aを不動とし、フォーカシングに際しての収差変動を押えている。また、レンズ全長を不変とすることで、フォーカシングに際してのレンズ重心の変化を抑えて、メカ機構を簡易化している。また、レンズ全長を不変とし、外観上の品位を向上させている。   The subgroup B1a in which the incident height of the off-axis light beam is increased at the time of focusing is fixed, and aberration fluctuations at the time of focusing are suppressed. Further, by making the entire lens length unchanged, the mechanical mechanism is simplified by suppressing the change in the center of gravity of the lens during focusing. In addition, the overall length of the lens is unchanged, and the appearance quality is improved.

部分群B1bは主にフォーカシングの際に生じる像面湾曲等の軸外収差の変動を補正する機能を持つ。部分群B1bは強い負の屈折力を有し、少しの移動距離で像面湾曲等の軸外収差の変動を良好に補正する事ができる構成としている。また部分群B1bはフォーカシングに際しての歪曲収差の変動も同様に補正する機能を持つ。部分群B1bは強い負の屈折力を有するため、複数のレンズより構成して負の屈折力を分担する構成としている。   The subgroup B1b mainly has a function of correcting fluctuations in off-axis aberrations such as field curvature that occur during focusing. The subgroup B1b has a strong negative refractive power, and is configured to be able to satisfactorily correct off-axis aberration fluctuations such as curvature of field with a small moving distance. In addition, the subgroup B1b has a function of correcting the variation of distortion aberration during focusing. Since the subgroup B1b has a strong negative refractive power, the partial group B1b is constituted by a plurality of lenses to share the negative refractive power.

各実施例では以上の構成をとることによって、フォーカシングに際しての収差変動を軽減し、全物体距離範囲にわたり高い光学性能の光学系を得ている。各実施例において好ましくは次の条件式のうち1つ以上を満足するのが良い。部分群B1bの焦点距離をfB1b、無限遠にフォーカスしているときの第1レンズ群B1の焦点距離をfB1とする。無限遠にフォーカスしているときの部分群B1cと部分群B1dの合成系の焦点距離をfB1cdとする。部分群B1cの焦点距離をfB1c、部分群B1dの焦点距離をfB1dとする。このとき次の条件式のうち1つ以上を満足するのが良い。   In each embodiment, by adopting the above-described configuration, aberration variation during focusing is reduced, and an optical system having high optical performance over the entire object distance range is obtained. In each embodiment, it is preferable to satisfy one or more of the following conditional expressions. The focal length of the subgroup B1b is fB1b, and the focal length of the first lens group B1 when focusing on infinity is fB1. Let fB1cd be the focal length of the combined system of the subgroup B1c and the subgroup B1d when focusing on infinity. The focal length of the subgroup B1c is fB1c, and the focal length of the subgroup B1d is fB1d. At this time, it is preferable to satisfy one or more of the following conditional expressions.

0.2<fB1b/fB1<0.9 ・・・(1)
−8.0<fB1cd/fB1b<−1.0 ・・・(2)
−6.0<fB1c/fB1d<0.0 ・・・(3)
また各実施例の光学系と、原画を形成する画像表示素子とを有し、画像表示素子によって形成された原画を光学系によって投射する画像投射装置に用いるときは次の条件式を満足するのが好ましい。
0.2 <fB1b / fB1 <0.9 (1)
−8.0 <fB1cd / fB1b <−1.0 (2)
-6.0 <fB1c / fB1d <0.0 (3)
In addition, when the optical system of each embodiment and an image display element that forms an original image are used in an image projection apparatus that projects the original image formed by the image display element by the optical system, the following conditional expression is satisfied: Is preferred.

光学系の最大の投射半画角(光学系がズームレンズのときは広角端における投射半画角であり、単焦点光学系の場合にはこの単焦点光学系の投射半画角)をω(度)とする。このとき、
39.0°<ω<55.0° ・・・(4)
なる条件式を満足するのが良い。
The maximum projection half field angle of the optical system (the projection half field angle at the wide-angle end when the optical system is a zoom lens, and the projection half field angle of this single focus optical system in the case of a single focus optical system) is ω ( Degree). At this time,
39.0 ° <ω <55.0 ° (4)
It is good to satisfy the following conditional expression.

次に前述の各条件式の技術的意味について説明する。条件式(1)はフォーカシングの際の収差変動を低減させ良好な光学性能を得るためのものである。条件式(1)は第1レンズ群B1の焦点距離に対する部分群B1bの焦点距離の比に関する。条件式(1)の下限値を超えて部分群B1bの負の屈折力が強くなると(負の屈折力の絶対値が大きくなると)部分群B1bよりアンダーの像面湾曲および歪曲収差が増大し、光学性能が低下してくる。   Next, the technical meaning of each conditional expression described above will be described. Conditional expression (1) is for reducing aberration fluctuations during focusing and obtaining good optical performance. Conditional expression (1) relates to the ratio of the focal length of the subgroup B1b to the focal length of the first lens group B1. When the negative refractive power of the subgroup B1b is increased beyond the lower limit value of the conditional expression (1) (when the absolute value of the negative refractive power is increased), the under-field curvature and the distortion are increased as compared with the subgroup B1b. Optical performance decreases.

条件式(1)の上限値を超えて、部分群B1bの負の屈折力が弱くなると(負の屈折力の絶対値が小さくなると)フォーカシングに際して像面湾曲および歪曲収差が増大し、全物体距離にわたり高い光学性能を得るのが困難になる。各実施例では軸外主光線の光軸からの入射高さhが小さくなる構成としてフォーカシングに際して軸外収差の変動が少なくなるようにしている。フォーカシングの際の収差変動を低減させ良好な光学性能を得るためのものである。   If the upper limit of conditional expression (1) is exceeded and the negative refractive power of the subgroup B1b becomes weaker (when the absolute value of the negative refractive power becomes smaller), field curvature and distortion increase during focusing, and the total object distance It becomes difficult to obtain high optical performance over a wide range. In each embodiment, the configuration is such that the incident height h of the off-axis principal ray from the optical axis is small, so that fluctuations in off-axis aberrations are reduced during focusing. This is to reduce aberration variation during focusing and obtain good optical performance.

条件式(2)の下限値を超えて合成系の焦点距離が長くなりすぎると、フォーカシングに際して倍率色収差が増大してくる。条件式(2)の上限値を超えて、合成系の焦点距離が短くなりすぎると、フォーカシングに際して像面湾曲の変動が大きくなり光学性能が低下してくる。また、部分群B1dは1つの接合レンズをもつレンズ構成となっており、これにより主に倍率色収差を補正している。   If the lower limit of conditional expression (2) is exceeded and the focal length of the synthesis system becomes too long, lateral chromatic aberration will increase during focusing. If the upper limit of conditional expression (2) is exceeded and the focal length of the combining system becomes too short, the variation in field curvature during focusing will increase and the optical performance will deteriorate. The subgroup B1d has a lens configuration having one cemented lens, and mainly corrects lateral chromatic aberration.

また、部分群B1cに含まれる負レンズはg線のアンダーな倍率色収差を発生させる事でレンズ全体の倍率色収差を補正する。これとともに、軸外主光線を光軸から離れる方向に曲げる事で縮小共役側に配置した部分群B1dの正レンズに入射する軸外光線の入射高さhを大きくする事で部分群B1dの正レンズによる倍率色収差の補正効果を高めている。   Further, the negative lens included in the subgroup B1c corrects the chromatic aberration of magnification of the entire lens by generating the chromatic aberration of magnification under the g-line. At the same time, the off-axis principal ray is bent in the direction away from the optical axis to increase the incident height h of the off-axis ray incident on the positive lens of the subgroup B1d arranged on the reduction conjugate side. The effect of correcting chromatic aberration of magnification by the lens is enhanced.

条件式(3)は部分群B1dと部分群B1cの焦点距離の比に関する。条件式(3)の下限値を超えて、部分群B1cの負の屈折力が弱くなりすぎると、倍率色収差の補正が不足してくる。部分群B1cは負の屈折力であるため、条件式(3)の上限値を超えることはない。但し部分群B1cの負の屈折力が強くなりむ、条件式(3)の上限値に近づくと倍率色収差が過剰補正となるため良くない。また、部分群B1bは最も拡大共役側に正レンズを有し、これによって主に歪曲収差を良好に補正している。   Conditional expression (3) relates to the ratio of the focal lengths of the subgroup B1d and the subgroup B1c. If the negative refractive power of the subgroup B1c becomes too weak beyond the lower limit of conditional expression (3), the correction of lateral chromatic aberration will be insufficient. Since the subgroup B1c has negative refractive power, the upper limit value of the conditional expression (3) is not exceeded. However, the negative refracting power of the subgroup B1c becomes strong. When the upper limit of conditional expression (3) is approached, the lateral chromatic aberration is overcorrected, which is not good. In addition, the subgroup B1b has a positive lens on the most magnification conjugate side, and mainly corrects distortion aberrations favorably.

条件式(4)は、本発明の光学系と、原画を形成する画像表示素子とを有し、画像表示素子によって形成された原画を光学系によって投射する画像投射装置に用いたときの、投射半画角をω(度)とする。ここで光学系がズームレンズのときは広角端における投射半画角である。条件式(4)の下限値を超えると倍率色収差が補正過剰となる。また上限値を超えると倍率色収差が補正不足になるとともに歪曲収差が増大してくる。更に好ましくは条件式(1)乃至(4)の数値範囲を次の如く設定するのが良い。   Conditional expression (4) is a projection when the optical system of the present invention and an image display element that forms an original image are used in an image projection apparatus that projects the original image formed by the image display element by the optical system. Let the half angle of view be ω (degrees). Here, when the optical system is a zoom lens, the projection half angle of view is at the wide-angle end. When the lower limit of conditional expression (4) is exceeded, lateral chromatic aberration is overcorrected. If the upper limit is exceeded, lateral chromatic aberration will be undercorrected and distortion will increase. More preferably, the numerical ranges of the conditional expressions (1) to (4) are set as follows.

0.3<fB1b/fB1<0.9 ・・・(1a)
−7.0<fB1cd/fB1b<−2.0 ・・・(2a)
−5.0<fB1c/fB1d<−0.5 ・・・(3a)
40.0°<ω<50.0° ・・・(4a)
0.3 <fB1b / fB1 <0.9 (1a)
−7.0 <fB1cd / fB1b <−2.0 (2a)
−5.0 <fB1c / fB1d <−0.5 (3a)
40.0 ° <ω <50.0 ° (4a)

次に各レンズ群及び各部分群の前述した以外のレンズ構成の特徴は次のとおりである。部分群B1bは1枚以上の正レンズを有する。部分群B1dは1つ以上の接合レンズを有する。部分群B1aは非球面形状のレンズ面を有する。部分群B1cは1つの負レンズよりなる。尚、部分群B1cは少なくとも1つの負レンズを有すれば良い。第1レンズ群B1は拡大共役側から縮小共役側へ順に、負レンズ、正レンズ、負レンズ、負レンズ、負レンズ、負レンズ、正レンズより構成される。   Next, the characteristics of the lens configurations other than those described above for each lens group and each partial group are as follows. The subgroup B1b has one or more positive lenses. The subgroup B1d has one or more cemented lenses. The subgroup B1a has an aspheric lens surface. The subgroup B1c is composed of one negative lens. The subgroup B1c only needs to have at least one negative lens. The first lens unit B1 includes a negative lens, a positive lens, a negative lens, a negative lens, a negative lens, a negative lens, and a positive lens in order from the magnification conjugate side to the reduction conjugate side.

本発明の画像投射装置では光学系と、原画を形成する画像表示素子とを有し前記画像表示素子によって形成された原画を光学系によって投射する。   The image projection apparatus of the present invention has an optical system and an image display element for forming an original image, and projects the original image formed by the image display element by the optical system.

次に本発明の画像投射装置を図20を用いて説明する。図20において41は光源である。42は画像表示素子に対してむらの少ない照明を実現し、出射される光の偏光方向をP偏光またはS偏光の任意の方向にそろえる機能を有する照明光学系である。43は照明光学系42からの光を画像表示素子に対応した任意の色に分解する色分離光学系である。   Next, the image projection apparatus of the present invention will be described with reference to FIG. In FIG. 20, reference numeral 41 denotes a light source. Reference numeral 42 denotes an illumination optical system that realizes illumination with less unevenness on the image display element and has a function of aligning the polarization direction of emitted light to an arbitrary direction of P-polarized light or S-polarized light. A color separation optical system 43 separates light from the illumination optical system 42 into an arbitrary color corresponding to the image display element.

47、48、49は入射した偏光を電気信号に応じて変調する反射型の液晶よりなる画像表示素子である。44、45は画像表示素子47、48、49で変調に応じて、光を透過または反射させる偏光ビームスプリッタである。46は各画像表示素子47、48、49からの光を1つに合成する色合成光学系である。50は色合成光学系46で合成された光をスクリーン51などの被投射物に投射する投射光学系である。50に本発明の光学系を用いている。これにより、フォーカシングに際して諸収差の変化が良好に補正され、画面全体にわたり光学性能が良好な画像投射装置を得ている。   Reference numerals 47, 48, and 49 denote image display elements made of reflective liquid crystal that modulates incident polarized light according to an electric signal. Reference numerals 44 and 45 denote polarization beam splitters that transmit or reflect light according to modulation by the image display elements 47, 48, and 49, respectively. A color combining optical system 46 combines the light from the image display elements 47, 48 and 49 into one. Reference numeral 50 denotes a projection optical system that projects light synthesized by the color synthesis optical system 46 onto a projection object such as a screen 51. 50 uses the optical system of the present invention. Thereby, changes in various aberrations are favorably corrected during focusing, and an image projection apparatus having good optical performance over the entire screen is obtained.

以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。   As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to these embodiment, A various deformation | transformation and change are possible within the range of the summary.

次に各実施例の光学系の数値データを示す。数値データのレンズ構成中の面番号は、拡大共役側から縮小共役側に順に各レンズ面に付した番号である。rは各レンズ面の曲率半径、dはレンズ面iとレンズ面(i+1)との間の光軸上での間隔(物理的間隔)を示す。像側の3つの面はガラスブロックに相当する。   Next, numerical data of the optical system of each example is shown. The surface number in the lens configuration of the numerical data is a number assigned to each lens surface in order from the enlargement conjugate side to the reduction conjugate side. r represents the radius of curvature of each lens surface, and d represents the distance (physical distance) on the optical axis between the lens surface i and the lens surface (i + 1). The three surfaces on the image side correspond to glass blocks.

表中に可変と記載されている間隔は、フォーカシング又はズーミングに伴って変化する。また、nd,νdはそれぞれ、各レンズを構成する材料のd線に対する屈折率とアッベ数を示している。また表Aに数値データの光学系の焦点距離、開口比(Fナンバー)、投射半画角、レンズ全長(第1レンズ面から被投射面までの距離)である。BFはバックフォーカスであり最終レンズ面から像面(被投射面)までの空気換算長である。ズーム比、フォーカシング又はズーミング時の各レンズ群の間隔を示す。また非球面形状を示すための非球面係数A〜Fを示している。   The interval described as variable in the table changes with focusing or zooming. Further, nd and νd indicate the refractive index and the Abbe number for the d-line of the material constituting each lens, respectively. Table A shows the focal length, aperture ratio (F number), projection half angle of view, and total lens length (distance from the first lens surface to the projection surface) of the optical system of numerical data. BF is a back focus, and is an air conversion length from the final lens surface to the image surface (projected surface). This indicates the distance between the lens groups during zoom ratio, focusing, or zooming. In addition, aspherical coefficients A to F for showing the aspherical shape are shown.

yはレンズ面の径方向での座標を、xは光軸方向での座標を示す。また、E−Xは10−Xを示す。このとき、非球面形状は次のとおりである。 y represents the coordinate in the radial direction of the lens surface, and x represents the coordinate in the optical axis direction. Furthermore, E-X indicates a 10 -X. At this time, the aspherical shape is as follows.

x=(y/R)/[1+{1−(1+K)(y/R)}1/2]+Ay+By+Cy+Dy10+Ey12+Fy14
また前述の各実施例と数値との関係を表1に示す。
x = (y 2 / R) / [1+ {1− (1 + K) (y 2 / R 2 )} 1/2 ] + Ay 4 + By 6 + Cy 8 + Dy 10 + Ey 12 + Fy 14
Table 1 shows the relationship between the above-described embodiments and numerical values.

<実施例1>

レンズ構成
広角 望遠
f(焦点距離) 12.61 15.77
F(開口比) 2.80 2.88
投射半画角(度) 45.9 39.6
レンズ全長 187.0
BF 59.2
ズーム比 1.25

* r 1 = 278.72 d 1 = 4.50 n 1 = 1.716 ν 1 = 53.9
r 2 = 40.10 d 2 = 可変
r 3 = 160.28 d 3 = 3.16 n 2 = 1.489 ν 2 = 70.2
r 4 = 586.33 d 4 = 2
* r 5 = 500.00 d 5 = 2.50 n 3 = 1.859 ν 3 = 40.4
* r 6 = 43.11 d 6 = 24.93
r 7 = -37.99 d 7 = 2.20 n 4 = 1.498 ν 4 = 81.5
r 8 = 52.99 d 8 = 可変
r 9 = -188.83 d 9 = 2.20 n 5 = 1.888 ν 5 = 40.8
r10 = 1043.90 d10 = 可変
r11 = 159.99 d11 = 2.30 n 6 = 1.932 ν 6 = 20.9
r12 = 69.29 d12 = 9.61 n 7 = 1.910 ν 7 = 31.3
r13 = -58.80 d13 = 可変
r14 = 61.21 d14 = 4.15 n 8 = 1.766 ν 8 = 40.1
r15 = -3796.24 d15 = 可変
r16 = 238.21 d16 = 4.03 n 9 = 1.518 ν 9 = 64.1
r17 = -20.27 d17 = 1.00 n10 = 1.888 ν10= 40.8
r18 = -36.47 d18 = 可変
STr19 = ∞ d19 = 可変
r20 = 1095.01 d20 = 1.50 n11 = 1.856 ν11 = 32.3
r21 = 19.93 d21 = 6.04 n12 = 1.518 ν12 = 64.1
r22 = -17.41 d22 = 1.47
r23 = -15.98 d23 = 2.00 n13 = 1.910 ν13 = 31.3
r24 = 60.05 d24 = 3.97 n14 = 1.489 ν14 = 70.2
r25 = -44.11 d25 = 5.33
r26 = -1146.99 d26 = 8.69 n15 = 1.498 ν15 = 81.5
r27 = -23.17 d27 = 可変
r28 = 95.23 d28 = 4.51 n16 = 1.902 ν16 = 20.4
r29 = -164.20 d29 = 2.00
r30 = ∞ d30 = 22.40 n17 = 1.516 ν18 = 64.1
r31 = ∞ d31 = 17.7 n18 = 1.805 ν19 = 25.4
r32 = ∞ d32 = 7.2
<Example 1>

Lens configuration
Wide angle telephoto
f (focal length) 12.61 15.77
F (aperture ratio) 2.80 2.88
Projection half angle of view (degrees) 45.9 39.6
Total lens length 187.0
BF 59.2
Zoom ratio 1.25

* r 1 = 278.72 d 1 = 4.50 n 1 = 1.716 ν 1 = 53.9
r 2 = 40.10 d 2 = variable
r 3 = 160.28 d 3 = 3.16 n 2 = 1.489 ν 2 = 70.2
r 4 = 586.33 d 4 = 2
* r 5 = 500.00 d 5 = 2.50 n 3 = 1.859 ν 3 = 40.4
* r 6 = 43.11 d 6 = 24.93
r 7 = -37.99 d 7 = 2.20 n 4 = 1.498 ν 4 = 81.5
r 8 = 52.99 d 8 = variable
r 9 = -188.83 d 9 = 2.20 n 5 = 1.888 ν 5 = 40.8
r10 = 1043.90 d10 = variable
r11 = 159.99 d11 = 2.30 n 6 = 1.932 ν 6 = 20.9
r12 = 69.29 d12 = 9.61 n 7 = 1.910 ν 7 = 31.3
r13 = -58.80 d13 = variable
r14 = 61.21 d14 = 4.15 n 8 = 1.766 ν 8 = 40.1
r15 = -3796.24 d15 = variable
r16 = 238.21 d16 = 4.03 n 9 = 1.518 ν 9 = 64.1
r17 = -20.27 d17 = 1.00 n10 = 1.888 ν10 = 40.8
r18 = -36.47 d18 = variable
STr19 = ∞ d19 = variable
r20 = 1095.01 d20 = 1.50 n11 = 1.856 ν11 = 32.3
r21 = 19.93 d21 = 6.04 n12 = 1.518 ν12 = 64.1
r22 = -17.41 d22 = 1.47
r23 = -15.98 d23 = 2.00 n13 = 1.910 ν13 = 31.3
r24 = 60.05 d24 = 3.97 n14 = 1.489 ν14 = 70.2
r25 = -44.11 d25 = 5.33
r26 = -1146.99 d26 = 8.69 n15 = 1.498 ν15 = 81.5
r27 = -23.17 d27 = variable
r28 = 95.23 d28 = 4.51 n16 = 1.902 ν16 = 20.4
r29 = -164.20 d29 = 2.00
r30 = ∞ d30 = 22.40 n17 = 1.516 ν18 = 64.1
r31 = ∞ d31 = 17.7 n18 = 1.805 ν19 = 25.4
r32 = ∞ d32 = 7.2

変倍時 (1205mm) フォーカス時 (広角端)
群間隔 広角 望遠 群間隔 861mm 1205mm 3443mm
d13 27.64 5.88 d 2 13.90 13.79 13.60
d15 31.91 40.48 d 8 8.13 7.29 5.90
d18 1.50 2.72 d10 2.50 3.04 3.95
d19 4.25 1.20 d13 27.23 27.64 28.32
d27 1.50 16.51


非球面係数
r1 K= 0 A= 6.78E-06 B=-6.28E-09 C= 7.45E-12 D=-6.12E-15
E =3.20E-18 F=-8.86E-22 G= 1.16E-25
r5 K= 0 A=-1.15E-05 B= 3.87E-08 C=-4.63E-11 D= 8.87E-15
E=-3.85E-18 F= 5.02E-20 G=-3.88E-23
r6 K= 0 A=-2.82E-06 B= 2.58E-08 C= 1.91E-11 D=-9.44E-14
E=4.50E-17 F=-1.30E-19 G=3.55E-22
When zoomed (1205mm) When focused (wide-angle end)
Group spacing Wide angle Telephoto Group spacing 861mm 1205mm 3443mm
d13 27.64 5.88 d 2 13.90 13.79 13.60
d15 31.91 40.48 d 8 8.13 7.29 5.90
d18 1.50 2.72 d10 2.50 3.04 3.95
d19 4.25 1.20 d13 27.23 27.64 28.32
d27 1.50 16.51


Aspheric coefficient
r1 K = 0 A = 6.78E-06 B = -6.28E-09 C = 7.45E-12 D = -6.12E-15
E = 3.20E-18 F = -8.86E-22 G = 1.16E-25
r5 K = 0 A = -1.15E-05 B = 3.87E-08 C = -4.63E-11 D = 8.87E-15
E = -3.85E-18 F = 5.02E-20 G = -3.88E-23
r6 K = 0 A = -2.82E-06 B = 2.58E-08 C = 1.91E-11 D = -9.44E-14
E = 4.50E-17 F = -1.30E-19 G = 3.55E-22

<実施例2>

レンズ構成
広角 望遠
f (焦点距離)12.61 15.77
F (開口比) 2.80 2.88
投射半画角(度) 45.8 39.5
レンズ全長 189.8
BF 59.2
ズーム比 1.25

r 1 = 323.22 d 1 = 3.73 n 1 = 1.716 ν 1 =53.9
r 2 = 45.50 d 2 = 可変
r 3 = 410.25 d 3 = 3.17 n 2 = 1.489 ν 2 =70.2
r 4 = -472.36 d 4 = 2
* r 5 = 500.00 d 5 = 2.77 n 3 = 1.859 ν 3 =40.4
* r 6 = 35.68 d 6 =21.05
r 7 = -33.95 d 7 = 2.20 n 4 = 1.498 ν 4 =81.5
r 8 = -52.61 d 8 = 可変
r 9 = -85.31 d 9 = 3.00 n 5 = 1.776 ν 5 =49.6
r10 = 84.44 d10 = 可変
r11 = 233.02 d11 = 2.30 n 6 = 1.932 ν 6 =20.9
r12 = 78.82 d12 = 9.91 n 7 = 1.910 ν 7 =31.3
r13 = -63.44 d13 = 可変
r14 = 64.77 d14 = 4.82 n 8 = 1.766 ν 8 =40.1
r15 = -2675.45 d15 = 可変
r16 = 378.47 d16 = 3.77 n 9 = 1.518 ν 9 =64.1
r17 = -25.13 d17 = 1.54 n10 = 1.888 ν10 =40.8
r18 = -48.67 d18 = 可変
STr19 = ∞ d19 = 可変
r20 = -417.00 d20 = 1.50 n11 = 1.856 ν11 =32.3
r21 = 23.85 d21 = 6.33 n12 = 1.518 ν12 =64.1
r22 = -19.41 d22 = 1.64
r23 = -17.15 d23 = 2.00 n13 = 1.910 ν13 =31.3
r24 = 70.87 d24 = 4.52 n14 = 1.489 ν14 =70.2
r25 = -41.99 d25 = 1.35
r26 = 385.82 d26 = 8.62 n15 = 1.498 ν15 =81.5
r27 = -23.21 d27 = 可変
r28 = 86.39 d28 = 4.47 n16 = 1.902 ν16 =20.4
r29 = -181.32 d29 = 2.00
r30 = ∞ d30 =22.40 n17 = 1.516 ν17 =64.1
r31 = ∞ d31 =17.7 n18 = 1.805 ν18 =25.4
r32 = ∞ d32 = 7.2
<Example 2>

Lens configuration
Wide angle telephoto
f (Focal distance) 12.61 15.77
F (Aperture ratio) 2.80 2.88
Projection half angle of view (degrees) 45.8 39.5
Total lens length 189.8
BF 59.2
Zoom ratio 1.25

r 1 = 323.22 d 1 = 3.73 n 1 = 1.716 ν 1 = 53.9
r 2 = 45.50 d 2 = variable
r 3 = 410.25 d 3 = 3.17 n 2 = 1.489 ν 2 = 70.2
r 4 = -472.36 d 4 = 2
* r 5 = 500.00 d 5 = 2.77 n 3 = 1.859 ν 3 = 40.4
* r 6 = 35.68 d 6 = 21.05
r 7 = -33.95 d 7 = 2.20 n 4 = 1.498 ν 4 = 81.5
r 8 = -52.61 d 8 = variable
r 9 = -85.31 d 9 = 3.00 n 5 = 1.776 ν 5 = 49.6
r10 = 84.44 d10 = variable
r11 = 233.02 d11 = 2.30 n 6 = 1.932 ν 6 = 20.9
r12 = 78.82 d12 = 9.91 n 7 = 1.910 ν 7 = 31.3
r13 = -63.44 d13 = variable
r14 = 64.77 d14 = 4.82 n 8 = 1.766 ν 8 = 40.1
r15 = -2675.45 d15 = variable
r16 = 378.47 d16 = 3.77 n 9 = 1.518 ν 9 = 64.1
r17 = -25.13 d17 = 1.54 n10 = 1.888 ν10 = 40.8
r18 = -48.67 d18 = variable
STr19 = ∞ d19 = variable
r20 = -417.00 d20 = 1.50 n11 = 1.856 ν11 = 32.3
r21 = 23.85 d21 = 6.33 n12 = 1.518 ν12 = 64.1
r22 = -19.41 d22 = 1.64
r23 = -17.15 d23 = 2.00 n13 = 1.910 ν13 = 31.3
r24 = 70.87 d24 = 4.52 n14 = 1.489 ν14 = 70.2
r25 = -41.99 d25 = 1.35
r26 = 385.82 d26 = 8.62 n15 = 1.498 ν15 = 81.5
r27 = -23.21 d27 = variable
r28 = 86.39 d28 = 4.47 n16 = 1.902 ν16 = 20.4
r29 = -181.32 d29 = 2.00
r30 = ∞ d30 = 22.40 n17 = 1.516 ν17 = 64.1
r31 = ∞ d31 = 17.7 n18 = 1.805 ν18 = 25.4
r32 = ∞ d32 = 7.2

変倍時 (1205mm) フォーカス時 (広角端)
群間隔 広角 望遠 群間隔 861mm 1205mm 3443mm
d13 23.06 0.59 d 2 13.95 14.15 14.26
d15 35.74 45.69 d 8 5.41 6.87 6.52
d18 1.50 2.61 d10 10.03 9.79 9.91
d19 6.48 2.55 d13 24.48 23.06 23.18
d27 1.50 16.84

非球面係数
r1 K= 0 A= 6.35E-06 B=-5.69E-09 C= 6.95E-12 D=-5.99E-15
E= 3.40E-18 F=-1.09E-21 G= 1.75E-25
r5 K=0 A=-1.44E-05 B= 3.89E-08 C=-4.42E-11 D= 9.18E-15
E=-4.74E-18 F= 4.61E-20 G=-3.47E-23
r6 K=0 A=-7.66E-06 B= 2.47E-08 C= 2.02E-11 D=-9.74E-14
E= 5.75E-17 F=-2.08E-19 G= 4.57E-22
When zoomed (1205mm) When focused (wide-angle end)
Group spacing Wide angle Telephoto Group spacing 861mm 1205mm 3443mm
d13 23.06 0.59 d 2 13.95 14.15 14.26
d15 35.74 45.69 d 8 5.41 6.87 6.52
d18 1.50 2.61 d10 10.03 9.79 9.91
d19 6.48 2.55 d13 24.48 23.06 23.18
d27 1.50 16.84

Aspheric coefficient
r1 K = 0 A = 6.35E-06 B = -5.69E-09 C = 6.95E-12 D = -5.99E-15
E = 3.40E-18 F = -1.09E-21 G = 1.75E-25
r5 K = 0 A = -1.44E-05 B = 3.89E-08 C = -4.42E-11 D = 9.18E-15
E = -4.74E-18 F = 4.61E-20 G = -3.47E-23
r6 K = 0 A = -7.66E-06 B = 2.47E-08 C = 2.02E-11 D = -9.74E-14
E = 5.75E-17 F = -2.08E-19 G = 4.57E-22

<実施例3>

レンズ構成
f(焦点距離) 12.62
F(開口比) 2.80
投射半画角(度) 45.8
レンズ全長 190.0
BF 59.2

* r 1 = 212.51 d 1 = 3.60 n 1 = 1.727 ν 1 = 53.1
r 2 = 45.65 d 2 = 可変
r 3 = 285.25 d 3 = 3.27 n 2 = 1.489 ν 2 = 70.2
r 4 = -963.92 d 4 = 2
* r 5 = 447.06 d 5 = 2.78 n 3 = 1.921 ν 3 = 40.3
* r 6 = 36.41 d 6 =33.44
r 7 = -44.38 d 7 = 2.20 n 4 = 1.498 ν 4 = 81.5
r 8 = 56.30 d 8 = 可変
r 9 = -980.56 d 9 = 2.20 n 5 = 1.888 ν 5 = 40.8
r10 = 191.06 d10 = 可変
r11 = 113.00 d11 = 2.30 n 6 = 1.932 ν 6 = 20.9
r12 = 54.55 d12 = 9.68 n 7 = 1.910 ν 7 = 31.3
r13 = -60.51 d13 = 可変
r14 = 70.47 d14 = 3.56 n 8 = 1.766 ν 8 = 40.1
r15 = -5238.45 d15 =26.02179849
r16 = 658.20 d16 = 3.73 n 9 = 1.518 ν 9 = 64.1
r17 = -25.95 d17 = 1.75 n10 = 1.888 ν10 = 40.8
r18 = -45.93 d18 = 3.249925267
STr19 = ∞ d19 = 8.757922323
r20 = 852.10 d20 = 1.50 n11 = 1.856 ν11 = 32.3
r21 = 20.50 d21 = 6.94 n12 = 1.518 ν12 = 64.1
r22 = -20.37 d22 = 1.74
r23 = -17.49 d23 = 2.00 n13 = 1.910 ν13 = 31.3
r24 = 80.93 d24 = 4.37 n14 = 1.489 ν14 = 70.2
r25 = -47.35 d25 = 1.34
r26 = 437.79 d26 = 9.06 n15 = 1.498 ν15 = 81.5
r27 = -22.91 d27 = 1.500000568
r28 = 104.96 d28 = 4.47 n16 = 1.902 ν16 = 20.4
r29 = -141.93 d29 = 2.00
r30 = ∞ d30 =22.40 n17 = 1.516 ν17 = 64.1
r31 = ∞ d31 =17.7 n18 = 1.805 ν18 = 25.4
r32 = ∞ d32 = 7.2
<Example 3>

Lens configuration
f (focal length) 12.62
F (aperture ratio) 2.80
Projection half angle of view (degrees) 45.8
Total lens length 190.0
BF 59.2

* r 1 = 212.51 d 1 = 3.60 n 1 = 1.727 ν 1 = 53.1
r 2 = 45.65 d 2 = variable
r 3 = 285.25 d 3 = 3.27 n 2 = 1.489 ν 2 = 70.2
r 4 = -963.92 d 4 = 2
* r 5 = 447.06 d 5 = 2.78 n 3 = 1.921 ν 3 = 40.3
* r 6 = 36.41 d 6 = 33.44
r 7 = -44.38 d 7 = 2.20 n 4 = 1.498 ν 4 = 81.5
r 8 = 56.30 d 8 = variable
r 9 = -980.56 d 9 = 2.20 n 5 = 1.888 ν 5 = 40.8
r10 = 191.06 d10 = variable
r11 = 113.00 d11 = 2.30 n 6 = 1.932 ν 6 = 20.9
r12 = 54.55 d12 = 9.68 n 7 = 1.910 ν 7 = 31.3
r13 = -60.51 d13 = variable
r14 = 70.47 d14 = 3.56 n 8 = 1.766 ν 8 = 40.1
r15 = -5238.45 d15 = 26.02179849
r16 = 658.20 d16 = 3.73 n 9 = 1.518 ν 9 = 64.1
r17 = -25.95 d17 = 1.75 n10 = 1.888 ν10 = 40.8
r18 = -45.93 d18 = 3.249925267
STr19 = ∞ d19 = 8.757922323
r20 = 852.10 d20 = 1.50 n11 = 1.856 ν11 = 32.3
r21 = 20.50 d21 = 6.94 n12 = 1.518 ν12 = 64.1
r22 = -20.37 d22 = 1.74
r23 = -17.49 d23 = 2.00 n13 = 1.910 ν13 = 31.3
r24 = 80.93 d24 = 4.37 n14 = 1.489 ν14 = 70.2
r25 = -47.35 d25 = 1.34
r26 = 437.79 d26 = 9.06 n15 = 1.498 ν15 = 81.5
r27 = -22.91 d27 = 1.500000568
r28 = 104.96 d28 = 4.47 n16 = 1.902 ν16 = 20.4
r29 = -141.93 d29 = 2.00
r30 = ∞ d30 = 22.40 n17 = 1.516 ν17 = 64.1
r31 = ∞ d31 = 17.7 n18 = 1.805 ν18 = 25.4
r32 = ∞ d32 = 7.2

フォーカス時
群間隔 861mm 1205mm 3443mm
d 2 14.16 13.97 13.73
d 8 6.19 5.76 5.03
d10 2.50 2.76 3.21
d13 25.68 26.04 26.55

非球面係数
r1 K= 0 A= 6.01E-06 B=-5.57E-09 C= 7.07E-12 D=-6.03E-15
E= 3.21E-18 F=-9.12E-22 G= 1.25E-25
r5 K= 0 A=-1.27E-05 B= 3.83E-08 C=-4.61E-11 D= 1.29E-14
E= 1.32E-18 F= 2.44E-20 G=-2.05E-23
r6 K= 0 A=-5.22E-06 B= 2.24E-08 C= 2.91E-11 D=-1.03E-13
E= 4.39E-17 F=-1.30E-19 G= 3.16E-22

During focus
Group spacing 861mm 1205mm 3443mm
d 2 14.16 13.97 13.73
d 8 6.19 5.76 5.03
d10 2.50 2.76 3.21
d13 25.68 26.04 26.55

Aspheric coefficient
r1 K = 0 A = 6.01E-06 B = -5.57E-09 C = 7.07E-12 D = -6.03E-15
E = 3.21E-18 F = -9.12E-22 G = 1.25E-25
r5 K = 0 A = -1.27E-05 B = 3.83E-08 C = -4.61E-11 D = 1.29E-14
E = 1.32E-18 F = 2.44E-20 G = -2.05E-23
r6 K = 0 A = -5.22E-06 B = 2.24E-08 C = 2.91E-11 D = -1.03E-13
E = 4.39E-17 F = -1.30E-19 G = 3.16E-22

B1 第1レンズ群 B2 第2レンズ群 B3 第3レンズ群
B4 第4レンズ群 B5 第5レンズ群
B1a、B1b、B1c、B1d 部分群
B1 1st lens group B2 2nd lens group B3 3rd lens group B4 4th lens group B5 5th lens group B1a, B1b, B1c, B1d Partial group

Claims (13)

拡大共役側から縮小共役側へ順に、負の屈折力の第1レンズ群、1以上のレンズ群を含む後群より構成される光学系において、
前記第1レンズ群は拡大共役側から縮小共役側へ順に、負の屈折力の部分群B1a、負の屈折力の部分群B1b、負の屈折力の部分群B1c、正の屈折力の部分群B1dより構成され、無限遠から至近へのフォーカシングに際して前記部分群B1aは不動で、前記部分群B1bと前記部分群B1cと前記部分群B1dはいずれも縮小共役側へ、前記部分群B1bと前記部分群B1cとの間隔を拡大しつつ、前記部分群B1cと前記部分群B1dとの間隔を減少しつつ移動することを特徴とする光学系。
In an optical system composed of a first lens group having a negative refractive power and a rear group including one or more lens groups in order from the magnification conjugate side to the reduction conjugate side,
The first lens unit includes, in order from the magnification conjugate side to the reduction conjugate side, a negative refractive power subgroup B1a, a negative refractive power subgroup B1b, a negative refractive power subgroup B1c, and a positive refractive power subgroup. B1d, the subgroup B1a does not move during focusing from infinity to the nearest, and the subgroup B1b, the subgroup B1c, and the subgroup B1d are all on the reduction conjugate side, and the subgroup B1b and the subgroup An optical system that moves while decreasing the distance between the subgroup B1c and the subgroup B1d while enlarging the distance between the subgroup B1c.
前記部分群B1bの焦点距離をfB1b、無限遠にフォーカスしているときの前記第1レンズ群の焦点距離をfB1とするとき、
0.2<fB1b/fB1<0.9
なる条件式を満足することを特徴とする請求項1に記載の光学系。
When the focal length of the partial group B1b is fB1b, and the focal length of the first lens group when focusing on infinity is fB1,
0.2 <fB1b / fB1 <0.9
The optical system according to claim 1, wherein the following conditional expression is satisfied.
前記部分群B1bの焦点距離をfB1b、無限遠にフォーカスしているときの前記部分群B1cと部分群B1dの合成系の焦点距離をfB1cdとするとき、
−8.0<fB1cd/fB1b<−1.0
なる条件式を満足することを特徴とする請求項1又は2に記載の光学系。
When the focal length of the subgroup B1b is fB1b, and the focal length of the combined system of the subgroup B1c and the subgroup B1d when focusing on infinity is fB1cd,
−8.0 <fB1cd / fB1b <−1.0
The optical system according to claim 1, wherein the following conditional expression is satisfied.
前記部分群B1cの焦点距離をfB1c、前記部分群B1dの焦点距離をfB1dとするとき、
−6.0<fB1c/fB1d<0.0
なる条件式を満足することを特徴とする請求項1乃至3のいずれか1項に記載の光学系。
When the focal length of the subgroup B1c is fB1c and the focal length of the subgroup B1d is fB1d,
-6.0 <fB1c / fB1d <0.0
The optical system according to claim 1, wherein the following conditional expression is satisfied.
前記部分群B1bは1枚以上の正レンズを有することを特徴とする請求項1乃至4のいずれか1項に記載の光学系。   The optical system according to any one of claims 1 to 4, wherein the partial group B1b includes one or more positive lenses. 前記部分群B1dは1つ以上の接合レンズを有することを特徴とする請求項1乃至5のいずれか1項に記載の光学系。   The optical system according to claim 1, wherein the partial group B1d includes one or more cemented lenses. 前記部分群B1aは非球面形状のレンズ面を有することを特徴とする請求項1乃至6のいずれか1項に記載の光学系。   The optical system according to any one of claims 1 to 6, wherein the partial group B1a has an aspheric lens surface. 前記部分群B1cは少なくとも1つの負レンズを有することを特徴とする請求項1乃至7のいずれか1項に記載の光学系。   The optical system according to any one of claims 1 to 7, wherein the subgroup B1c includes at least one negative lens. 前記部分群B1bは複数の負レンズを有することを特徴とする請求項1乃至8のいずれか1項に記載の光学系。   The optical system according to any one of claims 1 to 8, wherein the subgroup B1b includes a plurality of negative lenses. 前記後群は正の屈折力のレンズ群より構成されることを特徴とする請求項1乃至9のいずれか1項に記載の光学系。   The optical system according to claim 1, wherein the rear group includes a lens group having a positive refractive power. 前記光学系はズームレンズであって、前記後群は拡大共役側から縮小共役側へ順に、正の屈折力の第2レンズ群、正の屈折力の第3レンズ群、負の屈折力の第4レンズ群、正の屈折力の第5レンズ群より構成され、広角端から望遠端へのズーミングに際して、前記第1レンズ群と前記第5レンズ群は不動で、前記第2レンズ群と前記第3レンズ群と前記第4レンズ群は互いに異なった軌跡で拡大共役側に移動することを特徴とする請求項1乃至10のいずれか1項に記載の光学系。   The optical system is a zoom lens, and the rear group in order from the magnification conjugate side to the reduction conjugate side is a second lens group having a positive refractive power, a third lens group having a positive refractive power, and a first lens having a negative refractive power. The zoom lens is composed of four lens groups and a fifth lens group having a positive refractive power. During zooming from the wide-angle end to the telephoto end, the first lens group and the fifth lens group do not move, and the second lens group and the second lens group do not move. The optical system according to any one of claims 1 to 10, wherein the three lens groups and the fourth lens group move to the magnification conjugate side along different paths. 請求項1乃至11のいずれか1項に記載の光学系と、原画を形成する画像表示素子とを有し、前記画像表示素子によって形成された原画を前記光学系によって投射することを特徴とする画像投射装置。   An optical system according to any one of claims 1 to 11, and an image display element that forms an original image, and the original image formed by the image display element is projected by the optical system. Image projection device. 前記光学系の最大の投射半画角をω(度)とするとき、
39.0°<ω<55.0°
なる条件式を満足することを特徴とする請求項12に記載の画像投射装置。
When the maximum projection half angle of view of the optical system is ω (degrees),
39.0 ° <ω <55.0 °
The image projection apparatus according to claim 12, wherein the following conditional expression is satisfied.
JP2015158017A 2015-08-10 2015-08-10 Optical system and image projection apparatus having the same Active JP6579858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015158017A JP6579858B2 (en) 2015-08-10 2015-08-10 Optical system and image projection apparatus having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015158017A JP6579858B2 (en) 2015-08-10 2015-08-10 Optical system and image projection apparatus having the same

Publications (2)

Publication Number Publication Date
JP2017037165A true JP2017037165A (en) 2017-02-16
JP6579858B2 JP6579858B2 (en) 2019-09-25

Family

ID=58049501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015158017A Active JP6579858B2 (en) 2015-08-10 2015-08-10 Optical system and image projection apparatus having the same

Country Status (1)

Country Link
JP (1) JP6579858B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018194619A (en) * 2017-05-15 2018-12-06 リコーインダストリアルソリューションズ株式会社 Zoom lens for projection and image projection device
WO2019124081A1 (en) * 2017-12-19 2019-06-27 パナソニックIpマネジメント株式会社 Projection lens system and image projection device
WO2019124082A1 (en) * 2017-12-19 2019-06-27 パナソニックIpマネジメント株式会社 Projection lens system and image projection device
WO2019124083A1 (en) * 2017-12-19 2019-06-27 パナソニックIpマネジメント株式会社 Projection lens system and image projection device
WO2020250672A1 (en) * 2019-06-14 2020-12-17 株式会社ニコン Variable power optical system, optical device, and variable power optical system manufacturing method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018194619A (en) * 2017-05-15 2018-12-06 リコーインダストリアルソリューションズ株式会社 Zoom lens for projection and image projection device
JP7093613B2 (en) 2017-05-15 2022-06-30 リコーインダストリアルソリューションズ株式会社 Zoom lens for projection and image projection device
JPWO2019124082A1 (en) * 2017-12-19 2021-01-28 パナソニックIpマネジメント株式会社 Projection lens system and image projection device
WO2019124083A1 (en) * 2017-12-19 2019-06-27 パナソニックIpマネジメント株式会社 Projection lens system and image projection device
CN111492294A (en) * 2017-12-19 2020-08-04 松下知识产权经营株式会社 Projection lens system and image projection apparatus
WO2019124082A1 (en) * 2017-12-19 2019-06-27 パナソニックIpマネジメント株式会社 Projection lens system and image projection device
JPWO2019124081A1 (en) * 2017-12-19 2021-03-11 パナソニックIpマネジメント株式会社 Projection lens system and image projection device
WO2019124081A1 (en) * 2017-12-19 2019-06-27 パナソニックIpマネジメント株式会社 Projection lens system and image projection device
CN114755812A (en) * 2017-12-19 2022-07-15 松下知识产权经营株式会社 Projection lens system and image projection apparatus
US11513325B2 (en) 2017-12-19 2022-11-29 Panasonic Intellectual Property Management Co., Ltd. Projection lens system and image projection device
US11520126B2 (en) 2017-12-19 2022-12-06 Panasonic Intellectual Property Management Co., Ltd. Projection lens system and image projection device
CN114755812B (en) * 2017-12-19 2024-04-05 松下知识产权经营株式会社 Projection lens system and image projection apparatus
WO2020250672A1 (en) * 2019-06-14 2020-12-17 株式会社ニコン Variable power optical system, optical device, and variable power optical system manufacturing method

Also Published As

Publication number Publication date
JP6579858B2 (en) 2019-09-25

Similar Documents

Publication Publication Date Title
EP2000839B1 (en) Zoom lens and image projection apparatus having the same
JP5545142B2 (en) Projection lens having a zoom function
JP4776936B2 (en) Zoom lens and imaging apparatus having the same
JP6153310B2 (en) Zoom lens and imaging apparatus having the same
JP4695912B2 (en) Zoom lens and imaging apparatus having the same
JP5836654B2 (en) Zoom lens and imaging apparatus having the same
JP4750458B2 (en) Zoom lens and imaging apparatus having the same
JP6579858B2 (en) Optical system and image projection apparatus having the same
JP4920983B2 (en) Zoom lens and image projection apparatus having the same
US6028715A (en) Variable magnification optical system
JP2005316186A (en) Image forming apparatus
JP6084016B2 (en) Zoom lens and image projection apparatus having the same
JP2015118235A (en) Zoom lens and image projection device including the same
JP2007178825A (en) Zoom lens and imaging device having the same
JP5777431B2 (en) Zoom lens and imaging apparatus having the same
JP7227572B2 (en) Variable magnification optical system and optical equipment
JP6164894B2 (en) Zoom lens and imaging apparatus having the same
JP5414771B2 (en) Zoom lens and imaging apparatus having the same
JP6355414B2 (en) Optical system and image projection apparatus having the same
JP5059207B2 (en) Zoom lens and imaging apparatus having the same
JP6296724B2 (en) Zoom lens and image projection apparatus having the same
JP2014026210A (en) Optical system, and optical device having the same
JP2014071405A (en) Zoom lens and image projection device having the same
JP2017219644A (en) Zoom lens and imaging device including the same
JPH10268195A (en) Variable power optical system capable of short-range focusing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190827

R151 Written notification of patent or utility model registration

Ref document number: 6579858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03