JP2015118235A - Zoom lens and image projection device including the same - Google Patents

Zoom lens and image projection device including the same Download PDF

Info

Publication number
JP2015118235A
JP2015118235A JP2013261301A JP2013261301A JP2015118235A JP 2015118235 A JP2015118235 A JP 2015118235A JP 2013261301 A JP2013261301 A JP 2013261301A JP 2013261301 A JP2013261301 A JP 2013261301A JP 2015118235 A JP2015118235 A JP 2015118235A
Authority
JP
Japan
Prior art keywords
lens
lens group
refractive power
zoom
zoom lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013261301A
Other languages
Japanese (ja)
Inventor
高橋 真
Makoto Takahashi
真 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013261301A priority Critical patent/JP2015118235A/en
Publication of JP2015118235A publication Critical patent/JP2015118235A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)
  • Projection Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a zoom lens that has a wide angle of view, a high zoom ratio, and little fluctuations in optical performance even when temperature varies, and that easily gives a projected image of high picture qualities..SOLUTION: The following factors are each suitably set in the zoom lens. The factors are: a focal distance fp of an aspherical lens; a focal distance ft of the whole system at a telephoto end; a refractive power φ of all lenses constituting a lens group LB; a change amount dφ of the refractive power per unit temperature change in all lenses constituting the lens group LB; and a change amount of a refractive index dn/dt per unit temperature change of the material of each lens in all lenses constituting the lens group LB.

Description

本発明はズームレンズに関し、例えば画像をスクリーンに拡大投射する画像投射装置(プロジェクター)に用いられる投射レンズとして好適なものである。   The present invention relates to a zoom lens, and is suitable as a projection lens used in an image projection apparatus (projector) that enlarges and projects an image on a screen, for example.

従来、液晶などの画像表示素子を用いて、その画像表示素子に基づく画像を投射光学系でスクリーン面に拡大投影する画像投影装置(プロジェクター)が種々提案されている。プロジェクターには種々な倍率で投影でき、しかも近距離において大画面で投映でき、しかも携帯性の良い広画角で高ズーム比の小型のズームレンズが要望されている。また投射光学系と画像表示素子との間にプリズム部材やフィルター等からなる色分割光学系や色合成光学系を配置するため、バックフォーカスが長いことが要望されている。   Conventionally, various image projection apparatuses (projectors) that use an image display element such as a liquid crystal and enlarge and project an image based on the image display element onto a screen surface by a projection optical system have been proposed. There is a demand for a compact zoom lens capable of projecting at various magnifications, projecting on a large screen at a short distance, and having a wide angle of view and high zoom ratio with good portability. Further, since a color splitting optical system or a color synthesizing optical system composed of a prism member, a filter, or the like is disposed between the projection optical system and the image display element, a long back focus is desired.

また多くの場合、プロジェクターは照明用の光源からの熱により、周囲の温度が上昇する。このため、プロジェクターに用いられる投射光学系は温度の上昇とともに光学性能、たとえばピント位置が変化してくる。このため、環境変化があっても光学性能の変化が少ないことが要望されている。これらの要望を満足するズームレンズとして、最も拡大共役側に負の屈折力のレンズ群を配置し、最も縮小共役側に正の屈折力のレンズ群を位置したレトロフォーカス型のズームレンズが知られている(特許文献1,2)。   In many cases, the ambient temperature of the projector rises due to heat from the light source for illumination. For this reason, the optical performance of the projection optical system used in the projector changes, for example, the focus position, as the temperature rises. For this reason, there is a demand for a small change in optical performance even when the environment changes. As a zoom lens that satisfies these demands, there is known a retrofocus zoom lens in which a lens unit having a negative refractive power is arranged on the most magnification conjugate side and a lens group having a positive refractive power is located on the most reduction conjugate side. (Patent Documents 1 and 2).

特許文献1では最も拡大共役側のレンズ群と最も縮小共役側のレンズ群にプラスチック材よりなる非球面レンズを用い、温度変化による光学性能(ピント位置)の変化を軽減した広画角,高ズーム比のレトロフォーカス型のズームレンズを開示している。特許文献2では最も有効径が小さくなるレンズを非球面レンズとした広画角で高い光学性能を有したレトロフォーカス型のズームレンズを開示している。   In Patent Document 1, an aspherical lens made of a plastic material is used for the lens group closest to the enlargement conjugate side and the lens group closest to the reduction conjugate side, and the wide angle of view and high zoom are reduced by reducing changes in optical performance (focus position) due to temperature changes. A ratio retrofocus zoom lens is disclosed. Patent Document 2 discloses a retrofocus zoom lens having a wide field angle and high optical performance in which an aspherical lens is a lens having the smallest effective diameter.

この他、温度変化による光学性能の変動を軽減したプロジェクターが知られている(特許文献3)。特許文献3ではレンズの材料の線膨脹係数、屈折率、レンズ鏡筒の熱膨張等の各要素を適切に設定し、温度変化によるフォーカス位置(ピント位置)の変動を軽減したプロジェクターを開示している。   In addition, there is known a projector that reduces fluctuations in optical performance due to temperature changes (Patent Document 3). Patent Document 3 discloses a projector in which various factors such as a linear expansion coefficient, a refractive index of a lens material, and a thermal expansion of a lens barrel are appropriately set to reduce a variation in focus position (focus position) due to a temperature change. Yes.

特開2011−100081号公報JP 2011-100081 A 特開2008−83229号公報JP 2008-83229 A 特開2004−264570号公報JP 2004-264570 A

プロジェクターに用いられるズームレンズは、投射画像が高画質であり、温度変化による光学性能の変化が少ないこと等が強く要望されている。高画質の投射画像を得るには、樹脂材料(プラスチック材)よりなる非球面レンズを用いるのが効果的である。しかしながら樹脂材料は一般のガラス材料に比べると温度に伴う屈折率変化が大きい。このため樹脂材料よりなるレンズを用いると、温度変化に伴って光学性能、特にピント位置の変動(温度ピント変動)がおおきくなってくる。   A zoom lens used in a projector is strongly demanded to have a high-quality projected image and a small change in optical performance due to a temperature change. In order to obtain a high-quality projected image, it is effective to use an aspheric lens made of a resin material (plastic material). However, the resin material has a large refractive index change with temperature compared to a general glass material. For this reason, when a lens made of a resin material is used, the optical performance, particularly the focus position fluctuation (temperature focus fluctuation) increases as the temperature changes.

このため樹脂材料よりなる非球面レンズを用いるときは温度変化に伴う光学性能の変化が少なくなるように各レンズ群を構成することが重要になってくる。例えば樹脂材料より成る非球面レンズをズームレンズを構成するどのレンズ群に用いるのか、また温度変化によるピント位置の変動をどのようにして軽減するかが重要になってくる。更に樹脂材料よりなる非球面レンズの屈折力(パワー)をどの程度に設定するのか等を適切に設定することが重要になってくる。   For this reason, when using an aspherical lens made of a resin material, it is important to configure each lens group so that a change in optical performance accompanying a change in temperature is reduced. For example, it is important for which lens group that constitutes a zoom lens an aspheric lens made of a resin material, and how to reduce the fluctuation of the focus position due to a temperature change. Furthermore, it is important to appropriately set the level of the refractive power (power) of an aspheric lens made of a resin material.

例えば特許文献1では最も拡大共役側に樹脂材料よりなる非球面レンズを配置している。この非球面レンズは屈折力(パワー)が弱いため、温度変化によるピント位置の変化は少ないが、非球面による収差補正が必ずしも十分でない。   For example, in Patent Document 1, an aspheric lens made of a resin material is disposed on the most conjugated side. Since this aspherical lens has a weak refractive power (power), there is little change in the focus position due to a temperature change, but aberration correction by the aspherical surface is not always sufficient.

本発明は、広画角、高ズームでしかも温度変化があっても光学性能の変動が少ない高画質の投射画像が容易に得られるズームレンズ及びそれを有する画像投射装置の提供を目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a zoom lens that can easily obtain a high-quality projected image with a wide angle of view, a high zoom, and a small change in optical performance even when there is a temperature change, and an image projection apparatus having the zoom lens.

本発明のズームレンズは、最も拡大共役側に負の屈折力の第1レンズ群、最も縮小共役側に正の屈折力の最終レンズ群、光路中に開口絞りを有し、ズーミングに際して隣り合うレンズ群の間隔が変化するズームレンズにおいて、
前記第1レンズ群は、プラスチック材からなる非球面レンズを有し、ズーミングに際して移動するレンズ群のうち前記開口絞りよりも縮小共役側であって、
前記開口絞りに最も近いレンズ群LBは広角側から望遠側へのズーミングに際して縮小共役側から拡大共役側へ移動し、
前記非球面レンズの焦点距離をfp、望遠端における全系の焦点距離をft、前記レンズ群LBを構成する全てのレンズは屈折力をφ、前記レンズ群LBを構成する全てのレンズは単位温度変化あたりの屈折力の変化量をdφ、前記レンズ群LBを構成する全てのレンズは、材料の単位温度変化あたりの屈折率の変化量をdn/dtとし、
dφ=dn/dt*φ
とおくとき、
0.3<|ft/fp|<0.6
−0.4<dφ<0
なる条件式を満足することを特徴としている。
The zoom lens according to the present invention includes a first lens group having a negative refractive power on the most conjugate side, a final lens group having a positive refractive power on the most reducing conjugate side, an aperture stop in the optical path, and an adjacent lens for zooming. In zoom lenses where the distance between groups changes,
The first lens group has an aspheric lens made of a plastic material, and is on the reduction conjugate side of the aperture stop in the lens group that moves during zooming.
The lens unit LB closest to the aperture stop moves from the reduction conjugate side to the enlargement conjugate side during zooming from the wide-angle side to the telephoto side,
The focal length of the aspheric lens is fp, the focal length of the entire system at the telephoto end is ft, all the lenses constituting the lens group LB are refracting power, and all the lenses constituting the lens group LB are unit temperature. The change in refractive power per change is dφ, and the change in refractive index per unit temperature change of the material is dn / dt for all lenses constituting the lens group LB.
dφ = dn / dt * φ
When you leave
0.3 <| ft / fp | <0.6
−0.4 <dφ <0
It satisfies the following conditional expression.

本発明によれば、広画角、高ズームでしかも温度変化があっても光学性能の変動が少ない高画質の投射画像が容易に得られるズームレンズが得られる。   According to the present invention, it is possible to obtain a zoom lens that can easily obtain a high-quality projection image with a wide angle of view, a high zoom, and a small change in optical performance even when there is a temperature change.

(A),(B) 本発明の実施例1の広角端と望遠端におけるレンズ断面図(A), (B) Lens cross-sectional views at the wide-angle end and the telephoto end of Embodiment 1 of the present invention (A),(B) 本発明の実施例1の広角端と望遠端における収差図(A), (B) Aberration diagrams at the wide-angle end and the telephoto end of Example 1 of the present invention. (A),(B) 本発明の実施例2の広角端と望遠端におけるレンズ断面図(A), (B) Lens cross-sectional view at the wide-angle end and the telephoto end of the second embodiment of the present invention (A),(B) 本発明の実施例2の広角端と望遠端における収差図(A), (B) Aberration diagrams at the wide-angle end and the telephoto end of Example 2 of the present invention. (A),(B) 本発明の実施例3の広角端と望遠端におけるレンズ断面図(A), (B) Lens cross-sectional views at the wide-angle end and the telephoto end of Embodiment 3 of the present invention (A),(B) 本発明の実施例3の広角端と望遠端における収差図(A), (B) Aberration diagrams at the wide-angle end and the telephoto end of Example 3 of the present invention. 本発明のズームレンズを用いた画像投射装置の要部断面図Sectional drawing of the principal part of the image projection apparatus using the zoom lens of this invention

以下に、本発明のズームレンズの各実施例について説明する。本発明のズームレンズは最も拡大共役側に負の屈折力の第1レンズ群、最も縮小共役側に正の屈折力の最終レンズ群、光路中に開口絞りを有し、ズーミングに際して隣り合うレンズ群の間隔が変化する。   Examples of the zoom lens according to the present invention will be described below. The zoom lens of the present invention has a first lens group having a negative refractive power on the most conjugate side, a final lens group having a positive refractive power on the most conjugate side, and an aperture stop in the optical path, and adjacent lens groups for zooming. The interval of changes.

図1(A)、(B)は本発明のズームレンズの実施例1の広角端(短焦点距離端)と望遠端(長焦点距離端)におけるレンズ断面図である。図2(A)、(B)は本発明のズームレンズの実施例1の投射距離2100mmのときの広角端と望遠端における縦収差図である。ここで投射距離とは被投射画像からの距離である。図3(A)、(B)は本発明のズームレンズの実施例2の広角端と望遠端におけるレンズ断面図である。図4(A)、(B)は本発明のズームレンズの実施例2の投射距離2100mmのときの広角端と望遠端における縦収差図である。   FIGS. 1A and 1B are lens cross-sectional views at the wide-angle end (short focal length end) and the telephoto end (long focal length end) of Embodiment 1 of the zoom lens according to the present invention. 2A and 2B are longitudinal aberration diagrams at the wide-angle end and the telephoto end when the projection distance is 2100 mm in Embodiment 1 of the zoom lens according to the present invention. Here, the projection distance is a distance from the projected image. 3A and 3B are lens cross-sectional views at the wide-angle end and the telephoto end of the second embodiment of the zoom lens according to the present invention. FIGS. 4A and 4B are longitudinal aberration diagrams at the wide-angle end and the telephoto end when the projection distance is 2100 mm in Embodiment 2 of the zoom lens according to the present invention.

図5(A)、(B)は本発明のズームレンズの実施例3の広角端と望遠端におけるレンズ断面図である。図6(A)、(B)は本発明のズームレンズの実施例3の投射距離2100mmのときの広角端と望遠端における縦収差図である。図7は本発明のズームレンズを有する画像投射装置の要部概略図である。   5A and 5B are lens cross-sectional views at the wide-angle end and the telephoto end of Embodiment 3 of the zoom lens according to the present invention. 6A and 6B are longitudinal aberration diagrams at the wide-angle end and the telephoto end when the projection distance is 2100 mm in Embodiment 3 of the zoom lens according to the present invention. FIG. 7 is a schematic view of a main part of an image projection apparatus having a zoom lens according to the present invention.

各実施例のズームレンズは、画像投射装置(プロジェクター)に用いられる画像表示素子によって形成された原画を投射する投射レンズ(投射光学系)である。レンズ断面図において、左方が拡大共役側(スクリーン)(前方)で、右方が縮小共役側(画像表示素子側)(後方)である。LAはズームレンズである。   The zoom lens of each embodiment is a projection lens (projection optical system) that projects an original image formed by an image display element used in an image projection apparatus (projector). In the lens cross-sectional view, the left is the enlargement conjugate side (screen) (front), and the right is the reduction conjugate side (image display element side) (rear). LA is a zoom lens.

LFは前群、LRは後群である。Biは第iレンズ群である。STは開口絞りである。IEは液晶パネル(画像表示素子)等の原画像(被投射画像)に相当している。Sはスクリーン面である。GBは色分解、色合成用のプリズム、光学フィルター、フェースプレート(平行平板ガラス)、水晶ローパスフィルター、赤外カットフィルター等に相当する光学ブロックである。   LF is the front group and LR is the rear group. Bi is the i-th lens group. ST is an aperture stop. IE corresponds to an original image (projected image) of a liquid crystal panel (image display element) or the like. S is the screen surface. GB is an optical block corresponding to a prism for color separation and color synthesis, an optical filter, a face plate (parallel plate glass), a crystal low-pass filter, an infrared cut filter, and the like.

矢印は広角端から望遠端へのズーミングの際のレンズ群の移動方向(移動軌跡)を示している。広角端と望遠端は変倍用のレンズ群が機構上光軸上を移動可能な範囲の両端に位置したときのズーム位置をいう。収差図において、FnoはFナンバー、ωは半画角(度)である。球面収差図においてはd線における近軸像面を基準とし、波長550nmについて示している。非点収差図においてd線における近軸像面を基準とし、点線はメリディオナル像面、実線はサジタル像面を示す。歪曲収差図はd線における近軸像面を基準とし、波長550nmについて示している。   The arrows indicate the movement direction (movement locus) of the lens group during zooming from the wide-angle end to the telephoto end. The wide-angle end and the telephoto end are zoom positions when the zooming lens units are positioned at both ends of a range in which the zoom lens group can move on the optical axis. In the aberration diagrams, Fno is the F number, and ω is the half angle of view (degrees). In the spherical aberration diagram, the paraxial image surface at the d-line is used as a reference and the wavelength is 550 nm. In the astigmatism diagram, the paraxial image plane at the d-line is used as a reference, the dotted line indicates the meridional image plane, and the solid line indicates the sagittal image plane. The distortion diagram shows the wavelength of 550 nm with reference to the paraxial image plane at the d-line.

各実施例のズームレンズは、開口絞りSTを境に拡大共役側に前群LF、縮小共役側に後群LRを有している。前群LFは拡大共役側から縮小共役側へ順に、フォーカシングに際して移動する負の屈折力の第1レンズ群B1、正の屈折力の第2レンズ群B2、正の屈折力の第3レンズ群B3を有している。   The zoom lens of each embodiment has a front group LF on the enlargement conjugate side and a rear group LR on the reduction conjugate side with the aperture stop ST as a boundary. The front lens group LF sequentially moves from the magnification conjugate side to the reduction conjugate side during the focusing operation, the first lens unit B1 having a negative refractive power, the second lens unit B2 having a positive refractive power, and the third lens unit B3 having a positive refractive power. have.

後群LRは拡大共役側から縮小共役側へ順に、負の屈折力の第4レンズ群B4、正の屈折力の第5レンズ群B5、正の屈折力の第6レンズ群(最終レンズ群)B6から構成されている。そして、第1レンズ群B1、第6レンズ群B6はズーミングに際して不動である。広角端から望遠端へのズーミングに際して第2レンズ群B2乃至第5レンズ群B5が拡大共役側へ移動する。   In the rear group LR, in order from the magnification conjugate side to the reduction conjugate side, a fourth lens unit B4 having a negative refractive power, a fifth lens unit B5 having a positive refractive power, and a sixth lens unit having a positive refractive power (final lens group). It consists of B6. The first lens unit B1 and the sixth lens unit B6 do not move during zooming. During zooming from the wide-angle end to the telephoto end, the second lens unit B2 to the fifth lens unit B5 move to the magnification conjugate side.

第1レンズ群B1と第6レンズ群B6は変倍に寄与しないレンズ群であり、第2レンズ群B2乃至第5レンズ群B5が変倍レンズ群である。第4レンズ群B4はズーミングに際して移動するレンズ群のうち開口絞りSTよりも縮小共役側であって、開口絞りSTに最も近いレンズ群LBである。   The first lens group B1 and the sixth lens group B6 are lens groups that do not contribute to zooming, and the second lens group B2 to the fifth lens group B5 are zooming lens groups. The fourth lens unit B4 is a lens unit LB that is closer to the reduction conjugate than the aperture stop ST and is closest to the aperture stop ST among the lens units that move during zooming.

各実施例はライトバルブを有した画像投射装置(特に液晶表示素子を搭載した3板色のプロジェクター)に用いられるズームレンズである。各実施例のズームレンズをライトバルブの変わりに撮像素子を用いた撮像装置用の撮像光学系として利用しても良い。   Each embodiment is a zoom lens used in an image projection apparatus having a light valve (particularly, a three-plate projector equipped with a liquid crystal display element). The zoom lens of each embodiment may be used as an image pickup optical system for an image pickup apparatus using an image pickup element instead of a light valve.

各実施例のズームレンズは拡大共役側から縮小共役側へ順に、負、正、正、負、正、正の屈折力の第1レンズ群B1乃至第6レンズ群B6の6つのレンズ群より構成している。ズーミングに際して第2レンズ群B2乃至第5レンズ群B5が移動する。第3レンズ群B3と第4レンズ群B4の間にズーミングに際して移動する開口絞りSTを有する。   The zoom lens according to each exemplary embodiment includes six lens groups of negative, positive, positive, negative, positive, and positive refractive powers of the first lens unit B1 to the sixth lens unit B6 in order from the magnification conjugate side to the reduction conjugate side. doing. During zooming, the second lens unit B2 to the fifth lens unit B5 move. An aperture stop ST that moves during zooming is provided between the third lens unit B3 and the fourth lens unit B4.

各実施例では開口絞りSTより拡大共役側の第1レンズ群B1に屈折力の大きなプラスチック材よりなる非球面レンズを配置している。開口絞りSTより縮小共役側で最も開口絞りSTに近いレンズ群LBを広角側から望遠側へのズーミングに際して縮小共役側から拡大共役側へ移動させている。そしてレンズ群LBを構成するすべてのレンズの温度変化によるピント位置の移動方向が非球面レンズと逆方向になるように構成している。これにより、レンズ全体の温度変化に対するピント位置の変化を小さく抑えつつ、光学性能を良好に維持している。   In each embodiment, an aspherical lens made of a plastic material having a large refractive power is arranged in the first lens unit B1 on the magnification conjugate side with respect to the aperture stop ST. The lens unit LB closest to the aperture stop ST on the reduction conjugate side with respect to the aperture stop ST is moved from the reduction conjugate side to the enlargement conjugate side during zooming from the wide angle side to the telephoto side. Then, the moving direction of the focus position due to the temperature change of all the lenses constituting the lens unit LB is configured to be opposite to that of the aspherical lens. Thereby, the optical performance is favorably maintained while suppressing a change in the focus position with respect to a temperature change of the entire lens.

各実施例において、第1レンズ群B1は、プラスチック材からなる非球面レンズを有する。ズーミングに際して移動するレンズ群のうち開口絞りSTよりも縮小共役側であって、開口絞りSPに最も近いレンズ群LBは広角側から望遠側へのズーミングに際して縮小共役側から拡大共役側へ移動する。   In each embodiment, the first lens unit B1 has an aspheric lens made of a plastic material. Among the lens units that move during zooming, the lens unit LB that is closer to the reduction conjugate side than the aperture stop ST and is closest to the aperture stop SP moves from the reduction conjugate side to the enlargement conjugate side during zooming from the wide-angle side to the telephoto side.

非球面レンズの焦点距離をfpとする。望遠端における全系の焦点距離をftとする。レンズ群LBを構成する全てのレンズは屈折力をφ、レンズ群LBを構成する全てのレンズは単位温度変化あたりの屈折力の変化量をdφ、レンズ群LBを構成する全てのレンズは、材料の単位温度変化あたりの屈折率の変化量をdn/dtとする。そして
dφ=dn/dt*φ
とおくとき、
0.3<|ft/fp|<0.6 ・・・(1)
−0.4<dφ<0 ・・・(2)
なる条件式を満足する。次に各条件式の技術的意味について説明する。
Let fp be the focal length of the aspheric lens. Let ft be the focal length of the entire system at the telephoto end. All lenses constituting the lens group LB have a refractive power of φ, all lenses constituting the lens group LB have a refractive power change per unit temperature change of dφ, and all lenses constituting the lens group LB are made of materials. Let dn / dt be the amount of change in refractive index per unit temperature change. And dφ = dn / dt * φ
When you leave
0.3 <| ft / fp | <0.6 (1)
−0.4 <dφ <0 (2)
The following conditional expression is satisfied. Next, the technical meaning of each conditional expression will be described.

条件式(1)の下限値を超えて非球面レンズの焦点距離の絶対値が大きくなると(負の屈折力の絶対値が小さくなると)、非球面による収差補正が不足してくる。また上限値を超えて非球面レンズの焦点距離の絶対値が小さくなると(負の屈折力の絶対値が大きくなると)非球面による収差補正が過剰となってくるので良くない。   If the absolute value of the focal length of the aspheric lens increases beyond the lower limit value of the conditional expression (1) (the absolute value of the negative refractive power decreases), aberration correction by the aspheric surface becomes insufficient. Further, if the absolute value of the focal length of the aspheric lens becomes smaller than the upper limit value (when the absolute value of the negative refractive power becomes larger), aberration correction by the aspheric surface becomes excessive, which is not good.

各実施例では条件式(1)を満足する非球面レンズを用いることにより、全ズーム範囲にわたり良好なる光学性能を得ている。非球面レンズは材料が樹脂よりなるため、温度変化による屈折力(パワー)の変化が大きく、光学性能の変動が大きくなる。そこでズーミングに際して移動するレンズ群のうち、開口絞りSPよりも縮小共役側であって開口絞りSPに最も近いレンズ群LBのレンズ構成を適切に設定し、温度変化による光学性能の変動を軽減している。例えば温度変化によるピント位置の変動を軽減している。   In each embodiment, by using an aspheric lens satisfying conditional expression (1), good optical performance is obtained over the entire zoom range. Since the material of the aspherical lens is made of resin, the change in refractive power (power) due to temperature change is large, and the variation in optical performance is large. Accordingly, among the lens groups that move during zooming, the lens configuration of the lens group LB that is closer to the reduction conjugate side than the aperture stop SP and is closest to the aperture stop SP is appropriately set to reduce fluctuations in optical performance due to temperature changes. Yes. For example, fluctuations in focus position due to temperature changes are reduced.

具体的には、単位温度上昇あたりの材料の屈折率変化量をdn/dt、レンズのパワーをφとする。このとき、単位温度上昇あたりのレンズのパワーの変化量dφは以下のように表す事ができる。   Specifically, the amount of change in the refractive index of the material per unit temperature rise is dn / dt, and the lens power is φ. At this time, the amount of change dφ of the lens power per unit temperature rise can be expressed as follows.

dφ=dn/dt*φ
各実施例における非球面レンズの屈折力は負である。そして非球面レンズは樹脂材料からなり、樹脂材料の屈折率変化量dn/dtは
dn/dt<0
である。このため、非球面レンズのパワーの変化量dφは、
0<dφ
となる。
dφ = dn / dt * φ
The refractive power of the aspheric lens in each embodiment is negative. The aspheric lens is made of a resin material, and the refractive index variation dn / dt of the resin material is dn / dt <0
It is. Therefore, the amount of change dφ in the power of the aspheric lens is
0 <dφ
It becomes.

これに対して、開口絞りSPより縮小共役側で開口絞りSTに最も近いレンズ群LBを構成するレンズが条件式(2)を満足するようにしている。これによって温度変化による全系のピント位置の変化を小さく抑えている。   On the other hand, the lenses constituting the lens unit LB closest to the aperture stop ST on the reduction conjugate side from the aperture stop SP satisfy the conditional expression (2). As a result, changes in the focus position of the entire system due to temperature changes are kept small.

条件式(2)はレンズ群LBを構成するすべてのレンズの温度変化によるピント補正方向が非球面レンズと逆方向になるように構成する事を意味している。条件式(2)は非球面レンズで生じる温度変化によるピント変化を効果的に補正するためのものである。条件式(2)を満たすことによって、ズームレンズ全体の温度変化に対するピント位置の変化を小さく抑えている。   Conditional expression (2) means that the configuration is such that the focus correction direction due to the temperature change of all the lenses constituting the lens unit LB is opposite to that of the aspherical lens. Conditional expression (2) is for effectively correcting a focus change due to a temperature change generated in the aspherical lens. By satisfying conditional expression (2), the change of the focus position with respect to the temperature change of the entire zoom lens is suppressed to be small.

条件式(2)の上限値、又は下限値を超えると温度変化によるピント位置の変化を効果的に補正するのが困難になる。更に好ましくは条件式(1),(2)の数値範囲を次の如く設定するのが良い。   If the upper limit value or lower limit value of conditional expression (2) is exceeded, it will be difficult to effectively correct the change in focus position due to the temperature change. More preferably, the numerical ranges of conditional expressions (1) and (2) are set as follows.

0.3<|ft/fp|<0.5 ・・・(1a)
−0.3<dφ<0 ・・・(2a)
また、温度変化に対するピント位置の変化のピント敏感度は広角端に比べて望遠端の方が大きくなるため、望遠端における温度変化に対するピント位置の変化が大きくなる。
0.3 <| ft / fp | <0.5 (1a)
−0.3 <dφ <0 (2a)
Further, since the focus sensitivity of the change in the focus position with respect to the temperature change is greater at the telephoto end than at the wide-angle end, the change in the focus position with respect to the temperature change at the telephoto end is large.

通常、温度変化に対するピント位置の変化はパワーの変化量dφおよび軸上マージナル光線の光軸からの高さに比例する。   Usually, the change in the focus position with respect to the temperature change is proportional to the power change amount dφ and the height of the on-axis marginal ray from the optical axis.

本発明ではレンズ群LBを広角側から望遠側へのズーミングに際して縮小共役側から拡大共役側へ移動させている。これにより望遠端における軸上マージナル光線の光軸からの高さhが広角端より高くなるようにして、望遠端において温度変化によるピント変化の補正効果を持たせている。この構成をとることにより、全ズーム域においてもズームレンズ全体の温度変化に対するピント位置の変化を小さく抑えている。   In the present invention, the lens unit LB is moved from the reduction conjugate side to the enlargement conjugate side during zooming from the wide-angle side to the telephoto side. As a result, the height h of the on-axis marginal ray from the optical axis at the telephoto end is higher than that at the wide-angle end, so that the telephoto end has the effect of correcting the focus change due to the temperature change. By adopting this configuration, the change in the focus position with respect to the temperature change of the entire zoom lens is kept small even in the entire zoom range.

各実施例において更に好ましくは次の条件式のうち1以上を満足するのが良い。レンズ群LBは少なくとも1つの正レンズを有し、正レンズの材料の屈折率とアッベ数を各々nd、νdとする。広角端における全系の焦点距離をfwとする。開口絞りSTからレンズ群LBの縮小共役側のレンズ面までの広角端における距離をL4w、レンズ全長をLとする。   In each embodiment, it is more preferable to satisfy one or more of the following conditional expressions. The lens unit LB has at least one positive lens, and the refractive index and Abbe number of the positive lens material are nd and νd, respectively. Let fw be the focal length of the entire system at the wide-angle end. The distance at the wide-angle end from the aperture stop ST to the lens surface on the reduction conjugate side of the lens unit LB is L4w, and the total lens length is L.

ここでレンズ全長Lとは第1レンズ面から最終レンズ面までの距離に空気換算でのバックフォーカスを加えた値である。バックフォーカスは最終レンズ面から像面までの空気換算による距離である。このとき次の条件式のうち1以上を満足するのが良い。   Here, the total lens length L is a value obtained by adding back focus in terms of air to the distance from the first lens surface to the final lens surface. The back focus is a distance in terms of air from the final lens surface to the image plane. At this time, one or more of the following conditional expressions should be satisfied.

50<νp<100 ・・・(3)
1.40<np<1.75 ・・・(4)
ft/fw<2.5 ・・・(5)
0.10<L4w/L<0.35 ・・・(6)
50 <νp <100 (3)
1.40 <np <1.75 (4)
ft / fw <2.5 (5)
0.10 <L4w / L <0.35 (6)

条件式(3)、(4)を満たすことはパワーの変化量dφがdφ<0でありながら高い屈折率である材料を用いる事を意味している。それによりレンズ群LBが有する少なくとも1つの正レンズのパワーを大きく設定する事ができ、諸収差の補正を効果的に行う事ができる。更に正レンズの材料の温度変化に対する膨張率が相対的に小さいため接合レンズなどに加工しやすくなる。また正レンズを通常の低分散・低屈折率の材料(異常分散材)で構成することが容易となり、材料の選択性が良くなる。   Satisfying the conditional expressions (3) and (4) means using a material having a high refractive index while the power variation dφ is dφ <0. Thereby, the power of at least one positive lens included in the lens unit LB can be set large, and various aberrations can be effectively corrected. Furthermore, since the expansion coefficient with respect to the temperature change of the material of the positive lens is relatively small, it becomes easy to process into a cemented lens or the like. Further, it becomes easy to construct the positive lens with a normal low dispersion / low refractive index material (abnormal dispersion material), and the selectivity of the material is improved.

条件式(5)はズーム倍率(ズーム比)の範囲を規定する。温度変化に対するピント位置の移動(変動)の敏感度は広角端から望遠端におけて大きくなる。ズーム比が大きくなると、温度変化によるピント位置の移動が大きくなる。条件式(5)の上限値を超えてズーム比が大きくなるとズーミングに伴う温度変化に対するピント位置の変動が大きくなるので良くない。   Conditional expression (5) defines the range of zoom magnification (zoom ratio). The sensitivity of movement (fluctuation) of the focus position with respect to temperature changes increases from the wide-angle end to the telephoto end. As the zoom ratio increases, the movement of the focus position due to temperature changes increases. If the zoom ratio increases beyond the upper limit value of conditional expression (5), the variation of the focus position with respect to the temperature change caused by zooming increases, which is not good.

条件式(6)はレンズ群LBの開口絞りSTからの距離を規定する。条件式(6)を外れて開口絞りSTから縮小共役側への所定の距離の範囲内にレンズ群LBが位置しないと、温度変化による非球面レンズによるピント位置の変動をレンズ群LBで効果的に補正するのが困難になる。更に好ましくは条件式(3)乃至(6)の数値範囲を次の如く設定するのが良い。   Conditional expression (6) defines the distance of the lens unit LB from the aperture stop ST. If the lens group LB is not positioned within a predetermined distance from the aperture stop ST to the reduction conjugate side by deviating from the conditional expression (6), the lens group LB effectively changes the focus position by the aspherical lens due to the temperature change. It becomes difficult to correct. More preferably, the numerical ranges of conditional expressions (3) to (6) are set as follows.

60<νp<85 ・・・(3a)
1.45<np<1.75 ・・・(4a)
1.5<ft/fw<2.0 ・・・(5a)
0.15<L4w/L<0.30 ・・・(6a)
60 <νp <85 (3a)
1.45 <np <1.75 (4a)
1.5 <ft / fw <2.0 (5a)
0.15 <L4w / L <0.30 (6a)

各実施例において第1レンズ群B1は拡大共役側から縮小共役側へ順に、物体側が凸面のメニスカス形状の負レンズ、同じく物体側が凸面のメニスカス形状の負レンズ、両凹形状の負レンズ、両凸形状の正レンズより構成している。第2レンズ群B2は物体側に凸面を向けた正レンズより構成している。第3レンズ群B3は物体側に凸面を向けた正レンズより構成している。   In each embodiment, in order from the magnification conjugate side to the reduction conjugate side, the first lens unit B1 is a meniscus negative lens having a convex surface on the object side, a meniscus negative lens having a convex surface on the object side, a biconcave negative lens, and a biconvex lens. It consists of a positive lens with a shape. The second lens unit B2 is composed of a positive lens having a convex surface facing the object side. The third lens unit B3 is composed of a positive lens having a convex surface facing the object side.

第4レンズ群B4は拡大共役側から縮小共役側へ順に、両凹形状の負レンズと両凸形状の正レンズとを接合した接合レンズ、拡大共役側が凹形状の負レンズ、両凸形状の正レンズより構成している。第5レンズ群B5は両凹形状の負レンズと両凸形状の正レンズとを接合した接合レンズより構成している。第6レンズ群B6は拡大共役側に凸面を向けた正レンズより構成している。各レンズ群のレンズ構成を以上の如く構成することにより、ズーミングに際しての諸収差の変動が少なく、全ズーム範囲にわたり良好な光学性能が得られるズームレンズを得ている。   The fourth lens unit B4 includes, in order from the magnification conjugate side to the reduction conjugate side, a cemented lens in which a biconcave negative lens and a biconvex positive lens are cemented, a magnification negative lens having a concave conjugate side, and a biconvex positive It consists of a lens. The fifth lens unit B5 includes a cemented lens in which a biconcave negative lens and a biconvex positive lens are cemented. The sixth lens unit B6 is composed of a positive lens having a convex surface facing the magnification conjugate side. By configuring the lens configuration of each lens group as described above, there is obtained a zoom lens in which various aberrations during zooming are small and good optical performance can be obtained over the entire zoom range.

図7の画像投射装置について説明する。図7において41は光源である。42は画像表示素子に対してむらの少ない照明を実現し、出射される光の偏光方向をP偏光またはS偏光の任意の方向にそろえる機能を有する照明光学系である。43は照明光学系42からの光を画像表示素子に対応した任意の色に分解する色分離光学系である。   The image projection apparatus in FIG. 7 will be described. In FIG. 7, reference numeral 41 denotes a light source. Reference numeral 42 denotes an illumination optical system that realizes illumination with less unevenness on the image display element and has a function of aligning the polarization direction of emitted light to an arbitrary direction of P-polarized light or S-polarized light. A color separation optical system 43 separates light from the illumination optical system 42 into an arbitrary color corresponding to the image display element.

47,48,49は入射した偏光を電気信号に応じて変調する反射型の液晶よりなる画像表示素子である。44,45は画像表示素子47,48,49で変調に応じて、光を透過または反射させる偏光ビームスプリッタである。46は各画像表示素子47,48,49からの光を1つに合成する色合成光学系である。50は色合成光学系46で合成された光をスクリーン51などの被投射物に投射する投射光学系である。投影光学系50に本発明のズームレンズを用いている。これにより、ズーム時における諸収差の変化が良好に補正され、画面全体にわたり光学性能が良好な画像投射装置を得ている。   Reference numerals 47, 48, and 49 denote image display elements made of reflective liquid crystal that modulates incident polarized light according to an electric signal. Reference numerals 44 and 45 denote polarization beam splitters that transmit or reflect light according to modulation by the image display elements 47, 48, and 49. A color combining optical system 46 combines the light from the image display elements 47, 48, and 49 into one. Reference numeral 50 denotes a projection optical system that projects light synthesized by the color synthesis optical system 46 onto a projection object such as a screen 51. The zoom lens of the present invention is used for the projection optical system 50. Thereby, changes in various aberrations during zooming are corrected favorably, and an image projection apparatus having good optical performance over the entire screen is obtained.

以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。   As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to these embodiment, A various deformation | transformation and change are possible within the range of the summary.

次に各実施例のズームレンズの数値実施例を示す。数値実施例1(表A)のレンズ構成中の面番号は、拡大共役側から縮小共役側に順に各レンズ面に付した番号である。rは各レンズ面の曲率半径、dはレンズ面iとレンズ面(i+1)との間の光軸上での間隔(物理的間隔)を示す。   Next, numerical examples of the zoom lens of each embodiment will be shown. Surface numbers in the lens configuration of Numerical Example 1 (Table A) are numbers assigned to the respective lens surfaces in order from the magnification conjugate side to the reduction conjugate side. r represents the radius of curvature of each lens surface, and d represents the distance (physical distance) on the optical axis between the lens surface i and the lens surface (i + 1).

表中に可変と記載されている間隔は、ズーミングに伴って変化する。また、nd,νdはそれぞれ、各レンズを構成する材料のd線に対する屈折率とアッベ数を示している。また表1に数値実施例のズームレンズの焦点距離、開口比(Fナンバー)、半画角、レンズ全長、空気換算バックフォーカス(BF)、ズーム比、ズーミング時の各レンズ群の間隔を示す。(表B)に、非球面形状を示すための非球面係数A〜Gを示している。yはレンズ面の径方向での座標を、xは光軸方向での座標を示す。また、E−Xは10−Xを示す。 The interval described as variable in the table changes with zooming. Further, nd and νd indicate the refractive index and the Abbe number for the d-line of the material constituting each lens, respectively. Table 1 shows the focal length, the aperture ratio (F number), the half angle of view, the total lens length, the air equivalent back focus (BF), the zoom ratio, and the distance between the lens groups during zooming. (Table B) shows aspheric coefficients A to G for indicating the aspheric shape. y represents the coordinate in the radial direction of the lens surface, and x represents the coordinate in the optical axis direction. Furthermore, E-X indicates a 10 -X.

このとき、非球面形状は次のとおりである。
x=(y/R)/[1+{1−(1+K)(y/R)}1/2]+Ay+By+Cy+Dy10+Ey12+Fy14+Gy16
また前述の各実施例と数値との関係を(表1)に示す。
At this time, the aspherical shape is as follows.
x = (y 2 / R) / [1+ {1− (1 + K) (y 2 / R 2 )} 1/2 ] + Ay 4 + By 6 + Cy 8 + Dy 10 + Ey 12 + Fy 14 + Gy 16
Table 1 shows the relationship between the above-described embodiments and numerical values.

数値実施例1

(A) レンズ構成

広角 望遠
f(焦点距離) 21.78 39.20
F(開口比) 2.8 2.8
半画角(度) 31.0 18.5
レンズ全長 167.9
BF 58.2
ズーム比 1.80

r1 = 56.19 d1 = 4.00 n1 = 1.805 ν1 = 25.4
r2 = 25.59 d2 = 8.20
r3 = 80.00 d3 = 3.03 n2 = 1.531 ν2 = 55.9
r4 = 32.22 d4 = 12.23
r5 = -31.78 d5 = 3.00 n3 = 1.487 ν3 = 70.2
r6 = 180.84 d6 = 5.01
r7 = 226.61 d7 = 6.91 n4 = 1.806 ν4 = 33.3
r8 = -50.67 d8 = 可変
r9 = 59.63 d9 = 3.46 n5 = 1.487 ν5 = 70.2
r10 = 185.24 d10 = 可変
r11 = 52.61 d11 = 4.08 n6 = 1.834 ν6 = 37.2
r12 = 326.80 d12 = 可変
r13 = ∞ d13 = 可変
r14 = -266.18 d14 = 1.30 n7 = 1.751 ν7 = 31.7
r15 = 18.63 d15 = 8.76 n8 = 1.487 ν8 = 70.4
r16 = -28.72 d16 = 1.33
r17 = -19.55 d17 = 1.30 n9 = 1.805 ν9 = 25.4
r18 = -573.79 d18 = 0.50
r19 = 130.84 d19 = 8.59 n10 = 1.497 ν10 = 81.5
r20 = -23.31 d20 = 可変
r21 = -63.20 d21 = 1.85 n11 = 1.686 ν11 = 32.0
r22 = 76.16 d22 = 7.67 n12 = 1.755 ν12 = 27.6
r23 = -53.54 d23 = 可変
r24 = 75.14 d24 = 4.45 n13 = 1.805 ν13 = 25.4
r25 = -488.19 d25 = 2.3
r26 = ∞ d26 = 30.0 n14 = 1.516 ν14 = 64.1
r27 = ∞ d27 = 1.9
r28 = ∞ d28 = 17.7 n15 = 1.805 ν15 = 25.4
r29 = ∞ d29 = 5.0
r30 = ∞ d30 = 2.3 n16 = 1.516 ν16 = 64.1
r31= ∞

変倍時 (2100mm)
群間隔 広角 望遠
d8 40.48 8.92
d10 15.57 4.13
d12 6.28 32.38
d13 19.39 1.50
d20 1.57 7.51
d23 1.00 29.85
Numerical example 1

(A) Lens configuration

Wide angle telephoto
f (focal length) 21.78 39.20
F (aperture ratio) 2.8 2.8
Half angle of view (degrees) 31.0 18.5
Total lens length 167.9
BF 58.2
Zoom ratio 1.80

r1 = 56.19 d1 = 4.00 n1 = 1.805 ν1 = 25.4
r2 = 25.59 d2 = 8.20
r3 = 80.00 d3 = 3.03 n2 = 1.531 ν2 = 55.9
r4 = 32.22 d4 = 12.23
r5 = -31.78 d5 = 3.00 n3 = 1.487 ν3 = 70.2
r6 = 180.84 d6 = 5.01
r7 = 226.61 d7 = 6.91 n4 = 1.806 ν4 = 33.3
r8 = -50.67 d8 = variable
r9 = 59.63 d9 = 3.46 n5 = 1.487 ν5 = 70.2
r10 = 185.24 d10 = variable
r11 = 52.61 d11 = 4.08 n6 = 1.834 ν6 = 37.2
r12 = 326.80 d12 = variable
r13 = ∞ d13 = variable
r14 = -266.18 d14 = 1.30 n7 = 1.751 ν7 = 31.7
r15 = 18.63 d15 = 8.76 n8 = 1.487 ν8 = 70.4
r16 = -28.72 d16 = 1.33
r17 = -19.55 d17 = 1.30 n9 = 1.805 ν9 = 25.4
r18 = -573.79 d18 = 0.50
r19 = 130.84 d19 = 8.59 n10 = 1.497 ν10 = 81.5
r20 = -23.31 d20 = variable
r21 = -63.20 d21 = 1.85 n11 = 1.686 ν11 = 32.0
r22 = 76.16 d22 = 7.67 n12 = 1.755 ν12 = 27.6
r23 = -53.54 d23 = variable
r24 = 75.14 d24 = 4.45 n13 = 1.805 ν13 = 25.4
r25 = -488.19 d25 = 2.3
r26 = ∞ d26 = 30.0 n14 = 1.516 ν14 = 64.1
r27 = ∞ d27 = 1.9
r28 = ∞ d28 = 17.7 n15 = 1.805 ν15 = 25.4
r29 = ∞ d29 = 5.0
r30 = ∞ d30 = 2.3 n16 = 1.516 ν16 = 64.1
r31 = ∞

When zoomed (2100mm)
Group spacing Wide angle Telephoto
d8 40.48 8.92
d10 15.57 4.13
d12 6.28 32.38
d13 19.39 1.50
d20 1.57 7.51
d23 1.00 29.85

(B) 非球面係数

r3 K=0 A=1.73E-05 B=-3.17E-08 C=2.98E-11 D=1.09E-13
E=-1.13E-16 F=-3.59E-19 G=6.86E-22
r4 K=0 A=1.22E-05 B=-3.39E-08 C=-1.53E-11 D=1.03E-13
E=1.31E-15 F=-5.79E-18 G=7.26E-21
(B) Aspheric coefficient

r3 K = 0 A = 1.73E-05 B = -3.17E-08 C = 2.98E-11 D = 1.09E-13
E = -1.13E-16 F = -3.59E-19 G = 6.86E-22
r4 K = 0 A = 1.22E-05 B = -3.39E-08 C = -1.53E-11 D = 1.03E-13
E = 1.31E-15 F = -5.79E-18 G = 7.26E-21

数値実施例2

(A) レンズ構成

広角 望遠
f(焦点距離) 21.74 39.15
F(開口比) 2.8 2.8
半画角(度) 31.0 18.5
レンズ全長 167.0
BF 58.2
ズーム比 1.80

r1 = 39.55 d1 = 2.30 n1 = 1.805 ν1 = 25.4
r2 = 25.13 d2 = 8.31
r3 = 56.20 d3 = 3.50 n2 = 1.531 ν2 = 55.9
r4 = 23.99 d4 = 12.12
r5 = -33.58 d5 = 3.48 n3 = 1.487 ν3 = 70.2
r6 = 71.34 d6 = 1.31
r7 = 113.53 d7 = 5.87 n4 = 1.806 ν4 = 33.3
r8 = -56.79 d8 = 可変
r9 = 40.90 d9 = 2.35 n5 = 1.487 ν5 = 70.2
r10 = 46.16 d10 = 可変
r11 = 50.23 d11 = 4.20 n6 = 1.834 ν6 = 37.2
r12 =-1346.65 d12 = 可変
r13 = 1E+18 d13 = 可変
r14 = -114.53 d14 = 1.30 n7 = 1.751 ν7 = 31.7
r15 = 19.47 d15 = 8.40 n8 = 1.487 ν8 = 70.4
r16 = -29.86 d16 = 1.21
r17 = -20.34 d17 = 1.30 n9 = 1.805 ν9 = 25.4
r18 = -714.24 d18 = 0.52
r19 = 126.09 d19 = 7.60 n10 = 1.497 ν10 = 81.5
r20 = -24.32 d20 = 可変
r21 = -99.97 d21 = 1.85 n11 = 1.686 ν11 = 32.0


r22 = 37.87 d22 = 9.25 n12 = 1.755 ν12 = 27.6
r23 = -64.70 d23 = 可変
r24 = 55.37 d24 = 3.70 n13 = 1.805 ν13 = 25.4
r25 = 169.88 d25 = 2.3
r26 = ∞ d26 = 30.0 n14 = 1.516 ν14 = 64.1
r27 = ∞ d27 = 1.9
r28 = ∞ d28 = 17.7 n15 = 1.805 ν15 = 25.4
r29 = ∞ d29 = 5.0
r30 = ∞ d30 = 2.3 n16 = 1.516 ν16 = 64.1
r31= ∞

変倍時 (2100mm)
群間隔 広角 望遠
d8 48.23 13.23
d10 12.82 4.82
d12 4.98 29.95
d13 19.91 3.58
d20 1.50 11.18
d23 1.00 25.68
Numerical example 2

(A) Lens configuration

Wide angle telephoto
f (focal length) 21.74 39.15
F (aperture ratio) 2.8 2.8
Half angle of view (degrees) 31.0 18.5
Total lens length 167.0
BF 58.2
Zoom ratio 1.80

r1 = 39.55 d1 = 2.30 n1 = 1.805 ν1 = 25.4
r2 = 25.13 d2 = 8.31
r3 = 56.20 d3 = 3.50 n2 = 1.531 ν2 = 55.9
r4 = 23.99 d4 = 12.12
r5 = -33.58 d5 = 3.48 n3 = 1.487 ν3 = 70.2
r6 = 71.34 d6 = 1.31
r7 = 113.53 d7 = 5.87 n4 = 1.806 ν4 = 33.3
r8 = -56.79 d8 = variable
r9 = 40.90 d9 = 2.35 n5 = 1.487 ν5 = 70.2
r10 = 46.16 d10 = variable
r11 = 50.23 d11 = 4.20 n6 = 1.834 ν6 = 37.2
r12 = -1346.65 d12 = variable
r13 = 1E + 18 d13 = variable
r14 = -114.53 d14 = 1.30 n7 = 1.751 ν7 = 31.7
r15 = 19.47 d15 = 8.40 n8 = 1.487 ν8 = 70.4
r16 = -29.86 d16 = 1.21
r17 = -20.34 d17 = 1.30 n9 = 1.805 ν9 = 25.4
r18 = -714.24 d18 = 0.52
r19 = 126.09 d19 = 7.60 n10 = 1.497 ν10 = 81.5
r20 = -24.32 d20 = variable
r21 = -99.97 d21 = 1.85 n11 = 1.686 ν11 = 32.0


r22 = 37.87 d22 = 9.25 n12 = 1.755 ν12 = 27.6
r23 = -64.70 d23 = variable
r24 = 55.37 d24 = 3.70 n13 = 1.805 ν13 = 25.4
r25 = 169.88 d25 = 2.3
r26 = ∞ d26 = 30.0 n14 = 1.516 ν14 = 64.1
r27 = ∞ d27 = 1.9
r28 = ∞ d28 = 17.7 n15 = 1.805 ν15 = 25.4
r29 = ∞ d29 = 5.0
r30 = ∞ d30 = 2.3 n16 = 1.516 ν16 = 64.1
r31 = ∞

When zoomed (2100mm)
Group spacing Wide angle Telephoto
d8 48.23 13.23
d10 12.82 4.82
d12 4.98 29.95
d13 19.91 3.58
d20 1.50 11.18
d23 1.00 25.68

(B) 非球面係数


r3 K=0 A=8.26E-06 B=-9.80E-09 C=3.73E-11 D=-3.35E-13 E=8.06E-16
F=1.28E-18 G=-4.06E-21
r4 K=0 A=-1.35E-07 B=-2.91E-08 C=1.77E-10 D=-1.52E-12 E=2.17E-15
F=1.58E-17 G=-4.07E-20

(B) Aspheric coefficient


r3 K = 0 A = 8.26E-06 B = -9.80E-09 C = 3.73E-11 D = -3.35E-13 E = 8.06E-16
F = 1.28E-18 G = -4.06E-21
r4 K = 0 A = -1.35E-07 B = -2.91E-08 C = 1.77E-10 D = -1.52E-12 E = 2.17E-15
F = 1.58E-17 G = -4.07E-20

数値実施例3

(A) レンズ構成

広角 望遠
f(焦点距離) 21.78 39.20
F(開口比) 2.8 2.8
半画角(度) 31.0 18.5
レンズ全長 164.2
BF 58.2
ズーム比 1.80

r1 = 35.62 d1 = 2.50 n1 = 1.805 ν1 = 25.4
r2 = 25.53 d2 = 7.59
r3 = 79.08 d3 = 3.00 n2 = 1.531 ν2 = 55.9
r4 = 32.11 d4 = 16.30
r5 = -30.46 d5 = 2.00 n3 = 1.487 ν3 = 70.2
r6 = 67.66 d6 = 4.98
r7 = 264.92 d7 = 4.55 n4 = 1.806 ν4 = 33.3
r8 = -56.77 d8 = 可変
r9 = 47.30 d9 = 2.35 n5 = 1.487 ν5 = 70.2
r10 = 55.12 d10 = 可変
r11 = 50.39 d11 = 4.20 n6 = 1.834 ν6 = 37.2
r12 =-5389.26 d12 = 可変
r13 = 1E+18 d13 = 可変
r14 = -302.07 d14 = 1.30 n7 = 1.751 ν7 = 31.7
r15 = 17.15 d15 = 8.75 n8 = 1.487 ν8 = 70.4
r16 = -29.14 d16 = 1.28
r17 = -19.44 d17 = 1.30 n9 = 1.805 ν9 = 25.4
r18 = 503.38 d18 = 0.50
r19 = 96.84 d19 = 8.16 n10 = 1.497 ν10 = 81.5
r20 = -22.71 d20 = 可変
r21 = -95.95 d21 = 1.85 n11 = 1.686 ν11 = 32.0
r22 = 30.03 d22 = 9.25 n12 = 1.755 ν12 = 27.6
r23 = -67.24 d23 = 可変
r24 = 62.41 d24 = 3.70 n13 = 1.805 ν13 = 25.4
r25 = 281.63 d25 = 2.3
r26 = ∞ d26 = 30.0 n14 = 1.516 ν14 = 64.1
r27 = ∞ d27 = 1.9
r28 = ∞ d28 = 17.7 n15 = 1.805 ν15 = 25.4
r29 = ∞ d29 = 5.0
r30 = ∞ d30 = 2.3 n16 = 1.516 ν16 = 64.1
r31= ∞

変倍時 (2100mm)
群間隔 広角 望遠
d8 37.70 7.61
d10 17.12 4.21
d12 6.40 32.65
d13 18.47 0.66
d20 0.50 6.08
d23 0.50 29.47
Numerical Example 3

(A) Lens configuration

Wide angle telephoto
f (focal length) 21.78 39.20
F (aperture ratio) 2.8 2.8
Half angle of view (degrees) 31.0 18.5
Total lens length 164.2
BF 58.2
Zoom ratio 1.80

r1 = 35.62 d1 = 2.50 n1 = 1.805 ν1 = 25.4
r2 = 25.53 d2 = 7.59
r3 = 79.08 d3 = 3.00 n2 = 1.531 ν2 = 55.9
r4 = 32.11 d4 = 16.30
r5 = -30.46 d5 = 2.00 n3 = 1.487 ν3 = 70.2
r6 = 67.66 d6 = 4.98
r7 = 264.92 d7 = 4.55 n4 = 1.806 ν4 = 33.3
r8 = -56.77 d8 = variable
r9 = 47.30 d9 = 2.35 n5 = 1.487 ν5 = 70.2
r10 = 55.12 d10 = variable
r11 = 50.39 d11 = 4.20 n6 = 1.834 ν6 = 37.2
r12 = -5389.26 d12 = variable
r13 = 1E + 18 d13 = variable
r14 = -302.07 d14 = 1.30 n7 = 1.751 ν7 = 31.7
r15 = 17.15 d15 = 8.75 n8 = 1.487 ν8 = 70.4
r16 = -29.14 d16 = 1.28
r17 = -19.44 d17 = 1.30 n9 = 1.805 ν9 = 25.4
r18 = 503.38 d18 = 0.50
r19 = 96.84 d19 = 8.16 n10 = 1.497 ν10 = 81.5
r20 = -22.71 d20 = variable
r21 = -95.95 d21 = 1.85 n11 = 1.686 ν11 = 32.0
r22 = 30.03 d22 = 9.25 n12 = 1.755 ν12 = 27.6
r23 = -67.24 d23 = variable
r24 = 62.41 d24 = 3.70 n13 = 1.805 ν13 = 25.4
r25 = 281.63 d25 = 2.3
r26 = ∞ d26 = 30.0 n14 = 1.516 ν14 = 64.1
r27 = ∞ d27 = 1.9
r28 = ∞ d28 = 17.7 n15 = 1.805 ν15 = 25.4
r29 = ∞ d29 = 5.0
r30 = ∞ d30 = 2.3 n16 = 1.516 ν16 = 64.1
r31 = ∞

When zoomed (2100mm)
Group spacing Wide angle Telephoto
d8 37.70 7.61
d10 17.12 4.21
d12 6.40 32.65
d13 18.47 0.66
d20 0.50 6.08
d23 0.50 29.47

(B) 非球面係数

r3 K=0 A=1.90E-05 B=-4.62E-08 C=1.08E-10 D=-5.51E-14
E=-2.15E-16 F=6.97E-19 G=-6.25E-22
r4 K=0 A=1.44E-05 B=-5.39E-08 C=1.01E-10 D=4.20E-14
E=-7.87E-16 F=3.12E-18 G=-4.30E-21
(B) Aspheric coefficient

r3 K = 0 A = 1.90E-05 B = -4.62E-08 C = 1.08E-10 D = -5.51E-14
E = -2.15E-16 F = 6.97E-19 G = -6.25E-22
r4 K = 0 A = 1.44E-05 B = -5.39E-08 C = 1.01E-10 D = 4.20E-14
E = -7.87E-16 F = 3.12E-18 G = -4.30E-21

B1 第1レンズ群 B2 第2レンズ群 B3 第3レンズ群
B4 第4レンズ群 B5 第5レンズ群 B6 第6レンズ群
B1 1st lens group B2 2nd lens group B3 3rd lens group B4 4th lens group B5 5th lens group B6 6th lens group

Claims (6)

最も拡大共役側に負の屈折力の第1レンズ群、最も縮小共役側に正の屈折力の最終レンズ群、光路中に開口絞りを有し、ズーミングに際して隣り合うレンズ群の間隔が変化するズームレンズにおいて、
前記第1レンズ群は、プラスチック材からなる非球面レンズを有し、ズーミングに際して移動するレンズ群のうち前記開口絞りよりも縮小共役側であって、
前記開口絞りに最も近いレンズ群LBは広角側から望遠側へのズーミングに際して縮小共役側から拡大共役側へ移動し、
前記非球面レンズの焦点距離をfp、望遠端における全系の焦点距離をft、前記レンズ群LBを構成する全てのレンズは屈折力をφ、前記レンズ群LBを構成する全てのレンズは単位温度変化あたりの屈折力の変化量をdφ、前記レンズ群LBを構成する全てのレンズは、材料の単位温度変化あたりの屈折率の変化量をdn/dtとし、
dφ=dn/dt*φ
とおくとき、
0.3<|ft/fp|<0.6
−0.4<dφ<0
なる条件式を満足することを特徴とするズームレンズ。
A zoom lens that has a first lens unit having a negative refractive power on the most conjugated side, a final lens unit having a positive refracting power on the most conjugated side, and an aperture stop in the optical path. In the lens,
The first lens group has an aspheric lens made of a plastic material, and is on the reduction conjugate side of the aperture stop in the lens group that moves during zooming.
The lens unit LB closest to the aperture stop moves from the reduction conjugate side to the enlargement conjugate side during zooming from the wide-angle side to the telephoto side,
The focal length of the aspheric lens is fp, the focal length of the entire system at the telephoto end is ft, all the lenses constituting the lens group LB are refracting power, and all the lenses constituting the lens group LB are unit temperature. The change in refractive power per change is dφ, and the change in refractive index per unit temperature change of the material is dn / dt for all lenses constituting the lens group LB.
dφ = dn / dt * φ
When you leave
0.3 <| ft / fp | <0.6
−0.4 <dφ <0
A zoom lens satisfying the following conditional expression:
前記レンズ群LBは少なくとも1つの正レンズを有し、該正レンズの材料の屈折率とアッベ数を各々nd、νdとするとき、
50<νp<100
1.40<np<1.75
なる条件式を満足することを特徴とする請求項1のズームレンズ。
The lens group LB has at least one positive lens, and when the refractive index and Abbe number of the material of the positive lens are nd and νd, respectively,
50 <νp <100
1.40 <np <1.75
The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
前記ズームレンズは、拡大共役側から縮小共役側へ順に、
負の屈折力の第1レンズ群、正の屈折力の第2レンズ群、正の屈折力の第3レンズ群、負の屈折力の第4レンズ群、正の屈折力の第5レンズ群、正の屈折力の第6レンズ群より構成され、ズーミングに際して前記第2レンズ群、前記第3レンズ群、前記第4レンズ群、前記第5レンズ群が移動することを特徴とする請求項1又は2のズームレンズ。
The zoom lens, in order from the magnification conjugate side to the reduction conjugate side,
A first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a positive refractive power, a fourth lens group having a negative refractive power, a fifth lens group having a positive refractive power, 2. The sixth lens group having a positive refractive power, wherein the second lens group, the third lens group, the fourth lens group, and the fifth lens group move during zooming. 2 zoom lens.
広角端における全系の焦点距離をfwとするとき、
ft/fw<2.5
なる条件式を満足することを特徴とする請求項1乃至3のいずれか1項のズームレンズ。
When the focal length of the entire system at the wide angle end is fw
ft / fw <2.5
The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
前記開口絞りから前記レンズ群LBの縮小共役側のレンズ面までの広角端における距離をL4w、レンズ全長をLとするとき、
0.10<L4w/L<0.35
なる条件式を満足することを特徴とする請求項1乃至4のいずれか1項のズームレンズ。
When the distance at the wide-angle end from the aperture stop to the lens surface on the reduction conjugate side of the lens unit LB is L4w, and the total lens length is L,
0.10 <L4w / L <0.35
The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
請求項1乃至5のいずれか1項のズームレンズと、原画を形成する画像表示素子とを有し、前記画像表示素子によって形成された原画を前記ズームレンズによって投射することを特徴とする画像投射装置。   6. An image projection comprising: the zoom lens according to claim 1; and an image display element that forms an original image, and the original image formed by the image display element is projected by the zoom lens. apparatus.
JP2013261301A 2013-12-18 2013-12-18 Zoom lens and image projection device including the same Pending JP2015118235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013261301A JP2015118235A (en) 2013-12-18 2013-12-18 Zoom lens and image projection device including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013261301A JP2015118235A (en) 2013-12-18 2013-12-18 Zoom lens and image projection device including the same

Publications (1)

Publication Number Publication Date
JP2015118235A true JP2015118235A (en) 2015-06-25

Family

ID=53531000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013261301A Pending JP2015118235A (en) 2013-12-18 2013-12-18 Zoom lens and image projection device including the same

Country Status (1)

Country Link
JP (1) JP2015118235A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107045184A (en) * 2016-02-08 2017-08-15 富士胶片株式会社 Imaging lens system and camera device
CN108037632A (en) * 2017-12-27 2018-05-15 青岛海信电器股份有限公司 A kind of laser illuminator system, optical projection system and its adjusting method for being used to project
WO2019131052A1 (en) * 2017-12-26 2019-07-04 パナソニックIpマネジメント株式会社 Projection lens system and image projection device
CN110927941A (en) * 2018-09-19 2020-03-27 精工爱普生株式会社 Projection optical system and projection type image display device
CN111492293A (en) * 2017-12-19 2020-08-04 松下知识产权经营株式会社 Projection lens system and image projection apparatus
CN116647654A (en) * 2022-04-08 2023-08-25 宜宾市极米光电有限公司 Method, system, device and readable storage medium for compensating thermal defocus of projector

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107045184A (en) * 2016-02-08 2017-08-15 富士胶片株式会社 Imaging lens system and camera device
CN107045184B (en) * 2016-02-08 2020-10-27 富士胶片株式会社 Imaging lens and imaging device
CN111492293A (en) * 2017-12-19 2020-08-04 松下知识产权经营株式会社 Projection lens system and image projection apparatus
WO2019131052A1 (en) * 2017-12-26 2019-07-04 パナソニックIpマネジメント株式会社 Projection lens system and image projection device
CN108037632A (en) * 2017-12-27 2018-05-15 青岛海信电器股份有限公司 A kind of laser illuminator system, optical projection system and its adjusting method for being used to project
CN110927941A (en) * 2018-09-19 2020-03-27 精工爱普生株式会社 Projection optical system and projection type image display device
CN110927941B (en) * 2018-09-19 2021-09-24 精工爱普生株式会社 Projection optical system and projection type image display device
CN116647654A (en) * 2022-04-08 2023-08-25 宜宾市极米光电有限公司 Method, system, device and readable storage medium for compensating thermal defocus of projector
CN116647654B (en) * 2022-04-08 2024-02-23 宜宾市极米光电有限公司 Method, system, device and readable storage medium for compensating thermal defocus of projector

Similar Documents

Publication Publication Date Title
EP2000839B1 (en) Zoom lens and image projection apparatus having the same
JP6566646B2 (en) Zoom lens and imaging apparatus having the same
JP5197242B2 (en) Zoom lens and imaging apparatus having the same
US7688519B2 (en) Zoom lens and image pickup apparatus including the same
JP5043471B2 (en) Zoom lens and optical apparatus having the same
US6785055B2 (en) Zoom lens system
JP4994812B2 (en) Imaging device
JP4630568B2 (en) Optical system and optical apparatus having the same
JP2007163964A (en) Optical system and optical device having the same
JP2015118235A (en) Zoom lens and image projection device including the same
JP2001350092A (en) Image pickup lens device
JP4971632B2 (en) Zoom lens and imaging apparatus having the same
JP6084016B2 (en) Zoom lens and image projection apparatus having the same
JP2007072291A (en) Zoom lens and imaging apparatus having the same
US20210124156A1 (en) Optical system, projection lens, image projection apparatus and image capturing lens
JP6579858B2 (en) Optical system and image projection apparatus having the same
JP2021105746A (en) Optical system and optical apparatus
JP2008015433A (en) Zoom lens and optical apparatus having the same
JP6808441B2 (en) Zoom lens and imaging device with it
JPH11119091A (en) Variable power optical system
JP6164894B2 (en) Zoom lens and imaging apparatus having the same
JP2008139754A (en) Imaging apparatus
JP2006309042A (en) Zoom lens
JP6355414B2 (en) Optical system and image projection apparatus having the same
JP6296724B2 (en) Zoom lens and image projection apparatus having the same