JP2017036986A - Control method for road surface detection apparatus, and road surface detection apparatus - Google Patents

Control method for road surface detection apparatus, and road surface detection apparatus Download PDF

Info

Publication number
JP2017036986A
JP2017036986A JP2015158052A JP2015158052A JP2017036986A JP 2017036986 A JP2017036986 A JP 2017036986A JP 2015158052 A JP2015158052 A JP 2015158052A JP 2015158052 A JP2015158052 A JP 2015158052A JP 2017036986 A JP2017036986 A JP 2017036986A
Authority
JP
Japan
Prior art keywords
polarization signal
road surface
intensity
boundary line
determination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015158052A
Other languages
Japanese (ja)
Other versions
JP6477350B2 (en
Inventor
光範 中村
Mitsunori Nakamura
光範 中村
慎一 西岡
Shinichi Nishioka
慎一 西岡
佐藤 宏
Hiroshi Sato
宏 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2015158052A priority Critical patent/JP6477350B2/en
Publication of JP2017036986A publication Critical patent/JP2017036986A/en
Application granted granted Critical
Publication of JP6477350B2 publication Critical patent/JP6477350B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Radiation Pyrometers (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control method for a road surface detection apparatus, the method enabling an appropriate determination of a road surface.SOLUTION: A control method is used for a road surface detection apparatus that includes an antenna device 110 that has an array antenna 113 in which a first antenna element 111 and a second antenna element 112 are arranged in two dimensions, where the first antenna element is for outputting a first polarization signal by receiving a reception wave in a first polarization direction incoming from an object and the second antenna element is for outputting a second polarization signal by receiving a reception wave in a second polarization direction having a polarization direction different from the first antenna element 111, and that generates an image on the basis of the first and second polarization signals obtained from the antenna device 110 and determines a road surface on the basis of the image. Further, the method includes: detecting a border line candidate of a road surface from the image; calculating a change rate of a ratio between an intensity of the first polarization signal and that of the second polarization signal along a border line candidate in the case of the border line candidate crossing; and determining that the border line candidate is a border line of the road surface in the case of the change rate of the ratio falling in a first determination range.SELECTED DRAWING: Figure 1

Description

本発明は、道路の路面を検出する路面検出装置の制御方法および路面検出装置に関する。   The present invention relates to a method for controlling a road surface detection device that detects a road surface of a road and a road surface detection device.

従来、路面から放射された水平偏波成分および垂直偏波成分の受信波に基づいて、路面の放射温度を計測し、路面の放射率を算出することで、路面の状態を判定する技術が知られている(たとえば特許文献1)。   Conventionally, a technique for determining a road surface condition by measuring a road surface radiation temperature based on horizontal and vertical polarization components received from a road surface and calculating a road surface emissivity is known. (For example, Patent Document 1).

特開2004−177188号公報JP 2004-177188 A

しかしながら、従来技術のように、対象物から到来した水平偏波成分および垂直偏波成分の受信波に基づいて、対象物の放射温度を計測することで、路面であるか否かを判定する場合に、同一路面であっても、日陰の部分と日なたの部分とでは路面の放射温度が異なるため、一方の部分を路面、もう一方の部分を路面ではないと誤判定してしまう場合があった。   However, when determining whether or not the road surface by measuring the radiation temperature of the object based on the received waves of the horizontally polarized wave component and the vertically polarized wave component arriving from the object as in the prior art Even if it is the same road surface, the radiation temperature of the road surface is different between the shaded part and the sunlit part, so it may be erroneously determined that one part is not the road surface and the other part is the road surface. there were.

本発明が解決しようとする課題は、路面を適切に判定できる路面検出装置の制御方法を提供することである。   The problem to be solved by the present invention is to provide a control method for a road surface detection device that can appropriately determine the road surface.

本発明は、対象物から到来する第1偏波方向の受信波を受信して第1偏波信号を出力する第1アンテナ素子と、第2偏波方向の受信波を受信して第2偏波信号を出力する第2アンテナ素子とを二次元状に配列したアレイアンテナを有するアンテナ装置と、アンテナ装置から取得した第1偏波信号および前記第2偏波信号に基づいて、画像を生成し、当該画像に基づいて、路面を判定する路面検出装置の制御方法であって、画像から路面の境界線候補を検出し、境界線候補が交差する場合に、境界線候補に沿って第1偏波信号の強度と第2偏波信号の強度との比を算出することで、境界線候補に沿った位置における比の変化率を算出し、比の変化率が第1判定範囲内にある場合に、境界線候補を、路面の境界線と判定することで、上記課題を解決する。   The present invention includes a first antenna element that receives a received wave in a first polarization direction coming from an object and outputs a first polarization signal, and a received wave in a second polarization direction and receives a second polarized wave. An image is generated based on an antenna device having an array antenna in which a second antenna element that outputs a wave signal is two-dimensionally arranged, and the first polarization signal and the second polarization signal acquired from the antenna device A control method for a road surface detection device for determining a road surface based on the image, wherein when a boundary candidate for a road surface is detected from the image and the boundary line candidates intersect, a first bias is detected along the boundary line candidate. When the ratio change rate at the position along the boundary line candidate is calculated by calculating the ratio between the intensity of the wave signal and the intensity of the second polarization signal, and the ratio change rate is within the first determination range In addition, the above problem can be solved by determining the boundary line candidate as a road boundary line. To.

本発明によれば、路面の日陰と日なたとの温度の違いにより、路面の日陰と日なたとの境界が、路面の境界線候補として検出された場合でも、境界線候補に沿った位置における第1偏波信号の強度と第2偏波信号の強度との比の変化率が第1判定範囲内にある場合には、境界線候補を、路面の境界線と判定することで、路面を適切に判定することができる。   According to the present invention, even when the boundary between the road shade and the sun is detected as a road boundary candidate due to the difference in temperature between the road shade and the sun, the position at the position along the boundary candidate is When the rate of change in the ratio between the intensity of the first polarization signal and the intensity of the second polarization signal is within the first determination range, the boundary line candidate is determined as the boundary line of the road surface, It can be judged appropriately.

本実施形態に係る路面検出装置の構成を示す構成図である。It is a block diagram which shows the structure of the road surface detection apparatus which concerns on this embodiment. 本実施形態に係るアンテナ装置が備えるアレイアンテナの一例を示す図である。It is a figure which shows an example of the array antenna with which the antenna apparatus which concerns on this embodiment is provided. 日陰と日なたとの境界線が、路面と交差する場面を示す図である。It is a figure which shows the scene where the boundary line of a shade and a sun crosses a road surface. (A)は、図3に示す場面における垂直偏波画像の一例を示す図であり、(B)は、図3に示す場面における水平偏波画像の一例を示す図である。(A) is a figure which shows an example of the vertical polarization image in the scene shown in FIG. 3, (B) is a figure which shows an example of the horizontal polarization image in the scene shown in FIG. 図4に示す第1判定線および第2判定線の垂直偏波信号の強度と水平偏波信号の強度との比の一例を示す図である。It is a figure which shows an example of ratio of the intensity | strength of the vertical polarization signal of a 1st determination line and the 2nd determination line shown in FIG. 4, and the intensity | strength of a horizontal polarization signal. 図4に示す第1判定線の水平偏波信号の強度と垂直偏波信号の強度との比の変化率の一例を示す図である。FIG. 5 is a diagram illustrating an example of a rate of change in the ratio between the intensity of the horizontally polarized signal and the intensity of the vertically polarized signal on the first determination line illustrated in FIG. 4. 図4に示す第2判定線の水平偏波信号の強度と垂直偏波信号の強度との比の変化率の一例を示す図である。It is a figure which shows an example of the change rate of ratio of the intensity | strength of the horizontal polarization signal of the 2nd determination line shown in FIG. 4, and the intensity | strength of a vertical polarization signal. 日陰と日なたとの境界線が、路面と平行する場面を示す図である。It is a figure which shows the scene where the boundary line of a shade and a sun is parallel to a road surface. (A)は、図8に示す場面における垂直偏波画像の一例を示す図であり、(B)は、図8に示す場面における水平偏波画像の一例を示す図である。(A) is a figure which shows an example of the vertical polarization image in the scene shown in FIG. 8, (B) is a figure which shows an example of the horizontal polarization image in the scene shown in FIG. 図9に示す場面における、路面境界線の判定方法を説明するための図である。It is a figure for demonstrating the determination method of a road surface boundary line in the scene shown in FIG. 図10に示す直交判定線における水平偏波信号の強度と垂直偏波信号の強度との比の変化率の一例を示す図である。It is a figure which shows an example of the change rate of ratio of the intensity | strength of the horizontal polarization signal in the orthogonal determination line shown in FIG. 10, and the intensity | strength of a vertical polarization signal. 本実施形態に係る路面判定処理を示すフローチャート(その1)である。It is a flowchart (the 1) which shows the road surface determination process which concerns on this embodiment. 本実施形態に係る路面判定処理を示すフローチャート(その2)である。It is a flowchart (the 2) which shows the road surface determination process which concerns on this embodiment.

以下、本発明の実施形態を図面に基づいて説明する。なお、本実施形態では、路面検出装置を車両に搭載する構成を例示して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present embodiment, a configuration in which the road surface detection device is mounted on a vehicle will be described as an example.

図1は、本実施形態に係る路面検出装置100の構成を示す図である。図1に示すように、本実施形態に係る路面検出装置100は、アンテナ装置110と、処理装置120とを有している。これら装置は、相互に情報の授受を行うためにCAN(Controller Area Network)その他の車載LANによって接続されている。   FIG. 1 is a diagram illustrating a configuration of a road surface detection device 100 according to the present embodiment. As illustrated in FIG. 1, the road surface detection device 100 according to the present embodiment includes an antenna device 110 and a processing device 120. These devices are connected by a CAN (Controller Area Network) or other in-vehicle LAN in order to exchange information with each other.

アンテナ装置110は、自車両の前方に存在する対象物(路面、路側を含む)から到来するミリ波を受信する。図2に示すように、アンテナ装置110は、ホーンアンテナなどの複数のアンテナ素子が二次元状に配列されたアレイアンテナ113を有している。これらアンテナ素子においてミリ波をそれぞれ受信することで、図4に示すように、対象物から放射される電波の偏波情報を含むイメージング画像を生成することが可能となる(詳細は後述する。)。なお、図2は、本実施形態に係るアンテナ装置110が有するアレイアンテナ113の一例を示す図である。また、アンテナ装置110は、ミリ波以上の周波数帯域の電波、電磁波を受信する構成としてもよい。   The antenna device 110 receives a millimeter wave coming from an object (including a road surface and a road side) existing in front of the host vehicle. As shown in FIG. 2, the antenna device 110 includes an array antenna 113 in which a plurality of antenna elements such as a horn antenna are arranged in a two-dimensional manner. By receiving millimeter waves at each of these antenna elements, as shown in FIG. 4, it is possible to generate an imaging image including polarization information of a radio wave radiated from an object (details will be described later). . FIG. 2 is a diagram illustrating an example of the array antenna 113 included in the antenna device 110 according to the present embodiment. The antenna device 110 may be configured to receive radio waves and electromagnetic waves in a frequency band of millimeter waves or more.

アレイアンテナ113は、図2に示すように、垂直偏波成分の受信波を主に受信する第1アンテナ素子111と、水平偏波成分の受信波を主に受信する第2アンテナ素子112とを有する。第1アンテナ素子111と第2アンテナ素子112とは交互に二次元状に配列される。   As shown in FIG. 2, the array antenna 113 includes a first antenna element 111 that mainly receives a reception wave having a vertical polarization component and a second antenna element 112 that mainly receives a reception wave having a horizontal polarization component. Have. The first antenna elements 111 and the second antenna elements 112 are alternately arranged two-dimensionally.

車両に搭載されたアンテナ装置110において、検出対象物を検出するために、アレイアンテナ113の視野角は、少なくとも縦方向に20°、横方向に40°以上あることが好ましい。また、検出対象物を歩行者とした場合には、約50m前方において20cm幅の歩行者を、縦方向の10画素程度で検出できることが好ましい。そのため、アレイアンテナ113に適した視野角の画像を得るためには、図2に示すように、縦方向に20画素、横方向に40画素の解像度があることが好ましい。また、受信する受信波が150GHz帯のミリ波である場合には、受信アンテナ素子の大きさは4mm程度の大きさが必要となる。そのため、アレイアンテナ113の大きさは、横方向が40画素×4mm=160mm、縦方向が20画素×4mm=80mmに設計することができる。   In the antenna device 110 mounted on the vehicle, in order to detect a detection target, the viewing angle of the array antenna 113 is preferably at least 20 ° in the vertical direction and 40 ° or more in the horizontal direction. Further, when the detection target is a pedestrian, it is preferable that a pedestrian having a width of 20 cm can be detected by about 10 pixels in the vertical direction about 50 m ahead. Therefore, in order to obtain an image with a viewing angle suitable for the array antenna 113, it is preferable that the resolution is 20 pixels in the vertical direction and 40 pixels in the horizontal direction, as shown in FIG. Further, when the received wave to be received is a millimeter wave in the 150 GHz band, the size of the receiving antenna element needs to be about 4 mm. Therefore, the size of the array antenna 113 can be designed so that the horizontal direction is 40 pixels × 4 mm = 160 mm and the vertical direction is 20 pixels × 4 mm = 80 mm.

このように、アレイアンテナ113の受信面の大きさを設定することで、歩行者などの検出対象物を適切に検出することが可能となる。なお、検出対象物は歩行者に限定されず、たとえば、車両や電柱などの立体物、道路の路面、および路側なども含まれる。たとえば、本実施形態に係るアンテナ装置110は、道路の路面に反射した受信波を受信することで、道路面が凹凸であるか、道路がカーブしているかなどの道路面形状を検出対象物として検出することができる。   In this way, by setting the size of the receiving surface of the array antenna 113, it becomes possible to appropriately detect a detection target such as a pedestrian. In addition, a detection target object is not limited to a pedestrian, For example, solid objects, such as a vehicle and a telephone pole, the road surface of a road, a roadside, etc. are also included. For example, the antenna device 110 according to the present embodiment receives a received wave reflected on the road surface of the road, and detects the road surface shape such as whether the road surface is uneven or the road is curved as a detection target. Can be detected.

アンテナ装置110は、各アンテナ素子111,112で受信した受信波をその受信強度に応じた強度の受信信号に変換して処理装置120に出力する。以下においては、垂直偏波成分の受信波を受信する第1アンテナ素子111が出力する受信信号を垂直偏波信号とし、水平偏波成分の受信波を受信する第2アンテナ素子112が出力する受信信号を水平偏波信号として説明する。   The antenna device 110 converts the received wave received by the antenna elements 111 and 112 into a received signal having a strength corresponding to the received strength, and outputs the received signal to the processing device 120. In the following description, the reception signal output from the first antenna element 111 that receives the reception wave of the vertical polarization component is a vertical polarization signal, and the reception is output from the second antenna element 112 that receives the reception wave of the horizontal polarization component. The signal will be described as a horizontally polarized signal.

処理装置120は、アンテナ装置110から出力された垂直偏波信号と、水平偏波信号とに基づいて、路面を検出するためのプログラムを格納したROM(Read Only Memory)と、このROMに格納されたプログラムを実行するCPU(Central Processing Unit)と、アクセス可能な記憶装置として機能するRAM(Random Access Memory)とから構成される。なお、動作回路としては、CPU(Central Processing Unit)に代えて又はこれとともに、MPU(Micro Processing Unit)、DSP(Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)などを用いることができる。   The processing device 120 includes a ROM (Read Only Memory) that stores a program for detecting a road surface based on the vertical polarization signal and the horizontal polarization signal output from the antenna device 110, and is stored in the ROM. CPU (Central Processing Unit) that executes the program and RAM (Random Access Memory) that functions as an accessible storage device. As an operation circuit, instead of or in addition to a CPU (Central Processing Unit), an MPU (Micro Processing Unit), a DSP (Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), etc. Can be used.

処理装置120は、ROMに格納されたプログラムをCPUにより実行することにより、垂直偏波信号および水平偏波信号に基づいて、イメージング画像を生成する画像生成機能と、イメージング画像から路面の境界線候補を検出する境界線候補検出機能と、境界線候補が路面の境界線か否かを判定するための判定線を設定する判定線設定機能と、判定線上における垂直偏波信号の強度と水平偏波信号の強度との比に基づいて、境界線候補が路面の境界線であるか否かを判定する路面判定機能と、を有する。以下において、処理装置120が備える各機能について説明する。   The processing device 120 executes a program stored in the ROM by the CPU, thereby generating an imaging image based on the vertical polarization signal and the horizontal polarization signal, and a road boundary candidate from the imaging image. Boundary line candidate detection function for detecting the boundary line, determination line setting function for setting a determination line for determining whether or not the boundary line candidate is a road boundary line, and the intensity and horizontal polarization of the vertical polarization signal on the determination line A road surface determination function for determining whether or not the boundary line candidate is a road surface boundary line based on a ratio to the signal strength. Below, each function with which the processing apparatus 120 is provided is demonstrated.

処理装置120の画像生成機能は、アンテナ装置110のアレイアンテナ113から出力された垂直偏波信号および水平偏波信号に基づいて、イメージング画像を生成する。具体的には、画像生成機能は、各第1アンテナ素子111から出力された各垂直偏波信号を、第1アンテナ素子111の配列に合わせて二次元状に配列することで、垂直偏波信号に基づくイメージング画像を、垂直偏波画像として生成することができる。また、画像生成機能は、各第2アンテナ素子112から出力された各水平偏波信号を、第1アンテナ素子111の配列に合わせて二次元状に配列することで、水平偏波信号に基づくイメージング画像を、水平偏波画像として生成することができる。以下においては、垂直偏波画像および水平偏波画像を構成する垂直偏波信号または水平偏波信号を、垂直偏波画像および水平偏波画像の画素として説明する。なお、図2に示すように、第1アンテナ素子111と第2アンテナ素子112とは交互に配列しているため、第1アンテナ素子111と第2アンテナ素子112の撮像範囲は若干異なるが、以下においては、たとえば、図2に示すアレイアンテナ113において一番左上に位置する第1アンテナ素子111と、その右隣の第2アンテナ素子112(またはその下隣りの第2アンテナ素子112)とは、同一の撮像範囲を撮像するものとして説明する。   The image generation function of the processing device 120 generates an imaging image based on the vertical polarization signal and the horizontal polarization signal output from the array antenna 113 of the antenna device 110. Specifically, the image generation function arranges each vertically polarized signal output from each first antenna element 111 in a two-dimensional manner in accordance with the arrangement of the first antenna elements 111, thereby obtaining a vertically polarized signal. Can be generated as a vertically polarized image. In addition, the image generation function performs imaging based on the horizontal polarization signal by arranging each horizontal polarization signal output from each second antenna element 112 in a two-dimensional manner in accordance with the arrangement of the first antenna elements 111. The image can be generated as a horizontally polarized image. Hereinafter, the vertical polarization signal or the horizontal polarization signal constituting the vertical polarization image and the horizontal polarization image will be described as pixels of the vertical polarization image and the horizontal polarization image. As shown in FIG. 2, since the first antenna elements 111 and the second antenna elements 112 are alternately arranged, the imaging ranges of the first antenna elements 111 and the second antenna elements 112 are slightly different. In, for example, the first antenna element 111 located at the upper left in the array antenna 113 shown in FIG. 2 and the second antenna element 112 on the right side (or the second antenna element 112 on the lower side) are Description will be made assuming that the same imaging range is imaged.

図3に示すように日陰と日なたとの境界線が路面と交差している場面において、画像生成機能は、図4(A)に示すように、垂直偏波信号に基づく垂直偏波画像を生成する。また、図3に示す場面において、画像生成機能は、図4(B)に示すように、水平偏波信号に基づく水平偏波画像を生成する。なお、図4(A),(B)に示す例では、垂直偏波信号および水平偏波信号の強度が大きいほど、薄い色で表現している。   As shown in FIG. 3, in the scene where the boundary line between the shade and the sun crosses the road surface, the image generation function generates a vertically polarized image based on the vertically polarized signal as shown in FIG. Generate. In the scene shown in FIG. 3, the image generation function generates a horizontally polarized image based on the horizontally polarized signal as shown in FIG. In the example shown in FIGS. 4A and 4B, the higher the intensity of the vertical polarization signal and the horizontal polarization signal, the lighter the color is expressed.

処理装置120の境界線候補検出機能は、垂直偏波画像および水平偏波画像において、路面の境界線候補を検出する。たとえば、境界線候補検出機能は、垂直偏波画像および水平偏波画像において、水平方向(図4中のX方向)または垂直方向(図4中のY方向)に所定画素数(たとえば2画素)離れた2つの画素の出力値の差が所定値以上となる画素を検出し、検出した画素が所定画素以上連続する画素列を、境界線候補として検出することができる。なお、境界線候補の検出方法は、上記の例に限定されず、公知のエッジ検出方法を用いることができる。   The boundary line candidate detection function of the processing device 120 detects road surface boundary line candidates in the vertical polarization image and the horizontal polarization image. For example, the boundary line candidate detection function has a predetermined number of pixels (for example, two pixels) in the horizontal direction (X direction in FIG. 4) or the vertical direction (Y direction in FIG. 4) in the vertical polarization image and the horizontal polarization image. It is possible to detect a pixel in which the difference between the output values of two distant pixels is equal to or greater than a predetermined value, and to detect a pixel row in which the detected pixels continue for a predetermined pixel or more as a boundary line candidate. The boundary line candidate detection method is not limited to the above example, and a known edge detection method can be used.

図3に示す例では、自車両が走行する路面と路側との間に境界線が存在し、日陰と日なたとの間にも境界線が存在している。自車両が走行する路面と路側との間の境界線と、日陰と日なたとの間の境界線とは交差しているため、日陰と日なたとの間の境界線は路面と路側を跨ることとなる。路面と路側とは材質や構造が異なり、反射率が異なるため、路面と路側とで、垂直偏波信号や水平偏波信号の強度が異なる場合が多い。たとえば、図4(A)に示す例では、路側に比べて、路面における垂直偏波信号の強度が高くなっている。そのため、図4(A)に示す例において、境界線候補検出機能は、垂直偏波画像に基づいて、路面と路側との境界線を、第1境界線候補および第3境界線候補として検出することができる。また、日陰と日なたとでは温度が異なるため、日陰と日なたとで、垂直偏波信号や水平偏波信号の強度が異なる場合が多い。たとえば、図4(A),(B)に示すように、日陰に比べて、日なたにおける垂直偏波信号および水平偏波信号の強度は高くなる。そのため、図4(A),(B)に示す例において、境界線候補検出機能は、垂直偏波画像および水平偏波画像に基づいて、日陰と日なたとの境界線を、第2境界線候補として検出することができる。よって、第1境界線候補と第2境界線候補は交差して検出され、第2境界線候補と第3境界線候補は交差して検出される。また第1境界線候補および第3境界線候補は路面と路側との境界線であるため、第2境界線候補は路面と路側を跨るように検出される。   In the example shown in FIG. 3, a boundary line exists between the road surface on which the host vehicle travels and the road side, and a boundary line also exists between the shade and the sun. Since the boundary between the road surface on which the vehicle is traveling and the roadside intersects with the boundary between the shade and the sun, the boundary between the shade and the sun goes across the road and the roadside. It will be. Since the road surface and the road side are different in material and structure and have different reflectivities, the intensity of the vertical polarization signal and the horizontal polarization signal often differs between the road surface and the road side. For example, in the example shown in FIG. 4A, the intensity of the vertically polarized signal on the road surface is higher than that on the road side. Therefore, in the example shown in FIG. 4A, the boundary line candidate detection function detects the boundary line between the road surface and the road side as the first boundary line candidate and the third boundary line candidate based on the vertical polarization image. be able to. Further, since the temperature differs between the shade and the sun, the intensity of the vertically polarized signal and the horizontally polarized signal often differs between the shade and the sun. For example, as shown in FIGS. 4A and 4B, the intensity of the vertically polarized signal and the horizontally polarized signal in the sun is higher than in the shade. Therefore, in the example shown in FIGS. 4A and 4B, the boundary line candidate detection function uses the second boundary line as the boundary line between the shade and the sun based on the vertical polarization image and the horizontal polarization image. Can be detected as a candidate. Therefore, the first boundary line candidate and the second boundary line candidate are detected by intersecting, and the second boundary line candidate and the third boundary line candidate are detected by intersecting. Further, since the first boundary line candidate and the third boundary line candidate are boundary lines between the road surface and the road side, the second boundary line candidate is detected so as to straddle the road surface and the road side.

処理装置120の判定線設定機能は、境界線候補が、路面の境界線であるか否かを判定するための判定線を、垂直偏波画像および水平偏波画像上に設定する。たとえば、判定線設定機能は、境界線候補をアンテナ装置110の設置位置側に数画素分だけ移動させた位置に、判定線を設定することができる。たとえば、図4(A),(B)に示す例において、判定線設定機能は、第1境界線候補をアンテナ装置110の設置位置側(X軸正方向側)に数画素分だけ移動させた位置に、第1境界線候補の判定線を、第1判定線として設定することができる。また、判定線設定機能は、第2境界線候補をアンテナ装置110の設置位置側(Y軸負方向側)に数画素分だけ移動させた位置に、第2境界線候補の判定線を、第2判定線として設定することができる。同様に、判定線設定機能は、第3境界線候補の判定線を設定することができるが、以下においては、説明の便宜のため、第1判定線および第2判定線のみについて説明を行う。   The determination line setting function of the processing device 120 sets a determination line for determining whether or not the boundary line candidate is a road boundary line on the vertical polarization image and the horizontal polarization image. For example, the determination line setting function can set a determination line at a position where the boundary line candidate is moved by several pixels toward the installation position of the antenna device 110. For example, in the example shown in FIGS. 4A and 4B, the determination line setting function moves the first boundary line candidate by several pixels to the installation position side (X-axis positive direction side) of the antenna device 110. The determination line of the first boundary line candidate can be set as the first determination line at the position. In addition, the determination line setting function sets the second boundary line candidate determination line to the position where the second boundary line candidate is moved by several pixels to the installation position side (Y-axis negative direction side) of the antenna device 110. 2 determination lines can be set. Similarly, the determination line setting function can set the determination line of the third boundary line candidate, but only the first determination line and the second determination line will be described below for convenience of description.

処理装置120の路面判定機能は、境界線候補が路面の境界線であるか否かを判定することで、垂直偏波画像および水平偏波画像上における道路の路面を判定する。まず、路面判定機能は、判定線上の各画素の垂直偏波信号および水平偏波信号に基づいて、判定線上の各画素の垂直偏波信号の強度と水平偏波信号の強度との比(垂直偏波信号の強度/水平偏波信号の強度)を算出する。また、路面判定機能は、判定線上の各画素の垂直偏波信号および水平偏波信号に基づいて、判定線上の各画素の垂直偏波信号および水平偏波信号の平均強度を算出する。   The road surface determination function of the processing device 120 determines the road surface of the road on the vertical polarization image and the horizontal polarization image by determining whether the boundary line candidate is a road surface boundary line. First, the road surface determination function is based on the vertical polarization signal and horizontal polarization signal of each pixel on the determination line, and the ratio (vertical) of the intensity of the vertical polarization signal and the horizontal polarization signal of each pixel on the determination line. (Polarization signal intensity / horizontal polarization signal intensity). The road surface determination function calculates the average intensity of the vertical polarization signal and horizontal polarization signal of each pixel on the determination line based on the vertical polarization signal and horizontal polarization signal of each pixel on the determination line.

図5は、図4に示す第1判定線および第2判定線における垂直偏波信号の強度と水平偏波信号の強度との比R、および、垂直偏波信号および水平偏波信号の平均強度Vの一例を示している。なお、図5に示すグラフでは、縦軸を、垂直偏波信号の強度と水平偏波信号の強度との比Rとし、横軸を、垂直偏波信号および水平偏波信号の平均強度Vとして、判定線上の画素をプロットしている。また、図5に示すグラフでは、判定線上において連続する画素間を線で結んでいる。   5 shows the ratio R between the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal in the first determination line and the second determination line shown in FIG. 4, and the average intensity of the vertical polarization signal and the horizontal polarization signal. An example of V is shown. In the graph shown in FIG. 5, the vertical axis is the ratio R of the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal, and the horizontal axis is the average intensity V of the vertical polarization signal and the horizontal polarization signal. , The pixels on the decision line are plotted. Further, in the graph shown in FIG. 5, continuous pixels on the determination line are connected by a line.

図5を参照して、垂直偏波信号の強度と水平偏波信号の強度との比Rについて説明する。図4(A),(B)に示す第1判定線のように、同一路面上に判定線がある場合には、至近側(図4中、Y軸負方向側)の対象物から到来した受信波に対応する画素(たとえば図5に示す第1判定線(Aパート)の画素)では、遠方側(図4中、Y軸正方向側)の対象物から到来した受信波に対応する画素(たとえば図5に示す第1判定線(Bパート)の画素)と比べて、水平偏波信号の強度が大きくなり、垂直偏波信号の強度と水平偏波信号の強度との比R(垂直偏波信号の強度/水平偏波信号の強度)が小さくなる傾向にある。このように、同一路面の判定線上において、垂直偏波信号の強度と水平偏波信号の強度との比Vは、自車両(アンテナ装置110)から対象物までの距離に応じて変化する。しかしながら、同一路面の判定線上において、垂直偏波信号の強度と水平偏波信号の強度との比Vは、上述したように、自車両(アンテナ装置110)から対象物までの距離に応じて変化するが、図5に示すように、路面領域内に収まる傾向にある。   With reference to FIG. 5, the ratio R between the intensity of the vertically polarized signal and the intensity of the horizontally polarized signal will be described. When there is a determination line on the same road surface as the first determination line shown in FIGS. 4A and 4B, it has come from the object on the closest side (the Y axis negative direction side in FIG. 4). In the pixel corresponding to the received wave (for example, the pixel on the first determination line (A part) shown in FIG. 5), the pixel corresponding to the received wave arriving from the object on the far side (Y-axis positive direction side in FIG. 4). Compared to (for example, the pixel of the first determination line (B part) shown in FIG. 5), the intensity of the horizontally polarized signal is increased, and the ratio R (vertical) between the intensity of the vertically polarized signal and the intensity of the horizontally polarized signal The polarization signal intensity / horizontal polarization signal intensity) tend to be small. As described above, the ratio V between the intensity of the vertically polarized signal and the intensity of the horizontally polarized signal on the determination line on the same road surface changes according to the distance from the own vehicle (antenna device 110) to the object. However, the ratio V between the intensity of the vertically polarized signal and the intensity of the horizontally polarized signal on the determination line on the same road surface changes according to the distance from the own vehicle (antenna device 110) to the object as described above. However, as shown in FIG. 5, it tends to be within the road surface area.

一方、図4(A),(B)に示す第2判定線(Aパート、Cパート)のように、路側に対応する判定線では、図5に示すように、垂直偏波信号の強度と水平偏波信号の強度との比Rは1前後となる傾向にある。このように、路側の判定線では、垂直偏波信号の強度と水平偏波信号の強度との比Rが、路面領域よりも、比Rの値が高い路側領域となる傾向にある。そのため、図5に示す例では、路面と路側とに跨る第2判定線のうち、路面の第2判定線(Bパート)については、垂直偏波信号の強度と水平偏波信号の強度との比Rが路面領域内にプロットされ、路側の第2判定線(AパートおよびCパート)については、垂直偏波信号の強度と水平偏波信号の強度との比Rが路側領域内にプロットされている。   On the other hand, as shown in FIGS. 5A and 4B, the second decision lines (A part and C part) shown in FIGS. The ratio R to the intensity of the horizontally polarized signal tends to be around 1. Thus, in the roadside determination line, the ratio R between the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal tends to be a roadside area having a higher value of the ratio R than the road surface area. Therefore, in the example shown in FIG. 5, among the second determination lines straddling the road surface and the road side, for the second determination line (B part) of the road surface, the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal The ratio R is plotted in the road area, and for the second determination line (A part and C part) on the road side, the ratio R between the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal is plotted in the road area. ing.

このように、路面と路側とでは、垂直偏波信号の強度と水平偏波信号の強度との比Rがプロットされる領域が異なる傾向にある。そのため、垂直偏波信号の強度と水平偏波信号の強度との比Rに基づいて、判定線が、同一路面上にあるか、路面と路側とを跨ぐかを判定し、これにより、判定線に対応する境界線候補が、路面の境界線であるか、日陰と日なたとの境界線であるかを判定することが可能な場合はある。しかしながら、図5に示す第1判定線(Bパート)や第2判定線(Aパート)のように、垂直偏波信号の強度と水平偏波信号の強度との比Rが、路側領域内にあるか、路側領域内にあるかを明確に判定することが困難な場合もあり、垂直偏波信号の強度と水平偏波信号の強度との比Rだけでは、判定線が、同一路面上にあるか、路面と路側とを跨ぐかを判定することが困難な場合がある。そこで、本実施形態では、後述するように、判定線に沿う垂直偏波信号の強度と水平偏波信号の強度との比Rの変化率を求めることで、判定線が、同一路面にあるか、路面と路側とを跨ぐかを判定する。   As described above, the road surface and the roadside tend to have different regions in which the ratio R between the intensity of the vertically polarized signal and the intensity of the horizontally polarized signal is plotted. Therefore, based on the ratio R between the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal, it is determined whether the determination line is on the same road surface or straddles the road surface and the road side. It may be possible to determine whether the boundary line candidate corresponding to is a road boundary line or a boundary line between shade and sun. However, as in the first determination line (B part) and the second determination line (A part) shown in FIG. 5, the ratio R between the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal is within the roadside region. In some cases, it is difficult to clearly determine whether there is a roadside area, and the determination line is on the same road surface only by the ratio R between the intensity of the vertically polarized signal and the intensity of the horizontally polarized signal. It may be difficult to determine whether there is a road surface and the road side. Therefore, in this embodiment, as will be described later, by determining the rate of change of the ratio R between the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal along the determination line, whether the determination line is on the same road surface. Whether to straddle the road surface and the road side is determined.

次に、垂直偏波信号および水平偏波信号の平均強度Vについて説明する。垂直偏波信号および水平偏波信号の平均強度Vは、対象物の放射温度が高いほど大きくなる傾向にある。そのため、図5に示すように、日陰と日なたとを跨ぐ第1判定線では、日陰にある第1判定線(Aパート)において、垂直偏波信号および水平偏波信号の平均強度Vが比較的小さくなり、日なたにある第1判定線(Bパート)において、垂直偏波信号および水平偏波信号の平均強度Vが比較的大きくなる。また、図5に示す第1判定線(Aパート)では、日なたに近づくほど、垂直偏波信号および水平偏波信号の平均強度Vは大きくなる。   Next, the average intensity V of the vertically polarized signal and the horizontally polarized signal will be described. The average intensity V of the vertical polarization signal and the horizontal polarization signal tends to increase as the radiation temperature of the object increases. Therefore, as shown in FIG. 5, in the first determination line straddling the shade and the sun, the average intensities V of the vertical polarization signal and the horizontal polarization signal are compared in the first determination line (A part) in the shade. The average intensity V of the vertical polarization signal and the horizontal polarization signal becomes relatively large at the first determination line (B part) in the sun. Moreover, in the 1st determination line (A part) shown in FIG. 5, the average intensity | strength V of a vertical polarized-wave signal and a horizontal polarized-wave signal becomes large, so that it approaches the daylight.

一方、図5に示す第2判定線のように、判定線が異なる材質で構成された路面と路側とに跨っている場合には、路面と路側とで、垂直偏波信号および水平偏波信号の平均強度Vが大きく異なる場合がある。特に、路面と路側との境界となる変位点において、垂直偏波信号および水平偏波信号の平均強度Vが大きく変化する場合がある。たとえば、図5に示す例では、路面にある第2判定線(Bパート)と、路側にある第2判定線(Aパート)との変位点である第2判定線のAB変位点において、垂直偏波信号および水平偏波信号の平均強度Vが大きく変化している。   On the other hand, when the determination line straddles the road surface and the road side made of different materials as in the second determination line shown in FIG. 5, the vertical polarization signal and the horizontal polarization signal are generated on the road surface and the road side. In some cases, the average intensity V of the nuclei differs greatly. In particular, there is a case where the average intensity V of the vertically polarized signal and the horizontally polarized signal changes greatly at a displacement point that becomes a boundary between the road surface and the road side. For example, in the example shown in FIG. 5, at the AB displacement point of the second determination line, which is the displacement point between the second determination line (B part) on the road surface and the second determination line (A part) on the road side, The average intensity V of the polarization signal and the horizontal polarization signal changes greatly.

ここで、図5に示すように、第1判定線の変位点(第1判定線(Aパート)と第1判定線(Bパート)との変位点)における、垂直偏波信号および水平偏波信号の平均強度Vの変化率は、日陰と日なたとの温度差(たとえば10K)に応じた変化率未満となることが多い。一方、第2判定線のAB変位点は、第2判定線が路面と路側とに跨ることによるものであるため、第2判定線のAB変位点における垂直偏波信号および水平偏波信号の平均強度Vの変化率は、第1判定線の変位点における垂直偏波信号および水平偏波信号の平均強度Vの変化率、すなわち、日陰と日なたとの温度差に応じた変化率よりも大きくなる場合がある。そこで、本実施形態では、後述するように、垂直偏波信号と水平偏波信号との平均強度Vの変化率に基づいても、各判定線が、同一路面に基づくものか、路面と路側とに跨るものかを判定する。   Here, as shown in FIG. 5, the vertical polarization signal and the horizontal polarization at the displacement point of the first determination line (the displacement point between the first determination line (A part) and the first determination line (B part)). The change rate of the average intensity V of the signal is often less than the change rate according to the temperature difference (for example, 10 K) between the shade and the sun. On the other hand, since the AB displacement point of the second determination line is due to the second determination line straddling the road surface and the road side, the average of the vertical polarization signal and the horizontal polarization signal at the AB displacement point of the second determination line. The rate of change of the intensity V is larger than the rate of change of the average intensity V of the vertical polarization signal and the horizontal polarization signal at the displacement point of the first determination line, that is, the rate of change according to the temperature difference between the shade and the sun. There is a case. Therefore, in this embodiment, as will be described later, whether each determination line is based on the same road surface or whether the road surface and the road side are based on the change rate of the average intensity V between the vertical polarization signal and the horizontal polarization signal. It is judged whether it straddles.

このように、路面判定機能は、垂直偏波信号の強度と水平偏波信号の強度との比Rの変化率dRと、垂直偏波信号と水平偏波信号との平均強度Vの変化率dVとに基づいて、各判定線が、同一路面におけるものか、路面と路側とを跨ぐものかを判定する。そこで、まず、路面判定機能は、判定線に沿って連続する画素のうち、連続する画素間における垂直偏波信号の強度と水平偏波信号の強度との比Rの差を、垂直偏波信号の強度と水平偏波信号の強度との比Rの変化率dRとして算出する。同様に、路面判定機能は、判定線に沿って連続する画素のうち、連続する画素間における垂直偏波信号および水平偏波信号の平均強度Vの差を、垂直偏波信号および水平偏波信号の平均強度Vの変化率dVとして算出する。   As described above, the road surface determination function includes the rate of change dR of the ratio R between the intensity of the vertically polarized signal and the intensity of the horizontally polarized signal, and the rate of change dV of the average intensity V between the vertically polarized signal and the horizontally polarized signal. Based on the above, it is determined whether each determination line is on the same road surface or straddles the road surface and the road side. Therefore, the road surface determination function first calculates the difference in the ratio R between the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal between consecutive pixels among the pixels continuous along the determination line. The rate of change dR of the ratio R between the intensity of the signal and the intensity of the horizontally polarized signal is calculated. Similarly, the road surface determination function calculates the difference between the average intensities V of the vertical polarization signal and the horizontal polarization signal between the consecutive pixels among the continuous pixels along the determination line. Is calculated as the rate of change dV of the average intensity V.

図6は、図4に示す第1判定線に沿った位置における、垂直偏波信号の強度と水平偏波信号の強度との比Rの変化率dR、および、垂直偏波信号と水平偏波信号との平均強度Vの変化率dVの一例を示す図である。また、図7は、図4に示す第2判定線に沿った位置における、垂直偏波信号の強度と水平偏波信号の強度との比Rの変化率dR、および、垂直偏波信号と水平偏波信号との平均強度Vの変化率dVの一例を示す図である。なお、図6および図7に示すグラフにおいて、縦軸は、垂直偏波信号の強度と水平偏波信号の強度との比Rの変化率dRを示しており、横軸は、垂直偏波信号と水平偏波信号との平均強度Vの変化率dVを示している。   6 shows the rate of change dR of the ratio R between the intensity of the vertically polarized signal and the intensity of the horizontally polarized signal at the position along the first determination line shown in FIG. 4, and the vertically polarized signal and the horizontally polarized wave. It is a figure which shows an example of change rate dV of average intensity | strength V with a signal. 7 shows the rate of change dR of the ratio R between the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal at the position along the second determination line shown in FIG. It is a figure which shows an example of change rate dV of average intensity V with a polarization signal. In the graphs shown in FIGS. 6 and 7, the vertical axis indicates the rate of change dR of the ratio R between the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal, and the horizontal axis indicates the vertical polarization signal. The rate of change dV of the average intensity V between the horizontal polarization signal and the horizontal polarization signal is shown.

図5に示す第1判定線(Aパート)のように、同一路面上の判定線でも、至近の対象物に対応する画素ほど、垂直偏波信号の強度と水平偏波信号の強度との比Rは大きく変化する。そのため、図6に示す第1判定線(Aパート)では、至近の対象物に対応する画素において、垂直偏波信号の強度と水平偏波信号の強度との比Rの変化率dRが大きくなっている。一方、図5に示す第1判定線(Bパート)のように、遠方の対象物に対応する画素では、垂直偏波信号の強度と水平偏波信号の強度との比Rの変化率dRは小さくなっている。   As in the first determination line (A part) shown in FIG. 5, the ratio between the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal of the pixel corresponding to the closest object even on the determination line on the same road surface. R varies greatly. Therefore, in the first determination line (part A) shown in FIG. 6, the rate of change dR of the ratio R between the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal is large in the pixel corresponding to the closest object. ing. On the other hand, the change rate dR of the ratio R between the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal in the pixel corresponding to the distant object as in the first determination line (B part) shown in FIG. It is getting smaller.

一方、図5に示す第2判定線のように、路面と路側とに跨る判定線では、路面と路側とで、垂直偏波信号の強度と水平偏波信号の強度との比Rが大きく異なり、路面から路側に変化する変位点で、垂直偏波信号の強度と水平偏波信号の強度との比Rが大きく変化する。そのため、図7に示す第2判定線では、路面から路側に変化するAB変位点において、垂直偏波信号の強度と水平偏波信号の強度との比Rの変化率dRが大きくなっている。   On the other hand, as in the second determination line shown in FIG. 5, in the determination line straddling the road surface and the road side, the ratio R between the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal is greatly different between the road surface and the road side. The ratio R between the intensity of the vertically polarized signal and the intensity of the horizontally polarized signal greatly changes at the displacement point that changes from the road surface to the road side. Therefore, in the second determination line shown in FIG. 7, the rate of change dR of the ratio R between the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal is large at the AB displacement point that changes from the road surface to the road side.

図6に示す第1判定線(Aパート)における垂直偏波信号の強度と水平偏波信号の強度との比Rの変化率dRと、図7に示す第2判定線おける垂直偏波信号の強度と水平偏波信号の強度との比Rの変化率dRとを比べると、図6に示す第1判定線(Aパート)に比べて、図7に示す第2判定線においては、路面から路側に変化するAB変位点における垂直偏波信号の強度と水平偏波信号の強度との比Rの変化率dRがより大きくなっている。具体的には、図6に示す第1判定線(Aパート)では、垂直偏波信号の強度と水平偏波信号の強度との比Rの変化率dRが、至近の対象物に対応する画素においても、閾値Sdxから閾値−Sdxまでの第1判定範囲内にある。一方、図7に示す第2判定線では、垂直偏波信号の強度と水平偏波信号の強度との比Rの変化率dRが、閾値Sdxから閾値−Sdxまでの第1判定範囲を超えている。   The rate of change dR of the ratio R between the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal in the first determination line (A part) shown in FIG. 6 and the vertical polarization signal in the second determination line shown in FIG. When comparing the rate of change dR of the ratio R between the intensity and the intensity of the horizontally polarized signal, the second determination line shown in FIG. 7 is compared with the first determination line (A part) shown in FIG. The rate of change dR of the ratio R between the intensity of the vertically polarized signal and the intensity of the horizontally polarized signal at the AB displacement point that changes to the roadside is larger. Specifically, in the first determination line (A part) shown in FIG. 6, the change rate dR of the ratio R between the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal corresponds to the closest object. Is also within the first determination range from the threshold value Sdx to the threshold value −Sdx. On the other hand, in the second determination line shown in FIG. 7, the rate of change dR of the ratio R between the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal exceeds the first determination range from the threshold value Sdx to the threshold value −Sdx. Yes.

ここで、閾値Sdx,−Sdxは、同一路面上における判定線上において、垂直偏波信号の強度と水平偏波信号の強度との比Rが、受信ノイズ、受信波の屈折率、アンテナ素子111,112が受信する受信波の俯角、およびアレイアンテナ113の解像度などにより変化する場合の変化率dRの上限値および下限値であり、受信波の屈折率、アンテナ素子111,112が受信する受信波の俯角、およびアレイアンテナ113の解像度のうち少なくとも1つに基づいて、算出することができる。たとえば、アンテナ素子111,112が受信する受信波の俯角が10°である場合には、SdX,−SdXをそれぞれ0.1,−0.1に設定することができる。   Here, the threshold values Sdx and -Sdx are determined by the ratio R of the intensity of the vertically polarized signal and the intensity of the horizontally polarized signal on the determination line on the same road surface, the received noise, the refractive index of the received wave, the antenna element 111, 112 is an upper limit value and a lower limit value of the rate of change dR when it changes depending on the depression angle of the received wave received by 112 and the resolution of the array antenna 113, and the refractive index of the received wave and the received wave received by the antenna elements 111 and 112. It can be calculated based on at least one of the depression angle and the resolution of the array antenna 113. For example, when the depression angle of the received wave received by the antenna elements 111 and 112 is 10 °, SdX and −SdX can be set to 0.1 and −0.1, respectively.

これにより、路面判定機能は、図6に示す第1判定線のように、垂直偏波信号の強度と水平偏波信号の強度との比Rの変化率dRが、閾値Sdxから閾値−Sdxまでの第1判定範囲内にある場合には、垂直偏波信号の強度と水平偏波信号の強度との比Rの変化dRは、受信波の屈折率、アンテナ素子111,112が受信する受信波の俯角、およびアレイアンテナ113の解像度などによるものであると判断し、判定線は、同一路面上にあると判定する。一方、図7に示す第2判定線のように、垂直偏波信号の強度と水平偏波信号の強度との比Rの変化率dRが、閾値Sdxから閾値−Sdxまでの第1判定範囲を超える場合には、垂直偏波信号の強度と水平偏波信号の強度との比Rの変化は、受信波の屈折率、アンテナ素子111,112が受信する受信波の俯角、およびアレイアンテナ113の解像度などによるものではなく、路面から路側に変化したことによるものと判断し、判定線は、路面と路側とを跨ぐものと判定する。   As a result, the road surface determination function has a rate of change dR of the ratio R between the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal from the threshold value Sdx to the threshold value −Sdx, as indicated by the first determination line shown in FIG. In the first determination range, the change dR in the ratio R between the intensity of the vertically polarized signal and the intensity of the horizontally polarized signal is the refractive index of the received wave and the received wave received by the antenna elements 111 and 112. And the determination line is determined to be on the same road surface. On the other hand, as indicated by the second determination line shown in FIG. 7, the rate of change dR of the ratio R between the intensity of the vertically polarized signal and the intensity of the horizontally polarized signal indicates the first determination range from the threshold value Sdx to the threshold value −Sdx. In the case of exceeding, the change in the ratio R between the intensity of the vertically polarized signal and the intensity of the horizontally polarized signal is caused by the refractive index of the received wave, the depression angle of the received wave received by the antenna elements 111 and 112, and the array antenna 113. It is determined that the change is from the road surface to the road side, not from the resolution, and the determination line is determined to straddle the road surface and the road side.

また、図6に示すように、同一路面上にある第1判定線においては、日陰における判定線(Aパート)から、日なたにおける判定線(Bパート)に変化する変位点において、垂直偏波信号および水平偏波信号の平均強度Vの変化率dVが大きくなっている。また、図7に示すように、路面と路側とに跨る第2判定線では、路面から路側に変化するAB変位点において、垂直偏波信号および水平偏波信号の平均強度Vの変化率dVが大きくなっている。   Further, as shown in FIG. 6, in the first determination line on the same road surface, at the displacement point where the determination line (A part) in the shade changes to the determination line (B part) in the sun, the vertical deviation is detected. The rate of change dV of the average intensity V of the wave signal and the horizontally polarized signal is large. Further, as shown in FIG. 7, in the second determination line straddling the road surface and the road side, the change rate dV of the average intensity V of the vertical polarization signal and the horizontal polarization signal at the AB displacement point changing from the road surface to the road side is as follows. It is getting bigger.

図6に示す第1判定線における垂直偏波信号および水平偏波信号の平均強度Vの変化率dVと、図7に示す第2判定線おける垂直偏波信号および水平偏波信号の平均強度Vの変化率dVとを比べると、図6に示す第1判定線に比べて、図7に示す第2判定線において、垂直偏波信号および水平偏波信号の平均強度Vの変化率dVがより大きくなっている。具体的には、図6に示す第1判定線では、垂直偏波信号および水平偏波信号の平均強度Vの変化率dVが、閾値SK以下の第2判定範囲内にある。一方、図7に示す第2判定線では、垂直偏波信号および水平偏波信号の平均強度Vの変化率dVが、閾値SK以下の第2判定範囲を超えている。   The rate of change dV of the average intensity V of the vertical polarization signal and the horizontal polarization signal in the first determination line shown in FIG. 6, and the average intensity V of the vertical polarization signal and the horizontal polarization signal in the second determination line shown in FIG. Is compared with the first determination line shown in FIG. 6, the change rate dV of the average intensity V of the vertical polarization signal and the horizontal polarization signal is higher in the second determination line shown in FIG. 7 than in the first determination line shown in FIG. 6. It is getting bigger. Specifically, in the first determination line shown in FIG. 6, the rate of change dV of the average intensity V of the vertical polarization signal and the horizontal polarization signal is within the second determination range equal to or less than the threshold SK. On the other hand, in the second determination line shown in FIG. 7, the rate of change dV of the average intensity V of the vertical polarization signal and the horizontal polarization signal exceeds the second determination range equal to or less than the threshold SK.

ここで、本実施形態では、同一路面上の日陰と日なたとの温度差Kを、閾値SKとして設定している。また、同一路面上の日陰と日なたとの温度差Kは、気温に応じて変化するため、閾値SKも気温に応じて可変に設定することができる。また、同一路面上の日陰と日なたとの温度差K+αを、閾値SKとして設定することもできる。   Here, in this embodiment, the temperature difference K between the shade and the sun on the same road surface is set as the threshold value SK. Further, since the temperature difference K between the shade and the sun on the same road surface changes according to the air temperature, the threshold value SK can also be set variably according to the air temperature. Further, the temperature difference K + α between the shade and the sun on the same road surface can be set as the threshold value SK.

そのため、路面判定機能は、図6に示す第1判定線のように、垂直偏波信号および水平偏波信号の平均強度Vの変化率dVが、閾値SK以下の第2判定範囲内にある場合には、垂直偏波信号および水平偏波信号の平均強度Vの変化率dVは、日陰から日なたに変化したことによると判断し、判定線は、同一路面上にあると判定する。一方、路面判定機能は、図7に示す第2判定線のように、垂直偏波信号および水平偏波信号の平均強度Vの変化率dVが、閾値SK以下の第2判定範囲を超える場合には、垂直偏波信号および水平偏波信号の平均強度Vの変化は、日陰から日なたに変化したことによるものではなく、路面から路側に変化したことによるものと判断し、判定線は、路面と路側とを跨ぐものと判定することができる。   Therefore, the road surface determination function is used when the rate of change dV of the average intensity V of the vertical polarization signal and the horizontal polarization signal is within the second determination range equal to or less than the threshold SK, as indicated by the first determination line shown in FIG. Therefore, it is determined that the rate of change dV of the average intensity V of the vertical polarization signal and the horizontal polarization signal has changed from shade to sunlight, and the determination line is determined to be on the same road surface. On the other hand, the road surface determination function is used when the rate of change dV of the average intensity V of the vertical polarization signal and the horizontal polarization signal exceeds the second determination range equal to or less than the threshold SK, as indicated by the second determination line shown in FIG. Is determined that the change in the average intensity V of the vertical polarization signal and the horizontal polarization signal is not due to a change from shade to shade, but due to a change from the road surface to the roadside. It can be determined that the vehicle crosses the road surface and the road side.

このように、本実施形態では、各判定線において、垂直偏波信号の強度と水平偏波信号の強度との比Rの変化率dR、または、垂直偏波信号と水平偏波信号との平均強度Vの変化率dVが、図6および図7に示すように、閾値Sdxから−Sdxまでの第1判定範囲、および閾値SK以下の第2判定範囲で形成される判定領域内にあるか否かを判定することで、判定線が、同一路面上にあるか、路面と路側とを跨ぐかを判定する。   As described above, in this embodiment, in each determination line, the rate of change dR of the ratio R between the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal, or the average of the vertical polarization signal and the horizontal polarization signal Whether the change rate dV of the intensity V is within the determination region formed by the first determination range from the threshold value Sdx to -Sdx and the second determination range equal to or less than the threshold value SK, as shown in FIGS. It is determined whether the determination line is on the same road surface or straddles the road surface and the road side.

しかしながら、図8に示すように、日陰と日なたとの境界線が道路と平行に存在する場合、日陰と日なたとの境界線は、路面と路側とを跨いでいないため、上記方法により、日陰と日なたとの境界線を、路面の境界線ではないと判定することは難しい。そこで、路面判定機能は、図9に示すように、垂直偏波画像および水平偏波画像において、互いに交差しない3以上の境界線候補を検出した場合には、以下に説明する方法により、路面の境界線と、日陰と日なたとの境界線とを判定する。なお、図9(A)は、図8に示す場面における垂直偏波画像の一例を示す図であり、図9(B)は、図8に示す場面における水平偏波画像の一例を示す図である。   However, as shown in FIG. 8, when the boundary line between the shade and the sun is present in parallel with the road, the boundary line between the shade and the sun does not straddle the road surface and the road side. It is difficult to determine that the boundary between shade and sun is not a road boundary. Therefore, as shown in FIG. 9, the road surface determination function, when detecting three or more boundary line candidates that do not intersect each other in the vertical polarization image and the horizontal polarization image, The boundary line and the boundary line between the shade and the sun are determined. 9A is a diagram showing an example of a vertically polarized image in the scene shown in FIG. 8, and FIG. 9B is a diagram showing an example of a horizontally polarized image in the scene shown in FIG. is there.

すなわち、互いに交差しない境界線候補が3以上ある場合、判定線設定機能は、まず、図10(A),(B)に示すように、各境界線候補を跨ぐ両側に判定線をそれぞれ設定する。たとえば、図10(A),(B)に示す例において、判定線設定機能は、第1境界線候補を跨ぐ両側に第1境界線候補と平行する第1平行判定線1a,1bを設定する。同様に、判定線設定機能は、第2境界線候補を跨ぐ両側に第1境界線候補と平行する第2平行判定線2a,2bを設定する。また図示していないが、判定線設定機能は、第3境界線候補を跨ぐ両側に第1境界線候補と平行する第3平行判定線3a,3bを設定する。   That is, when there are three or more boundary line candidates that do not intersect with each other, the determination line setting function first sets determination lines on both sides across each boundary line candidate, as shown in FIGS. 10 (A) and 10 (B). . For example, in the example shown in FIGS. 10A and 10B, the determination line setting function sets the first parallel determination lines 1a and 1b parallel to the first boundary line candidate on both sides straddling the first boundary line candidate. . Similarly, the determination line setting function sets second parallel determination lines 2a and 2b parallel to the first boundary line candidate on both sides of the second boundary line candidate. Although not shown, the determination line setting function sets third parallel determination lines 3a and 3b parallel to the first boundary line candidate on both sides straddling the third boundary line candidate.

ここで、仮に、第1平行判定線1a,1bおよび第2平行判定線2a,2bについて、図5に示すように、垂直偏波信号の強度と水平偏波信号の強度との比R、垂直偏波信号および水平偏波信号の平均強度Vをプロットした場合、第1平行判定線1aは、路側にあるため、図5に示す路側領域内にプロットされる。一方、第1平行判定線1b、第2平行判定線2a,2bは、路面にあるため、図5に示す路面領域内にプロットされる。そのため、垂直偏波信号の強度と水平偏波信号の強度との比R、および、垂直偏波信号および水平偏波信号の平均強度Vを、第1平行判定線1aと1b、第2平行判定線2aと2bとでそれぞれ比べることで、各判定線に対応する境界線候補が、路面の境界線か、日陰と日なたとの境界線かを判定することが可能な場合がある。しかしながら、アンテナ装置110の設置位置から離れた位置ほど、垂直偏波信号および水平偏波信号の検出精度は低くなり、平行判定線が路面に対応するものか、路側に対応するものかを判定することが困難な場合がある。   Here, for the first parallel determination lines 1a and 1b and the second parallel determination lines 2a and 2b, as shown in FIG. 5, the ratio R between the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal is vertical. When the average intensity V of the polarization signal and the horizontal polarization signal is plotted, since the first parallel determination line 1a is on the road side, it is plotted in the roadside region shown in FIG. On the other hand, since the first parallel determination line 1b and the second parallel determination lines 2a and 2b are on the road surface, they are plotted in the road surface region shown in FIG. Therefore, the ratio R between the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal, and the average intensity V of the vertical polarization signal and the horizontal polarization signal are set to the first parallel determination lines 1a and 1b and the second parallel determination. By comparing each of the lines 2a and 2b, it may be possible to determine whether the boundary line candidate corresponding to each determination line is a road boundary line or a boundary line between shade and sun. However, the farther away from the installation position of the antenna device 110, the lower the detection accuracy of the vertical polarization signal and the horizontal polarization signal, and it is determined whether the parallel determination line corresponds to the road surface or the road side. It can be difficult.

そこで、判定線設定機能は、各境界線候補と直交する複数の直交判定線を所定間隔ごとに設定する。たとえば、図10(A),(B)に示すように、判定線設定機能は、第2境界線候補に直交する複数の直交判定線L1〜Lnを設定することができる。また、図示していないが、判定線設定機能は、第1境界線候補および第3境界線候補についても、それぞれの境界線候補に直交する複数の直交判定線を設定することができる。   Therefore, the determination line setting function sets a plurality of orthogonal determination lines orthogonal to each boundary line candidate at predetermined intervals. For example, as shown in FIGS. 10A and 10B, the determination line setting function can set a plurality of orthogonal determination lines L1 to Ln orthogonal to the second boundary line candidate. Although not shown, the determination line setting function can set a plurality of orthogonal determination lines orthogonal to the respective boundary line candidates for the first boundary line candidate and the third boundary line candidate.

そして、路面判定機能は、各境界線候補の平行判定線と直交判定線とが交差する画素において、垂直偏波信号の強度と水平偏波信号の強度との比R、および、垂直偏波信号および水平偏波信号の平均強度Vを算出する。たとえば、図10(A),(B)に示す例において、路面判定機能は、第2境界線の第2平行判定線2a、2bと、第2直交判定線L1〜Lnとがそれぞれ交差する画素において、垂直偏波信号の強度と水平偏波信号の強度との比R、および、垂直偏波信号および水平偏波信号の平均強度Vを算出する。   The road surface determination function includes a ratio R between the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal, and the vertical polarization signal at a pixel where the parallel determination line and the orthogonal determination line of each boundary line candidate intersect. And the average intensity V of the horizontally polarized signal is calculated. For example, in the example shown in FIGS. 10A and 10B, the road surface determination function is a pixel in which the second parallel determination lines 2a and 2b of the second boundary line intersect with the second orthogonal determination lines L1 to Ln, respectively. , The ratio R between the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal and the average intensity V of the vertical polarization signal and the horizontal polarization signal are calculated.

具体的には、路面判定機能は、平行判定線と直交判定線とが交差する画素のうち、同一の直交判定線上の画素における垂直偏波信号の強度と水平偏波信号の強度との比Rの差を、境界線候補を跨ぐ両側の位置における、垂直偏波信号の強度と水平偏波信号の強度との比Rの変化率dRとして算出する。同様に、路面判定機能は、平行判定線と直交判定線とが交差する画素のうち、同一の直交判定線上の画素における垂直偏波信号および水平偏波信号の平均強度Vの差を、境界線候補を跨ぐ両側の位置における、垂直偏波信号および水平偏波信号の平均強度Vの変化率dVとして算出する。   Specifically, the road surface determination function is a ratio R between the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal in the pixels on the same orthogonal determination line among the pixels where the parallel determination line and the orthogonal determination line intersect. Is calculated as the rate of change dR of the ratio R between the intensity of the vertically polarized signal and the intensity of the horizontally polarized signal at the positions on both sides across the boundary line candidate. Similarly, the road surface determination function calculates a difference between the average intensities V of the vertical polarization signal and the horizontal polarization signal in pixels on the same orthogonal determination line among the pixels where the parallel determination line intersects with the orthogonal determination line. It is calculated as the rate of change dV of the average intensity V of the vertical polarization signal and the horizontal polarization signal at the positions on both sides across the candidate.

たとえば、図10(A),(B)に示す例において、路面判定機能は、第2平行判定線2aと第2直交判定線L1とが交差する画素における垂直偏波信号の強度と水平偏波信号の強度との比Rと、第2平行判定線2bと第2直交判定線L1とが交差する画素における垂直偏波信号の強度と水平偏波信号の強度との比Rとの差を、第2直交判定線L1における垂直偏波信号の強度と水平偏波信号の強度との比Rの変化率dRとして算出する。また、路面判定機能は、第2平行判定線2aと第2直交判定線L1とが交差する画素における垂直偏波信号および水平偏波信号の平均強度Vと、第2平行判定線2bと直交判定線L1とが交差する画素における垂直偏波信号および水平偏波信号の平均強度Vとの差を、第2直交判定線L1における垂直偏波信号および水平偏波信号の平均強度Vの変化率dVとして算出する。同様に、路面判定機能は、他の直交判定線L2〜Lnについても、垂直偏波信号の強度と水平偏波信号の強度との比Rの変化率dRと、垂直偏波信号および水平偏波信号の平均強度Vの変化率dVとを算出する。   For example, in the example shown in FIGS. 10A and 10B, the road surface determination function performs the vertical polarization signal intensity and horizontal polarization in the pixel where the second parallel determination line 2a and the second orthogonal determination line L1 intersect. The difference between the ratio R of the signal intensity and the ratio R of the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal in the pixel where the second parallel determination line 2b and the second orthogonal determination line L1 intersect, It is calculated as the rate of change dR of the ratio R between the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal in the second orthogonal determination line L1. Further, the road surface determination function includes an average intensity V of the vertical polarization signal and the horizontal polarization signal in a pixel where the second parallel determination line 2a and the second orthogonal determination line L1 intersect, and an orthogonal determination with the second parallel determination line 2b. The difference between the average intensity V of the vertical polarization signal and the horizontal polarization signal in the pixel intersecting with the line L1 is expressed as the rate of change dV of the average intensity V of the vertical polarization signal and the horizontal polarization signal in the second orthogonal determination line L1. Calculate as Similarly, for the other orthogonal determination lines L2 to Ln, the road surface determination function also includes the rate of change dR of the ratio R between the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal, the vertical polarization signal, and the horizontal polarization. The change rate dV of the average intensity V of the signal is calculated.

図11は、図10(A)に示す第2境界線候補の直交判定線L1〜Lnにおける、垂直偏波信号の強度と水平偏波信号の強度との比Rの変化率dRと、垂直偏波信号および水平偏波信号の平均強度Vの変化率dVとの一例を示す図である。図8および図10に示すように、第2境界線候補のうち、第2判定線2aは日陰における判定線であり、第2判定線2bは日なたにおける判定線である。図11に示す例では、同一路面上の日陰と日なたとの温度差により、各直交判定線L1〜Lnにおける垂直偏波信号および水平偏波信号の平均強度Vの変化率dVは、ある程度大きくなるが、同一路面上における日陰と日なたとの温度差に基づいて設定された閾値SK以下の第2判定範囲内となる。また、第2判定線2aと第2判定線2bはともに同一路面上にあるため、垂直偏波信号の強度と水平偏波信号の強度との比Rの変化率dRは小さく、ゼロ付近の数値となる。   FIG. 11 shows the rate of change dR of the ratio R between the intensity of the vertically polarized signal and the intensity of the horizontally polarized signal in the orthogonal decision lines L1 to Ln of the second boundary line candidates shown in FIG. It is a figure which shows an example with the change rate dV of the average intensity | strength V of a wave signal and a horizontal polarization signal. As shown in FIGS. 8 and 10, among the second boundary line candidates, the second determination line 2a is a determination line in the shade, and the second determination line 2b is a determination line in the sun. In the example shown in FIG. 11, the rate of change dV of the average intensity V of the vertical polarization signal and the horizontal polarization signal on each orthogonal determination line L1 to Ln is large to some extent due to the temperature difference between the shade and the sun on the same road surface. However, it falls within the second determination range equal to or less than the threshold value SK set based on the temperature difference between the shade and the sun on the same road surface. Further, since both the second determination line 2a and the second determination line 2b are on the same road surface, the rate of change dR of the ratio R between the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal is small, and a value near zero. It becomes.

そのため、路面判定機能は、図11に示す例において、第2境界線候補の直交判定線L1〜Lnにおける、垂直偏波信号の強度と水平偏波信号の強度との比Rの変化率dRと、垂直偏波信号および水平偏波信号の平均強度Vの変化率dVとは、それぞれ第1判定範囲内および第2判定範囲内であり、判定領域の範囲内であると判定する。これにより、路面判定機能は、第2境界線候補は、同一路面上における、日陰と日なたとの境界線であると判定することができる。   Therefore, in the example shown in FIG. 11, the road surface determination function has a rate of change dR of the ratio R between the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal in the orthogonal determination lines L1 to Ln of the second boundary line candidates. The change rate dV of the average intensity V of the vertical polarization signal and the horizontal polarization signal is determined to be within the first determination range and the second determination range, respectively, and within the determination region. Thereby, the road surface determination function can determine that the second boundary line candidate is a boundary line between the shade and the sun on the same road surface.

そして、路面判定機能は、各境界線候補が路面の境界線であるか、日陰と日なたとの境界線であるかを判定することで、道路の路面を判定することができる。たとえば、図4に示す例において、路面判定機能は、第1境界線候補および第3境界線候補が路面の境界線であり、第2境界線候補が日陰と日なたとの境界線であると判定することで、第1境界線候補と第3境界線候補との間の領域が路面であると判定することができる。また、図10に示す例において、路面判定機能は、第1境界線候補および第3境界線候補が路面の境界線であり、第2境界線候補が日陰と日なたとの境界線であると判定することで、第1境界線候補と第3境界線候補との間の領域が路面であると判定することができる。   The road surface determination function can determine the road surface of the road by determining whether each boundary line candidate is a road boundary line or a boundary line between the shade and the sun. For example, in the example shown in FIG. 4, the road surface determination function is such that the first boundary line candidate and the third boundary line candidate are boundary lines of the road surface, and the second boundary line candidate is a boundary line between the shade and the sun. By determining, it can determine with the area | region between a 1st boundary line candidate and a 3rd boundary line candidate being a road surface. In the example shown in FIG. 10, the road surface determination function is such that the first boundary line candidate and the third boundary line candidate are boundary lines of the road surface, and the second boundary line candidate is a boundary line between the shade and the sun. By determining, it can determine with the area | region between a 1st boundary line candidate and a 3rd boundary line candidate being a road surface.

続いて、図12および図13を参照して、本実施形態に係る路面検出処理について説明する。図12および図13は、本実施形態に係る路面検出処理を示すフローチャートである。なお、以下に説明する路面検出処理は、処理装置120により実行される。   Subsequently, a road surface detection process according to the present embodiment will be described with reference to FIGS. 12 and 13. 12 and 13 are flowcharts showing the road surface detection process according to the present embodiment. Note that the road surface detection process described below is executed by the processing device 120.

まず、ステップS101では、画像生成機能により、アンテナ装置110により出力された垂直偏波信号および水平偏波信号の取得が行われる。具体的には、画像生成機能は、アンテナ装置110のアンテナアレイ113が備える第1アンテナ素子111から、垂直偏波成分の強度に応じた垂直偏波信号を取得し、第2アンテナ素子112から水平偏波成分の強度に応じた水平偏波信号を取得する。   First, in step S101, the vertical polarization signal and the horizontal polarization signal output from the antenna device 110 are acquired by the image generation function. Specifically, the image generation function acquires a vertical polarization signal corresponding to the intensity of the vertical polarization component from the first antenna element 111 included in the antenna array 113 of the antenna device 110, and horizontally acquires from the second antenna element 112. A horizontal polarization signal corresponding to the intensity of the polarization component is acquired.

ステップS102では、画像生成機能により、ステップS101で取得した垂直偏波信号および水平偏波信号に基づいて、イメージング画像の生成が行われる。画像生成機能は、たとえば図3に示す場面において、第1アンテナ素子111により受信した垂直偏波信号に基づいて、図4(A)に示すように、垂直偏波画像を生成する。また、画像生成機能は、第2アンテナ素子112により受信した水平偏波信号に基づいて、図4(B)に示すように、水平偏波画像を生成する。   In step S102, the image generation function generates an imaging image based on the vertical polarization signal and horizontal polarization signal acquired in step S101. For example, in the scene shown in FIG. 3, the image generation function generates a vertical polarization image as shown in FIG. 4A based on the vertical polarization signal received by the first antenna element 111. Further, the image generation function generates a horizontal polarization image based on the horizontal polarization signal received by the second antenna element 112 as shown in FIG.

ステップS103では、境界線候補検出機能により、ステップS102で生成された垂直偏波画像および水平偏波画像において、路面の境界線候補の検出が行われる。たとえば、境界線候補検出機能は、図4(A),(B)に示す垂直偏波画像および水平偏波画像から、第1境界線、第2境界線、および第3境界線を検出することができる。   In step S103, a boundary line candidate on the road surface is detected in the vertical polarization image and horizontal polarization image generated in step S102 by the boundary line candidate detection function. For example, the boundary line candidate detection function detects the first boundary line, the second boundary line, and the third boundary line from the vertical polarization image and the horizontal polarization image shown in FIGS. Can do.

ステップS104では、判定線設定機能により、ステップS103で検出された路面の境界線候補が交差しているか否かの判定が行われる。図4(A),(B)に示すように、路面の境界線候補が交差している場合には、ステップS105に進む。一方、図9(A),(B)に示すように、路面の境界線候補が交差していない場合には、図13に示すステップS113に進む。   In step S104, the determination line setting function determines whether or not the road boundary candidates detected in step S103 intersect. As shown in FIGS. 4A and 4B, if the road surface boundary line candidates intersect, the process proceeds to step S105. On the other hand, as shown in FIGS. 9A and 9B, when the road boundary candidates do not intersect, the process proceeds to step S113 shown in FIG.

ステップS105〜S112では、交差している境界線候補のうち、いずれの境界線候補が路面の境界線であるか否かを判定する処理が行われる。まず、ステップS105では、判定線設定機能により、ステップS103で検出された路面の境界線候補と平行する判定線が設定される。たとえば、判定線設定機能は、図4(A),(B)に示す例において、第1境界線候補、第2境界線候補、および第3境界線候補にそれぞれ平行する第1判定線、第2判定線、および第3判定線を設定することができる。   In steps S <b> 105 to S <b> 112, a process of determining which of the intersecting boundary line candidates is a boundary line on the road surface is performed. First, in step S105, a determination line parallel to the road boundary candidate detected in step S103 is set by the determination line setting function. For example, in the example shown in FIGS. 4A and 4B, the determination line setting function includes a first determination line parallel to the first boundary line candidate, the second boundary line candidate, and the third boundary line candidate. Two determination lines and a third determination line can be set.

ステップS106では、路面判定機能により、ステップS105で設定された判定線上の各画素において、垂直偏波信号の強度と水平偏波信号の強度との比Rが算出される。また、ステップS107では、路面判定機能により、ステップS105で設定された判定線上の各画素において、垂直偏波信号および水平偏波信号の平均強度Vが算出される。たとえば、路面判定機能は、図4(A),(B)に示す第1判定線および第2判定線について、図5に示すように、垂直偏波信号の強度と水平偏波信号の強度との比R、および、垂直偏波信号および水平偏波信号の平均強度Vを算出することができる。   In step S106, the ratio R between the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal is calculated for each pixel on the determination line set in step S105 by the road surface determination function. In step S107, the average intensity V of the vertical polarization signal and the horizontal polarization signal is calculated for each pixel on the determination line set in step S105 by the road surface determination function. For example, as shown in FIG. 5, with respect to the first determination line and the second determination line shown in FIGS. 4 (A) and 4 (B), the road surface determination function includes the vertical polarization signal intensity and the horizontal polarization signal intensity. Ratio R and the average intensity V of the vertical polarization signal and the horizontal polarization signal can be calculated.

ステップS108では、路面判定機能により、ステップS106で算出された垂直偏波信号の強度と水平偏波信号の強度との比Rに基づいて、図6に示すように、判定線に沿って連続する画素間における垂直偏波信号の強度と水平偏波信号の強度との比Rの差が、判定線に沿った位置における垂直偏波信号の強度と水平偏波信号の強度との比Rの変化率dRとして算出される。また、ステップS109では、路面判定機能により、ステップS107で算出された垂直偏波信号および水平偏波信号の平均強度Vに基づいて、図7に示すように、判定線に沿って連続する画素間における垂直偏波信号および水平偏波信号の平均強度Vの差が、判定線に沿った位置における垂直偏波信号および水平偏波信号の平均強度Vの変化率dVとして算出される。   In step S108, the road surface determination function continues along the determination line as shown in FIG. 6 based on the ratio R of the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal calculated in step S106. The difference in the ratio R between the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal between the pixels changes the ratio R between the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal at the position along the determination line. Calculated as a rate dR. Further, in step S109, based on the average intensity V of the vertical polarization signal and horizontal polarization signal calculated in step S107 by the road surface determination function, as shown in FIG. The difference between the average intensities V of the vertical polarization signal and the horizontal polarization signal is calculated as the rate of change dV of the average intensity V of the vertical polarization signal and the horizontal polarization signal at the position along the determination line.

ステップS110では、路面判定機能により、ステップS108で算出された垂直偏波信号の強度と水平偏波信号の強度との比Rの変化率dR、および、ステップS109で算出された垂直偏波信号および水平偏波信号の平均強度Vの変化率dVが、それぞれ第1判定範囲内および第2判定範囲内となる判定領域内にあるか否かの判定が行われる。垂直偏波信号の強度と水平偏波信号の強度との比Rの変化率dR、および、垂直偏波信号および水平偏波信号の平均強度Vの変化率dVがそれぞれ第1判定範囲内および第2判定範囲内となる判定領域内である場合には、ステップS111に進み、路面判定機能により、判定線に対応する境界線候補は、路面の境界線であると判定される。一方、第1判定範囲または第2判定範囲を超えることで判定領域を超える場合には、ステップS112に進み、路面判定機能により、判定線に対応する境界線候補は路面の境界線ではないと判定される。   In step S110, the rate of change dR of the ratio R between the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal calculated in step S108, the vertical polarization signal calculated in step S109, and It is determined whether or not the rate of change dV of the average intensity V of the horizontally polarized signal is within a determination region that is within the first determination range and the second determination range, respectively. The change rate dR of the ratio R between the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal, and the change rate dV of the average intensity V of the vertical polarization signal and the horizontal polarization signal are within the first determination range and If it is within the determination area that falls within the 2 determination range, the process proceeds to step S111, and the boundary line candidate corresponding to the determination line is determined to be a road boundary line by the road surface determination function. On the other hand, if the determination area is exceeded by exceeding the first determination range or the second determination range, the process proceeds to step S112, and the boundary line candidate corresponding to the determination line is determined not to be a road boundary line by the road surface determination function. Is done.

たとえば、図6に示す例において、路面判定機能は、第1判定線において、垂直偏波信号の強度と水平偏波信号の強度との比Rの変化率dR、および、垂直偏波信号および水平偏波信号の平均強度Vの変化率dVが、それぞれ第1判定範囲内および第2判定範囲内となる判定領域内であると判定することができる(ステップS110=Yes)。そのため、路面判定機能は、第1判定線に対応する第1境界線候補は、路面の境界線であると判定することができる(ステップS111)。   For example, in the example shown in FIG. 6, the road surface determination function includes the rate of change dR of the ratio R between the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal, and the vertical polarization signal and horizontal in the first determination line. It can be determined that the rate of change dV of the average intensity V of the polarization signal is within a determination region that is within the first determination range and the second determination range, respectively (step S110 = Yes). Therefore, the road surface determination function can determine that the first boundary line candidate corresponding to the first determination line is a road surface boundary line (step S111).

また、図7に示す例において、路面判定機能は、第2判定線において、垂直偏波信号の強度と水平偏波信号の強度との比Rの変化率dR、および、垂直偏波信号および水平偏波信号の平均強度Vの変化率dVが、それぞれ第1判定範囲または第2判定範囲を超える場合に判定領域を超えると判定することができる(ステップS110=No)。そのため、路面判定機能は、第2判定線に対応する第2境界線候補は、路面の境界線ではないと判定することができる(ステップS112)。   In the example shown in FIG. 7, the road surface determination function includes a rate of change dR of the ratio R between the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal, and the vertical polarization signal and the horizontal in the second determination line. When the rate of change dV of the average intensity V of the polarization signal exceeds the first determination range or the second determination range, respectively, it can be determined that it exceeds the determination region (step S110 = No). Therefore, the road surface determination function can determine that the second boundary line candidate corresponding to the second determination line is not a road surface boundary line (step S112).

また、図13に進み、ステップS113では、路面判定機能により、交差しない境界線候補が3以上あるか否かの判定が行われる。図9に示すように、交差していない境界線候補が3以上ある場合には、ステップS114に進む。一方、交差していない境界線候補が3以上ない場合には、ステップS123に進む。   Further, proceeding to FIG. 13, in step S113, it is determined by the road surface determination function whether there are three or more boundary line candidates that do not intersect. As shown in FIG. 9, when there are three or more boundary line candidates that do not intersect, the process proceeds to step S114. On the other hand, if there are not three or more boundary line candidates that do not intersect, the process proceeds to step S123.

ステップS114〜S121では、互いに交差しない3以上の境界線候補のうち、いずれの境界線候補が路面の境界線であるか否かを判定する処理が行われる。まず、ステップS114では、判定線設定機能により、ステップS103で検出された境界線候補を跨ぐ両側に、境界線候補に平行する平行判定線が設定される。たとえば、判定線設定機能は、図10(A),(B)に示すように、第1境界線候補、第2境界線候補、および第3境界線候補を跨ぐ両側に、各境界線候補に平行する平行判定線1a,1b,2a,2b,3a,3bを設定することができる。   In steps S114 to S121, a process of determining which of the three or more boundary line candidates that do not intersect with each other is a boundary line on the road surface is performed. First, in step S114, parallel determination lines parallel to the boundary line candidate are set on both sides of the boundary line candidate detected in step S103 by the determination line setting function. For example, as shown in FIGS. 10 (A) and 10 (B), the determination line setting function applies to each boundary line candidate on both sides of the first boundary line candidate, the second boundary line candidate, and the third boundary line candidate. Parallel parallel determination lines 1a, 1b, 2a, 2b, 3a, 3b can be set.

また、ステップS115では、判定線設定機能により、各境界線候補に直交する直交判定線の設定が行われる。たとえば、図10(A),(B)に示す例において、判定線設定機能は、第2境界線候補に直交する直交判定線L1〜Lnを設定することができる。同様に、判定線設定機能は、第1境界線候補および第3境界線候補に直交する直交判定線を設定することができる。   In step S115, an orthogonal determination line that is orthogonal to each boundary line candidate is set by the determination line setting function. For example, in the example shown in FIGS. 10A and 10B, the determination line setting function can set orthogonal determination lines L1 to Ln that are orthogonal to the second boundary line candidates. Similarly, the determination line setting function can set orthogonal determination lines orthogonal to the first boundary line candidate and the third boundary line candidate.

ステップS116では、路面判定機能により、ステップS114で設定された平行判定線とステップS115で設定された直交判定線とが交差する画素において、垂直偏波信号の強度と水平偏波信号の強度との比Rが算出される。また、ステップS117では、路面判定機能により、平行判定線と直交判定線とが交差する画素において、垂直偏波信号および水平偏波信号の平均強度Vが算出される。   In step S116, by the road surface determination function, in the pixel where the parallel determination line set in step S114 and the orthogonal determination line set in step S115 intersect, the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal are calculated. The ratio R is calculated. In step S117, the average intensity V of the vertical polarization signal and the horizontal polarization signal is calculated by the road surface determination function at the pixel where the parallel determination line and the orthogonal determination line intersect.

ステップS118では、路面判定機能により、直交判定線上における垂直偏波信号の強度と水平偏波信号の強度との比Rの変化率dRの算出が行われる。また、ステップS119では、路面判定機能により、直交判定線における垂直偏波信号および水平偏波信号の平均強度Vの変化率dVの算出が行われる。たとえば、路面判定機能は、図10に示す第2境界線候補について、第2平行判定線2aと第2直交判定線L1とが交差する画素における垂直偏波信号の強度と水平偏波信号の強度との比Rと、第2平行判定線2bと第2直交判定線L1とが交差する画素における垂直偏波信号の強度と水平偏波信号の強度との比Rとの差を、第2直交判定線L1における垂直偏波信号の強度と水平偏波信号の強度との比Rの変化率dRとして算出することができる。また、路面判定機能は、第2平行判定線2aと第2直交判定線L1とが交差する画素における垂直偏波信号および水平偏波信号の平均強度Vと、第2平行判定線2bと直交判定線L1とが交差する画素における垂直偏波信号および水平偏波信号の平均強度Vとの差を、第2直交判定線L1における垂直偏波信号および水平偏波信号の平均強度Vの変化率dVとして算出することができる。   In step S118, the road surface determination function calculates the rate of change dR of the ratio R between the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal on the orthogonal determination line. In step S119, the road surface determination function calculates the rate of change dV of the average intensity V of the vertical polarization signal and horizontal polarization signal on the orthogonal determination line. For example, with respect to the second boundary line candidate shown in FIG. 10, the road surface determination function determines the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal at the pixel at which the second parallel determination line 2a and the second orthogonal determination line L1 intersect. And the difference R between the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal in the pixel where the second parallel determination line 2b and the second orthogonal determination line L1 intersect is expressed as the second orthogonal It can be calculated as the rate of change dR of the ratio R between the intensity of the vertically polarized signal and the intensity of the horizontally polarized signal in the determination line L1. Further, the road surface determination function includes an average intensity V of the vertical polarization signal and the horizontal polarization signal in a pixel where the second parallel determination line 2a and the second orthogonal determination line L1 intersect, and an orthogonal determination with the second parallel determination line 2b. The difference between the average intensity V of the vertical polarization signal and the horizontal polarization signal in the pixel intersecting with the line L1 is expressed as the rate of change dV of the average intensity V of the vertical polarization signal and the horizontal polarization signal in the second orthogonal determination line L1. Can be calculated as

ステップS120では、路面判定機能により、ステップS118で算出された垂直偏波信号の強度と水平偏波信号の強度との比Rの変化率dR、および、ステップS119で算出された垂直偏波信号および水平偏波信号の平均強度Vの変化率dVが、それぞれ第1判定範囲内および第2判定範囲内となる判定領域内であるか否かの判定が行われる。図11に示す第2判定線のように、垂直偏波信号の強度と水平偏波信号の強度との比Rの変化率dR、および、垂直偏波信号および水平偏波信号の平均強度Vの変化率dVがそれぞれ第1判定範囲内および第2判定範囲内となる判定領域内である場合には、ステップS121に進み、路面判定機能により、判定線に対応する境界線候補は路面の境界線であると判定される。一方、それぞれ第1判定範囲または第2判定範囲を超えることで判定領域を超える場合には、ステップS122に進み、路面判定機能により、判定線に対応する境界線候補は路面の境界線ではないと判定される。   In step S120, the road surface determination function causes the rate of change dR of the ratio R between the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal calculated in step S118, and the vertical polarization signal calculated in step S119 and It is determined whether or not the rate of change dV of the average intensity V of the horizontally polarized signal is within a determination region that is within the first determination range and the second determination range, respectively. Like the second determination line shown in FIG. 11, the rate of change dR of the ratio R between the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal and the average intensity V of the vertical polarization signal and the horizontal polarization signal If the rate of change dV is within the determination region within the first determination range and the second determination range, the process proceeds to step S121, and the boundary line candidate corresponding to the determination line is determined by the road surface determination function. It is determined that On the other hand, when exceeding the determination region by exceeding the first determination range or the second determination range, respectively, the process proceeds to step S122, and the boundary line candidate corresponding to the determination line is not a boundary line of the road surface by the road surface determination function. Determined.

そして、ステップS123では、路面判定機能により、路面の判定が行われる。具体的には、路面判定機能は、ステップS111,S112における路面の境界線の判定結果、および、ステップS121,S122における路面の境界線の判定結果に基づいて、路面を判定する。なお、路面判定機能は、直交しない境界線候補が2本だけ検出された場合には、これら境界線候補を路面の境界線として判断し、路面を判定する構成とすることもできる。   In step S123, the road surface is determined by the road surface determination function. Specifically, the road surface determination function determines the road surface based on the determination result of the road surface boundary line in steps S111 and S112 and the determination result of the road surface boundary line in steps S121 and S122. The road surface determination function may be configured such that when only two non-orthogonal boundary line candidates are detected, these boundary line candidates are determined as road boundary lines and the road surface is determined.

以上のように、本実施形態に係る路面検出装置100は、垂直偏波画像および水平偏波画像から検出した境界線候補が交差する場合に、境界線候補に沿う判定線上において垂直偏波信号の強度と水平偏波信号の強度との比Rを算出し、判定線上の位置における垂直偏波信号の強度と水平偏波信号の強度との比Rの変化率dRを算出する。そして、比Rの変化率dRが閾値Sdxから閾値−Sdxまでの第1判定範囲にある場合に、この判定線に対応する境界線候補を、路面の境界線と判定する。これにより、図3および図4に示すように、同一路面における日陰と日なたとの境界線が、路面の境界線候補として検出された場合でも、この境界線候補が、路面の境界線であるか、日陰と日なたとの境界線であるかを適切に判定することができ、これにより、路面を適切に判定することができる。   As described above, the road surface detection device 100 according to the present embodiment, when the boundary line candidate detected from the vertical polarization image and the horizontal polarization image intersects, on the determination line along the boundary line candidate, A ratio R between the intensity and the intensity of the horizontal polarization signal is calculated, and a change rate dR of the ratio R between the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal at the position on the determination line is calculated. Then, when the rate of change dR of the ratio R is in the first determination range from the threshold value Sdx to the threshold value −Sdx, the boundary line candidate corresponding to this determination line is determined as the boundary line of the road surface. As a result, as shown in FIGS. 3 and 4, even when the boundary line between the shade and the sunlit road on the same road surface is detected as a road surface boundary line candidate, the boundary line candidate is a road surface boundary line. Or whether it is the boundary line between the shade and the sun, it is possible to appropriately determine the road surface.

また、本実施形態においては、画像上において、境界線候補をアンテナ装置110の設置位置側に所定距離だけ移動させた位置に判定線を設定することで、路面の境界線に対応する境界線候補については、判定線を路面において設定することができる。その結果、路面の境界線に対応する境界線候補について、路面の境界線であるか否かを適切に判定することができる。   In the present embodiment, a boundary line candidate corresponding to the boundary line on the road surface is set by setting a determination line at a position on the image where the boundary line candidate is moved a predetermined distance to the installation position side of the antenna device 110. For, a decision line can be set on the road surface. As a result, it is possible to appropriately determine whether or not the boundary line candidate corresponding to the road surface boundary line is a road surface boundary line.

さらに、本実施形態では、境界線候補が交差する場合に、境界線候補に沿う判定線上において垂直偏波信号および水平偏波信号の平均強度Vを算出し、判定線に沿った位置における垂直偏波信号と水平偏波信号との平均強度Vの変化率dVを算出する。そして、平均強度Vの変化率dVが閾値SK以下の第2判定範囲内にある場合に、この判定線に対応する境界線候補を、路面の境界線と判定する。これにより、図3および図4に示すように、同一路面上における日陰と日なたとの境界線が、路面の境界線候補として検出された場合でも、この境界線候補が、路面の境界線であるか、日陰と日なたとの境界線であるかをより適切に判定することができ、路面をより適切に判定することができる。   Further, in the present embodiment, when the boundary line candidates intersect, the average intensity V of the vertical polarization signal and the horizontal polarization signal is calculated on the determination line along the boundary line candidate, and the vertical deviation at the position along the determination line is calculated. A rate of change dV of the average intensity V between the wave signal and the horizontally polarized signal is calculated. Then, when the rate of change dV of the average intensity V is within the second determination range equal to or less than the threshold value SK, the boundary line candidate corresponding to this determination line is determined as the road boundary line. As a result, as shown in FIGS. 3 and 4, even if the boundary line between the shade and the sun is detected as a road boundary candidate on the same road surface, the boundary candidate is a road boundary line. It is possible to more appropriately determine whether there is a boundary line between the shade and the sun, and it is possible to more appropriately determine the road surface.

加えて、本実施形態では、3以上の境界線候補が互いに交差しない場合に、境界線候補に平行する平行判定線と、境界線候補に直交する直交判定線を設定し、平行判定線と直交判定線とが交差する画素において、垂直偏波信号の強度と水平偏波信号の強度との比R、および、垂直偏波信号および水平偏波信号の平均強度Vを算出する。そして、同一の直交判定線上の画素における垂直偏波信号の強度と水平偏波信号の強度との比Rの差を、この直交判定線を跨ぐ両側の位置における垂直偏波信号の強度と水平偏波信号の強度との比Rの変化率dRとして算出する。また、同一の直交判定線上の画素における垂直偏波信号および水平偏波信号の平均強度Vの差を、この直交判定線を跨ぐ両側の位置における垂直偏波信号および水平偏波信号の平均強度Vの変化率dVとして算出する。これにより、図8に示すように、日陰と日なたとの境界線が、路面と路側とに跨っていない場合でも、日陰と日なたとの境界線に対応する境界線候補が、路面の境界線であるか、日陰と日なたとの境界線であるかを適切に判定することができる。   In addition, in this embodiment, when three or more boundary line candidates do not intersect each other, a parallel determination line parallel to the boundary line candidate and an orthogonal determination line orthogonal to the boundary line candidate are set, and orthogonal to the parallel determination line In the pixel where the determination line intersects, the ratio R of the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal and the average intensity V of the vertical polarization signal and the horizontal polarization signal are calculated. Then, the difference in the ratio R between the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal in the pixels on the same orthogonal determination line is expressed as the vertical polarization signal intensity and the horizontal polarization at the positions on both sides across the orthogonal determination line. It is calculated as the rate of change dR of the ratio R to the intensity of the wave signal. In addition, the difference between the average intensities V of the vertical polarization signal and the horizontal polarization signal in the pixels on the same orthogonal determination line is determined as the average intensity V of the vertical polarization signal and the horizontal polarization signal at the positions on both sides across the orthogonal determination line. The rate of change dV is calculated. As a result, as shown in FIG. 8, even when the boundary line between the shade and the sunlit does not straddle the road surface and the roadside, the boundary line candidate corresponding to the boundary line between the shade and the sunlit is the boundary of the road surface. It is possible to appropriately determine whether it is a line or a boundary line between the shade and the sun.

さらに、本実施形態では、第1アンテナ素子111が垂直偏波成分の受信波を受信して垂直偏波信号を出力し、第2アンテナ素子112が水平偏波成分の受信波を受信して水平偏波信号を出力することで、垂直偏波信号の強度と水平偏波信号の強度との比から、路面の境界線であるか否かを適切に判定することができる。   Furthermore, in the present embodiment, the first antenna element 111 receives a reception wave of a vertical polarization component and outputs a vertical polarization signal, and the second antenna element 112 receives a reception wave of a horizontal polarization component and horizontally By outputting the polarization signal, it is possible to appropriately determine whether or not it is a road boundary line from the ratio between the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal.

なお、以上に説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。   The embodiment described above is described for facilitating the understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.

たとえば、上述した実施形態では、3以上の境界線候補が交差しない場合に、各境界線候補に直交する直交判定線を設定する構成を例示したが、この構成に限定されず、たとえば、各境界線候補と交差する交差判定線を設定し、境界線候補を跨ぐ交差判定線上の位置において、垂直偏波信号の強度と水平偏波信号の強度との比を算出する構成としてもよい。   For example, in the above-described embodiment, when three or more boundary line candidates do not intersect, a configuration in which an orthogonal determination line orthogonal to each boundary line candidate is set is illustrated. However, the present invention is not limited to this configuration. An intersection determination line that intersects with the line candidate may be set, and a ratio between the intensity of the vertical polarization signal and the intensity of the horizontal polarization signal may be calculated at a position on the intersection determination line across the boundary line candidate.

また、上述した実施形態では、互いに交差しない境界線候補が3以上ある場合に、図13に示すステップS114〜S122の処理を行う構成を例示したが、この構成に限定されず、たとえば、互いに交差しない境界線候補が1以上ある場合に、図13に示すステップS114〜S122の処理を行う構成としてもよい。   In the above-described embodiment, the configuration in which the processes of steps S114 to S122 illustrated in FIG. 13 are performed when there are three or more boundary line candidates that do not intersect with each other is illustrated. However, the configuration is not limited to this configuration. When there are one or more boundary line candidates that are not to be processed, the processing in steps S114 to S122 illustrated in FIG. 13 may be performed.

なお、上述した実施形態に係る第1アンテナ素子111は本発明の第1アンテナ素子に、第2アンテナ素子112は本発明の第2アンテナ素子に、アレイアンテナ113は本発明のアレイアンテナに、アンテナ装置110は本発明のアンテナ装置に、処理装置120は本発明の制御部に、それぞれ相当する。   The first antenna element 111 according to the above-described embodiment is the first antenna element of the present invention, the second antenna element 112 is the second antenna element of the present invention, the array antenna 113 is the array antenna of the present invention, and the antenna. The device 110 corresponds to the antenna device of the present invention, and the processing device 120 corresponds to the control unit of the present invention.

100…路面検出装置
110…アンテナ装置
113…アレイアンテナ
111…第1アンテナ素子
112…第2アンテナ素子
120…処理装置
DESCRIPTION OF SYMBOLS 100 ... Road surface detection apparatus 110 ... Antenna apparatus 113 ... Array antenna 111 ... 1st antenna element 112 ... 2nd antenna element 120 ... Processing apparatus

Claims (8)

対象物から到来する第1偏波方向の受信波を受信して第1偏波信号を出力する第1アンテナ素子と、前記第1アンテナ素子とは偏波方向の異なる第2偏波方向の受信波を受信して第2偏波信号を出力する第2アンテナ素子とを二次元状に配列したアレイアンテナを有するアンテナ装置と、
前記アンテナ装置から取得した前記第1偏波信号および前記第2偏波信号に基づいて、画像を生成し、前記画像に基づいて、路面を判定する路面検出装置の制御方法であって、
前記画像から路面の境界線候補を検出し、
前記境界線候補が交差する場合に、前記境界線候補に沿って前記第1偏波信号の強度と前記第2偏波信号の強度との比の変化率を算出し、前記比の変化率が第1判定範囲内にある場合に、前記境界線候補を、路面の境界線と判定する制御方法。
A first antenna element that receives a received wave in a first polarization direction coming from an object and outputs a first polarization signal, and reception in a second polarization direction that is different from the first antenna element An antenna device having an array antenna in which a second antenna element that receives a wave and outputs a second polarization signal is arranged two-dimensionally;
A method for controlling a road surface detection device that generates an image based on the first polarization signal and the second polarization signal acquired from the antenna device, and determines a road surface based on the image,
Detecting road boundary candidates from the image,
When the boundary line candidate intersects, a change rate of a ratio between the intensity of the first polarization signal and the intensity of the second polarization signal is calculated along the boundary line candidate, and the change rate of the ratio is The control method which determines the said boundary line candidate as the boundary line of a road surface when it exists in the 1st determination range.
請求項1に記載の制御方法であって、
前記画像上において、前記境界線候補を前記アンテナ装置の設置位置側に所定距離だけ移動させた位置に判定線を設定し、前記判定線に沿う前記比の変化率が前記第1判定範囲内にある場合に、前記境界線候補を、路面の境界線と判定する制御方法。
The control method according to claim 1, comprising:
On the image, a determination line is set at a position where the boundary line candidate is moved a predetermined distance to the installation position side of the antenna device, and the rate of change of the ratio along the determination line is within the first determination range. In some cases, the control method determines the boundary line candidate as a road boundary line.
請求項1または2に記載の制御方法であって、
前記境界線候補が交差する場合に、前記境界線候補に沿って前記第1偏波信号および前記第2偏波信号の平均強度の変化率を算出し、前記平均強度の変化率が第2判定範囲内にある場合に、前記境界線候補を、路面の境界線と判定する制御方法。
The control method according to claim 1 or 2, wherein
When the boundary line candidate intersects, an average intensity change rate of the first polarization signal and the second polarization signal is calculated along the boundary line candidate, and the average intensity change rate is a second determination. A control method for determining a boundary line candidate as a road boundary line when the boundary line candidate is within a range.
対象物から到来する第1偏波方向の受信波を受信して第1偏波信号を出力する第1アンテナ素子と、前記第1アンテナ素子とは偏波方向の異なる第2偏波方向の受信波を受信して第2偏波信号を出力する第2アンテナ素子とを二次元状に配列したアレイアンテナを有するアンテナ装置と、
前記アンテナ装置から取得した前記第1偏波信号および前記第2偏波信号に基づいて、画像を生成し、前記画像に基づいて、路面を判定する路面検出装置の制御方法であって、
前記画像から路面の境界線候補を検出し、
交差しない前記境界線候補がある場合に、前記境界線候補を跨ぐ両側において前記第1偏波信号の強度と前記第2偏波信号の強度との比の変化率を算出し、前記比の変化率が第1判定範囲内にある場合に、前記境界線候補を、路面の境界線と判定する制御方法。
A first antenna element that receives a received wave in a first polarization direction coming from an object and outputs a first polarization signal, and reception in a second polarization direction that is different from the first antenna element An antenna device having an array antenna in which a second antenna element that receives a wave and outputs a second polarization signal is arranged two-dimensionally;
A method for controlling a road surface detection device that generates an image based on the first polarization signal and the second polarization signal acquired from the antenna device, and determines a road surface based on the image,
Detecting road boundary candidates from the image,
When there is a boundary candidate that does not intersect, the rate of change of the ratio between the intensity of the first polarization signal and the intensity of the second polarization signal is calculated on both sides across the boundary candidate, and the change in the ratio The control method which determines the said boundary line candidate as the boundary line of a road surface when a rate exists in the 1st determination range.
請求項4に記載の制御方法であって、
交差しない前記境界線候補がある場合に、前記境界線候補を跨ぐ両側において前記第1偏波信号および前記第2偏波信号の平均強度の変化率を算出し、前記平均強度の変化率が第2判定範囲内にある場合に、前記境界線候補を、路面の境界線と判定する制御方法。
The control method according to claim 4, comprising:
When there is a boundary candidate that does not intersect, the average intensity change rate of the first polarization signal and the second polarization signal is calculated on both sides across the boundary candidate, and the average intensity change rate is 2. A control method for determining a boundary line candidate as a road boundary line when the boundary line candidate is within a determination range.
請求項1〜5のいずれかに記載の制御方法であって、
前記第1アンテナ素子は、垂直偏波成分の受信波を、前記第1偏波方向の受信波として主に受信し、
前記第2アンテナ素子は、水平偏波成分の受信波を、前記第2偏波方向の受信波として主に受信する制御方法。
A control method according to any one of claims 1 to 5,
The first antenna element mainly receives a reception wave of a vertically polarized component as a reception wave in the first polarization direction,
The control method in which the second antenna element mainly receives a reception wave of a horizontal polarization component as a reception wave in the second polarization direction.
対象物から到来する第1偏波方向の受信波を受信して第1偏波信号を出力する第1アンテナ素子と、前記第1アンテナ素子とは偏波方向の異なる第2偏波方向の受信波を受信して第2偏波信号を出力する第2アンテナ素子とを二次元状に配列したアレイアンテナを有するアンテナ装置と、
前記アンテナ装置から取得した前記第1偏波信号および前記第2偏波信号に基づいて、画像を生成し、前記画像に基づいて、路面を判定する制御部と、を備える路面検出装置であって、
前記制御部は、
前記画像から路面の境界線候補を検出し、
前記境界線候補が交差する場合に、前記境界線候補に沿って前記第1偏波信号の強度と前記第2偏波信号の強度との比の変化率を算出し、前記比が第1判定範囲内にある場合に、前記境界線候補を、路面の境界線と判定する路面検出装置。
A first antenna element that receives a received wave in a first polarization direction coming from an object and outputs a first polarization signal, and reception in a second polarization direction that is different from the first antenna element An antenna device having an array antenna in which a second antenna element that receives a wave and outputs a second polarization signal is arranged two-dimensionally;
A road surface detection device comprising: a control unit that generates an image based on the first polarization signal and the second polarization signal acquired from the antenna device, and determines a road surface based on the image. ,
The controller is
Detecting road boundary candidates from the image,
When the boundary line candidate intersects, the rate of change of the ratio between the intensity of the first polarization signal and the intensity of the second polarization signal is calculated along the boundary line candidate, and the ratio is a first determination A road surface detection apparatus that determines that the boundary line candidate is a road boundary line when the boundary line candidate is within the range.
対象物から到来する第1偏波方向の受信波を受信して第1偏波信号を出力する第1アンテナ素子と、前記第1アンテナ素子とは偏波方向の異なる第2偏波方向の受信波を受信して第2偏波信号を出力する第2アンテナ素子とを二次元状に配列したアレイアンテナを有するアンテナ装置と、
前記アンテナ装置から取得した前記第1偏波信号および前記第2偏波信号に基づいて、画像を生成し、前記画像に基づいて、路面を判定する制御部と、を備える路面検出装置であって、
前記制御部は、
前記画像から路面の境界線候補を検出し、
交差しない前記境界線候補がある場合に、前記境界線候補を跨ぐ両側において前記第1偏波信号の強度と前記第2偏波信号の強度との比の変化率を算出し、前記比の変化率が第1判定範囲内にある場合に、前記境界線候補を、路面の境界線と判定する路面検出装置。
A first antenna element that receives a received wave in a first polarization direction coming from an object and outputs a first polarization signal, and reception in a second polarization direction that is different from the first antenna element An antenna device having an array antenna in which a second antenna element that receives a wave and outputs a second polarization signal is arranged two-dimensionally;
A road surface detection device comprising: a control unit that generates an image based on the first polarization signal and the second polarization signal acquired from the antenna device, and determines a road surface based on the image. ,
The controller is
Detecting road boundary candidates from the image,
When there is a boundary candidate that does not intersect, the rate of change of the ratio between the intensity of the first polarization signal and the intensity of the second polarization signal is calculated on both sides across the boundary candidate, and the change in the ratio A road surface detection device that determines a boundary line candidate as a road boundary line when the rate is within a first determination range.
JP2015158052A 2015-08-10 2015-08-10 Method for controlling road surface detection device and road surface detection device Active JP6477350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015158052A JP6477350B2 (en) 2015-08-10 2015-08-10 Method for controlling road surface detection device and road surface detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015158052A JP6477350B2 (en) 2015-08-10 2015-08-10 Method for controlling road surface detection device and road surface detection device

Publications (2)

Publication Number Publication Date
JP2017036986A true JP2017036986A (en) 2017-02-16
JP6477350B2 JP6477350B2 (en) 2019-03-06

Family

ID=58047576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015158052A Active JP6477350B2 (en) 2015-08-10 2015-08-10 Method for controlling road surface detection device and road surface detection device

Country Status (1)

Country Link
JP (1) JP6477350B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101870387B1 (en) * 2017-04-28 2018-06-22 동국대학교 산학협력단 Radiometer, method for operating the same, and system for detecting fire of using the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19932094A1 (en) * 1999-07-09 2001-01-25 Daimler Chrysler Ag Multi-sensory, predictive road condition detection
US20080100510A1 (en) * 2006-10-27 2008-05-01 Bonthron Andrew J Method and apparatus for microwave and millimeter-wave imaging
JP2012073221A (en) * 2010-08-30 2012-04-12 Nissan Motor Co Ltd Object detection device and object detection method
JP2013045232A (en) * 2011-08-23 2013-03-04 Ricoh Co Ltd Vehicle driving support device, detecting method of shoulder of road, and vehicle driving support method based on the same
JP2013045227A (en) * 2011-08-23 2013-03-04 Ricoh Co Ltd Vehicle driving support device, detecting method of shoulder of road on which vehicle travels, and vehicle driving support method based on the same
WO2013129380A1 (en) * 2012-03-01 2013-09-06 日産自動車株式会社 Vehicle detector and vehicle detection method
WO2014024763A1 (en) * 2012-08-08 2014-02-13 日産自動車株式会社 Road surface state detection device and road surface state detection method
JP2014067136A (en) * 2012-09-25 2014-04-17 Nissan Motor Co Ltd Lane line detector and lane line detection method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19932094A1 (en) * 1999-07-09 2001-01-25 Daimler Chrysler Ag Multi-sensory, predictive road condition detection
US20080100510A1 (en) * 2006-10-27 2008-05-01 Bonthron Andrew J Method and apparatus for microwave and millimeter-wave imaging
JP2012073221A (en) * 2010-08-30 2012-04-12 Nissan Motor Co Ltd Object detection device and object detection method
JP2013045232A (en) * 2011-08-23 2013-03-04 Ricoh Co Ltd Vehicle driving support device, detecting method of shoulder of road, and vehicle driving support method based on the same
JP2013045227A (en) * 2011-08-23 2013-03-04 Ricoh Co Ltd Vehicle driving support device, detecting method of shoulder of road on which vehicle travels, and vehicle driving support method based on the same
WO2013129380A1 (en) * 2012-03-01 2013-09-06 日産自動車株式会社 Vehicle detector and vehicle detection method
WO2014024763A1 (en) * 2012-08-08 2014-02-13 日産自動車株式会社 Road surface state detection device and road surface state detection method
JP2014067136A (en) * 2012-09-25 2014-04-17 Nissan Motor Co Ltd Lane line detector and lane line detection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101870387B1 (en) * 2017-04-28 2018-06-22 동국대학교 산학협력단 Radiometer, method for operating the same, and system for detecting fire of using the same

Also Published As

Publication number Publication date
JP6477350B2 (en) 2019-03-06

Similar Documents

Publication Publication Date Title
US9771080B2 (en) Road surface gradient detection device
JP5870908B2 (en) Vehicle collision determination device
US10094661B2 (en) Optical sensor and optical sensor system
US9081086B2 (en) Vehicle detection device and vehicle detection method
JP2016183953A (en) Object detecting device and object detecting method
JP5316572B2 (en) Object recognition device
KR20150108680A (en) Tuning method and control device of vehicle radar
JP7015723B2 (en) Object detection device, object detection system, and object detection method
US10810749B2 (en) Image processing apparatus, moving body device control system, computer-readable medium, and image processing method
JP6326641B2 (en) Image processing apparatus and image processing method
JP6413898B2 (en) Pedestrian determination device
EP3394633B1 (en) Device in a car for communicating with at least one neighboring device, corresponding method and computer program product.
KR100902559B1 (en) Radar interferometer and method of target position estimation using the same
JP6477350B2 (en) Method for controlling road surface detection device and road surface detection device
JP2013161190A (en) Object recognition device
WO2014054124A1 (en) Road surface markings detection device and road surface markings detection method
JPWO2018163853A1 (en) Radar apparatus and target position detecting method for radar apparatus
JP4905496B2 (en) Object detection device
JP2020041895A5 (en)
JP6273757B2 (en) Radar equipment
JP2015141041A (en) antenna device
KR101334734B1 (en) Method and device for computing doa of incident signal using beam function
JP7064389B2 (en) Vehicle measuring device and vehicle measuring program
JP5899678B2 (en) Road surface unevenness detection apparatus and road surface unevenness detection method
TWI832887B (en) Wireless device and positioning method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190121

R151 Written notification of patent or utility model registration

Ref document number: 6477350

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151