JP2017036217A - Cosmetic - Google Patents

Cosmetic Download PDF

Info

Publication number
JP2017036217A
JP2017036217A JP2015154035A JP2015154035A JP2017036217A JP 2017036217 A JP2017036217 A JP 2017036217A JP 2015154035 A JP2015154035 A JP 2015154035A JP 2015154035 A JP2015154035 A JP 2015154035A JP 2017036217 A JP2017036217 A JP 2017036217A
Authority
JP
Japan
Prior art keywords
cellulose
fiber
fine fibrous
mmol
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015154035A
Other languages
Japanese (ja)
Other versions
JP6758805B2 (en
Inventor
郁絵 本間
Ikue HOMMA
郁絵 本間
隆行 嶋岡
Takayuki Shimaoka
隆行 嶋岡
敬子 村社
Keiko Murakoso
敬子 村社
章人 宇賀
Akito Uga
章人 宇賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmos Technical Center Co Ltd
Nikko Chemicals Co Ltd
Oji Holdings Corp
Original Assignee
Cosmos Technical Center Co Ltd
Nikko Chemicals Co Ltd
Oji Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2015154035A priority Critical patent/JP6758805B2/en
Application filed by Cosmos Technical Center Co Ltd, Nikko Chemicals Co Ltd, Oji Holdings Corp filed Critical Cosmos Technical Center Co Ltd
Priority to PCT/JP2016/072961 priority patent/WO2017022830A1/en
Priority to CN201680045333.3A priority patent/CN108024942B/en
Priority to KR1020187006080A priority patent/KR20180043793A/en
Priority to US15/750,115 priority patent/US11382842B2/en
Priority to EP16833109.8A priority patent/EP3332763A4/en
Priority to KR1020217007510A priority patent/KR102306949B1/en
Priority to CA2997023A priority patent/CA2997023C/en
Publication of JP2017036217A publication Critical patent/JP2017036217A/en
Application granted granted Critical
Publication of JP6758805B2 publication Critical patent/JP6758805B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide cosmetics that use fine fibrous celluloses as thickener in a cosmetic formulation while fine fibrous celluloses are inhibited in its agglomeration and uniform.SOLUTION: The cosmetics comprise the following components (A) and (B): (A) fine fibrous celluloses with a fiber width of 1000 nm or less, having phosphoric acid-derived substituents of 0.1 mmol/g or more and 3.0 mmol/g or less; and (B) water-soluble polymers.SELECTED DRAWING: None

Description

本発明は、微細繊維状セルロースと水溶性高分子とを含む化粧料に関する。   The present invention relates to a cosmetic comprising fine fibrous cellulose and a water-soluble polymer.

一般的に、化粧料はその目的や用途に応じた粘度に調整されており、製剤に応じて様々な増粘剤やゲル化剤が用いられている。前記増粘剤やゲル化剤としては、具体的には、カルボキシビニルポリマー、キサンタンガム、セルロース、グアーガム、アルギン酸、ポリアクリル酸等の水溶性高分子がよく用いられている。これらを用途別に使い分け、配合量、配合成分等を変えることで、ローションのとろみのような低粘度化粧料からヘアチックのような固形ジェル状態のものまで調製することができる。   Generally, cosmetics are adjusted to a viscosity according to the purpose and application, and various thickeners and gelling agents are used depending on the preparation. Specifically, water-soluble polymers such as carboxyvinyl polymer, xanthan gum, cellulose, guar gum, alginic acid, and polyacrylic acid are often used as the thickener and gelling agent. By using these appropriately for each application and changing the blending amount, blending components, etc., it is possible to prepare from a low-viscosity cosmetic such as a lotion thick to a solid gel state such as a hair tic.

カルボキシビニルポリマー及びその塩は少量でゲル化でき、乳化剤との併用も可能なため、化粧料において多用されている。しかし、カルボキシビニルポリマーの作るゲル構造においては、塩の存在下で、ゲル構造が崩れやすいこと、pHの影響を受けやすいことなどの問題点があった。また、高粘度の組成物を得るために、増粘剤の配合量を増やすと、塗布時にべたついたり、ヨレが出るという問題があった。さらに、塩に強いアルキル化デンプンや、メタクリル酸アルキル・アクリル酸コポリマーなどを併用する技術(特許文献1)が知られているが、このような方法ではゲル硬度が硬く、脆弱になりやすいという傾向があった。   Carboxyvinyl polymers and salts thereof are frequently used in cosmetics because they can be gelled in a small amount and can be used in combination with emulsifiers. However, the gel structure produced by the carboxyvinyl polymer has problems such as the gel structure being easily broken in the presence of salt and being easily affected by pH. Further, when the blending amount of the thickener is increased in order to obtain a highly viscous composition, there is a problem that it becomes sticky at the time of application or distorts. Furthermore, there is known a technique (Patent Document 1) that uses a salt-resistant alkylated starch or an alkyl methacrylate / acrylic acid copolymer in combination, but such a method has a tendency that the gel hardness is hard and fragile. was there.

微細繊維状セルロースは、ゲル状組成物における一成分として使用することが知られている。例えば、特許文献2には、水溶性高分子に、微細繊維状セルロースを添加することで、分散性が良く、さらに安定性も改善された乾燥組成物、それを用いた増粘ゲル化剤、液状組成物およびゲル状組成物が記載されている。より具体的には、特許文献2には、植物細胞壁を原料とする結晶性の微細繊維状セルロース1〜49質量%と水溶性高分子51〜99質量%からなる乾燥組成物が記載されている。特許文献2には、水溶性高分子としてはカルボキシメチルセルロース・ナトリウムおよびデキストリンを用いることが好ましいことが記載されている。特許文献2には、微細繊維の繊維幅(短径)が2nm〜60μmであることが記載されているが、特許文献2の微細繊維状セルロースは、μmオーダーの繊維幅を含むものであり、nmオーダーの繊維幅を有する繊維のみから構成されているものではない。   It is known that fine fibrous cellulose is used as one component in a gel composition. For example, Patent Document 2 discloses a dry composition having good dispersibility and further improved stability by adding fine fibrous cellulose to a water-soluble polymer, a thickening gelling agent using the same, Liquid compositions and gel compositions are described. More specifically, Patent Document 2 describes a dry composition comprising 1 to 49% by mass of crystalline fine fibrous cellulose and 51 to 99% by mass of a water-soluble polymer using plant cell walls as raw materials. . Patent Document 2 describes that it is preferable to use carboxymethylcellulose sodium and dextrin as the water-soluble polymer. Patent Document 2 describes that the fiber width (minor axis) of the fine fiber is 2 nm to 60 μm, but the fine fibrous cellulose of Patent Document 2 includes a fiber width on the order of μm, It is not comprised only of the fiber which has a fiber width of nm order.

特許文献3には、セルロース繊維を用いてなるゲル状組成物であって、セルロース繊維の含有量がゲル状組成物全体の0.3〜5.0重量%の範囲であることを特徴とするゲル状組成物が記載されている。特許文献3におけるセルロース繊維は、最大繊維径が1000nm以下で、数平均繊維径が2〜150nmであり、セルロースはアルデヒド基を0.08〜0.3mmol/gおよびカルボキシル基を0.6〜2.0mmol/g有している。特許文献4には、セルロース繊維、増粘促進剤(非イオン性の増粘多糖類、アクリル系高分子、重量平均分子量120000以上のセルロース誘導体から選ばれる)、および水を含有する粘性水系組成物が記載されている。特許文献4におけるセルロース繊維は、最大繊維径が1000nm以下で、数平均繊維径が2〜150nmであり、セルロース中ではカルボキシル基が0.6〜2.0mmol/gの割合になっている。   Patent Document 3 is a gel composition using cellulose fibers, wherein the content of cellulose fibers is in the range of 0.3 to 5.0% by weight of the entire gel composition. A gel composition is described. The cellulose fiber in Patent Document 3 has a maximum fiber diameter of 1000 nm or less and a number average fiber diameter of 2 to 150 nm. The cellulose has an aldehyde group of 0.08 to 0.3 mmol / g and a carboxyl group of 0.6 to 2. 0.0 mmol / g. Patent Document 4 discloses a viscous aqueous composition containing cellulose fibers, a thickening accelerator (selected from nonionic thickening polysaccharides, acrylic polymers, cellulose derivatives having a weight average molecular weight of 120,000 or more), and water. Is described. The cellulose fiber in Patent Document 4 has a maximum fiber diameter of 1000 nm or less, a number average fiber diameter of 2 to 150 nm, and a ratio of 0.6 to 2.0 mmol / g of carboxyl groups in cellulose.

特許文献3および特許文献4に記載のセルロース繊維からなる分散液は高い増粘性を有することから、これらの微細繊維状セルロースは化粧品などの増粘剤として使用することが提案されている。また、特許文献5には、微細繊維状セルロースが保湿作用を有することが記載されている。   Since dispersions composed of cellulose fibers described in Patent Document 3 and Patent Document 4 have high viscosity, it has been proposed to use these fine fibrous celluloses as thickeners for cosmetics and the like. Patent Document 5 describes that fine fibrous cellulose has a moisturizing action.

特開2000−327516号公報JP 2000-327516 A 特開2008−106178号公報JP 2008-106178 A 特開2010−37348号公報JP 2010-37348 A 特開2012−126788号公報JP 2012-126788 A 特開2011−56456号公報JP 2011-56456 A

特許文献2および特許文献3に記載されている微細繊維状セルロースは繊維幅が100nm以下であり、繊維同士の静電反発によって分散状態を保っている。しかし、上記微細繊維状セルロースは、塩などの電解質の存在下では繊維同士の静電反発が弱まり、粘度の低下、凝集、層分離などを起こすことが知られている。微細繊維状セルロースを化粧料用増粘剤として使用することを意図する場合、化粧品処方中は塩などの電解質を含む場合が多く、化粧品処方中で微細繊維状セルロースの増粘性が十分に発揮されない、又は凝集などを引き起こしてしまうという問題点があった。他方、化粧品処方中において増粘剤として微細繊維状セルロースを使用せず、キサンタンガムなどの水溶性高分子のみ使用すると、化粧料がべたつくという問題があった。以上の背景より、塩や粉体等の共存化においても、感触が良く、十分な増粘効果と製剤安定性とを実現する化粧料の開発が求められていた。   The fine fibrous cellulose described in Patent Document 2 and Patent Document 3 has a fiber width of 100 nm or less, and maintains a dispersed state by electrostatic repulsion between fibers. However, it is known that the fine fibrous cellulose is weak in electrostatic repulsion between fibers in the presence of an electrolyte such as a salt and causes a decrease in viscosity, aggregation, layer separation, and the like. When fine fibrous cellulose is intended for use as a thickener for cosmetics, cosmetic formulations often contain electrolytes such as salts, and the thickening of fine fibrous cellulose is not fully demonstrated in cosmetic formulations. There was a problem of causing aggregation or the like. On the other hand, when fine fibrous cellulose is not used as a thickener in a cosmetic formulation, and only a water-soluble polymer such as xanthan gum is used, there is a problem that the cosmetic becomes sticky. In view of the above background, there has been a demand for the development of a cosmetic material that has a good touch even in the coexistence of salt, powder, and the like, and realizes a sufficient thickening effect and formulation stability.

本発明は、化粧品処方中において増粘剤として微細繊維状セルロースを使用しつつ、微細繊維状セルロースの凝集が抑制し、均一な化粧料を提供することを解決すべき課題とした。   An object of the present invention is to provide a uniform cosmetic by suppressing aggregation of fine fibrous cellulose while using fine fibrous cellulose as a thickener in a cosmetic formulation.

本発明者らは上記課題を解決するために、化粧品処方中においても微細繊維状セルロースが高い分散性を維持する条件について鋭意検討した。その結果、細繊維状セルロースとして、リン酸由来の置換基を0.1mmol/g以上3.0mmol/g以下有する微細繊維状セルロースを使用し、さらに水溶性高分子を配合することによって、上記課題を解決した化粧料を提供できることが判明した。本発明は、上記知見に基づいて完成したものである。   In order to solve the above-described problems, the present inventors diligently studied the conditions under which fine fibrous cellulose maintains high dispersibility even during cosmetic formulation. As a result, the above-mentioned problem can be obtained by using fine fibrous cellulose having a substituent derived from phosphoric acid of 0.1 mmol / g or more and 3.0 mmol / g or less as a fine fibrous cellulose, and further incorporating a water-soluble polymer. It was found that cosmetics that solved this problem can be provided. The present invention has been completed based on the above findings.

すなわち、本発明は以下の発明を包含する。
(1)下記成分(A)および(B)を含む化粧料。
(A)繊維幅が1000nm以下であり、かつリン酸由来の置換基を0.1mmol/g以上3.0mmol/g以下有する微細繊維状セルロース;
(B)水溶性高分子:
(2)前記成分(B)が、増粘性多糖類を含む(1)に記載の化粧料。
(3)前記成分(B)が、イオン性の前記増粘性多糖類を含む(2)に記載の化粧料。
(4)前記成分(A)の配合量が、化粧料全体に対して0.01〜2.0質量%である(1)〜(3)いずれか一項に記載の化粧料。
(5)前記成分(B)の配合量が、化粧料全体に対して0.03〜1.0質量%である(1)〜(4)いずれか一項に記載の化粧料。
(6)成分(C)として、無機粉体、有機粉体、無機酸、有機酸、無機酸塩、有機酸塩、および陰イオン性界面活性剤からなる群より選ばれる一種または二種以上をさらに含有する(1)〜(5)いずれか一項に記載の化粧料。
(7)化粧料を形成するために用いられるセルロース含有組成物であって、下記成分(A)、(B)を含むセルロース含有組成物。
(A)繊維幅が1000nm以下であり、かつリン酸由来の置換基を0.1mmol/g以上3.0mmol/g以下有する微細繊維状セルロース;
(B)水溶性高分子:
That is, the present invention includes the following inventions.
(1) A cosmetic comprising the following components (A) and (B).
(A) Fine fibrous cellulose having a fiber width of 1000 nm or less and having a substituent derived from phosphoric acid of 0.1 mmol / g or more and 3.0 mmol / g or less;
(B) Water-soluble polymer:
(2) The cosmetic according to (1), wherein the component (B) contains a thickening polysaccharide.
(3) The cosmetic according to (2), wherein the component (B) contains the ionic thickening polysaccharide.
(4) Cosmetics as described in any one of (1)-(3) whose compounding quantity of the said component (A) is 0.01-2.0 mass% with respect to the whole cosmetics.
(5) Cosmetics as described in any one of (1)-(4) whose compounding quantity of the said component (B) is 0.03-1.0 mass% with respect to the whole cosmetics.
(6) As component (C), one or more selected from the group consisting of inorganic powder, organic powder, inorganic acid, organic acid, inorganic acid salt, organic acid salt, and anionic surfactant The cosmetic according to any one of (1) to (5), further contained.
(7) A cellulose-containing composition used for forming a cosmetic, comprising the following components (A) and (B).
(A) Fine fibrous cellulose having a fiber width of 1000 nm or less and having a substituent derived from phosphoric acid of 0.1 mmol / g or more and 3.0 mmol / g or less;
(B) Water-soluble polymer:

本発明の微細繊維状セルロースと水溶性高分子とを含む化粧料は、製剤の均一性が良好であり、かつ製剤のべたつきがなく使用感が良好である。   A cosmetic comprising the fine fibrous cellulose of the present invention and a water-soluble polymer has good uniformity of the preparation, and has no stickiness of the preparation and good usability.

図1は、繊維原料に対するNaOH滴下量と電気伝導度との関係を示す。FIG. 1 shows the relationship between the amount of NaOH dripped with respect to a fiber raw material and electrical conductivity.

以下、本発明について更に詳細に説明する。なお、本明細書に記載される材料、方法および数値範囲などの説明は、当該材料、方法および数値範囲などに限定することを意図したものではなく、また、それ以外の材料、方法および数値範囲などの使用を除外するものでもない。   Hereinafter, the present invention will be described in more detail. Note that the descriptions of materials, methods, and numerical ranges described in this specification are not intended to be limited to the materials, methods, and numerical ranges, and other materials, methods, and numerical ranges are not intended. It does not exclude the use of such as.

本発明の化粧料は、下記成分(A)および(B)を含む。
(A)繊維幅が1000nm以下であり、かつリン酸由来の置換基を0.1mmol/g以上3.0mmol/g以下有する微細繊維状セルロース;
(B)水溶性高分子:
The cosmetic of the present invention contains the following components (A) and (B).
(A) Fine fibrous cellulose having a fiber width of 1000 nm or less and having a substituent derived from phosphoric acid of 0.1 mmol / g or more and 3.0 mmol / g or less;
(B) Water-soluble polymer:

<微細繊維状セルロース>
セルロース原料としては、製紙用パルプ、コットンリンターやコットンリントなどの綿系パルプ、麻、麦わら、バガスなどの非木材系パルプ、ホヤや海草などから単離されるセルロースなどが挙げられるが、特に限定されない。これらの中でも、入手のしやすさという点で、製紙用パルプが好ましいが、特に限定されない。製紙用パルプとしては、広葉樹クラフトパルプおよび針葉樹クラフトパルプが挙げられる。広葉樹クラフトパルプとしては、晒クラフトパルプ(LBKP)、未晒クラフトパルプ(LUKP)、酸素漂白クラフトパルプ(LOKP)などが挙げられる。針葉樹クラフトパルプとしては、晒クラフトパルプ(NBKP)、未晒クラフトパルプ(NUKP)、酸素漂白クラフトパルプ(NOKP)などが挙げられる。また、化学パルプ、半化学パルプ、機械パルプ、非木材パルプ、古紙を原料とする脱墨パルプが挙げられるが、特に限定されない。化学パルプとしては、サルファイトパルプ(SP)、ソーダパルプ(AP)等がある。半化学パルプとしては、セミケミカルパルプ(SCP)、ケミグラウンドウッドパルプ(CGP)等がある。機械パルプとしては、砕木パルプ(GP)、サーモメカニカルパルプ(TMP、BCTMP)等がある。非木材パルプとしては、楮、三椏、麻、ケナフ等を原料とするものがある。これらの中でも、より入手しやすいことから、クラフトパルプ、脱墨パルプ、サルファイトパルプが好ましいが、特に限定されない。セルロース原料は1種を単独で用いてもよいし、2種以上混合して用いてもよい。
<Fine fibrous cellulose>
Examples of cellulose raw materials include paper pulp, cotton pulp such as cotton linter and cotton lint, non-wood pulp such as hemp, straw, and bagasse, cellulose isolated from sea squirts and seaweed, etc., but are not particularly limited. . Among these, paper pulp is preferable in terms of availability, but is not particularly limited. Papermaking pulp includes hardwood kraft pulp and softwood kraft pulp. Examples of hardwood kraft pulp include bleached kraft pulp (LBKP), unbleached kraft pulp (LUKP), and oxygen bleached kraft pulp (LOKP). Examples of softwood kraft pulp include bleached kraft pulp (NBKP), unbleached kraft pulp (NUKP), and oxygen bleached kraft pulp (NOKP). Moreover, although deinking pulp made from chemical pulp, semi-chemical pulp, mechanical pulp, non-wood pulp, and waste paper is mentioned, it is not particularly limited. Examples of chemical pulp include sulfite pulp (SP) and soda pulp (AP). Semi-chemical pulp includes semi-chemical pulp (SCP), chemiground wood pulp (CGP), and the like. Examples of mechanical pulp include groundwood pulp (GP) and thermomechanical pulp (TMP, BCTMP). Non-wood pulp includes those made from cocoon, cocoon, hemp, kenaf and the like. Among these, kraft pulp, deinked pulp, and sulfite pulp are preferable because they are more easily available, but are not particularly limited. A cellulose raw material may be used individually by 1 type, and may be used in mixture of 2 or more types.

微細繊維状セルロース(単に、微細繊維ということもある。)の平均繊維幅は、電子顕微鏡で観察して、1000nm以下である。平均繊維幅は、好ましくは2〜1000nm、より好ましくは2〜100nmであり、より好ましくは2〜50nmであり、さらに好ましくは2nm〜10nmであるが、特に限定されない。微細繊維状セルロースの平均繊維幅が2nm未満であると、セルロース分子として水に溶解しているため、微細繊維状セルロースとしての物性(強度や剛性、寸法安定性)が発現しなくなる。ここで、微細繊維状セルロースがI型結晶構造をとっていることは、グラファイトで単色化したCuKα(λ=1.5418Å)を用いた広角X線回折写真より得られる回折プロファイルにおいて同定できる。具体的には、2θ=14〜17°付近と2θ=22〜23°付近の2箇所の位置に典型的なピークをもつことから同定することができる。   The average fiber width of fine fibrous cellulose (sometimes simply referred to as fine fiber) is 1000 nm or less as observed with an electron microscope. The average fiber width is preferably 2 to 1000 nm, more preferably 2 to 100 nm, more preferably 2 to 50 nm, and further preferably 2 nm to 10 nm, but is not particularly limited. When the average fiber width of the fine fibrous cellulose is less than 2 nm, the physical properties (strength, rigidity, dimensional stability) as the fine fibrous cellulose are not expressed because the cellulose molecules are dissolved in water. Here, the fact that the fine fibrous cellulose has a type I crystal structure can be identified in a diffraction profile obtained from a wide-angle X-ray diffraction photograph using CuKα (λ = 1.5418Å) monochromatized with graphite. Specifically, it can be identified by having typical peaks at two positions near 2θ = 14-17 ° and 2θ = 22-23 °.

セルロース繊維の電子顕微鏡観察による繊維幅の測定は以下のようにして行う。濃度0.05〜0.1質量%のセルロース繊維の水系懸濁液を調製し、該懸濁液を親水化処理したカーボン膜被覆グリッド上にキャストしてTEM観察用試料とする。幅の広い繊維を含む場合には、ガラス上にキャストした表面のSEM像を観察してもよい。構成する繊維の幅に応じて1000倍、5000倍、10000倍あるいは50000倍のいずれかの倍率で電子顕微鏡画像による観察を行う。但し、試料、観察条件や倍率は下記の条件を満たすように調整する。   Measurement of the fiber width of the cellulose fiber by electron microscope observation is performed as follows. An aqueous suspension of cellulose fibers having a concentration of 0.05 to 0.1% by mass is prepared, and the suspension is cast on a carbon film-coated grid subjected to a hydrophilic treatment to obtain a sample for TEM observation. When a wide fiber is included, an SEM image of the surface cast on glass may be observed. Observation with an electron microscope image is performed at a magnification of 1000 times, 5000 times, 10000 times, or 50000 times depending on the width of the constituent fibers. However, the sample, observation conditions, and magnification are adjusted to satisfy the following conditions.

(1)観察画像内の任意箇所に一本の直線Xを引き、該直線Xに対し、20本以上の繊維が交差する。
(2)同じ画像内で該直線と垂直に交差する直線Yを引き、該直線Yに対し、20本以上の繊維が交差する。
(1) One straight line X is drawn at an arbitrary location in the observation image, and 20 or more fibers intersect the straight line X.
(2) A straight line Y perpendicular to the straight line is drawn in the same image, and 20 or more fibers intersect the straight line Y.

上記条件を満足する観察画像に対し、直線X、直線Yと交錯する繊維の幅を目視で読み取る。こうして少なくとも重なっていない表面部分の画像を3組以上観察し、各々の画像に対して、直線X、直線Yと交錯する繊維の幅を読み取る。このように少なくとも20本×2×3=120本の繊維幅を読み取る。セルロース繊維の平均繊維幅(単に、「繊維幅」ということもある。)はこのように読み取った繊維幅の平均値である。   The width of the fiber that intersects with the straight line X and the straight line Y is visually read from the observation image that satisfies the above conditions. In this way, at least three sets of images of the surface portion that do not overlap each other are observed, and the width of the fiber intersecting with the straight lines X and Y is read for each image. Thus, at least 20 × 2 × 3 = 120 fiber widths are read. The average fiber width of cellulose fibers (sometimes simply referred to as “fiber width”) is an average value of the fiber widths read in this way.

微細繊維状セルロースの繊維長は特に限定されないが、0.1〜1000μmが好ましく、0.1〜800μmがさらに好ましく、0.1〜600μmが特に好ましい。繊維長が0.1μm未満になると、微細繊維状セルロースの結晶領域も破壊されていることになり、本来の物性を発揮できない。1000μmを超えると微細繊維のスラリー粘度が非常に高くなり、扱いづらくなる。繊維長は、TEM、SEM、AFMによる画像解析より求めることができる。   The fiber length of the fine fibrous cellulose is not particularly limited, but is preferably 0.1 to 1000 μm, more preferably 0.1 to 800 μm, and particularly preferably 0.1 to 600 μm. When the fiber length is less than 0.1 μm, the crystalline region of the fine fibrous cellulose is also destroyed, and the original physical properties cannot be exhibited. If it exceeds 1000 μm, the slurry viscosity of the fine fibers becomes very high and it becomes difficult to handle. The fiber length can be obtained by image analysis using TEM, SEM, or AFM.

微細繊維状セルロースが含有する結晶部分の比率は、本発明においては特に限定されないが、X線回折法によって求められる結晶化度が60%以上であるセルロースを使用することが好ましい。結晶化度は、好ましくは65%以上であり、より好ましくは70%以上であり、この場合、耐熱性と低線熱膨張率発現の点でさらに優れた性能が期待できる。結晶化度については、X線回折プロファイルを測定し、そのパターンから常法により求められる(Seagalら、Textile Research Journal、29巻、786ページ、1959年)。   The ratio of the crystal part contained in the fine fibrous cellulose is not particularly limited in the present invention, but it is preferable to use cellulose having a crystallinity obtained by an X-ray diffraction method of 60% or more. The degree of crystallinity is preferably 65% or more, more preferably 70% or more. In this case, further excellent performance can be expected in terms of heat resistance and low linear thermal expansion. The degree of crystallinity is obtained by measuring an X-ray diffraction profile and determining the crystallinity by a conventional method (Seagal et al., Textile Research Journal, 29, 786, 1959).

<化学的処理>
本発明においては、微細繊維状セルロースとしては、セルロース原料を化学的処理および解繊処理することによって得られる、リン酸基を有する微細繊維状セルロースを使用することができる。リン酸基などの置換基を有する微細繊維状セルロースは、静電反発効果により超微細化することができる点で好ましい。また置換基を有する微細繊維状セルロースは、静電反発効果により水中で凝集せず、安定となりうる一方で、塩を含む水中ではその効果が弱まり、安定的に分散することが困難となる。そのため、本発明を適用して塩を含む水中でも安定化し、増粘効果を発揮させるのに、特に適している。本発明で使用する微細繊維状セルロースにおいては、特に、置換基としてリン酸由来の置換基を0.1mmol/g以上3.0mmol/g以下有することが特徴である。このような特徴を有する微細繊維状セルロースを使用することにより、化粧料として均一な製剤を得ることができる。
<Chemical treatment>
In the present invention, as the fine fibrous cellulose, a fine fibrous cellulose having a phosphate group obtained by subjecting a cellulose raw material to chemical treatment and defibration treatment can be used. Fine fibrous cellulose having a substituent such as a phosphoric acid group is preferable in that it can be made ultrafine due to the electrostatic repulsion effect. Further, the fine fibrous cellulose having a substituent does not aggregate in water due to the electrostatic repulsion effect and can be stable, but the effect is weakened in water containing salt, and it becomes difficult to stably disperse. Therefore, it is particularly suitable for applying the present invention to stabilize in water containing a salt and exhibit a thickening effect. The fine fibrous cellulose used in the present invention is particularly characterized by having a substituent derived from phosphoric acid as a substituent in the range of 0.1 mmol / g to 3.0 mmol / g. By using fine fibrous cellulose having such characteristics, a uniform preparation as a cosmetic can be obtained.

[化学処理一般]
セルロース原料の化学的処理の方法は、微細繊維を得ることができる方法である限り特に限定されない。例えば、酸処理、オゾン処理、TEMPO酸化処理、酵素処理、またはセルロースまたは繊維原料中の官能基と共有結合を形成し得る化合物による処理などが挙げられるがこれらに限定されない。但し、本発明で用いる微細繊維状セルロースはリン酸由来の置換基を有することから、化学的処理の方法としては、リン酸基を有する化合物または/およびその塩による処理を行うことが好ましい。
[Chemical processing in general]
The method of chemical treatment of the cellulose raw material is not particularly limited as long as it is a method capable of obtaining fine fibers. Examples include, but are not limited to, acid treatment, ozone treatment, TEMPO oxidation treatment, enzyme treatment, or treatment with a compound that can form a covalent bond with a functional group in cellulose or a fiber raw material. However, since the fine fibrous cellulose used in the present invention has a substituent derived from phosphoric acid, the chemical treatment is preferably carried out with a compound having a phosphoric acid group and / or a salt thereof.

酸処理の一例としては、Otto van den Berg; Jeffrey R. Capadona; Christoph Weder;
Biomacromolecules 2007, 8, 1353-1357.に記載されている方法を挙げることができるが、特に限定されない。具体的には、硫酸や塩酸等によりセルロース繊維を加水分解処理する。高51濃度の酸処理により製造されるものは、非結晶領域がほとんど分解され、繊維の短いもの(セルロースナノクリスタルとも呼ばれる)になるが、これらも微細繊維状セルロースに含まれる。
Examples of acid treatment include Otto van den Berg; Jeffrey R. Capadona; Christoph Weder;
Although the method described in Biomacromolecules 2007, 8, 1353-1357. Can be mentioned, it is not specifically limited. Specifically, the cellulose fiber is hydrolyzed with sulfuric acid or hydrochloric acid. Those produced by acid treatment with a high concentration of 51 are almost decomposed in amorphous regions and become short fibers (also called cellulose nanocrystals), which are also included in fine fibrous cellulose.

オゾン処理の一例としては、特開2010−254726号公報に記載されている方法を挙げることができるが、特に限定されない。具体的には、繊維をオゾン処理した後、水に分散し、得られた繊維の水系懸濁液を粉砕処理する。   As an example of the ozone treatment, a method described in JP 2010-254726 A can be exemplified, but it is not particularly limited. Specifically, after the fiber is treated with ozone, it is dispersed in water, and the resulting aqueous suspension of the fiber is pulverized.

TEMPO酸化の一例としては、Saito T & al. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 2006, 7 (6), 1687-91に記載されている方法を挙げることができるが、特に限定されない。具体的には、繊維をTEMPO酸化処理した後、水に分散し、得られた繊維の水系懸濁液を粉砕処理する。   Examples of TEMPO oxidation include the methods described in Saito T & al. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 2006, 7 (6), 1687-91. There is no particular limitation. Specifically, the fiber is subjected to TEMPO oxidation treatment, and then dispersed in water, and the aqueous suspension of the obtained fiber is pulverized.

酵素処理の一例としては、WO2013/176033号公報(WO2013/176033号公報に記載の内容は全て本明細書中に引用されるものとする)に記載の方法を挙げることができるが、特に限定されない。具体的には、繊維原料を、少なくとも酵素のEG活性とCBHI活性の比が0.06以上の条件下で、酵素で処理する方法である。   As an example of the enzyme treatment, the method described in WO2013 / 176033 (all contents described in WO2013 / 176033 shall be cited in the present specification) can be mentioned, but is not particularly limited. . Specifically, the fiber raw material is treated with an enzyme at least under a condition that the ratio of the EG activity to the CBHI activity of the enzyme is 0.06 or more.

EG活性は下記のように測定し、定義される。
濃度1% (W/V) のカルボキシルメチルセルロース(CMCNa High viscosity; Cat No150561, MP Biomedicals, lnc.)の基質溶液(濃度100mM、pH5.0の酢酸−酢酸ナトリウム緩衝液含有)を調製する。測定用酵素を予め緩衝液(前記同様)で希釈(希釈倍率は下記酵素溶液の吸光度が下記グルコース標準液から得られた検量線に入ればよい)した。90μlの前記基質溶液に前記希釈して得られた酵素溶液10μlを添加し、37℃、30分間反応させる。
検量線を作成するために、イオン交換水(ブランク)、グルコース標準液(濃度0.5〜5.6mMから少なくとも濃度が異なる標準液4点)を選択し、それぞれ100μlを用意し、37℃、30分間保温する。
EG activity is measured and defined as follows.
A substrate solution of carboxymethylcellulose (CMCNa High viscosity; Cat No150561, MP Biomedicals, Lnc.) At a concentration of 1% (W / V) (concentration 100 mM, pH 5.0 containing acetic acid-sodium acetate buffer) is prepared. The enzyme for measurement was diluted in advance with a buffer solution (same as above) (dilution ratio is such that the absorbance of the enzyme solution shown below falls within a calibration curve obtained from the glucose standard solution below). Add 10 μl of the diluted enzyme solution to 90 μl of the substrate solution and react at 37 ° C. for 30 minutes.
In order to prepare a calibration curve, ion-exchanged water (blank) and glucose standard solution (4 standard solutions having different concentrations from at least 0.5 to 5.6 mM) were selected, and 100 μl each was prepared at 37 ° C., Keep warm for 30 minutes.

前記反応後の酵素含有溶液、検量線用ブランクおよびグルコース標準液に、それぞれ300 μlのDNS発色液(1. 6質量%のNaOH、1質量%の3,5−ジニトロサリチル酸、30質量%の酒石酸カリウムナトリウム)を加えて、5分間煮沸し発色させる。発色後直ちに氷冷し、2mlのイオン交換水を加えてよく混合する。30分間静置した後、1時間以内に吸光度を測定する。
吸光度の測定は96穴マイクロウェルプレート(例えば、269620、NUNC社製)に20Oμlを分注し、マイクロプレートリーダー(例えば、infiniteM200、TECAN社製)を用い、540nmの吸光度を測定することができる。
300 μl of DNS coloring solution (1.6% by weight NaOH, 1% by weight 3,5-dinitrosalicylic acid, 30% by weight tartaric acid was added to the enzyme-containing solution after the reaction, the calibration curve blank, and the glucose standard solution, respectively. Add potassium sodium) and boil for 5 minutes to develop color. Immediately after color development, cool with ice, add 2 ml of ion-exchanged water, and mix well. After standing for 30 minutes, the absorbance is measured within 1 hour.
Absorbance can be measured by dispensing 20 Oμl into a 96-well microwell plate (for example, 269620, manufactured by NUNC), and measuring the absorbance at 540 nm using a microplate reader (for example, infiniteM200, manufactured by TECAN).

ブランクの吸光度を差し引いた各グルコース標準液の吸光度とグルコース濃度を用い検量線を作成する。酵素溶液中のグルコース相当生成量は酵素溶液の吸光度からブランクの吸光度を引いてから検量線を用いて算出する(酵素溶液の吸光度が検量線に入らない場合は前記緩衝液で酵素を希釈する際の希釈倍率を変えて再測定を行う) 。1分間にlμmoleのグルコース等量の還元糖を生成する酵素量を1単位と定義し、下記式からEG活性を求めることができる。
EG活性=緩衝液で希釈して得られた酵素溶液1m1のグルコース相当生成量(μmole) /30分×希釈倍率
[福井作蔵, “生物化学実験法(還元糖の定量法)第二版”、学会出版センター、p.23〜24(1990年)参照]
A calibration curve is prepared using the absorbance and glucose concentration of each glucose standard solution obtained by subtracting the absorbance of the blank. The amount corresponding to glucose in the enzyme solution is calculated using the calibration curve after subtracting the blank absorbance from the absorbance of the enzyme solution. (If the absorbance of the enzyme solution does not fall within the calibration curve, use the buffer to dilute the enzyme. Measure again by changing the dilution ratio. EG activity can be obtained from the following formula by defining the amount of enzyme that produces a reducing sugar equivalent to 1 μmole of glucose per minute as 1 unit.
EG activity = Glucose equivalent of 1 ml of enzyme solution obtained by diluting with buffer (μmole) / 30 minutes x dilution factor
[Sakuzo Fukui, “Biochemical Experimental Method (Reducing Sugar Quantification Method) Second Edition”, Academic Publishing Center, p. 23-24 (1990)]

CBHI活性は下記のように測定し、定義される。
96穴マイクロウェルプレート(例えば、269620、NUNC社製)に1. 25mMの4-Methylumberiferyl-cel1obioside (濃度125mM、pH5. 0の酢酸−酢酸ナトリウム緩衝液に溶解した) 3 2μlを分注する。100mMのGlucono-l,5-Lactone 4μlを添加する。さらに、前記同様の緩衝液で希釈(希釈倍率は下記酵素溶液の蛍光発光度が下記標準液から得られた検量線に入ればよい)した測定用酵素液4μlを加え、37℃、30分間反応させる。その後、500mMのglycine-NaOH緩衝液(pH10.5)200μlを添加し、反応を停止させる。
CBHI activity is measured and defined as follows.
Dispense 2 μl of 1.25 mM 4-Methylumberiferyl-cel1obioside (dissolved in acetic acid-sodium acetate buffer at a concentration of 125 mM, pH 5.0) into a 96-well microwell plate (for example, 269620, manufactured by NUNC). Add 4 μl of 100 mM Glucono-l, 5-Lactone. Furthermore, 4 μl of the enzyme solution for measurement diluted with the same buffer as above (dilution ratio should be within the calibration curve obtained from the following standard solution for the fluorescence emission degree of the enzyme solution below) is added, and the reaction is carried out at 37 ° C. for 30 minutes. Let Thereafter, 200 μl of 500 mM glycine-NaOH buffer (pH 10.5) is added to stop the reaction.

前記同様の96穴マイクロウエルプレートに検量線の標準液として4-Methyl-umberiferon標準溶液40μ1 (濃度0〜50μMのすくなくとも濃度が異なる標準液4点)を分注し、37
℃、30分間加温する。その後、500mMのglycine-NaOH緩衝液(pH10.5)200μlを添加する。
Dispense 40 μ1 of 4-Methyl-umberiferon standard solution (standard solution with different concentrations of 0 to 50 μM at least 4 points) as a standard solution for the calibration curve into the same 96-well microwell plate.
Warm for 30 minutes at ℃. Thereafter, 200 μl of 500 mM glycine-NaOH buffer (pH 10.5) is added.

マイクロプレートリーダー(例えば、F1uoroskanAscentFL、ThermoーLabsystems社製)を用い、350nm (励起光460nm)における蛍光発光度を測定する。標準液のデータから作成した検量線を用い、酵素溶液中の4-Methy1-umberiferon生成量を算出する(酵素溶液の蛍光発光度が検量線に入らない場合は希釈率を変えて再測定を行う) 。1分間に1μmo1の4-Methyl-umberiferonを生成する酵素の量を1単位とし、下記式からCBHI活性を求めることができる。
CBHI活性=希釈後酵素溶液1m1の4-Methyl-umberiferon生成量(μmo1e)/30分×希釈倍率
Using a microplate reader (for example, F1uoroskan Ascent FL, manufactured by Thermo-Labsystems), the fluorescence intensity at 350 nm (excitation light: 460 nm) is measured. Calculate the amount of 4-Methy1-umberiferon produced in the enzyme solution using the calibration curve created from the data of the standard solution. (If the fluorescence emission of the enzyme solution does not fit the calibration curve, change the dilution rate and perform measurement again. ) CBHI activity can be determined from the following formula, assuming that the amount of enzyme that produces 1 μmol of 4-Methyl-umberiferon per minute is 1 unit.
CBHI activity = Amount of 4-Methyl-umberiferon in enzyme solution 1m1 after dilution (μmo1e) / 30 minutes x dilution factor

セルロースまたは繊維原料中の官能基と共有結合を形成し得る化合物による処理としては、以下の方法を挙げることができるが、特に限定されない。
・国際公開WO2013/073652(PCT/JP2012/079743)に記載されている「構造中にリン原子を含有するオキソ酸、ポリオキソ酸またはそれらの塩から選ばれる少なくなくとも1種の化合物」を使用する方法。
Examples of the treatment with a compound capable of forming a covalent bond with a functional group in cellulose or a fiber raw material include the following methods, but are not particularly limited.
Use of “at least one compound selected from oxo acids, polyoxo acids or salts thereof containing a phosphorus atom in the structure” described in International Publication WO2013 / 073652 (PCT / JP2012 / 079743) Method.

[リン酸基の導入]
本発明においては、微細繊維状セルロースはリン酸エステル基などのリン酸由来の置換基(単にリン酸基ということもある。)を有している。
以下にリン酸エステル化を説明する。
[Introduction of phosphate group]
In the present invention, the fine fibrous cellulose has a substituent derived from phosphoric acid such as a phosphate group (sometimes simply referred to as a phosphate group).
The phosphoric esterification will be described below.

(リン酸基導入工程)
リン酸基導入工程は、セルロースを含む繊維原料に対し、リン酸基を有する化合物または/およびその塩(以下、「化合物A」という。)を反応させることにより行うことができる。この反応は、尿素または/およびその誘導体(以下、「化合物B」という。)の存在下で行ってもよく、これにより、セルロース繊維のヒドロキシ基に、リン酸基を導入することができるが、特にこれに限定されない。
(Phosphate group introduction process)
The phosphate group introduction step can be performed by reacting a phosphor raw material-containing compound or / and a salt thereof (hereinafter referred to as “compound A”) with a fiber raw material containing cellulose. This reaction may be performed in the presence of urea or / and a derivative thereof (hereinafter referred to as “compound B”), whereby a phosphate group can be introduced into the hydroxy group of the cellulose fiber. It is not particularly limited to this.

リン酸基導入工程は、セルロースにリン酸基を導入する工程を必ず含み、所望により、後述するアルカリ処理工程、余剰の試薬を洗浄する工程などを包含してもよい。   The phosphate group introduction step necessarily includes a step of introducing a phosphate group into cellulose, and may include an alkali treatment step described later, a step of washing excess reagent, and the like as desired.

化合物Aを化合物Bの共存下で繊維原料に作用させる方法の一例としては、乾燥状態または湿潤状態の繊維原料に化合物Aおよび化合物Bの粉末や水溶液を混合する方法が挙げられる。また別の例としては、繊維原料のスラリーに化合物Aおよび化合物Bの粉末や水溶液を添加する方法が挙げられる。これらのうち、反応の均一性が高いことから、乾燥状態の繊維原料に化合物Aおよび化合物Bの水溶液を添加する方法、または湿潤状態の繊維原料に化合物Aおよび化合物Bの粉末や水溶液を添加する方法が好ましいが、特に限定されない。また、化合物Aと化合物Bは同時に添加しても良いし、別々に添加しても良い。また、初めに反応に供試する化合物Aと化合物Bを水溶液として添加して、圧搾により余剰の薬液を除いてもよい。繊維原料の形態は綿状や薄いシート状であることが好ましいが、特に限定されない。   As an example of a method for causing compound A to act on a fiber raw material in the presence of compound B, a method of mixing powder or an aqueous solution of compound A and compound B with a dry or wet fiber raw material can be mentioned. Another example is a method in which powders and aqueous solutions of Compound A and Compound B are added to the fiber raw material slurry. Among these, since the uniformity of the reaction is high, a method of adding an aqueous solution of Compound A and Compound B to a dry fiber material, or a powder or an aqueous solution of Compound A and Compound B to a wet fiber material The method is preferred, but not particularly limited. Compound A and compound B may be added simultaneously or separately. Moreover, you may add the compound A and the compound B first used for reaction as aqueous solution, and remove an excess chemical | medical solution by pressing. The form of the fiber raw material is preferably cotton or thin sheet, but is not particularly limited.

本実施態様で使用する化合物Aは、リン酸基を有する化合物または/およびその塩である。
リン酸基を有する化合物としては、リン酸、リン酸のリチウム塩、リン酸のナトリウム塩、リン酸のカリウム塩、リン酸のアンモニウム塩などが挙げられるが、特に限定されない。リン酸のリチウム塩としては、リン酸二水素リチウム、リン酸水素二リチウム、リン酸三リチウム、ピロリン酸リチウム、またはポリリン酸リチウムなどが挙げられる。リン酸のナトリウム塩としてはリン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸三ナトリウム、ピロリン酸ナトリウム、またはポリリン酸ナトリウムなどが挙げられる。リン酸のカリウム塩としてはリン酸二水素カリウム、リン酸水素二カリウム、リン酸三カリウム、ピロリン酸カリウム、またはポリリン酸カリウムなどが挙げられる。リン酸のアンモニウム塩としては、リン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸三アンモニウム、ピロリン酸アンモニウム、ポリリン酸アンモニウムなどが挙げられる。
Compound A used in this embodiment is a compound having a phosphate group and / or a salt thereof.
Examples of the compound having a phosphate group include, but are not limited to, phosphoric acid, lithium salt of phosphoric acid, sodium salt of phosphoric acid, potassium salt of phosphoric acid, ammonium salt of phosphoric acid, and the like. Examples of the lithium salt of phosphoric acid include lithium dihydrogen phosphate, dilithium hydrogen phosphate, trilithium phosphate, lithium pyrophosphate, and lithium polyphosphate. Examples of the sodium salt of phosphoric acid include sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, sodium pyrophosphate, and sodium polyphosphate. Examples of the potassium salt of phosphoric acid include potassium dihydrogen phosphate, dipotassium hydrogen phosphate, tripotassium phosphate, potassium pyrophosphate, and potassium polyphosphate. Examples of the ammonium salt of phosphoric acid include ammonium dihydrogen phosphate, diammonium hydrogen phosphate, triammonium phosphate, ammonium pyrophosphate, and ammonium polyphosphate.

これらのうち、リン酸基導入の効率が高く、下記解繊工程で解繊効率がより向上しやすく、低コストであり、かつ工業的に適用しやすい観点から、リン酸、リン酸のナトリウム塩、またはリン酸のカリウム塩、リン酸のアンモニウム塩が好ましい。リン酸二水素ナトリウム、またはリン酸水素二ナトリウムがより好ましいが、特に限定されない。   Among these, phosphoric acid, sodium salt of phosphoric acid, from the viewpoint of high efficiency of introducing phosphate groups, easy improvement of the defibrating efficiency in the following defibrating process, low cost, and industrial applicability Or a potassium salt of phosphoric acid or an ammonium salt of phosphoric acid. Although sodium dihydrogen phosphate or disodium hydrogen phosphate is more preferable, it is not particularly limited.

また、反応の均一性が高まり、且つリン酸基導入の効率が高くなることから化合物Aは水溶液として用いることが好ましいが、特に限定されない。化合物Aの水溶液のpHは特に限定されないが、リン酸基導入の効率が高くなることから7以下であることが好ましく、パルプ繊維の加水分解を抑える観点からpH3〜7がさらに好ましい。前記のpHは例えば、リン酸基を有する化合物のうち、酸性を示すものとアルカリ性を示すものを併用し、その量比を変えて調整しても良い。または、前記のpHは、リン酸基を有する化合物のうち、酸性を示すものに無機アルカリまたは有機アルカリを添加すること等により調整しても良い。   Further, the compound A is preferably used as an aqueous solution because the uniformity of the reaction is enhanced and the efficiency of introducing a phosphate group is increased, but there is no particular limitation. The pH of the aqueous solution of Compound A is not particularly limited, but is preferably 7 or less because the efficiency of introduction of phosphoric acid groups is high, and more preferably 3 to 7 from the viewpoint of suppressing hydrolysis of pulp fibers. The pH may be adjusted by, for example, using a phosphoric acid group-containing compound in combination with acidity and alkalinity, and changing the amount ratio. Alternatively, the pH may be adjusted by adding an inorganic alkali or an organic alkali to a phosphoric acid group-containing compound that exhibits acidity.

繊維原料に対する化合物Aの添加量は特に限定されないが、化合物Aの添加量をリン原子量に換算した場合、繊維原料に対するリン原子の添加量は0.5〜100質量%が好ましく、1〜50質量%がより好ましく、2〜30質量%が最も好ましい。繊維原料に対するリン原子の添加量が0.5〜100質量%の範囲であれば、微細繊維状セルロースの収率をより向上させることができる。繊維原料に対するリン原子の添加量が100質量%を超えると、収率向上の効果は頭打ちとなり、使用する化合物Aのコストが上昇するため好ましくない。一方、繊維原料に対するリン原子の添加量が0.5質量%より低いと充分な収率が得られないため好ましくない。   The amount of compound A added to the fiber raw material is not particularly limited, but when the amount of compound A added is converted to a phosphorus atomic weight, the amount of phosphorus atom added to the fiber raw material is preferably 0.5 to 100% by weight, and 1 to 50% by weight. % Is more preferable, and 2 to 30% by mass is most preferable. If the addition amount of the phosphorus atom with respect to a fiber raw material is the range of 0.5-100 mass%, the yield of a fine fibrous cellulose can be improved more. When the amount of phosphorus atoms added to the fiber raw material exceeds 100% by mass, the effect of improving the yield reaches a peak and the cost of the compound A to be used increases, which is not preferable. On the other hand, if the amount of phosphorus atoms added to the fiber raw material is lower than 0.5% by mass, a sufficient yield cannot be obtained, which is not preferable.

本実施態様で使用する化合物Bとしては、尿素、チオ尿素、ビウレット、フェニル尿素、ベンジル尿素、ジメチル尿素、ジエチル尿素、テトラメチル尿素、ベンゾレイン尿素、ヒダントインなどが挙げられるが特に限定されない。この中でも低コストで扱いやすく、ヒドロキシル基を有する繊維原料と水素結合を作りやすいことから尿素が好ましい。   Examples of the compound B used in this embodiment include urea, thiourea, biuret, phenylurea, benzylurea, dimethylurea, diethylurea, tetramethylurea, benzoleinurea, and hydantoin, but are not particularly limited. Among these, urea is preferable because it is easy to handle at low cost and easily forms a hydrogen bond with a fiber raw material having a hydroxyl group.

化合物Bは化合物A同様に水溶液として用いることが好ましいが、特に限定されない。また、反応の均一性が高まることから化合物Aと化合物Bの両方が溶解した水溶液を用いることが好ましいが、特に限定されない。
繊維原料に対する化合物Bの添加量は1〜300質量%であることが好ましいが、特に限定されない。
Compound B is preferably used as an aqueous solution like Compound A, but is not particularly limited. Moreover, it is preferable to use an aqueous solution in which both compound A and compound B are dissolved because the uniformity of the reaction is increased, but there is no particular limitation.
The amount of compound B added to the fiber raw material is preferably 1 to 300% by mass, but is not particularly limited.

化合物Aと化合物Bの他に、アミド類またはアミン類を反応系に含んでも良い。アミド類としては、ホルムアミド、ジメチルホルムアミド、アセトアミド、ジメチルアセトアミドなどが挙げられる。アミン類としては、メチルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ピリジン、エチレンジアミン、ヘキサメチレンジアミンなどが挙げられる。これらの中でも、特にトリエチルアミンは良好な反応触媒として働くことが知られている。   In addition to Compound A and Compound B, amides or amines may be included in the reaction system. Examples of amides include formamide, dimethylformamide, acetamide, dimethylacetamide and the like. Examples of amines include methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine, hexamethylenediamine, and the like. Among these, triethylamine is known to work as a good reaction catalyst.

(リン酸由来の置換基の導入量)
リン酸由来の置換基の導入量は、微細繊維状セルロース1g(質量)あたり0.1mmol/g以上3.0mmol/g以下であり、0.14mmol/g以上2.5mmol/g以下が好ましく、0.2mmol/g以上2.0mmol/g以下がより好ましい。さらに好ましくは0.2mmol/g以上1.8mmol/g以下であり、特に好ましくは0.4mmol/g以上1.8mmol/g以下であり、最も好ましくは0.6mmol/g以上1.8mmol/g以下である。リン酸由来の置換基の導入量が0.1mmol/g未満では、繊維原料の微細化が困難で、微細繊維状セルロースの安定性が劣る。リン酸由来の置換基の導入量が3.0mmol/gを超えると、十分な粘度が得られない。
(Introduction amount of substituent derived from phosphoric acid)
The introduction amount of the phosphate-derived substituent is 0.1 mmol / g or more and 3.0 mmol / g or less, and preferably 0.14 mmol / g or more and 2.5 mmol / g or less, per 1 g (mass) of fine fibrous cellulose. 0.2 mmol / g or more and 2.0 mmol / g or less is more preferable. More preferably, it is 0.2 mmol / g or more and 1.8 mmol / g or less, Especially preferably, it is 0.4 mmol / g or more and 1.8 mmol / g or less, Most preferably, it is 0.6 mmol / g or more and 1.8 mmol / g. It is as follows. If the introduction amount of the phosphate-derived substituent is less than 0.1 mmol / g, it is difficult to refine the fiber raw material, and the stability of the fine fibrous cellulose is poor. When the introduction amount of the substituent derived from phosphoric acid exceeds 3.0 mmol / g, sufficient viscosity cannot be obtained.

リン酸由来の置換基の繊維原料への導入量は、伝導度滴定法により測定することができる。具体的には、解繊処理工程により微細化を行い、得られた微細繊維状セルロース含有スラリーをイオン交換樹脂で処理した後、水酸化ナトリウム水溶液を加えながら電気伝導度の変化を求めることにより、導入量を測定することができる。   The amount of the phosphate-derived substituent introduced into the fiber material can be measured by a conductivity titration method. Specifically, by performing the defibration process step, after treating the resulting fine fibrous cellulose-containing slurry with an ion exchange resin, by determining the change in electrical conductivity while adding an aqueous sodium hydroxide solution, The amount introduced can be measured.

伝導度滴定では、アルカリを加えていくと、図1に示した曲線を与える。最初は、急激に電気伝導度が低下する(以下、「第1領域」という)。その後、わずかに伝導度が上昇を始める(以下、「第2領域」という)。さらにその後、伝導度の増分が増加する(以下、「第3領域」という)。すなわち、3つの領域が現れる。このうち、第1領域で必要としたアルカリ量が、滴定に使用したスラリー中の強酸性基量と等しく、第2領域で必要としたアルカリ量が滴定に使用したスラリー中の弱酸性基量と等しくなる。リン酸基が縮合を起こす場合、見かけ上弱酸性基が失われ、第1領域に必要としたアルカリ量と比較して第2領域に必要としたアルカリ量が少なくなる。一方、強酸性基量は、縮合の有無に関わらずリン原子の量と一致することから、単にリン酸基導入量(またはリン酸基量)、または置換基導入量(または置換基量)と言った場合は、強酸性基量のことを表す。   In conductivity titration, when alkali is added, the curve shown in FIG. 1 is given. Initially, the electrical conductivity rapidly decreases (hereinafter referred to as “first region”). Thereafter, the conductivity starts to increase slightly (hereinafter referred to as “second region”). Thereafter, the conductivity increment increases (hereinafter referred to as “third region”). That is, three areas appear. Among these, the amount of alkali required in the first region is equal to the amount of strongly acidic groups in the slurry used for titration, and the amount of alkali required in the second region is the amount of weakly acidic groups in the slurry used for titration. Will be equal. When the phosphoric acid group undergoes condensation, apparently weakly acidic groups are lost, and the amount of alkali required in the second region is reduced compared to the amount of alkali required in the first region. On the other hand, the amount of strongly acidic groups coincides with the amount of phosphorus atoms regardless of the presence or absence of condensation, so that the amount of phosphate groups introduced (or the amount of phosphate groups) or the amount of substituent introduced (or the amount of substituents) is simply When said, it represents the amount of strongly acidic group.

(アルカリ処理)
リン酸化微細繊維を製造する場合、リン酸基導入工程と後述する解繊処理工程の間にアルカリ処理を行うことができる。アルカリ処理の方法としては、特に限定されないが、例えば、アルカリ溶液中に、リン酸基導入繊維を浸漬する方法が挙げられる。
アルカリ溶液に含まれるアルカリ化合物は、特に限定されないが、無機アルカリ化合物であってもよいし、有機アルカリ化合物であってもよい。アルカリ溶液における溶媒としては水または有機溶媒のいずれであってもよく、特に限定されない。前記溶媒は、極性溶媒(水、またはアルコール等の極性有機溶媒)が好ましく、少なくとも水を含む水系溶媒がより好ましい。
また、アルカリ溶液のうちでは、汎用性が高いことから、水酸化ナトリウム水溶液、または水酸化カリウム水溶液が特に好ましいが、特に限定されない。
(Alkali treatment)
When manufacturing a phosphorylated fine fiber, an alkali treatment can be performed between the phosphate group introduction step and the defibration treatment step described later. Although it does not specifically limit as a method of an alkali treatment, For example, the method of immersing a phosphate group introduction | transduction fiber in an alkaline solution is mentioned.
The alkali compound contained in the alkali solution is not particularly limited, but may be an inorganic alkali compound or an organic alkali compound. The solvent in the alkaline solution may be either water or an organic solvent, and is not particularly limited. The solvent is preferably a polar solvent (polar organic solvent such as water or alcohol), and more preferably an aqueous solvent containing at least water.
Moreover, among alkaline solutions, since versatility is high, sodium hydroxide aqueous solution or potassium hydroxide aqueous solution is especially preferable, However It does not specifically limit.

アルカリ処理工程におけるアルカリ溶液の温度は特に限定されないが、5〜80℃が好ましく、10〜60℃がより好ましい。
アルカリ処理工程におけるアルカリ溶液への浸漬時間は特に限定されないが、5〜30分間が好ましく、10〜20分間がより好ましい。
アルカリ処理におけるアルカリ溶液の使用量は特に限定されないが、リン酸導入繊維の絶対乾燥質量に対して100〜100000質量%であることが好ましく、1000〜10000質量%であることがより好ましい。
Although the temperature of the alkali solution in an alkali treatment process is not specifically limited, 5-80 degreeC is preferable and 10-60 degreeC is more preferable.
Although the immersion time in the alkaline solution in the alkali treatment step is not particularly limited, it is preferably 5 to 30 minutes, and more preferably 10 to 20 minutes.
Although the usage-amount of the alkaline solution in an alkali treatment is not specifically limited, It is preferable that it is 100-100000 mass% with respect to the absolute dry mass of phosphoric acid introduction | transduction fiber, and it is more preferable that it is 1000-10000 mass%.

アルカリ処理工程におけるアルカリ溶液使用量を減らすために、アルカリ処理工程の前に、リン酸基導入繊維を水や有機溶媒により洗浄しても構わない。アルカリ処理後には、取り扱い性を向上させるために、解繊処理工程の前に、アルカリ処理済みリン酸基導入繊維を水や有機溶媒により洗浄することが好ましいが、特に限定されない。   In order to reduce the amount of alkaline solution used in the alkali treatment step, the phosphate group-introduced fiber may be washed with water or an organic solvent before the alkali treatment step. After the alkali treatment, in order to improve the handleability, it is preferable to wash the alkali-treated phosphate group-introduced fiber with water or an organic solvent before the defibrating treatment step, but there is no particular limitation.

<解繊処理>
前記で得られた微細繊維を解繊処理工程で解繊処理することができる。解繊処理工程では、通常、解繊処理装置を用いて、繊維を解繊処理して、微細繊維含有スラリーを得るが、処理装置、処理方法は、特に限定されない。
解繊処理装置としては、高速解繊機、グラインダー(石臼型粉砕機)、高圧ホモジナイザーや超高圧ホモジナイザー、高圧衝突型粉砕機、ボールミル、ビーズミルなどを使用できる。あるいは、解繊処理装置としては、ディスク型リファイナー、コニカルリファイナー、二軸混練機、振動ミル、高速回転下でのホモミキサー、超音波分散機、またはビーターなど、湿式粉砕する装置等を使用することもできる。解繊処理装置は、上記に限定されるものではない。
<Defibration processing>
The fine fibers obtained above can be defibrated in the defibrating process. In the defibrating process, the fiber is usually defibrated using a defibrating apparatus to obtain a fine fiber-containing slurry, but the processing apparatus and the processing method are not particularly limited.
As the defibrating apparatus, a high-speed defibrator, a grinder (stone mill type pulverizer), a high-pressure homogenizer, an ultra-high pressure homogenizer, a high-pressure collision type pulverizer, a ball mill, a bead mill, or the like can be used. Alternatively, as a defibrating apparatus, a device for wet grinding such as a disk type refiner, a conical refiner, a twin-screw kneader, a vibration mill, a homomixer under high-speed rotation, an ultrasonic disperser, or a beater should be used. You can also. The defibrating apparatus is not limited to the above.

好ましい解繊処理方法としては、粉砕メディアの影響が少なく、コンタミの心配が少ない高速解繊機、高圧ホモジナイザーや超高圧ホモジナイザーが挙げられるが、特に限定されない。   Preferable defibrating methods include, but are not limited to, a high-speed defibrator, a high-pressure homogenizer, and an ultrahigh-pressure homogenizer that are less affected by the grinding media and less worried about contamination.

解繊処理の際には、繊維原料を水と有機溶媒を単独または組み合わせて希釈してスラリー状にすることが好ましいが、特に限定されない。分散媒としては、水の他に、極性有機溶剤を使用することができる。好ましい極性有機溶剤としては、アルコール類、ケトン類、エーテル類、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、またはジメチルアセトアミド(DMAc)等が挙げられるが、特に限定されない。アルコール類としては、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、またはt−ブチルアルコール等が挙げられる。ケトン類としては、アセトンまたはメチルエチルケトン(MEK)等が挙げられる。エーテル類としては、ジエチルエーテルまたはテトラヒドロフラン(THF)等が挙げられる。分散媒は1種であってもよいし、2種以上でもよい。また、分散媒中に繊維原料以外の固形分、例えば水素結合性のある尿素などを含んでも構わない。   In the defibrating process, it is preferable to dilute the fiber raw material with water and an organic solvent alone or in combination to form a slurry, but there is no particular limitation. As the dispersion medium, in addition to water, a polar organic solvent can be used. Preferable polar organic solvents include alcohols, ketones, ethers, dimethyl sulfoxide (DMSO), dimethylformamide (DMF), dimethylacetamide (DMAc), and the like, but are not particularly limited. Examples of alcohols include methanol, ethanol, n-propanol, isopropanol, n-butanol, and t-butyl alcohol. Examples of ketones include acetone and methyl ethyl ketone (MEK). Examples of ethers include diethyl ether and tetrahydrofuran (THF). The dispersion medium may be one type or two or more types. Further, the dispersion medium may contain a solid content other than the fiber raw material, such as urea having hydrogen bonding property.

成分(A)である微細繊維状セルロースの配合量は、化粧料全体に対して0.01〜2.0質量%であることが好ましい。   It is preferable that the compounding quantity of the fine fibrous cellulose which is a component (A) is 0.01-2.0 mass% with respect to the whole cosmetics.

<水溶性高分子>
本発明の化粧料においては、微細繊維状セルロースを安定的に分散させるために、水溶性高分子が配合される。水溶性高分子は、液中では膨潤作用による立体障害により、微細繊維状セルロースの凝集を防ぎ分散安定化させていると考えられる。
<Water-soluble polymer>
In the cosmetic of the present invention, a water-soluble polymer is blended in order to stably disperse the fine fibrous cellulose. It is considered that the water-soluble polymer prevents the aggregation of fine fibrous cellulose and stabilizes the dispersion by steric hindrance due to the swelling action in the liquid.

水溶性高分子としては、カルボキシビニルポリマー、メタクリル酸アルキル・アクリル酸コポリマー、増粘性多糖類等が挙げられ、好ましくは増粘性多糖類、より好ましくはイオン性の増粘性多糖類である。本発明に用いる増粘性多糖類は、具体的には、増粘性の多糖類であれば特に制限されず、キサンタンガム、カラギーナン、グアーガム、ローカストビーンガム、クインスシード、寒天、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロースステアロキシエーテル、カルボキシメチルセルロース等がある。水溶性高分子は、1種のみを用いてもよく、2種以上を混合して用いてもよい。化粧料全体における水溶性高分子の配合量は、好ましくは0.03〜1.0質量%である。   Examples of the water-soluble polymer include carboxyvinyl polymer, alkyl methacrylate / acrylic acid copolymer, thickening polysaccharide and the like, preferably thickening polysaccharide, more preferably ionic thickening polysaccharide. The thickening polysaccharide used in the present invention is not particularly limited as long as it is a thickening polysaccharide. Xanthan gum, carrageenan, guar gum, locust bean gum, quince seed, agar, methylcellulose, hydroxyethylcellulose, hydroxypropyl Examples include methyl cellulose stearoxy ether and carboxymethyl cellulose. Only 1 type may be used for a water-soluble polymer, and 2 or more types may be mixed and used for it. The blending amount of the water-soluble polymer in the entire cosmetic is preferably 0.03 to 1.0% by mass.

[その他の成分]
本発明の化粧料には、上記した成分(A)および成分(B)以外に、その他の成分(C)として、無機粉体、有機粉体、無機酸、有機酸、無機酸塩、有機酸塩、陰イオン性界面活性剤からなる群より選ばれる一種または二種以上をさらに含めることができる。
[Other ingredients]
In addition to the components (A) and (B) described above, the cosmetic composition of the present invention includes, as other components (C), inorganic powders, organic powders, inorganic acids, organic acids, inorganic acid salts, organic acids. One or more selected from the group consisting of a salt and an anionic surfactant can be further included.

無機粉体としては、金属酸化物、金属硫酸塩、タルク、マイカ、カオリン、セリサイト、各種雲母、ケイ酸およびケイ酸化合物、タングステン酸金属塩、ヒドロキシアパタイト、バーミキュライト、ハイジライト、ベントナイトなどが挙げられる。さらに、無機粉体としては、モンモリロナイト、ヘクトライト、ゼオライト、セラミックスパウダー、第二リン酸カルシウム、アルミナ、水酸化アルミニウム、窒化ホウ素、窒化ケイ素、窒化ボロン、シリカ化合物等が挙げられる。   Examples of inorganic powders include metal oxide, metal sulfate, talc, mica, kaolin, sericite, various mica, silicic acid and silicate compounds, metal tungstate, hydroxyapatite, vermiculite, hydrite, bentonite, etc. It is done. Furthermore, examples of the inorganic powder include montmorillonite, hectorite, zeolite, ceramic powder, dicalcium phosphate, alumina, aluminum hydroxide, boron nitride, silicon nitride, boron nitride, and a silica compound.

金属酸化物としては、酸化チタン、酸化ジルコニウム、酸化亜鉛、酸化セリウム、酸化マグネシウムなどが挙げられる。
金属硫酸塩としては、硫酸バリウム、硫酸カルシウム、硫酸マグネシウム、炭酸カルシウム、炭酸マグネシウムなどが挙げられる。
雲母としては、白雲母、合成雲母、金雲母、紅雲母、黒雲母、リチア雲母などが挙げられる。
Examples of the metal oxide include titanium oxide, zirconium oxide, zinc oxide, cerium oxide, and magnesium oxide.
Examples of the metal sulfate include barium sulfate, calcium sulfate, magnesium sulfate, calcium carbonate, and magnesium carbonate.
Examples of mica include muscovite, synthetic mica, phlogopite, red mica, biotite, lithia mica, and the like.

ケイ酸およびケイ酸化合物としては、ケイ酸、無水ケイ酸、ケイ酸アルミニウム、ケイ酸マグネシウム、ケイ酸アルミニウムマグネシウム、ケイ酸カルシウム、ケイ酸バリウム、ケイ酸ストロンチウムなどが挙げられる。
上記した無機粉体の具体例は例示に過ぎず、これらに限定されるものではない。
無機粉体は、1種類を単独で用いてもよく、二種以上併せて用いてもよい。
化粧料全体における無機粉体の配合量は特に限定されないが、一般的には1.0〜30.0質量%が好ましい。
Examples of silicic acid and silicic acid compounds include silicic acid, anhydrous silicic acid, aluminum silicate, magnesium silicate, magnesium aluminum silicate, calcium silicate, barium silicate, strontium silicate and the like.
Specific examples of the above-described inorganic powder are merely examples, and are not limited thereto.
One kind of inorganic powder may be used alone, or two or more kinds may be used in combination.
The blending amount of the inorganic powder in the entire cosmetic is not particularly limited, but generally 1.0 to 30.0% by mass is preferable.

有機粉体としては、以下のものが挙げられる。
ポリアミドパウダー、ポリアクリル酸・アクリル酸エステルパウダー、ポリエステルパウダー、ポリエチレンパウダー、ポリプロピレンパウダー、ポリスチレンパウダー、ポリウレタンパウダー、ベンゾグアナミンパウダー、ポリメチルベンゾグアナミンパウダー。
テトラフルオロエチレンパウダー、ポリメチルメタクリレートパウダー、セルロースパウダー、シルクパウダー、12ナイロンや6ナイロン等のナイロンパウダー。
ジメチルポリシロキサンを架橋した構造を持つ架橋型シリコーン微粉末、架橋型球状ポリメチルシルセスキオキサン微粉末、架橋型球状オルガノポリシロキサンゴム表面をポリメチルシルセスキオキサン粒子で被覆してなる微粉末等。
疎水化シリカ、スチレン・アクリル酸共重合体、ジビニルベンゼン・スチレン共重合体、ビニル樹脂、尿素樹脂、フェノール樹脂、フッ素樹脂、ケイ素樹脂、アクリル樹脂、メラミン樹脂、エポキシ樹脂、ポリカーボネイト樹脂。
上記した有機粉体の具体例は例示に過ぎず、これらに限定されるものではない。
有機粉体は、1種類を単独で用いてもよく、二種以上併せて用いてもよい。
化粧料全体における有機粉体の配合量は特に限定されないが、一般的には1.0〜10.0質量%が好ましい。
Examples of the organic powder include the following.
Polyamide powder, polyacrylic acid / acrylic acid ester powder, polyester powder, polyethylene powder, polypropylene powder, polystyrene powder, polyurethane powder, benzoguanamine powder, polymethylbenzoguanamine powder.
Tetrafluoroethylene powder, polymethylmethacrylate powder, cellulose powder, silk powder, nylon powder such as 12 nylon and 6 nylon.
Crosslinked silicone fine powder having a structure obtained by crosslinking dimethylpolysiloxane, crosslinked spherical polymethylsilsesquioxane fine powder, fine powder obtained by coating the surface of crosslinked spherical organopolysiloxane rubber with polymethylsilsesquioxane particles etc.
Hydrophobized silica, styrene / acrylic acid copolymer, divinylbenzene / styrene copolymer, vinyl resin, urea resin, phenol resin, fluororesin, silicon resin, acrylic resin, melamine resin, epoxy resin, polycarbonate resin.
Specific examples of the organic powder described above are merely examples, and are not limited thereto.
One kind of organic powder may be used alone, or two or more kinds may be used in combination.
Although the compounding quantity of the organic powder in the whole cosmetics is not specifically limited, Generally 1.0-10.0 mass% is preferable.

無機酸および無機酸塩としては、例えば、エデト酸およびその塩、塩化ナトリウム、塩化カリウム、水酸化カリウム、水酸化ナトリウム、リン酸およびその塩等がある。
化粧料全体における無機酸および無機酸塩の配合量は特に限定されないが、一般的には0.01〜10.0質量%が好ましい。
Examples of the inorganic acid and inorganic acid salt include edetic acid and its salt, sodium chloride, potassium chloride, potassium hydroxide, sodium hydroxide, phosphoric acid and its salt, and the like.
Although the compounding quantity of the inorganic acid and inorganic acid salt in the whole cosmetics is not specifically limited, Generally 0.01-10.0 mass% is preferable.

有機酸および有機酸塩としては、例えば、クエン酸、コウジ酸、リンゴ酸、トリエタノールアミン、ジイソプロパノールアミン、グリコール酸、グリチルリチン酸二カリウム、トラネキサム酸等がある。化粧料全体における有機酸および有機酸塩の配合量は特に限定されないが、一般的には0.01〜1.0質量%が好ましく、より好ましくは、グリチルリチン酸二カリウムは0.05〜0.30質量%、キレート剤は0.05〜0.50質量%である。   Examples of the organic acid and organic acid salt include citric acid, kojic acid, malic acid, triethanolamine, diisopropanolamine, glycolic acid, dipotassium glycyrrhizinate, tranexamic acid, and the like. The blending amount of the organic acid and the organic acid salt in the entire cosmetic is not particularly limited, but generally 0.01 to 1.0% by mass is preferable, and more preferably, the dipotassium glycyrrhizinate is 0.05 to 0.00%. 30 mass% and a chelating agent are 0.05-0.50 mass%.

陰イオン性界面活性剤の具体例としては、以下のものが挙げられる。
以下の脂肪酸セッケン。ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸トリエタノールアミン、パルミチン酸ナトリウム、パルミチン酸カリウム、パルミチン酸トリエタノールアミン、ラウリン酸ナトリウム、ラウリン酸カリウム、ラウリン酸トリエタノールアミン等。
アルキルエーテルカルボン酸およびその塩、アミノ酸と脂肪酸の縮合物塩、アルカンスルホン酸塩、アルケンスルホン酸塩、脂肪酸エステルのスルホン酸塩、脂肪酸アミドのスルホン酸塩、ホルマリン縮合系スルホン酸塩、アルキル硫酸エステル塩。
第二級高級アルコール硫酸エステル塩、アルキルおよびアリルエーテル硫酸エステル塩、脂肪酸エステルの硫酸エステル塩、脂肪酸アルキロールアミドの硫酸エステル塩、ロート油等の硫酸エステル塩類、アルキルリン酸塩、エーテルリン酸塩。
アルキルアリルエーテルリン酸塩、アミドリン酸塩、N−アシル乳酸塩、N−アシルサルコシン塩、N−アシルアミノ酸系活性剤等。
Specific examples of the anionic surfactant include the following.
The following fatty acid soaps. Sodium stearate, potassium stearate, triethanolamine stearate, sodium palmitate, potassium palmitate, triethanolamine palmitate, sodium laurate, potassium laurate, triethanolamine laurate and the like.
Alkyl ether carboxylic acids and salts thereof, condensates of amino acids and fatty acids, alkane sulfonates, alkene sulfonates, sulfonates of fatty acid esters, sulfonates of fatty acid amides, formalin condensation sulfonates, alkyl sulfates salt.
Secondary higher alcohol sulfates, alkyl and allyl ether sulfates, sulfate esters of fatty acid esters, sulfate esters of fatty acid alkylolamide, sulfate esters such as funnel oil, alkyl phosphates, ether phosphates .
Alkyl allyl ether phosphate, amide phosphate, N-acyl lactate, N-acyl sarcosine salt, N-acyl amino acid type activator and the like.

化粧料全体における陰イオン性界面活性剤の配合量は特に限定されないが、一般的には0.01〜10.0質量%であり、より好ましくは、0.05〜3.0質量%である。   Although the compounding quantity of the anionic surfactant in the whole cosmetics is not particularly limited, it is generally 0.01 to 10.0% by mass, more preferably 0.05 to 3.0% by mass. .

<化粧料の製造方法>
本発明の化粧料の製造方法は、使用する成分の種類などに応じて適宜選択することができ、特に限定されない。水溶性成分と油溶性成分とを使用する場合には、水相と油相とを混合することにより、本発明の化粧料を製造することができる。例えば、水溶性成分を含む水相を準備し、水相中の各成分を加熱溶解した後、予め均一分散し、適当な温度に調整した油相(油溶性成分を含む)と混合し、ホモミキサーなどで乳化を行うことにより、本発明の化粧料を製造することができる。
<Manufacturing method of cosmetics>
The manufacturing method of the cosmetics of this invention can be suitably selected according to the kind etc. of component to be used, and is not specifically limited. When the water-soluble component and the oil-soluble component are used, the cosmetic of the present invention can be produced by mixing the water phase and the oil phase. For example, an aqueous phase containing a water-soluble component is prepared, each component in the aqueous phase is heated and dissolved, and then uniformly dispersed and mixed with an oil phase (including an oil-soluble component) adjusted to an appropriate temperature. By emulsifying with a mixer or the like, the cosmetic of the present invention can be produced.

<化粧料の形態>
本発明の化粧料は、具体的には、皮膚用化粧料、メイクアップ化粧料、毛髪用化粧料、紫外線防御化粧料、さらにはハンドクリーナーなどの洗浄剤、プレシェーブローション、アフターシェーブローション、芳香剤や歯磨剤、軟膏、貼布剤等が挙げられる。皮膚用化粧料としては、化粧水、乳液(美白乳液など)、クリーム、美容液、パック、ファンデーション、サンスクリーン化粧料、サンタン化粧料、各種ローション等が挙げられる。クリームとしては、コールドクリーム、バニシングクリーム、マッサージクリーム、エモリエントクリーム、クレンジングクリーム、モイスチャークリーム、ハンドクリーム等が挙げられる。メイクアップ化粧料としては、化粧下地、ファンデーション、アイシャドウ、チークなどが挙げられる。毛髪用化粧料としては、シャンプー、リンス、ヘアコンディショナー、リンスインシャンプー、ヘアスタイリング剤(ヘアフォーム、ジェル状整髪料等)、ヘアトリートメント剤、ヘアワックス、染毛剤等が挙げられる。ヘアトリートメント剤としては、ヘアクリーム、トリートメントローション、ヘアミルク等が挙げられる。さらに毛髪用化粧料としては、ローションタイプの育毛剤又は養毛剤等でもよい。上記した化粧料の具体例は例示に過ぎず、特にこれらに限定されるものではない。
<Cosmetic form>
Specifically, the cosmetics of the present invention include skin cosmetics, makeup cosmetics, hair cosmetics, UV protective cosmetics, and cleaning agents such as hand cleaners, pre-shave lotions, after-shave lotions, fragrances and the like. A dentifrice, an ointment, a patch, etc. are mentioned. Examples of skin cosmetics include skin lotion, milky lotion (whitening milky lotion, etc.), cream, cosmetic liquid, pack, foundation, sunscreen cosmetics, suntan cosmetics, and various lotions. Examples of the cream include cold cream, burnishing cream, massage cream, emollient cream, cleansing cream, moisture cream, and hand cream. Examples of makeup cosmetics include makeup bases, foundations, eye shadows, and cheeks. Examples of hair cosmetics include shampoos, rinses, hair conditioners, rinse-in shampoos, hair styling agents (hair foams, gel-like hair styling agents, etc.), hair treatment agents, hair waxes, hair dyes and the like. Examples of the hair treatment agent include hair cream, treatment lotion, and hair milk. Further, the hair cosmetic may be a lotion type hair restorer or hair nourishing agent. The specific examples of the cosmetics described above are merely examples, and are not particularly limited thereto.

さらに本発明の化粧料には、本発明の効果を損なわない範囲において、目的とする化粧料の種類に応じて、添加剤を配合することができる。添加剤としては、例えば、以下のものが挙げられるが、これらに限定されるものではない。
流動パラフィン、ワセリン等の炭化水素油、植物油脂、ロウ類、合成エステル油、シリコーン系の油相成分。
高級アルコール類、低級アルコール類、脂肪酸類、紫外線吸収剤、無機・有機顔料、色材、各種界面活性剤、多価アルコール、糖類、高分子化合物、生理活性成分、経皮吸収促進剤、溶媒、酸化防止剤、pH調整剤、香料など。前記各種界面活性剤としては、ノニオン性界面活性剤、カチオン性界面活性剤、及び両性界面活性剤が挙げられる。
Furthermore, an additive can be blended in the cosmetic of the present invention in accordance with the type of the target cosmetic within a range that does not impair the effects of the present invention. Examples of the additive include, but are not limited to, the following.
Hydrocarbon oils such as liquid paraffin and petrolatum, vegetable oils and fats, waxes, synthetic ester oils, silicone oil phase components.
Higher alcohols, lower alcohols, fatty acids, ultraviolet absorbers, inorganic / organic pigments, coloring materials, various surfactants, polyhydric alcohols, saccharides, polymer compounds, physiologically active ingredients, transdermal absorption promoters, solvents, Antioxidants, pH adjusters, fragrances, etc. Examples of the various surfactants include nonionic surfactants, cationic surfactants, and amphoteric surfactants.

さらに本発明によれば、化粧料を形成するために用いられるセルロース含有組成物であって、下記成分(A)および(B)を含むセルロース含有組成物が提供される。
(A)繊維幅が1000nm以下であり、かつリン酸由来の置換基を0.1mmol/g以上3.0mmol/g以下有する微細繊維状セルロース;
(B)水溶性高分子:
成分(A)および(B)の詳細は本明細書中に上記した通りである。
Furthermore, according to this invention, it is a cellulose containing composition used in order to form cosmetics, Comprising: The cellulose containing composition containing the following component (A) and (B) is provided.
(A) Fine fibrous cellulose having a fiber width of 1000 nm or less and having a substituent derived from phosphoric acid of 0.1 mmol / g or more and 3.0 mmol / g or less;
(B) Water-soluble polymer:
Details of components (A) and (B) are as described herein above.

以下の実施例により本発明を説明するが、本発明の範囲は実施例により限定されない。配合量は、質量%を表す。   The following examples illustrate the invention, but the scope of the invention is not limited by the examples. A compounding quantity represents the mass%.

[実施例1]
<微細繊維状セルロースの製造>
(製造例1)微細繊維状セルロース1の製造
尿素100g、リン酸二水素ナトリウム二水和物55.3g、リン酸水素二ナトリウム41.3gを109gの水に溶解させてリン酸化試薬を調製した。
乾燥した針葉樹晒クラフトパルプの抄上げシートをカッターミルおよびピンミルで処理し、綿状の繊維にした。この綿状の繊維を絶対乾燥質量で100g取り、リン酸化試薬をスプレーでまんべんなく吹きかけた後、手で練り合わせ、薬液含浸パルプを得た。
得られた薬液含浸パルプを140℃に加熱したダンパー付きの送風乾燥機にて、80分間加熱処理し、リン酸化パルプを得た。
[Example 1]
<Manufacture of fine fibrous cellulose>
(Production Example 1) Production of fine fibrous cellulose 1 A phosphorylation reagent was prepared by dissolving 100 g of urea, 55.3 g of sodium dihydrogen phosphate dihydrate, and 41.3 g of disodium hydrogen phosphate in 109 g of water. .
The dried softwood bleached kraft pulp paper was processed with a cutter mill and a pin mill to form cotton-like fibers. 100 g of this cotton-like fiber was taken in absolute dry mass, and the phosphorylating reagent was sprayed evenly with a spray, and then kneaded by hand to obtain a chemical-impregnated pulp.
The obtained chemical-impregnated pulp was heat-treated for 80 minutes in a blower dryer with a damper heated to 140 ° C. to obtain phosphorylated pulp.

得られたリン酸化パルプをパルプ質量で100g分取し、10Lのイオン交換水を注ぎ、攪拌して均一に分散させた後、濾過脱水して、脱水シートを得る工程を2回繰り返した。次いで、得られた脱水シートを10Lのイオン交換水で希釈し、攪拌しながら、1Nの水酸化ナトリウム水溶液を少しずつ添加し、pHが12〜13のパルプスラリーを得た。その後、このパルプスラリーを脱水し、脱水シートを得た後、10Lのイオン交換水を添加した。攪拌して均一に分散させた後、濾過脱水して、脱水シートを得る工程を2回繰り返した。得られた脱水シートをFT−IRで赤外線吸収スペクトルを測定した。その結果、1230〜1290cm-1にリン酸基に基づく吸収が観察され、リン酸基の付加が確認された。従って、得られた脱水シート(リン酸オキソ酸導入セルロース)は、セルロースのヒドロキシ基の一部が下記構造式(1)の官能基で置換されたものであった。 100 g of the obtained phosphorylated pulp was collected by pulp mass, poured with 10 L of ion exchange water, stirred and dispersed uniformly, and then subjected to filtration and dehydration to obtain a dehydrated sheet twice. Next, the obtained dehydrated sheet was diluted with 10 L of ion-exchanged water, and a 1N sodium hydroxide aqueous solution was added little by little while stirring to obtain a pulp slurry having a pH of 12 to 13. Thereafter, the pulp slurry was dehydrated to obtain a dehydrated sheet, and then 10 L of ion exchange water was added. The step of stirring and dispersing uniformly, followed by filtration and dehydration to obtain a dehydrated sheet was repeated twice. An infrared absorption spectrum of the obtained dehydrated sheet was measured by FT-IR. As a result, absorption based on phosphate groups was observed at 1320 to 1290 cm −1 , confirming the addition of phosphate groups. Therefore, the obtained dehydrated sheet (phosphoric acid oxoacid-introduced cellulose) was one in which a part of the hydroxy group of cellulose was substituted with a functional group of the following structural formula (1).

Figure 2017036217
Figure 2017036217

式中、a,b,m,nは自然数である(ただし、a=b×mである。)。α1,α2,・・・,αnおよびα’のうちの少なくとも1つはO-であり、残りはR,ORのいずれかである。Rは、各々、水素原子、飽和−直鎖状炭化水素基、飽和−分岐鎖状炭化水素基、飽和−環状炭化水素基、不飽和−直鎖状炭化水素基、不飽和−分岐鎖状炭化水素基、芳香族基、およびこれらの誘導基のいずれかである。βは有機物または無機物からなる1価以上の陽イオンである。 In the formula, a, b, m, and n are natural numbers (where a = b × m). At least one of α1, α2,..., αn and α ′ is O−, and the rest is either R or OR. R is a hydrogen atom, a saturated-linear hydrocarbon group, a saturated-branched hydrocarbon group, a saturated-cyclic hydrocarbon group, an unsaturated-linear hydrocarbon group, an unsaturated-branched hydrocarbon group, respectively. One of a hydrogen group, an aromatic group, and a derivative group thereof. β is a monovalent or higher cation composed of an organic substance or an inorganic substance.

得られたリン酸化セルロースにイオン交換水を添加し、2質量%スラリーを調製した。このスラリーを、解繊処理装置(エムテクニック社製、クレアミックス−11S)
を用いて、6900回転/分の条件で180分間解繊処理し、セルロース懸濁液を得た。
X線回折により、セルロースはセルロースI型結晶を維持していた。このセルロース懸濁液をさらに、湿式微粒化装置(スギノマシン社製「アルティマイザー」)で245MPaの圧力にて1回パスさせセルロース繊維1を得た。X線回折により、セルロースはセルロースI型結晶を維持していた。
Ion exchange water was added to the obtained phosphorylated cellulose to prepare a 2% by mass slurry. This slurry is defibrated (M-Technic Co., CLEAMIX-11S).
Was used for defibration for 180 minutes under conditions of 6900 rotations / minute to obtain a cellulose suspension.
By X-ray diffraction, the cellulose maintained cellulose I type crystals. This cellulose suspension was further passed once at a pressure of 245 MPa with a wet atomizer (“Ultimizer” manufactured by Sugino Machine Co., Ltd.) to obtain cellulose fibers 1. By X-ray diffraction, the cellulose maintained cellulose I type crystals.

(製造例2)微細繊維状セルロース2の製造
湿式微粒化装置(スギノマシン社製「アルティマイザー」)で245MPaの圧力にて10回パスさせた以外は製造例1と同様の方法で行いセルロース繊維2を得た。X線回折により、セルロースはセルロースI型結晶を維持していた。
(Production Example 2) Production of fine fibrous cellulose 2 Cellulose fibers were produced in the same manner as in Production Example 1 except that it was passed 10 times at a pressure of 245 MPa with a wet atomizer ("Ultimizer" manufactured by Sugino Machine). 2 was obtained. By X-ray diffraction, the cellulose maintained cellulose I type crystals.

(製造例3)微細繊維状セルロース3の製造
製造例1で得たリン酸化パルプを再度リン酸化試薬に含浸し、140℃に加熱したダンパー付きの送風乾燥機にて、80分間加熱処理し、2回リン酸化反応を行った以外は製造例1と同様の方法で行いセルロース繊維3を得た。X線回折により、セルロースはセルロースI型結晶を維持していた。
(Production Example 3) Production of fine fibrous cellulose 3 The phosphorylated pulp obtained in Production Example 1 was impregnated with a phosphorylating reagent again, and heat treated for 80 minutes in a blower dryer with a damper heated to 140 ° C. Cellulose fibers 3 were obtained in the same manner as in Production Example 1 except that the phosphorylation reaction was performed twice. By X-ray diffraction, the cellulose maintained cellulose I type crystals.

(製造例4)微細繊維状セルロース4の製造
製造例1で得たリン酸化パルプを再度リン酸化試薬に含浸し、140℃に加熱したダンパー付きの送風乾燥機にて、50分間加熱処理し、2回リン酸化反応を行った以外は製造例1と同様の方法で行いセルロース繊維4を得た。X線回折により、セルロースはセルロースI型結晶を維持していた。
(Production Example 4) Production of fine fibrous cellulose 4 The phosphorylated pulp obtained in Production Example 1 was impregnated again with a phosphorylating reagent, and heat treated for 50 minutes in a blower dryer with a damper heated to 140 ° C. Cellulose fibers 4 were obtained in the same manner as in Production Example 1 except that the phosphorylation reaction was performed twice. By X-ray diffraction, the cellulose maintained cellulose I type crystals.

(製造例5)微細繊維状セルロース5の製造
リン酸水素二ナトリウム二水和物5.5g、リン酸水素二ナトリウム4.1gに変更した以外は製造例1と同様の方法で行い、セルロース繊維5を得た。X線回折により、セルロースはセルロースI型結晶を維持していた。
(Production Example 5) Production of fine fibrous cellulose 5 Cellulose fibers were prepared in the same manner as in Production Example 1 except that 5.5 g of disodium hydrogen phosphate dihydrate and 4.1 g of disodium hydrogen phosphate were used. 5 was obtained. By X-ray diffraction, the cellulose maintained cellulose I type crystals.

(リン酸基の導入量(置換基量)の測定)
リン酸基に由来する強酸性基と弱酸性基の導入量の差分は、リン酸基の縮合の尺度となる。この値が小さいほどリン酸基の縮合が少なく、透明性の高い微細繊維状セルロース含有スラリーを与える。リン酸基に由来する強酸性基と弱酸性基の導入量は、解繊処理後の微細繊維状セルロース含有スラリーをそのままイオン交換水で固形分濃度0.2質量%となるように希釈した後、イオン交換樹脂による処理、アルカリを用いた滴定によって測定した。
イオン交換樹脂による処理では、0.2質量%微細繊維状セルロース含有スラリーに体積で1/10の強酸性イオン交換樹脂(アンバージェット1024;オルガノ株式会社、コンディショング済)を加え、1時間振とう処理を行った。その後、目開き90μmのメッシュ上に注ぎ、樹脂とスラリーを分離した。アルカリを用いた滴定では、イオン交換後の微細繊維状セルロース含有スラリーに、0.1Nの水酸化ナトリウム水溶液を加えながら、スラリーが示す電気伝導度の値の変化を計測した。
すなわち、図1に示した曲線の第1領域で必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除して、強酸性基の導入量(mmol/g)とした。また、図1に示した曲線の第2領域で必要としたアルカリ量(mmol)を、滴定対象スラ
リー中の固形分(g)で除して、弱酸性基の導入量(mmol/g)とした。
(Measurement of phosphate group introduction amount (substituent amount))
The difference between the introduction amount of the strong acid group and the weak acid group derived from the phosphate group is a measure of the condensation of the phosphate group. The smaller this value, the smaller the condensation of phosphate groups, and the more highly fine fibrous cellulose-containing slurry is obtained. The introduction amount of the strongly acidic group and the weakly acidic group derived from the phosphoric acid group is obtained by diluting the fine fibrous cellulose-containing slurry after the defibration treatment as it is with a solid content concentration of 0.2% by mass with ion-exchanged water. Measured by treatment with ion exchange resin and titration with alkali.
In the treatment with an ion exchange resin, 1/10 by volume of a strongly acidic ion exchange resin (Amberjet 1024; Organo Corporation, conditioned) is added to a slurry containing 0.2% by mass of fine fibrous cellulose and shaken for 1 hour. Processed. Thereafter, the mixture was poured onto a mesh having an opening of 90 μm to separate the resin and the slurry. In the titration using an alkali, the change in the value of electrical conductivity exhibited by the slurry was measured while adding a 0.1 N sodium hydroxide aqueous solution to the fine fibrous cellulose-containing slurry after ion exchange.
That is, by dividing the alkali amount (mmol) required in the first region of the curve shown in FIG. 1 by the solid content (g) in the slurry to be titrated, the amount of strongly acidic groups introduced (mmol / g) did. Further, the alkali amount (mmol) required in the second region of the curve shown in FIG. 1 is divided by the solid content (g) in the slurry to be titrated, and the amount of weak acidic groups introduced (mmol / g) did.

(製造例6)微細繊維状セルロース6の製造
乾燥質量200g相当分の未乾燥の針葉樹晒クラフトパルプとTEMPO2.5gと、臭化ナトリウム25gを水1500mlに分散させた。その後、13質量%次亜塩素酸ナトリウム水溶液を、1.0gのパルプに対して次亜塩素酸ナトリウムの量が5.0mmolになるように加えて反応を開始した。反応中は0.5Mの水酸化ナトリウム水溶液を滴下してpHを10〜11に保ち、pHに変化が見られなくなった時点で反応を終了した。
その後、このパルプスラリーを脱水し、脱水シートを得た後、10Lのイオン交換水を添加した。次に、攪拌して均一に分散させた後、濾過脱水して、脱水シートを得る工程を2回繰り返した。得られた脱水シートをFT−IRで赤外線吸収スペクトルを測定した。その結果、1730cm-1にカルボキシル基に基づく吸収が観察され、カルボキシル基の付加が確認された。この脱水シート(TEMPO酸化セルロース)を用いて、微細繊維状セルロースを調製した。
(Production Example 6) Production of fine fibrous cellulose 6 Undried softwood bleached kraft pulp equivalent to a dry mass of 200 g, TEMPO 2.5 g, and sodium bromide 25 g were dispersed in 1500 ml of water. Then, 13 mass% sodium hypochlorite aqueous solution was added so that the quantity of sodium hypochlorite might be set to 5.0 mmol with respect to 1.0 g of pulp, and reaction was started. During the reaction, a 0.5 M aqueous sodium hydroxide solution was added dropwise to maintain the pH at 10 to 11, and the reaction was terminated when no change in pH was observed.
Thereafter, the pulp slurry was dehydrated to obtain a dehydrated sheet, and then 10 L of ion exchange water was added. Next, the step of stirring and dispersing uniformly and then dewatering by filtration to obtain a dehydrated sheet was repeated twice. An infrared absorption spectrum of the obtained dehydrated sheet was measured by FT-IR. As a result, absorption based on a carboxyl group was observed at 1730 cm −1 , confirming the addition of a carboxyl group. Using this dehydrated sheet (TEMPO oxidized cellulose), fine fibrous cellulose was prepared.

上記で得られたカルボキシル基が付加したTEMPO酸化セルロースにイオン交換水を添加し、2質量%のスラリーを調製した。このスラリーを、解繊処理装置(エムテクニック社製、クレアミックス−11S)を用いて、6900回転/分の条件で180分間解繊処理し、セルロース懸濁液を得た。X線回折により、セルロースはセルロースI型結晶を維持していた。このセルロース懸濁液をさらに、湿式微粒化装置(スギノマシン社製「アルティマイザー」)で245MPaの圧力にて10回パスさせセルロース繊維6を得た。X線回折により、セルロースはセルロースI型結晶を維持していた。   Ion-exchanged water was added to the TEMPO-oxidized cellulose to which the carboxyl group obtained above was added to prepare a 2% by mass slurry. The slurry was defibrated for 180 minutes at 6900 rpm using a defibrating apparatus (Cleamix-11S, manufactured by M Technique Co., Ltd.) to obtain a cellulose suspension. By X-ray diffraction, the cellulose maintained cellulose I type crystals. This cellulose suspension was further passed 10 times at a pressure of 245 MPa with a wet atomizer (“Ultimizer” manufactured by Sugino Machine Co., Ltd.) to obtain cellulose fibers 6. By X-ray diffraction, the cellulose maintained cellulose I type crystals.

[実施例2]粘度及び結晶化度の測定
セルロース繊維1〜6の粘度を下記の方法で測定した。
セルロース繊維1〜6に水を添加し、各々のセルロース繊維の濃度を0.4質量%に調製した。セルロース繊維1〜6の懸濁液を24時間放置後、B型粘度計(BLOOKFIELD社製、アナログ粘度計T−LVT)を用いて25℃にて回転数3rpm(3分)で粘度を測定した。結果を表1に示す。
[Example 2] Measurement of viscosity and crystallinity Viscosity of cellulose fibers 1 to 6 was measured by the following method.
Water was added to the cellulose fibers 1 to 6 to adjust the concentration of each cellulose fiber to 0.4% by mass. The suspension of cellulose fibers 1 to 6 was allowed to stand for 24 hours, and then the viscosity was measured at 25 ° C. at 3 rpm (3 minutes) using a B-type viscometer (BLOOKFIELD, analog viscometer T-LVT). . The results are shown in Table 1.

セルロース繊維1〜6の繊維幅を下記の方法で測定した。
解繊パルプスラリーの上澄み液を濃度0.01〜0.1質量%に水で希釈し、親水化処理したカーボングリッド膜に滴下した。乾燥後、酢酸ウラニルで染色し、透過型電子顕微鏡(日本電子社製、JEOL−2000EX)により観察した。製造例1から4及び製造例6では、幅4nm程度の微細繊維状セルロースになっていることを確認した。製造例5では、繊維幅4nm程度の微細繊維状セルロース繊維を観察できなかった。製造例5の解繊パルプスラリーを濃度0.01〜0.1質量%に水で希釈し、スライドガラスに滴下した。カバーガラスをかぶせ、デジタルマイクロスコープ(Hirox製、KH−7700)により観察したところ10μm以上の粗大な繊維が観察された。
The fiber width of the cellulose fibers 1-6 was measured by the following method.
The supernatant liquid of the defibrated pulp slurry was diluted with water to a concentration of 0.01 to 0.1% by mass and dropped onto a hydrophilic carbon grid membrane. After drying, it was stained with uranyl acetate and observed with a transmission electron microscope (JEOL-2000EX, manufactured by JEOL Ltd.). In Production Examples 1 to 4 and Production Example 6, it was confirmed that the fine fibrous cellulose had a width of about 4 nm. In Production Example 5, fine fibrous cellulose fibers having a fiber width of about 4 nm could not be observed. The defibrated pulp slurry of Production Example 5 was diluted with water to a concentration of 0.01 to 0.1% by mass and dropped onto a slide glass. When covered with a cover glass and observed with a digital microscope (Hirox, KH-7700), coarse fibers of 10 μm or more were observed.

セルロース繊維1〜6の結晶化度については、X線回折装置を用いて測定し、下記の計算式から求めた。なお、下記計算式の「結晶化指数」は、「結晶化度」ともいう。   About the crystallinity degree of the cellulose fibers 1-6, it measured using the X-ray-diffraction apparatus and calculated | required from the following formula. The “crystallization index” in the formula below is also referred to as “crystallinity”.

セルロースI型結晶化指数(%)=〔(I22.6−I18.5)/I22.6〕×100 (1)
〔I22.6は、X線回折における格子面(002面)(回折角2θ=22.6°)の回折強度、及びI18.5は、アモルファス部(回折角2θ=18.5°)の回折強度を示す〕
0.45≦αω(m・rad/sec) (2)
〔αは、片振幅(m)、ωは、角速度(rad/sec)を示す。〕。
Cellulose type I crystallization index (%) = [(I22.6−I18.5) /I22.6] × 100 (1)
[I22.6 is the diffraction intensity of the lattice plane (002 plane) (diffraction angle 2θ = 22.6 °) in X-ray diffraction, and I18.5 is the diffraction of the amorphous portion (diffraction angle 2θ = 18.5 °). (Indicates strength)
0.45 ≦ αω (m · rad / sec) (2)
[Α represents a half amplitude (m), and ω represents an angular velocity (rad / sec). ].

Figure 2017036217
Figure 2017036217

表1に示すように、セルロース繊維1〜4の懸濁液は十分な粘度を有していた。セルロース繊維5はリン酸化反応が十分ではなく、解繊後も繊維幅10μm以上の粗大な繊維のみが観察され、繊維幅1000nm以下の微細な繊維はほとんど見られず、十分な粘性を発揮しなかった。   As shown in Table 1, the suspensions of cellulose fibers 1 to 4 had a sufficient viscosity. Cellulose fiber 5 is not sufficiently phosphorylated, only coarse fibers with a fiber width of 10 μm or more are observed even after defibration, and fine fibers with a fiber width of 1000 nm or less are hardly seen and do not exhibit sufficient viscosity. It was.

[実施例3]
<化粧料の評価>
下記表2、3に示す各化粧料を調製し、その製剤安定性、使用感触(べたつきの有無)について検討を行った結果を表2、3に併せて示す。表2及び3において「To100」とは、全量で100になる量を示す。なお、評価は以下の基準に従い行った。
[Example 3]
<Evaluation of cosmetics>
Tables 2 and 3 show the results of preparing each cosmetic shown in Tables 2 and 3 below and examining the formulation stability and the feel in use (presence or absence of stickiness). In Tables 2 and 3, “To100” indicates an amount that becomes 100 in total. The evaluation was performed according to the following criteria.

(1)化粧料の調製方法
水相中の各成分を加熱溶解した後、予め均一分散し、80℃に調整した油相と混合しホモミキサー(5000rpm、5分)にて乳化した。
(1) Preparation Method of Cosmetics Each component in the aqueous phase was heated and dissolved, and then uniformly dispersed, mixed with an oil phase adjusted to 80 ° C., and emulsified with a homomixer (5000 rpm, 5 minutes).

(2)製剤安定性の評価
調製した化粧料を45℃で1ヶ月間放置し、その製剤安定性を評価した。評価基準は下記のとおりである。
A:油あるいは水の分離が全く認められず、ツヤのある製剤
B:油あるいは水の分離は認められず、ツヤはあるが、ザラザラとした製剤
C:油あるいは水の分離は認められないが、ツヤのない製剤
D:油あるいは水の分離が明確に認められる、もしくは分散不良
(2) Evaluation of formulation stability The prepared cosmetics were allowed to stand at 45 ° C for 1 month to evaluate the formulation stability. The evaluation criteria are as follows.
A: No separation of oil or water is observed, glossy formulation B: No separation of oil or water is observed, gloss is present, but rough formulation C: No separation of oil or water is observed 、 Glossy formulation D: Oil or water separation is clearly recognized or poorly dispersed

(3)使用後のべたつき感の評価
専門パネル10名によって、実使用試験を実施した。評価基準は下記のとおりである。
A:パネル8名以上が、使用後べたつき感がないと認める。
B:パネル6名以上8名未満が、使用後べたつき感がないと認める。
C:パネル3名以上6名未満が、使用後べたつき感がないと認める。
D:パネル3名未満が、使用後べたつき感がないと認める。
(3) Evaluation of stickiness after use An actual use test was conducted by 10 professional panels. The evaluation criteria are as follows.
A: Eight or more panelists recognize that there is no stickiness after use.
B: 6 or more and less than 8 panelists recognize that there is no stickiness after use.
C: 3 or more and less than 6 panelists recognize that there is no stickiness after use.
D: Less than 3 panelists recognize that there is no stickiness after use.

Figure 2017036217
Figure 2017036217

表2より、発明品1〜5のイオン性置換基を有する微細セルロース繊維と水溶性高分子を含む製剤は均一感のあるツヤのあるものであり、製剤のべたつきもなく、使用感に優れたものであった。
一方で、比較品1、2の水溶性高分子を含まない製剤はツヤがなく微細セルロース繊維由来と思われる凝集物が目視で確認でき、ざらざらとした質感であった。
比較品3、4は、均一な製剤を調製できなかった。
比較品5は微細セルロース繊維を含まないため、べたつきのある製剤であった。
From Table 2, preparations containing fine cellulose fibers having ionic substituents and water-soluble polymers of Invention products 1 to 5 have a uniform gloss, no stickiness of the preparation, and excellent use feeling It was a thing.
On the other hand, the preparations containing no water-soluble polymer of Comparative products 1 and 2 had no texture and agglomerates that were thought to be derived from fine cellulose fibers could be visually confirmed and had a rough texture.
Comparative products 3 and 4 could not prepare a uniform preparation.
Since the comparative product 5 does not contain fine cellulose fibers, it was a sticky preparation.

Figure 2017036217
Figure 2017036217

表3より、発明品6〜13の割合で微細セルロース繊維と水溶性高分子を配合したものは均一感のあるツヤのあるものであり、製剤のべたつきもなく、使用感に優れたものであった。   From Table 3, the blends of fine cellulose fibers and water-soluble polymers in the ratio of invention products 6 to 13 have a uniform gloss, no stickiness of the preparation, and excellent usability. It was.

以下に、本発明の(A)微細繊維状セルロースおよび(B)水溶性高分子を配合した応用例を挙げるが、本発明はこれらにより限定されるものではない。また、実施例4〜10は、いずれも実施例3の方法で、優れた製剤の安定性およびべたつきのない感触を確認している。   Although the application example which mix | blended (A) fine fibrous cellulose and (B) water-soluble polymer of this invention is given to the following, this invention is not limited by these. In Examples 4 to 10, all were confirmed by the method of Example 3 to have excellent formulation stability and a non-sticky feel.

[実施例4]とろみ化粧水
(A)セルロース繊維4 0.50(質量%)
ヒドロキシエチルセルロース 0.05
グリセリン 7.00
1,3−ブチレングリコール 5.00
防腐剤 適量
精製水 残量
(B)グリチルリチン酸2カリウム 0.10
精製水 10.00
調製方法:Aを80℃に加温後、40℃まで撹拌冷却する。Aを撹拌しているところにBを添加する。さらに撹拌冷却を続け、室温で調製を終了する。
[Example 4] Thorough lotion (A) Cellulose fiber 4 0.50 (mass%)
Hydroxyethyl cellulose 0.05
Glycerin 7.00
1,3-butylene glycol 5.00
Preservative appropriate amount Purified water Remaining amount (B) Dipotassium glycyrrhizinate 0.10
Purified water 10.00
Preparation method: A is heated to 80 ° C., and then stirred and cooled to 40 ° C. B is added while A is being stirred. Further, stirring and cooling are continued, and the preparation is completed at room temperature.

[実施例5]ジェル状美容液
(A)セルロース繊維3 0.30(質量%)
キサンタンガム 0.05
グリセリン 3.00
1,3−ブチレングリコール 7.00
防腐剤 適量
精製水 残量
(B)アルギニン 0.05
精製水 5.00
(C)グリチルリチン酸2カリウム 0.10
ヒアルロン酸ナトリウム(1%水溶液) 3.00
精製水 5.00
調製方法:Aを80℃に加温後、40℃まで撹拌冷却する。Aを撹拌しているところにB、Cをそれぞれ添加する。さらに撹拌冷却を続け、室温で調製を終了する。
[Example 5] Gel serum (A) Cellulose fiber 3 0.30 (% by mass)
Xanthan gum 0.05
Glycerin 3.00
1,3-butylene glycol 7.00
Preservative Suitable amount Purified water Remaining amount (B) Arginine 0.05
Purified water 5.00
(C) Dipotassium glycyrrhizinate 0.10
Sodium hyaluronate (1% aqueous solution) 3.00
Purified water 5.00
Preparation method: A is heated to 80 ° C., and then stirred and cooled to 40 ° C. B and C are added to the place where A is being stirred. Further, stirring and cooling are continued, and the preparation is completed at room temperature.

[実施例6]ジェル状乳液
(A)セルロース繊維2 1.00(質量%)
グアーガム 0.10
グリセリン 8.00
1,3−ブチレングリコール 5.00
アルギニン 0.70
防腐剤 適量
精製水 残量
(B)ホホバ油 3.00
スクワラン 5.00
リン酸セチル 1.40
ステアリルアルコール 2.00
調製方法:A、Bを80℃に加温して均一溶解する。BにAを添加して撹拌して乳化する。室温まで撹拌冷却して調製を終了する。
[Example 6] Gel emulsion (A) Cellulose fiber 2 1.00 (mass%)
Guar gum 0.10
Glycerin 8.00
1,3-butylene glycol 5.00
Arginine 0.70
Preservative Appropriate amount Purified water Remaining amount (B) Jojoba oil 3.00
Squalane 5.00
Cetyl phosphate 1.40
Stearyl alcohol 2.00
Preparation method: A and B are heated to 80 ° C. and uniformly dissolved. Add A to B and stir to emulsify. The preparation is completed after stirring and cooling to room temperature.

[実施例7]ファンデーション
(A)セルロース繊維3 0.70(質量%)
カルボキシメチルセルロース 0.10
ステアロイルメチルタウリンナトリウム 0.50
1,3−ブチレングリコール 5.00
防腐剤 適量
精製水 残量
(B)顔料酸化チタン 7.00
酸化鉄(黄) 0.70
酸化鉄(赤) 0.20
酸化鉄(黒) 0.10
(C)NIKKOL ニコムルス41 2.50
ステアリン酸グリセリル 1.00
セトステアリルアルコール 1.00
メトキシケイヒ酸エチルヘキシル 8.00
ジメチコン(6cs) 3.00
シクロペンタシロキサン 5.00
調製方法:Bは予め分散機にて混合し、均一分散する。A、Cは80℃に加温して均一溶解する。AにBを添加し、Aをホモミキサーで撹拌しているところにCを添加して乳化する。室温まで撹拌冷却して調製を終了する。
※NIKKOL ニコムルス41:ベヘニルアルコール、ペンタステアリン酸ポリグリセリル−10、ステアロイル乳酸ナトリウム
[Example 7] Foundation (A) Cellulose fiber 3 0.70 (mass%)
Carboxymethylcellulose 0.10
Stearoyl methyl taurine sodium 0.50
1,3-butylene glycol 5.00
Preservative Suitable amount Purified water Remaining amount (B) Pigmented titanium oxide 7.00
Iron oxide (yellow) 0.70
Iron oxide (red) 0.20
Iron oxide (black) 0.10
(C) NIKKOL Nikomulus 41 2.50
Glyceryl stearate 1.00
Cetostearyl alcohol 1.00
Ethylhexyl methoxycinnamate 8.00
Dimethicone (6cs) 3.00
Cyclopentasiloxane 5.00
Preparation method: B is previously mixed in a disperser and uniformly dispersed. A and C are heated to 80 ° C. and uniformly dissolved. B is added to A, and C is added and emulsified while A is being stirred with a homomixer. The preparation is completed after stirring and cooling to room temperature.
* NIKKOL Nicolulus 41: behenyl alcohol, polyglyceryl-10 pentastearate, sodium stearoyl lactate

[実施例8]サンスクリーンローション
(A)セルロース繊維4 0.05(質量%)
グアーガム 0.03
グリセリン 5.00
防腐剤 適量
精製水 残量
(B)CM3K40T4J 35.00
CM3K50XZ4J 25.00
X−21−5250L 3.00
シクロペンタシロキサン 15.00
(ビニルジメチコン/メチコンシルセスキオキサン)クロスポリマー 2.00
調製方法:室温でBを撹拌し、均一分散する。Bを撹拌しているところにAを添加して撹拌後、調製を終了する。
※CM3K40T4J:PEG−10ジメチコン、微粒子酸化チタン、シクロペンタシロキサン、メチコン、アルミナ
CM3K50XZ4J:PEG−10ジメチコン、メチコン、微粒子酸化亜鉛、シクロペンタシロキサン
X−21−5250L:トリメチルシロキシケイ酸、ジメチコン
[Example 8] Sunscreen lotion (A) Cellulose fiber 4 0.05 (mass%)
Guar gum 0.03
Glycerin 5.00
Preservative appropriate amount Purified water remaining amount (B) CM3K40T4J 35.00
CM3K50XZ4J 25.00
X-21-5250L 3.00
Cyclopentasiloxane 15.00
(Vinyl Dimethicone / Methicon Silsesquioxane) Cross Polymer 2.00
Preparation method: B is stirred at room temperature and uniformly dispersed. A is added to the place where B is being stirred, and the preparation is completed after stirring.
* CM3K40T4J: PEG-10 dimethicone, fine particle titanium oxide, cyclopentasiloxane, methicone, alumina CM3K50XZ4J: PEG-10 dimethicone, methicone, fine particle zinc oxide, cyclopentasiloxane X-21-5250L: trimethylsiloxysilicate, dimethicone

[実施例9]サンスクリーンジェル
(A)セルロース繊維3 1.00(質量%)
キサンタンガム 0.50
ナイロン−12 2.00
1,3−ブチレングリコール 5.00
防腐剤 適量
精製水 残量
(B)PEG−10ジメチコン 0.50
CM3K40T4J 25.00
CM3K50XZ4J 15.00
調製方法:Aを80℃に加温して均一溶解後、室温まで撹拌冷却する。Aをホモミキサーで撹拌しているところにBを添加し、乳化して調製を終了する。
※CM3K40T4J:PEG−10ジメチコン、微粒子酸化チタン、シクロペンタシロキサン、メチコン、アルミナ
CM3K50XZ4J:PEG−10ジメチコン、メチコン、微粒子酸化亜鉛、シクロペンタシロキサン
[Example 9] Sunscreen gel (A) Cellulose fiber 3 1.00 (mass%)
Xanthan gum 0.50
Nylon-12 2.00
1,3-butylene glycol 5.00
Preservative Suitable amount Purified water Remaining amount (B) PEG-10 Dimethicone 0.50
CM3K40T4J 25.00
CM3K50XZ4J 15.00
Preparation method: A is heated to 80 ° C. and uniformly dissolved, and then stirred and cooled to room temperature. B is added to the place where A is being stirred with a homomixer and emulsified to complete the preparation.
* CM3K40T4J: PEG-10 dimethicone, fine particle titanium oxide, cyclopentasiloxane, methicone, alumina CM3K50XZ4J: PEG-10 dimethicone, methicone, fine particle zinc oxide, cyclopentasiloxane

[実施例10]サンスクリーンミルク
(A)セルロース繊維3 0.30(質量%)
キサンタンガム 0.05
ステアロイルメチルタウリンナトリウム 0.50
1,3−ブチレングリコール 5.00
防腐剤 適量
精製水 残量
(B)PEG−60水添ヒマシ油 0.50
ポリソルベート60 0.70
ステアリン酸ソルビタン 1.50
IOP50XZ4J 25.00
IOPP40VMJ 25.00
メトキシケイヒ酸エチルヘキシル 8.00
ジエチルアミノヒドロキシベンゾイル安息香酸ヘキシル 3.00
調製方法:A、Bを80℃に加温して均一溶解する。Aをホモミキサーで撹拌しているところにBを添加し、乳化する。室温まで撹拌冷却して調製を終了する。
※IOP50XZ4J:パルミチン酸エチルヘキシル、微粒子酸化亜鉛、メチコン、ポリヒドロキシステアリン酸
IOPP40VMJ:パルミチン酸エチルヘキシル、微粒子酸化チタン、アルミナ、メチコン、ポリヒドロキシステアリン酸
[Example 10] Sunscreen milk (A) Cellulose fiber 3 0.30 (mass%)
Xanthan gum 0.05
Stearoyl methyl taurine sodium 0.50
1,3-butylene glycol 5.00
Preservative appropriate amount Purified water remaining amount (B) PEG-60 hydrogenated castor oil 0.50
Polysorbate 60 0.70
Sorbitan stearate 1.50
IOP50XZ4J 25.00
IOPP40VMJ 25.00
Ethylhexyl methoxycinnamate 8.00
Diethylaminohydroxybenzoyl hexyl benzoate 3.00
Preparation method: A and B are heated to 80 ° C. and uniformly dissolved. B is added and emulsified while A is being stirred with a homomixer. The preparation is completed after stirring and cooling to room temperature.
* IOP50XZ4J: ethylhexyl palmitate, fine particle zinc oxide, methicone, polyhydroxystearic acid IOPP40VMJ: ethylhexyl palmitate, fine particle titanium oxide, alumina, methicone, polyhydroxystearic acid

[実施例11]ヘアミスト
(A)セルロース繊維1 0.70(質量%)
ヒドロキシプロピルメチルセルロースステアロキシエーテル 0.20
防腐剤 適量
精製水 残量
(B)メトキシケイヒ酸エチルヘキシル 0.50
1,3−ブチレングリコール 3.00
PPG−6デシルテトラデセス−30 1.00
(C)パンテノール 0.70
エタノール 10.00
調製方法:Aを80℃に加温して均一溶解後、室温まで撹拌冷却する。Aを撹拌しているところにB、Cをそれぞれ添加し均一溶解後、調製を終了する。
[Example 11] Hair mist (A) Cellulose fiber 1 0.70 (mass%)
Hydroxypropyl methylcellulose stearoxy ether 0.20
Preservative Suitable amount Purified water Remaining amount (B) Ethylhexyl methoxycinnamate 0.50
1,3-butylene glycol 3.00
PPG-6 decyltetradeces-30 1.00
(C) Panthenol 0.70
Ethanol 10.00
Preparation method: A is heated to 80 ° C. and uniformly dissolved, and then stirred and cooled to room temperature. B and C are respectively added to the place where A is being stirred, and after uniform dissolution, the preparation is completed.

[実施例12]ヘアクリーム
(A)セルロース繊維2 0.50(質量%)
キサンタンガム 0.10
アルギニン 0.70
防腐剤 適量
精製水 残量
(B)水添レシチン 1.00
ミリスチン酸ポリグリセリル−10 1.00
セタノール 1.50
トリエチルヘキサノイン 8.00
シクロペンタシロキサン 5.00
高重合ジメチコン 3.00
メトキシケイヒ酸エチルヘキシル 1.50
調製方法:A、Bを80℃に加温して均一溶解する。Aを撹拌しているところにBを添加して乳化後、撹拌しながら室温まで冷却して調製を終了する。
[Example 12] Hair cream (A) Cellulose fiber 2 0.50 (mass%)
Xanthan gum 0.10
Arginine 0.70
Preservative appropriate amount Purified water Remaining amount (B) Hydrogenated lecithin 1.00
Polyglyceryl myristate-10 1.00
Cetanol 1.50
Triethylhexanoin 8.00
Cyclopentasiloxane 5.00
High polymerization dimethicone 3.00
Ethyl hexyl methoxycinnamate 1.50
Preparation method: A and B are heated to 80 ° C. and uniformly dissolved. B is added to the place where A is being stirred and emulsified, and then cooled to room temperature with stirring to complete the preparation.

本発明は、塗布時の感触が良く、製剤安定性の良い化粧料を提供することができる。   The present invention can provide a cosmetic having a good feel at the time of application and good formulation stability.

Claims (7)

下記成分(A)および(B)を含む化粧料。
(A)繊維幅が1000nm以下であり、かつリン酸由来の置換基を0.1mmol/g以上3.0mmol/g以下有する微細繊維状セルロース;
(B)水溶性高分子:
A cosmetic comprising the following components (A) and (B).
(A) Fine fibrous cellulose having a fiber width of 1000 nm or less and having a substituent derived from phosphoric acid of 0.1 mmol / g or more and 3.0 mmol / g or less;
(B) Water-soluble polymer:
前記成分(B)が、増粘性多糖類を含む請求項1に記載の化粧料。 The cosmetic according to claim 1, wherein the component (B) contains a thickening polysaccharide. 前記成分(B)が、イオン性の前記増粘性多糖類を含む請求項2に記載の化粧料。 The cosmetic according to claim 2, wherein the component (B) contains the ionic thickening polysaccharide. 前記成分(A)の配合量が、化粧料全体に対して0.01〜2.0質量%である請求項1〜3のいずれか一項に記載の化粧料。 The cosmetics according to any one of claims 1 to 3, wherein a blending amount of the component (A) is 0.01 to 2.0 mass% with respect to the whole cosmetics. 前記成分(B)の配合量が、化粧料全体に対して0.03〜1.0質量%である請求項1〜4のいずれか一項に記載の化粧料。 Cosmetics as described in any one of Claims 1-4 whose compounding quantity of the said component (B) is 0.03-1.0 mass% with respect to the whole cosmetics. 成分(C)として、無機粉体、有機粉体、無機酸、有機酸、無機酸塩、有機酸塩、および陰イオン性界面活性剤からなる群より選ばれる一種または二種以上をさらに含有する請求項1〜5のいずれか一項に記載の化粧料。 Component (C) further contains one or more selected from the group consisting of inorganic powder, organic powder, inorganic acid, organic acid, inorganic acid salt, organic acid salt, and anionic surfactant. Cosmetics as described in any one of Claims 1-5. 化粧料を形成するために用いられるセルロース含有組成物であって、
下記成分(A)および(B)を含むセルロース含有組成物。
(A)繊維幅が1000nm以下であり、かつリン酸由来の置換基を0.1mmol/g以上3.0mmol/g以下有する微細繊維状セルロース;
(B)水溶性高分子:
A cellulose-containing composition used to form a cosmetic,
A cellulose-containing composition comprising the following components (A) and (B).
(A) Fine fibrous cellulose having a fiber width of 1000 nm or less and having a substituent derived from phosphoric acid of 0.1 mmol / g or more and 3.0 mmol / g or less;
(B) Water-soluble polymer:
JP2015154035A 2015-08-04 2015-08-04 Cosmetics Active JP6758805B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2015154035A JP6758805B2 (en) 2015-08-04 2015-08-04 Cosmetics
CN201680045333.3A CN108024942B (en) 2015-08-04 2016-08-04 Cosmetic preparation
KR1020187006080A KR20180043793A (en) 2015-08-04 2016-08-04 Cosmetics
US15/750,115 US11382842B2 (en) 2015-08-04 2016-08-04 Cosmetic
PCT/JP2016/072961 WO2017022830A1 (en) 2015-08-04 2016-08-04 Cosmetic
EP16833109.8A EP3332763A4 (en) 2015-08-04 2016-08-04 Cosmetic
KR1020217007510A KR102306949B1 (en) 2015-08-04 2016-08-04 Cosmetic
CA2997023A CA2997023C (en) 2015-08-04 2016-08-04 Cosmetic thickeners comprising microfibrous cellulose and a water-soluble polymer with improved properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015154035A JP6758805B2 (en) 2015-08-04 2015-08-04 Cosmetics

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020147484A Division JP2020193228A (en) 2020-09-02 2020-09-02 Cosmetic

Publications (2)

Publication Number Publication Date
JP2017036217A true JP2017036217A (en) 2017-02-16
JP6758805B2 JP6758805B2 (en) 2020-09-23

Family

ID=58047290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015154035A Active JP6758805B2 (en) 2015-08-04 2015-08-04 Cosmetics

Country Status (1)

Country Link
JP (1) JP6758805B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017222594A (en) * 2016-06-14 2017-12-21 三栄源エフ・エフ・アイ株式会社 Oil-in-water type emulsified external preparation composition
JP2019031696A (en) * 2018-12-04 2019-02-28 第一工業製薬株式会社 Chemically modified cellulose fiber and method for producing the same
JP2019038978A (en) * 2017-08-29 2019-03-14 王子ホールディングス株式会社 Fibrous cellulose-containing composition and coating
JP2020153023A (en) * 2019-03-19 2020-09-24 王子ホールディングス株式会社 Sheet and manufacturing method for sheet
CN115397384A (en) * 2019-12-12 2022-11-25 太阳化学品色彩与效果有限公司 Cellulose nanocrystal effect pigments for cosmetic applications
WO2023013533A1 (en) * 2021-08-06 2023-02-09 住友精化株式会社 Viscous composition
WO2023013534A1 (en) * 2021-08-06 2023-02-09 住友精化株式会社 Viscous composition

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11500455A (en) * 1996-02-13 1999-01-12 ロレアル Use of microfibrils and film-forming polymers of natural origin as composite coatings for hair, eyelashes, eyebrows and nails
JP2000026229A (en) * 1998-05-07 2000-01-25 Asahi Chem Ind Co Ltd Cosmetic composition containing low-crystalline cellulose microparticle
JP2008048602A (en) * 2004-12-06 2008-03-06 Asahi Kasei Chemicals Corp Thickening agent comprising water-dispersible cellulose and at least one kind of polysaccharide
JP2008106178A (en) * 2006-10-26 2008-05-08 Asahi Kasei Chemicals Corp Dry composition comprising water-soluble polymer
JP2010037200A (en) * 2008-07-31 2010-02-18 Dai Ichi Kogyo Seiyaku Co Ltd Composition for spraying and spraying device using the same
JP2011057567A (en) * 2009-09-07 2011-03-24 Dai Ichi Kogyo Seiyaku Co Ltd Hydrophobic solid-containing aqueous composition, hydrophobic solid-containing dried product using the same, and cosmetic composition
JP2012126788A (en) * 2010-12-14 2012-07-05 Dai Ichi Kogyo Seiyaku Co Ltd Viscous aqueous composition
JP2012193139A (en) * 2011-03-16 2012-10-11 Daicel Corp Cosmetics
JP2014125690A (en) * 2012-12-26 2014-07-07 Oji Holdings Corp Method for producing micro cellulose fibers
JP2014141637A (en) * 2012-12-25 2014-08-07 Mitsubishi Chemicals Corp Rubber masterbatch containing cellulose nanofiber
WO2014175289A1 (en) * 2013-04-22 2014-10-30 日産化学工業株式会社 Thickening composition
WO2014185505A1 (en) * 2013-05-16 2014-11-20 王子ホールディングス株式会社 Phosphoric acid esterified cellulose fibers and production method thereof
JP2014220340A (en) * 2013-05-07 2014-11-20 太陽ホールディングス株式会社 Printed wiring board material and printed wiring board using the same
WO2015107995A1 (en) * 2014-01-17 2015-07-23 日本製紙株式会社 Dry solid of anion-modified cellulose nanofiber and method for producing same

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11500455A (en) * 1996-02-13 1999-01-12 ロレアル Use of microfibrils and film-forming polymers of natural origin as composite coatings for hair, eyelashes, eyebrows and nails
JP2000026229A (en) * 1998-05-07 2000-01-25 Asahi Chem Ind Co Ltd Cosmetic composition containing low-crystalline cellulose microparticle
JP2008048602A (en) * 2004-12-06 2008-03-06 Asahi Kasei Chemicals Corp Thickening agent comprising water-dispersible cellulose and at least one kind of polysaccharide
JP2008106178A (en) * 2006-10-26 2008-05-08 Asahi Kasei Chemicals Corp Dry composition comprising water-soluble polymer
JP2010037200A (en) * 2008-07-31 2010-02-18 Dai Ichi Kogyo Seiyaku Co Ltd Composition for spraying and spraying device using the same
JP2011057567A (en) * 2009-09-07 2011-03-24 Dai Ichi Kogyo Seiyaku Co Ltd Hydrophobic solid-containing aqueous composition, hydrophobic solid-containing dried product using the same, and cosmetic composition
JP2012126788A (en) * 2010-12-14 2012-07-05 Dai Ichi Kogyo Seiyaku Co Ltd Viscous aqueous composition
JP2012193139A (en) * 2011-03-16 2012-10-11 Daicel Corp Cosmetics
JP2014141637A (en) * 2012-12-25 2014-08-07 Mitsubishi Chemicals Corp Rubber masterbatch containing cellulose nanofiber
JP2014125690A (en) * 2012-12-26 2014-07-07 Oji Holdings Corp Method for producing micro cellulose fibers
WO2014175289A1 (en) * 2013-04-22 2014-10-30 日産化学工業株式会社 Thickening composition
JP2014220340A (en) * 2013-05-07 2014-11-20 太陽ホールディングス株式会社 Printed wiring board material and printed wiring board using the same
WO2014185505A1 (en) * 2013-05-16 2014-11-20 王子ホールディングス株式会社 Phosphoric acid esterified cellulose fibers and production method thereof
WO2015107995A1 (en) * 2014-01-17 2015-07-23 日本製紙株式会社 Dry solid of anion-modified cellulose nanofiber and method for producing same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017222594A (en) * 2016-06-14 2017-12-21 三栄源エフ・エフ・アイ株式会社 Oil-in-water type emulsified external preparation composition
JP2019038978A (en) * 2017-08-29 2019-03-14 王子ホールディングス株式会社 Fibrous cellulose-containing composition and coating
JP2022027821A (en) * 2017-08-29 2022-02-14 王子ホールディングス株式会社 Fibrous cellulose-containing composition and coating
JP7334773B2 (en) 2017-08-29 2023-08-29 王子ホールディングス株式会社 Fibrous cellulose-containing composition and paint
JP2019031696A (en) * 2018-12-04 2019-02-28 第一工業製薬株式会社 Chemically modified cellulose fiber and method for producing the same
JP2020153023A (en) * 2019-03-19 2020-09-24 王子ホールディングス株式会社 Sheet and manufacturing method for sheet
CN115397384A (en) * 2019-12-12 2022-11-25 太阳化学品色彩与效果有限公司 Cellulose nanocrystal effect pigments for cosmetic applications
WO2023013533A1 (en) * 2021-08-06 2023-02-09 住友精化株式会社 Viscous composition
WO2023013534A1 (en) * 2021-08-06 2023-02-09 住友精化株式会社 Viscous composition

Also Published As

Publication number Publication date
JP6758805B2 (en) 2020-09-23

Similar Documents

Publication Publication Date Title
JP6758805B2 (en) Cosmetics
WO2017022830A1 (en) Cosmetic
US9801802B2 (en) Viscous composition
JP6271318B2 (en) Cellulose-based water-soluble thickener
JP2017048181A (en) Cosmetic
JP5502712B2 (en) Viscous aqueous composition
JP5701570B2 (en) Viscous aqueous composition and process for producing the same
JP6308531B2 (en) Topical skin preparation
JP2018511623A (en) Skin care composition comprising microfibrillated cellulose
JP7162422B2 (en) H-type carboxylated cellulose nanofiber
EP3473239B1 (en) Foamable aerosol composition
JP6845510B2 (en) Cosmetics
JP2017048142A (en) Cosmetic
JP2021063138A (en) Cosmetic
WO2020158543A1 (en) Oil-in-water emulsifying agent and cosmetic preparation
JP2021075562A (en) Cosmetic
JP2021075562A5 (en)
JP7100550B2 (en) Composition for spray
JP2020193228A (en) Cosmetic
JP2022035333A (en) Hairdressing composition and method for producing hairdressing composition
JP2016065031A (en) Cosmetic composition
JP2022179845A (en) Mist cosmetic
JP2021151974A (en) Skin external preparation
JP2019131633A (en) Aqueous composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200902

R150 Certificate of patent or registration of utility model

Ref document number: 6758805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250