JP2017036203A - Opaque quartz glass - Google Patents

Opaque quartz glass Download PDF

Info

Publication number
JP2017036203A
JP2017036203A JP2016155361A JP2016155361A JP2017036203A JP 2017036203 A JP2017036203 A JP 2017036203A JP 2016155361 A JP2016155361 A JP 2016155361A JP 2016155361 A JP2016155361 A JP 2016155361A JP 2017036203 A JP2017036203 A JP 2017036203A
Authority
JP
Japan
Prior art keywords
quartz glass
opaque quartz
powder
image
pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016155361A
Other languages
Japanese (ja)
Other versions
JP6885002B2 (en
Inventor
貴裕 川畑
Takahiro Kawabata
貴裕 川畑
由紀夫 大貫
Yukio Onuki
由紀夫 大貫
和幸 千葉
Kazuyuki Chiba
和幸 千葉
一喜 新井
Kazuyoshi Arai
一喜 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Publication of JP2017036203A publication Critical patent/JP2017036203A/en
Application granted granted Critical
Publication of JP6885002B2 publication Critical patent/JP6885002B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an optically highly-homogeneous opaque quartz glass excellent in shading property of infrared light.SOLUTION: There is provided opaque quartz glass produced by using powder in which a number density of silica aggregate is 100/cmor lower.SELECTED DRAWING: None

Description

本発明は、赤外光の遮光性に優れ、光学的に高均質な不透明石英ガラスに関する。   The present invention relates to an opaque quartz glass that is excellent in infrared light shielding properties and optically highly homogeneous.

不透明石英ガラスは熱遮断性を要する用途に使用される。熱遮断性は赤外光の遮光性と関係があり、遮光性が高い不透明石英ガラスほど熱遮断性に優れている。   Opaque quartz glass is used for applications that require heat barrier properties. The heat shielding property is related to the infrared light shielding property, and the opaque quartz glass having a higher light shielding property is superior in the heat shielding property.

従来、不透明石英ガラスの製造方法としては、結晶質シリカまたは非晶質シリカに窒化珪素等の発泡剤を添加して溶融する方法(例えば、特許文献1〜3参照)などが知られている。しかしながら、このような製造方法で製造された不透明石英ガラスでは、発泡剤が気化して気孔を形成するため気孔の平均径が大きく、実用にたえる強度をもつものでは気孔の含有密度が低くなり、赤外光の遮光性が低下するという問題がある。   Conventionally, as a method for producing opaque quartz glass, a method in which a foaming agent such as silicon nitride is added to crystalline silica or amorphous silica and melted (for example, see Patent Documents 1 to 3) is known. However, in the opaque quartz glass manufactured by such a manufacturing method, the foaming agent is vaporized to form pores, so that the average diameter of the pores is large, and those having strength that can be used practically have low pore content density. There is a problem that the light shielding property of infrared light is lowered.

一方、発泡剤を添加することなく、非晶質シリカ粉末の成形体をその溶融温度以下の温度で加熱し、完全に緻密化する前に熱処理を中断し、部分的に焼結する方法(例えば、特許文献4参照)も提案されている。このような製造方法で製造された不透明石英ガラスでは、気孔の平均径を小さくすることが可能であるが、気孔が閉気孔となるまで焼結させると気孔の含有密度が低くなり赤外光の遮光性が低下するという問題や、気孔の平均径が小さくなりすぎ長波長の赤外光の遮光性が低下するという問題がある。また、本方法では電気炉内の温度分布によって、不透明石英ガラスの焼結体内に密度分布が生じやすく、大型サイズで均質な不透明石英ガラスを得ることは難しいという問題もある。   On the other hand, a method in which a molded body of amorphous silica powder is heated at a temperature equal to or lower than its melting temperature without adding a foaming agent, the heat treatment is interrupted before being fully densified, and partially sintered (for example, Patent Document 4) has also been proposed. In the opaque quartz glass manufactured by such a manufacturing method, it is possible to reduce the average diameter of the pores. However, if sintering is performed until the pores become closed pores, the density of the pores decreases, and the infrared light does There is a problem that the light-shielding property is lowered, and there is a problem that the average diameter of the pores is too small and the light-shielding property of long-wavelength infrared light is lowered. Further, according to this method, there is a problem that a density distribution is easily generated in the sintered body of the opaque quartz glass due to the temperature distribution in the electric furnace, and it is difficult to obtain a homogeneous opaque quartz glass having a large size.

また、石英ガラス多孔質体を高圧条件下で加熱焼成する方法(例えば、特許文献5参照)も提案されているが、このような製造方法で製造された不透明石英ガラスでは、波長200〜5000nmの光の透過率が0.5〜2.0%となっており、長波長側の赤外光の遮光性が低下するという問題がある。また、本方法は高圧焼成を行うため特殊な装置が必要であり、簡易な方法とは言えない。   Moreover, although the method (for example, refer patent document 5) of heat-firing a quartz glass porous body under high-pressure conditions is proposed, in the opaque quartz glass manufactured by such a manufacturing method, wavelength 200-5000 nm is proposed. The light transmittance is 0.5 to 2.0%, and there is a problem that the light blocking property of infrared light on the long wavelength side is lowered. Moreover, since this method performs high-pressure baking, a special apparatus is required, and it cannot be said that it is a simple method.

特開平4−65328号公報JP-A-4-65328 特開平5−254882号公報JP-A-5-254882 特開平7−61827号公報JP 7-61827 A 特開平7−267724号公報JP-A-7-267724 WO2008/069194号公報WO2008 / 069194

本発明の目的は、赤外光の遮光性に優れ、光学的に高均質な不透明石英ガラスを提供することである。   An object of the present invention is to provide an opaque quartz glass which is excellent in infrared light shielding properties and optically highly homogeneous.

本発明者らは、鋭意検討の結果、非晶質シリカ粉末と造孔剤粉末(以下、単に造孔剤と言うことがある)を、非晶質シリカ凝集体を低減するように混合し、前記混合粉末を成形したのち、所定の温度で焼結することによって、気孔を均一に形成した不透明石英ガラスを得ることができることを見出し、本発明を完成するに至った。なお、非晶質シリカ凝集体とは非晶質シリカ粉末と造孔剤粉末の混合が不十分な場合、非晶質シリカ粉末中に造孔剤が均一に分散せず、混合粉末全体で俯瞰した場合に非晶質シリカのみで局所的に一定上の大きさで存在することを表すものである。またここで、得られる不透明石英ガラスは均一な気孔を有する、すなわち、ガラス全体を俯瞰した場合に局所的に気孔の密度が低く、シリカ密度が高い部分が極めて少ない。そのために当該不透明石英ガラスが光学的に高い均質性を有することを見出した。   As a result of intensive studies, the present inventors mixed amorphous silica powder and pore former powder (hereinafter sometimes simply referred to as pore former) so as to reduce amorphous silica aggregates, After forming the mixed powder, it was found that an opaque quartz glass with uniform pores can be obtained by sintering at a predetermined temperature, and the present invention has been completed. Note that the amorphous silica aggregate is an overview of the entire mixed powder because the pore-forming agent is not uniformly dispersed in the amorphous silica powder when the mixing of the amorphous silica powder and the pore-forming agent powder is insufficient. In this case, it indicates that the amorphous silica exists locally in a certain size. Further, here, the obtained opaque quartz glass has uniform pores, that is, when the entire glass is looked down, the pore density is locally low and the portion where the silica density is high is extremely small. Therefore, it has been found that the opaque quartz glass has high optical homogeneity.

以下、本発明をさらに詳しく説明する。   Hereinafter, the present invention will be described in more detail.

本発明の不透明石英ガラスは、均一な気孔を有する、すなわち、ガラス全体を俯瞰した場合に局所的に気孔の密度が低く、シリカ密度が高い部分が極めて少ない。そのために本発明の不透明石英ガラスは光学的に高い均質性を有する。特に本発明の不透明石英ガラスは局所的に赤外光を透過する部分が極めて少なく、加熱装置の部材等に好適に用いることが可能である。光学的に高均質なことは後述の画像処理法により得られるパラメーターにより示すことができる。   The opaque quartz glass of the present invention has uniform pores, that is, when the entire glass is looked down, the pore density is locally low, and the portion where the silica density is high is extremely small. Therefore, the opaque quartz glass of the present invention has high optical homogeneity. In particular, the opaque quartz glass of the present invention has a very small portion that locally transmits infrared light, and can be suitably used as a member of a heating device. Optically high homogeneity can be shown by parameters obtained by an image processing method described later.

本発明は、画像処理によって得られるヒストグラムで、可視光が透過している部分とそれ以外に分かれるように閾値を設定して二値化し、閾値を超えた部分のうち0.04mm以上の面積を有する部分(以下、「白抜け」という。)の個数をm、画像全体の面積をRcm として、m/Rが50以下であることを特徴とする不透明石英ガラスに関するものである。ここで、不透明石英ガラスにおける白抜けとは可視光が透過する、一定上の大きさの部位を示す。 The present invention is a histogram obtained by image processing, binarized by setting a threshold value so as to be separated into a portion through which visible light is transmitted and a portion other than that, and an area of 0.04 mm 2 or more of the portion exceeding the threshold value The present invention relates to an opaque quartz glass characterized in that m / R is 50 or less, where m is the number of portions (hereinafter referred to as “white spots”) and the area of the entire image is Rcm 2 . Here, the white spots in the opaque quartz glass indicate a portion of a certain size through which visible light is transmitted.

本発明において、画像処理に供する画像は、一般的な光学顕微鏡を用いて不透明石英ガラスを観察して得られた画像を例示でき、観察倍率は×50で行うことが好ましい。画像処理に供する画像は光学顕微鏡50倍の観察像を用いて、少なくともその1/4以上の範囲を対象として選択すれば十分な精度で解析できる。   In the present invention, the image subjected to image processing can be exemplified by an image obtained by observing opaque quartz glass using a general optical microscope, and the observation magnification is preferably x50. An image to be subjected to image processing can be analyzed with sufficient accuracy if an observation image of 50 times the optical microscope is used and at least a range of 1/4 or more is selected as a target.

また、光学顕微鏡は、画像処理ソフトがインストールされたパソコンと接続されていることが好ましい。これにより観察像を撮影後、すぐにパソコン上で画像処理を行うことができる。   The optical microscope is preferably connected to a personal computer in which image processing software is installed. Thus, it is possible to perform image processing on a personal computer immediately after taking an observation image.

画像処理は市販のソフトまたはフリーソフトの少なくともいずれかで行えばよく、ImageJ 1.46などのフリーソフトを例示できる。具体的な手順は実施例の記載を参照のこと。画像処理ソフトは特定の閾値を基準として画像を白黒に変換(二値化)することができれば十分であり、画像の全体又は一部を選択し、その範囲内において、縦軸を画素の個数、横軸を輝度値としたヒストグラムを描くことが可能であれば好ましい。ヒストグラムの例を図1に示す。   The image processing may be performed by at least one of commercially available software and free software, and free software such as ImageJ 1.46 can be exemplified. See the description of the examples for the specific procedure. It is sufficient that the image processing software can convert (binarize) the image to black and white with a specific threshold as a reference, and select all or part of the image, and within that range, the vertical axis represents the number of pixels, It is preferable if it is possible to draw a histogram with the horizontal axis as the luminance value. An example of a histogram is shown in FIG.

本願では、前述の画像処理により得られるヒストグラムが対象とする不透明石英ガラスの観察画像の対象範囲において、光学的に完全に均質であれば、ヒストグラムは正規分布を描くものと仮定できるものとする。その正規分布から外れるほど大きな輝度を有する部分があれば、当該部分とそれ以外の部分とで画像を二値化し、白黒表示した後、輝度の大きな部分が連続して存在し、かつ、所定の面積を超える大きさである部分を白抜け部とし、その個数を前述のmとして決定することができる。   In the present application, if the histogram obtained by the image processing described above is optically completely homogeneous in the target range of the observation image of the opaque quartz glass, it can be assumed that the histogram draws a normal distribution. If there is a part having a luminance that is so large that it deviates from the normal distribution, the image is binarized between the part and the other part, and after black and white display, a part having a large luminance exists continuously, and A portion having a size exceeding the area can be defined as a white portion, and the number thereof can be determined as m described above.

閾値の決定は、以下のように行うことで十分である。すなわち、図2に示すように実際に得られたヒストグラムにおいて、最大の画素の個数を示す輝度がa、最小の画素の個数を示す輝度のうち、より低い輝度がbである場合、その輝度の範囲が2×(a−b)である正規分布を仮定する。このような場合、正規分布は輝度がbから、a+a−b、(すなわち2a−b)の範囲で存在することになる。この輝度2a−bを閾値とし、画像を二値化する。この二値化した画像を処理することで白抜け部を特定することができる。具体的には、二値化後、2a−b以上の輝度の部分のうち、所定の面積以上の部分を白抜け部とする。   It is sufficient to determine the threshold as follows. That is, in the histogram actually obtained as shown in FIG. 2, when the luminance indicating the maximum number of pixels is a and the lower luminance among the luminances indicating the minimum number of pixels is b, Assume a normal distribution with a range of 2 × (ab). In such a case, the normal distribution has a luminance ranging from b to a + a−b (that is, 2a−b). The luminance 2a-b is used as a threshold value, and the image is binarized. By processing this binarized image, it is possible to specify a white spot. Specifically, after binarization, a portion having a predetermined area or more among the portions having luminance of 2a-b or more is set as a white-out portion.

本願の不透明石英ガラスは、試料厚さ1mmのときの波長1.5μmから5μmにおける透過率が1%以下であることが好ましい。これにより加熱装置の部材等により好適に用いることが可能である。   The opaque quartz glass of the present application preferably has a transmittance of 1% or less at a wavelength of 1.5 μm to 5 μm when the sample thickness is 1 mm. Thereby, it can be suitably used for a member of a heating device or the like.

本願の不透明石英ガラスは、試料厚さ1mmのときの波長3μmから5μmにおける透過率が0.5%以下であることが好ましい。これにより加熱装置の部材等により好適に用いることが可能である。   The opaque quartz glass of the present application preferably has a transmittance of 0.5% or less at a wavelength of 3 μm to 5 μm when the sample thickness is 1 mm. Thereby, it can be suitably used for a member of a heating device or the like.

次に、本発明の不透明石英ガラスの製造方法について説明する。   Next, the manufacturing method of the opaque quartz glass of this invention is demonstrated.

本発明の不透明石英ガラスの製造方法は、非晶質シリカ粉末と造孔材粉末の混合粉末を原料とし、前記混合粉末から、画像処理によって得られるヒストグラムで、各輝度値に対する画素数が最も大きい輝度値を閾値に設定して二値化し、閾値を超えた部分のうち0.04mm以上の面積を有する部分の個数をn、画像全体の面積をScm として、n/Sが100以下であることを特徴とする。 The method for producing opaque quartz glass of the present invention uses a mixed powder of an amorphous silica powder and a pore former powder as a raw material, and a histogram obtained by image processing from the mixed powder has the largest number of pixels for each luminance value. The luminance value is set as a threshold value and binarized. Among the portions exceeding the threshold value, n is the number of portions having an area of 0.04 mm 2 or more, and the entire image area is Scm 2 , and n / S is 100 or less. It is characterized by being.

本発明の製造方法において、画像処理に供する混合粉末の画像は、一般的な光学顕微鏡を用いて不透明石英ガラスを観察して得られた画像を例示でき、観察倍率は×50で行うことが好ましい。光学顕微鏡は反射型顕微鏡でもよい。例えば、非晶質シリカ粉末と造孔材の混合粉末を両側から、粉末層の厚みが約0.5〜1.5mmになるように石英ガラス板で挟み、反射型顕微鏡で画像を撮影する方法が例示できる。   In the production method of the present invention, the image of the mixed powder subjected to image processing can be exemplified by an image obtained by observing opaque quartz glass using a general optical microscope, and the observation magnification is preferably × 50. . The optical microscope may be a reflection microscope. For example, a method in which a mixed powder of amorphous silica powder and pore former is sandwiched between quartz glass plates so that the thickness of the powder layer is about 0.5 to 1.5 mm from both sides, and an image is taken with a reflection microscope. Can be illustrated.

また、光学顕微鏡は、画像処理ソフトがインストールされたパソコンと接続されていることが好ましい。これにより観察像を撮影後、すぐにパソコン上で画像処理を行うことができる。   The optical microscope is preferably connected to a personal computer in which image processing software is installed. Thus, it is possible to perform image processing on a personal computer immediately after taking an observation image.

混合粉末の画像処理は、閾値を最大の画素の個数を示す輝度としたこと以外は不透明石英ガラスの場合と同様の処理を行えばよい。   The image processing of the mixed powder may be performed in the same manner as in the case of the opaque quartz glass except that the threshold is set to the luminance indicating the maximum number of pixels.

以下、本発明の不透明石英ガラスの製造方法について工程ごとに詳細に説明する。なお全工程に言えることであるが、工程中に不純物汚染が起こらぬように、使用する装置などについて充分に選定する必要がある。   Hereinafter, the method for producing the opaque quartz glass of the present invention will be described in detail for each step. As can be said for all processes, it is necessary to sufficiently select the equipment to be used so that impurity contamination does not occur during the process.

(1)原料粉末の選定
まず、本発明で用いる非晶質シリカ粉末を選定する。非晶質シリカ粉末の製造方法はとくに限定されないが、例えばシリコンアルコキシドの加水分解によって製造された非晶質シリカ粉末や、四塩化珪素を酸水素炎等で加水分解して作製した非晶質シリカ粉末等を用いることができる。また、石英ガラスを破砕した粉末も用いることができる。
(1) Selection of raw material powder First, the amorphous silica powder used by this invention is selected. The method for producing the amorphous silica powder is not particularly limited. For example, amorphous silica powder produced by hydrolysis of silicon alkoxide or amorphous silica produced by hydrolyzing silicon tetrachloride with an oxyhydrogen flame or the like. Powder or the like can be used. Moreover, the powder which crushed quartz glass can also be used.

本発明で使用する非晶質シリカ粉末の平均粒径は、20μm以下が好ましい。粒径が大きすぎると、焼結に高温、長時間を要するため好ましくない。各種製造法で作製された非晶質シリカ粉末は、ジェットミル、ボールミル、ビーズミル等で粉砕、分級することで上記粒径に調整することができる。   The average particle size of the amorphous silica powder used in the present invention is preferably 20 μm or less. If the particle size is too large, sintering requires a high temperature and a long time, which is not preferable. Amorphous silica powder produced by various production methods can be adjusted to the above particle size by pulverization and classification with a jet mill, ball mill, bead mill or the like.

次に、本発明で用いる造孔剤粉末を選定する。本発明の造孔剤の粒径は不透明石英ガラスの平均気孔径と深く関係し、得たい平均気孔径と同等あるいはそれ以上の粒径の造孔剤を用いる必要がある。気孔径以上の粒径の造孔剤を用いる理由は、造孔剤の消失後の焼結段階において、気孔が当初のサイズよりも小さくなる場合があるためである。造孔剤として黒鉛またはアモルファスカーボンの球状粉末を用いる場合、平均気孔径5〜20μmの不透明石英ガラスを得るためには、造孔剤の粒径は5〜40μmであることが好ましく、9〜30μmであることがより好ましい。   Next, the pore former powder used in the present invention is selected. The particle size of the pore-forming agent of the present invention is closely related to the average pore size of the opaque quartz glass, and it is necessary to use a pore-forming agent having a particle size equal to or larger than the desired average pore size. The reason for using a pore-forming agent having a particle diameter equal to or larger than the pore diameter is that the pores may be smaller than the original size in the sintering stage after the pore-forming agent disappears. When a spherical powder of graphite or amorphous carbon is used as the pore forming agent, in order to obtain an opaque quartz glass having an average pore diameter of 5 to 20 μm, the particle size of the pore forming agent is preferably 5 to 40 μm, and 9 to 30 μm. It is more preferable that

本発明の造孔剤の種類は、非晶質シリカの焼結温度以下の温度で熱分解して気化し消失するものであれば特に限定されず、黒鉛粉末やアモルファスカーボン粉末、フェノール樹脂粉末、アクリル樹脂粉末、ポリスチレン粉末などを使用することができる。このうち、黒鉛粉末またはアモルファスカーボン粉末は熱分解の際に発生するガス成分が無害、無臭であるという点で好ましい。   The type of the pore-forming agent of the present invention is not particularly limited as long as it is thermally decomposed at a temperature lower than the sintering temperature of amorphous silica and vaporizes and disappears. Graphite powder, amorphous carbon powder, phenol resin powder, Acrylic resin powder, polystyrene powder, or the like can be used. Among these, graphite powder or amorphous carbon powder is preferable in that the gas component generated during pyrolysis is harmless and odorless.

本発明で使用する非晶質シリカ粉末と造孔剤粉末の純度は、99.9%以上であることが望ましい。石英ガラスにアルカリ金属元素、アルカリ土類元素、遷移金属元素などの不純物元素が高濃度に含まれている場合、おおよそ1300℃以上の温度において、石英ガラス中にクリストバライトが発生する。クリストバライトは230〜300℃の温度で高温型から低温型へ相転移し体積収縮を起こす。不透明石英ガラスに含有するクリストバライト量が2%より多い場合は、この体積収縮が原因で焼成体内にクラックが発生する傾向がある。特に焼成体が大型の場合、例えば直径140mm以上の不透明石英ガラスにおいてこの傾向は顕著である。非晶質シリカ粉末と造孔剤粉末の純度が低い場合は、純化処理を行なうとよい。純化の方法は特に限定されず、薬液処理や乾式ガス精製、高温焼成による不純物の蒸散などを行うことができる。なお、不透明石英ガラス中に含まれる金属不純物量が少ない場合であっても、水分量や炉内の雰囲気、炉材の純度、焼成時間などによってクリストバライトが多く発生する場合がある点についても言及しておく。   The purity of the amorphous silica powder and pore former powder used in the present invention is desirably 99.9% or more. When quartz glass contains an impurity element such as an alkali metal element, alkaline earth element, or transition metal element at a high concentration, cristobalite is generated in the quartz glass at a temperature of about 1300 ° C. or higher. Cristobalite undergoes a phase transition from a high temperature type to a low temperature type at a temperature of 230 to 300 ° C. and causes volume shrinkage. When the amount of cristobalite contained in the opaque quartz glass is more than 2%, cracks tend to occur in the fired body due to this volume shrinkage. In particular, when the fired body is large, this tendency is remarkable in, for example, opaque quartz glass having a diameter of 140 mm or more. When the purity of the amorphous silica powder and the pore-forming agent powder is low, a purification treatment may be performed. The purification method is not particularly limited, and chemical treatment, dry gas purification, evaporation of impurities by high-temperature baking, and the like can be performed. It should be noted that even when the amount of metal impurities contained in the opaque quartz glass is small, a large amount of cristobalite may be generated depending on the moisture content, furnace atmosphere, furnace material purity, firing time, etc. Keep it.

本発明の造孔剤の形状は非晶質シリカ粉末と均質に混合することができる点、加圧によって粉末を成形する際に圧力伝達を良好に行うことができる点で球状であることが好ましく、その粒子の長軸と短軸の比率を表すアスペクト比が3.0以下であること好ましい。   The shape of the pore-forming agent of the present invention is preferably spherical in that it can be homogeneously mixed with the amorphous silica powder and the pressure can be favorably transmitted when the powder is molded by pressing. The aspect ratio representing the ratio of the major axis to the minor axis of the particles is preferably 3.0 or less.

(2)原料粉末の混合
次に、選定した非晶質シリカ粉末及び造孔剤粉末を混合する。造孔剤粉末の添加量は、非晶質シリカ粉末に対して体積比で0.04以上となるように混合する必要があるが、好ましい範囲は造孔剤の種類、平均粒径によって異なり、造孔剤粉末が平均粒径5〜40μmの黒鉛粉末又はアモルファスカーボン粉末であれば、非晶質シリカ粉末との体積比で0.04〜0.35であることが好ましい。造孔剤粉末の添加量が少ないと、不透明石英ガラスに含まれる気孔量が少なくなり赤外光の遮光性が低下するため好ましくない。一方、添加量が多すぎると、不透明石英ガラスの密度が低くなりすぎるため好ましくない。
(2) Mixing of raw material powder Next, the selected amorphous silica powder and pore former powder are mixed. The addition amount of the pore-forming agent powder needs to be mixed so that the volume ratio is 0.04 or more with respect to the amorphous silica powder, but the preferred range varies depending on the type of pore-forming agent and the average particle diameter, If the pore former powder is a graphite powder or an amorphous carbon powder having an average particle diameter of 5 to 40 μm, the volume ratio with respect to the amorphous silica powder is preferably 0.04 to 0.35. If the amount of the pore-forming agent powder is small, the amount of pores contained in the opaque quartz glass is small, and the light shielding property of infrared light is lowered, which is not preferable. On the other hand, if the addition amount is too large, the density of the opaque quartz glass becomes too low, which is not preferable.

非晶質シリカ粉末と造孔剤粉末の混合方法は、混合粉末において非晶質シリカ凝集体の単位面積当たりの個数密度が100個/cm以下となる方法であれば、特に限定されず、ロッキングミキサー、クロスミキサー、ポットミル、ボールミル、ふるい等を用いることができる。特に本発明の混合には、ふるいを通して混合する方法を用いると、容易に非晶質シリカ凝集体の単位面積当たりの個数密度を低減させる粉末を得ることができる点で好ましい。 The mixing method of the amorphous silica powder and the pore former powder is not particularly limited as long as the number density per unit area of the amorphous silica aggregate in the mixed powder is 100 pieces / cm 2 or less. A rocking mixer, a cross mixer, a pot mill, a ball mill, a sieve, etc. can be used. In particular, in the mixing of the present invention, it is preferable to use a method of mixing through a sieve because a powder that can easily reduce the number density per unit area of the amorphous silica aggregate can be obtained.

(3)混合粉末の成形
次に、混合粉末を成形する。成形方法は、鋳込み成型法、冷間静水圧プレス(CIP)法、金型プレス法等の乾式プレスを用いることができる。特に本発明の成型には、CIP法を用いると、工程が少なく容易に成形体を得ることができる点で好ましい。さらにCIP法を用いて、円板形状や円筒形状、リング形状の成形体を作製する方法としては、特に限定しないが、発泡スチロールのような塑性変形可能な鋳型を用いる成形法(例えば、特開平4−105797参照)や、底板が上パンチよりも圧縮変形の少ない材料で構成されている組立式型枠を用いる方法(例えば、特開2006−241595参照)で成形することが可能である。
(3) Molding of mixed powder Next, the mixed powder is molded. As a molding method, a dry press such as a casting method, a cold isostatic press (CIP) method, a mold press method, or the like can be used. In particular, it is preferable to use the CIP method for molding according to the present invention because a molded body can be easily obtained with few steps. Further, a method for producing a disk-shaped, cylindrical, or ring-shaped molded body using the CIP method is not particularly limited, but a molding method using a plastically deformable mold such as foamed polystyrene (for example, Japanese Patent Application Laid-Open No. Hei 4). -107797) and a method using a mold form (for example, see Japanese Patent Application Laid-Open No. 2006-241595) using a bottom plate made of a material having less compression deformation than the upper punch.

(4)成形体の焼結
次に、上記の方法により成形した成形体を所定の温度で加熱し、成形体内に含まれる造孔剤を消失させる。加熱温度は造孔剤の種類によって異なるが、例えば造孔剤として黒鉛粉末やアモルファスカーボンを用いる場合、加熱温度は700℃から1000℃で行う。
(4) Sintering of molded body Next, the molded body molded by the above method is heated at a predetermined temperature to eliminate the pore-forming agent contained in the molded body. Although the heating temperature varies depending on the type of pore forming agent, for example, when graphite powder or amorphous carbon is used as the pore forming agent, the heating temperature is 700 ° C. to 1000 ° C.

造孔剤の消失のための加熱は造孔剤の種類や造孔剤の添加量、成形体のサイズ、加熱温度によって任意の時間行われるが、例えば造孔剤として黒鉛粉末やアモルファスカーボンを用い、添加量が非晶質シリカ粉末との体積比で0.1〜0.2、成形体の体積が2×10cm、加熱温度が800℃の場合、加熱時間は24時間から100時間で行う。 Heating for disappearance of the pore forming agent is performed for an arbitrary time depending on the type of pore forming agent, the amount of the pore forming agent added, the size of the molded body, and the heating temperature. For example, graphite powder or amorphous carbon is used as the pore forming agent. When the addition amount is 0.1 to 0.2 in volume ratio with the amorphous silica powder, the volume of the molded body is 2 × 10 3 cm 3 , and the heating temperature is 800 ° C., the heating time is 24 hours to 100 hours. To do.

次に、造孔剤が消失した成形体を所定の温度で、焼結体に含まれる気孔が閉気孔となるまで焼成する。焼成温度は1350〜1500℃であることが好ましい。焼成温度が1350℃より低いと、気孔が閉気孔となるまでに長時間の焼成が必要となるため好ましくない。焼成温度が1500℃を超えると、焼成体内に含まれるクリストバライト量が多くなり、クリストバライトの高温型から低温型への相転移に伴う体積収縮によって、焼成体にクラックが発生する恐れがあり好ましくない。   Next, the molded body from which the pore forming agent has disappeared is fired at a predetermined temperature until the pores contained in the sintered body become closed pores. The firing temperature is preferably 1350 to 1500 ° C. When the firing temperature is lower than 1350 ° C., it is not preferable because firing for a long time is required before the pores become closed pores. When the firing temperature exceeds 1500 ° C., the amount of cristobalite contained in the fired body increases, and cracks may occur in the fired body due to volume shrinkage accompanying the phase transition from the high temperature type to the low temperature type of cristobalite.

焼成時間は造孔剤の添加量や焼成温度に応じて任意の時間行われるが、例えば添加量が非晶質シリカ粉末との体積比で0.1〜0.2、焼成温度が1350〜1500℃の場合、焼成時間は1時間から20時間で行う。焼成時間が短いと焼結が十分進まず、気孔が開気孔となるため好ましくない。また、焼成時間が長すぎると焼結が進み過ぎ気孔が小さくなるため赤外光の遮光性が低下するとともに、焼成体内に含まれるクリストバライト量が多くなり、クリストバライトの高温型から低温型への相転移に伴う体積収縮によって、焼成体にクラックが発生する恐れがあり好ましくない。   The firing time is carried out for an arbitrary time depending on the addition amount of the pore-forming agent and the firing temperature. For example, the addition amount is 0.1 to 0.2 by volume ratio with the amorphous silica powder, and the firing temperature is 1350 to 1500. In the case of ° C., the firing time is 1 to 20 hours. If the firing time is short, sintering does not proceed sufficiently and the pores become open pores, which is not preferable. In addition, if the firing time is too long, the sintering proceeds too much and pores become smaller, so that the light shielding property of infrared light is reduced, and the amount of cristobalite contained in the fired body is increased. Due to the volume shrinkage accompanying the transition, cracks may occur in the fired body, which is not preferable.

造孔剤の消失のための加熱は造孔剤が消失する雰囲気で行われ、例えば造孔剤として黒鉛粉末やアモルファスカーボンを用いる場合は、酸素が存在する雰囲気下で行われる。   Heating for disappearance of the pore forming agent is performed in an atmosphere in which the pore forming agent disappears. For example, when graphite powder or amorphous carbon is used as the pore forming agent, it is performed in an atmosphere in which oxygen is present.

閉気孔化のための焼成の雰囲気は特に限定されず、大気雰囲気下、窒素雰囲気下、真空雰囲気下で行うことができる。   There is no particular limitation on the atmosphere for firing for closed pore formation, and it can be performed in an air atmosphere, a nitrogen atmosphere, or a vacuum atmosphere.

このように本願の不透明石英ガラスの製造方法は、原料粉末を混合して前述の特性を有するようにシリカ凝集体を低減する混合工程と、混合工程で得られた混合粉末を成形する成形工程と、成形工程で得られた成形体を焼結する焼成工程を有することが好ましい。   Thus, the opaque quartz glass manufacturing method of the present application includes a mixing step of mixing raw material powders to reduce silica agglomerates so as to have the aforementioned characteristics, and a forming step of forming the mixed powder obtained in the mixing step. It is preferable to have a firing step of sintering the molded body obtained in the molding step.

本発明の不透明石英ガラスは、熱遮断性能に優れることから、熱処理装置用部材、半導体製造装置用部材、FPD製造装置用部材、太陽電池製造装置用部材、LED製造装置用部材、MEMS製造装置用部材、光学部材などに利用することができる。具体的には、フランジ、断熱フィン、炉芯管、均熱管、薬液精製筒等の構成材料、シリコン溶融用ルツボ等の構成材料などが挙げられる。   Since the opaque quartz glass of the present invention is excellent in heat shielding performance, it is a member for a heat treatment device, a member for a semiconductor manufacturing device, a member for an FPD manufacturing device, a member for a solar cell manufacturing device, a member for an LED manufacturing device, and a MEMS manufacturing device. It can utilize for a member, an optical member, etc. Specific examples include constituent materials such as flanges, heat insulating fins, furnace core tubes, soaking tubes, chemical solution refining cylinders, and other constituent materials such as silicon melting crucibles.

上記のような部材は、不透明石英ガラス単独で使用してもよいし、不透明石英ガラス表面の一部または全体に透明石英ガラス層を付与して使用してもよい。透明石英ガラス層は、不透明石英ガラスをシール性の要求される用途に使用する場合に、不透明石英ガラス中に含まれている気孔がシール面に露出しパッキンを使用しても完全なシールをすることが困難であることを考慮して付与される。また、不透明石英ガラスを各種用途で使用する中で随時行われる洗浄工程において、その最表面に露出している気孔が削られ、不透明石英ガラスの表面の一部が脱落し、パーティクルの発生の原因となる場合がある。これを防止する目的でも透明石英ガラス層は付与される。   The member as described above may be used alone by the opaque quartz glass, or may be used by providing a transparent quartz glass layer on a part or the whole of the opaque quartz glass surface. The transparent quartz glass layer provides perfect sealing even when opaque quartz glass is used for applications that require sealing properties, and the pores contained in the opaque quartz glass are exposed on the sealing surface and packing is used. It is given considering that it is difficult. In addition, in the cleaning process that is performed as needed while using opaque quartz glass in various applications, the pores exposed on the outermost surface are scraped, and part of the surface of the opaque quartz glass falls off, causing the generation of particles. It may become. For the purpose of preventing this, a transparent quartz glass layer is provided.

不透明石英ガラスへの透明石英ガラス層の付与の方法は特に限定されず、不透明ガラスの表面を酸水素炎で溶融して透明石英ガラスとする方法、不透明石英ガラスと透明石英ガラスとを酸水素炎や電気炉で加熱して貼り合わせる手法、不透明石英ガラスとなる非晶質シリカ粉末と造孔剤の混合粉末と透明石英ガラスとなる非晶質シリカ粉末とを所望のガラスにおける透明部及び不透明部の位置に対応させて成形し焼成する方法などがある。   The method of applying the transparent quartz glass layer to the opaque quartz glass is not particularly limited. The method of melting the surface of the opaque glass with an oxyhydrogen flame to form the transparent quartz glass, and the opaque quartz glass and the transparent quartz glass to the oxyhydrogen flame. Heating and bonding with an electric furnace, an amorphous silica powder that becomes opaque quartz glass, a mixed powder of a pore-forming agent, and an amorphous silica powder that becomes transparent quartz glass. There is a method of forming and firing in accordance with the position of the above.

本発明の不透明石英ガラスは、光学的に均質であるため遮熱性能のバラツキが少なく、特に半導体製造分野で使用される各種の炉芯管、治具類及びベルジャー等の容器類、例えば、シリコンウェーハ処理用の炉芯管やそのフランジ部、断熱フィン、薬液精製筒及びシリコン溶解用ルツボ等の構成材料として利用できる。   The opaque quartz glass of the present invention is optically homogeneous and therefore has little variation in heat shielding performance. Particularly, various furnace core tubes, jigs, and containers such as bell jars used in the semiconductor manufacturing field, such as silicon It can be used as a constituent material for a furnace core tube for wafer processing, its flange, a heat insulating fin, a chemical purification tube, a silicon melting crucible and the like.

不透明石英ガラスの観察像を画像処理するにより得られる輝度−画素の個数のヒストグラムの例である。It is an example of the histogram of the luminance-the number of pixels obtained by carrying out image processing of the observation image of opaque quartz glass. 不透明石英ガラスの観察像を画像処理する際に行う閾値決定の模式図である。It is a schematic diagram of the threshold value determination performed when image processing the observation image of opaque quartz glass. 実施例1の混合粉末を反射型顕微鏡で撮影した画像である。It is the image which image | photographed the mixed powder of Example 1 with the reflection type microscope. 図1の画像を元に二値化まで行った画像である。2 is an image obtained by binarization based on the image of FIG. 1. 図1の画像を元に「Invert」まで行った画像である。This is an image obtained by performing up to “Invert” based on the image of FIG. 図1の画像を元に「Analyze particles」まで行った画像である。This is an image obtained from “Analyze particles” based on the image of FIG. 比較例1の混合粉末を反射型顕微鏡で撮影した画像である。It is the image which image | photographed the mixed powder of the comparative example 1 with the reflection type microscope. 図5の画像を元に二値化まで行った画像である。6 is an image obtained by binarization based on the image of FIG. 図5の画像を元に「Invert」まで行った画像である。It is the image performed to "Invert" based on the image of FIG. 図5の画像を元に「Analyze particles」まで行った画像である。It is the image performed to "Analyze particles" based on the image of FIG. 実施例1の不透明石英ガラスを実体顕微鏡で撮影した画像である。It is the image which image | photographed the opaque quartz glass of Example 1 with the stereomicroscope. 図9の画像を元に二値化した後、「Invert」まで行った画像である。This is an image obtained by binarizing based on the image of FIG. 9 and performing up to “Invert”. 図9の画像を元に「Analyze particles」まで行った画像である。FIG. 10 is an image that has been processed up to “Analyze particles” based on the image of FIG. 9. 比較例1の不透明石英ガラスを実体顕微鏡で撮影した画像である。It is the image which image | photographed the opaque quartz glass of the comparative example 1 with the stereomicroscope. 図12の画像を元に二値化した後、「Invert」まで行った画像である。This is an image obtained by binarizing based on the image of FIG. 12 and performing up to “Invert”. 図12の画像を元に「Analyze particles」まで行った画像である。13 is an image obtained up to “Analyze particles” based on the image of FIG.

以下に本発明を具体例に従って詳細に説明するが、本発明はこれらに限定されるものではない。なお、シリカ粉末及び不透明石英ガラスの各物性については以下の手順で測定を行った。   Hereinafter, the present invention will be described in detail according to specific examples, but the present invention is not limited thereto. The physical properties of silica powder and opaque quartz glass were measured according to the following procedure.

(平均粒径)
非晶質シリカ粉末の平均粒径は、レーザー回折式粒度分布測定装置(株式会社島津製作所製、商品名「SALD−7100」)を用いて測定されるメディアン径(D50)の値を用いた。
(Average particle size)
As the average particle diameter of the amorphous silica powder, the value of the median diameter (D50) measured using a laser diffraction particle size distribution analyzer (manufactured by Shimadzu Corporation, trade name “SALD-7100”) was used.

(非晶質シリカ凝集体の個数密度)
混合粉末における非晶質シリカ凝集体の単位面積当たりの個数密度は次の方法で測定した。まず、非晶質シリカ粉末と造孔材の混合粉末を両側から石英ガラス板で挟み、反射型顕微鏡(株式会社キーエンス製、DIGITAL MICROSCOPE VHX−900)で、スケールを入れた画像を撮影した。石英ガラスで挟まれた粉末層の厚みは約1mmであった。次に画像処理ソフト(ImageJ 1.46)を使用し、以下の手順で撮影した画像の画像処理を行った。 ImageJを立ち上げ、画像処理するファイルを開いた。「Image」→「Type」→「8−bit」を実行した。続いて「Image」→「Adjust」→「Threshold」を実行した。
(Number density of amorphous silica aggregates)
The number density per unit area of the amorphous silica aggregate in the mixed powder was measured by the following method. First, a mixed powder of amorphous silica powder and pore former was sandwiched between quartz glass plates from both sides, and a scaled image was taken with a reflection microscope (manufactured by Keyence Corporation, DIGITAL MICROSCOPE VHX-900). The thickness of the powder layer sandwiched between quartz glass was about 1 mm. Next, the image processing software (ImageJ 1.46) was used, and the image processing of the image image | photographed in the following procedures was performed. Launched ImageJ and opened a file for image processing. “Image” → “Type” → “8-bit” was executed. Subsequently, “Image” → “Adjust” → “Threshold” was executed.

ヒストグラムのウインドが開くので、各輝度値に対する画素数が最も大きい輝度値を閾値に設定した後、「Apply」を実行して二値化した。画像のスケール部分に重なるように直線を入れた後、「Analyze」→「Set Scale」を実行し、「Known distance」にスケールの値を入力し、「Unit of length」にスケールの単位を入れ、「OK」を実行し、ピクセル当たりの長さを設定した。スケールを除去するように、画像の任意の範囲を指定し、「Image」→「Crop」を実行し、画像を切り出した。「Process」→「Binary」→「Skeletonize」を実行し、白黒画像において対象の縁からその骨格が単一の画素になるまで画素を繰り返し除いた。「Process」→「Binary」→「Dilate」を実行し、隣接3×3ピクセルをその最大値(暗値)にそれぞれのピクセルを置き換えた。「Dilate」は2回行った。「Edit」→「Invert」を実行し、白と黒を反転した。「Analyze」→「Analyze particles」を実行した。「Size(mm^2)」に0.04−Infinityと入力した。「Show」を「Outlines」に変え、「Display results」、「Summarize」にチェックを入れ、「OK」を実行した。「Count」として0.04cm以上の面積を有する部分(非晶質シリカ凝集体)の個数nが表示された。また、「Total Area」として0.04cm以上の面積を有する部分の面積の合計値と、「%Area」として画像全体の面積に対して、0.04cm以上の面積を有する部分の面積の合計値が占める割合が表示されるので、これらの値から画像全体の面積Scmを求めた。nとSから非晶質シリカ凝集体の単位面積当たりの個数密度を次式で求めた。
非晶質シリカ凝集体の単位面積当たりの個数密度 = n/S
Since the window of the histogram opens, the luminance value having the largest number of pixels for each luminance value is set as a threshold value, and then “Apply” is executed to binarize. After putting a straight line so as to overlap the scale part of the image, execute “Analyze” → “Set Scale”, input the scale value in “Know distance”, enter the unit of scale in “Unit of length”, “OK” was performed and the length per pixel was set. An arbitrary range of the image was specified so as to remove the scale, “Image” → “Crop” was executed, and the image was cut out. “Process” → “Binary” → “Skeletonize” was executed, and the pixels were repeatedly removed from the edge of the target in the monochrome image until the skeleton became a single pixel. “Process” → “Binary” → “Dilate” was executed, and each adjacent pixel was replaced with the maximum value (dark value) of the adjacent 3 × 3 pixels. “Dilate” was performed twice. “Edit” → “Invert” was executed, and black and white were reversed. “Analyze” → “Analyze particles” was executed. 0.04-Infinity was entered in “Size (mm ^ 2)”. “Show” was changed to “Outlines”, “Display results” and “Summerize” were checked, and “OK” was executed. The number “n” of the portions (amorphous silica aggregates) having an area of 0.04 cm 2 or more was displayed as “Count”. Also, the total value of the areas having an area of 0.04 cm 2 or more as “Total Area” and the area of the area having an area of 0.04 cm 2 or more with respect to the entire image area as “% Area” Since the ratio occupied by the total value is displayed, the area Scm 2 of the entire image was obtained from these values. The number density per unit area of the amorphous silica aggregate was determined from n and S by the following formula.
Number density per unit area of amorphous silica aggregate = n / S

(白抜けの個数密度)
不透明石英ガラスの白抜けの単位面積当たりの個数密度は、次の方法で測定した。不透明石英ガラスをダイヤモンドブレードで切断し、縦20mm、横20mm、厚さを3mmとして試料を作製し、試料の裏面より透過光を当て、実体顕微鏡(株式会社ニコン製SMZ745T)で、スケールを入れた画像を撮影した。次に画像処理ソフト(ImageJ 1.46)を使用し、以下の手順で撮影した画像処理を行った。 ImageJを立ち上げ、画像処理するファイルを開いた。画像のスケール部分に重なるように直線を入れた後、「Analyze」→「Set Scale」を実行し、「Known distance」にスケールの値を入力し、「Unit of length」にスケールの単位を入れ、「OK」を実行し、ピクセル当たりの長さを設定した。スケールを除去するように、四角形で画像の任意の範囲を指定し、「Image」→「Crop」を実行し、画像を切り出した。「Image」→「Type」→「8−bit」を実行した。「Image」→「Adjust」→「Threshold」を実行した。ヒストグラムのウインドが開くので、透過している部分とそれ以外に分かれるように閾値を設定し二値化した。なお、閾値については、各輝度値に対する画素数が最も大きい輝度値をa、輝度値の最小値をbとして、2a−bを閾値として採用した。「Edit」→「Invert」を実行した。
(Number density of white spots)
The number density per unit area of white spots in the opaque quartz glass was measured by the following method. A non-transparent quartz glass was cut with a diamond blade to prepare a sample having a length of 20 mm, a width of 20 mm, and a thickness of 3 mm, and transmitted light was applied from the back of the sample, and a scale was placed with a stereomicroscope (SMZ745T manufactured by Nikon Corporation). An image was taken. Next, the image processing software (ImageJ 1.46) was used and the image processing image | photographed in the following procedures was performed. Launched ImageJ and opened a file for image processing. After putting a straight line so as to overlap the scale part of the image, execute “Analyze” → “Set Scale”, input the scale value in “Know distance”, enter the unit of scale in “Unit of length”, “OK” was performed and the length per pixel was set. An arbitrary range of the image is designated by a rectangle so as to remove the scale, and “Image” → “Crop” is executed to cut out the image. “Image” → “Type” → “8-bit” was executed. “Image” → “Adjust” → “Threshold” was executed. Since the window of the histogram opens, the threshold is set so that it is divided into the transparent part and the other part, and binarized. For the threshold value, the luminance value having the largest number of pixels for each luminance value is a, the minimum luminance value is b, and 2a-b is adopted as the threshold value. “Edit” → “Invert” was executed.

「Analyze」→「Analyze particles」を実行した。「Size(mm^2)」に0.04−Infinityと入力した。「Show」を「Outlines」に変え、「Display results」、「Summarize」にチェックを入れ、「OK」を実行した。「Count」として0.04cm以上の面積を有する部分(白抜け)の個数mが表示された。また、「Total Area」として0.04cm以上の面積を有する部分の面積の合計値と、「%Area」として画像全体の面積に対して、0.04cm以上の面積を有する部分の面積の合計値が占める割合が表示されるので、これらの値から画像全体の面積Rcmを求めた。mとRから白抜けの単位面積当たりの個数密度を次式で求めた。
白抜けの単位面積当たりの個数密度 = m/R
“Analyze” → “Analyze particles” was executed. 0.04-Infinity was entered in “Size (mm ^ 2)”. “Show” was changed to “Outlines”, “Display results” and “Summerize” were checked, and “OK” was executed. As “Count”, the number m of the portions (open areas) having an area of 0.04 cm 2 or more is displayed. Also, the total value of the areas having an area of 0.04 cm 2 or more as “Total Area” and the area of the area having an area of 0.04 cm 2 or more with respect to the entire image area as “% Area” Since the ratio occupied by the total value is displayed, the area Rcm 2 of the entire image was obtained from these values. From m and R, the number density per unit area of white spots was determined by the following equation.
Number density per unit area of white spots = m / R

(赤外線透過率)
不透明石英ガラスの赤外スペクトルはFTIR装置((株)島津製作所製、商品名「IRPrestige−21」)を用いて測定した。測定試料は、平面研削により加工し、厚さ1mmとした。
(Infrared transmittance)
The infrared spectrum of the opaque quartz glass was measured using an FTIR apparatus (manufactured by Shimadzu Corporation, trade name “IR Prestige-21”). The measurement sample was processed by surface grinding to a thickness of 1 mm.

実施例1
シリカ原料粉末として、化学的純度が99.9wt%以上である非晶質シリカ粉末(日本化成株式会社製、商品名「MKCシリカPS100」)を平均粒径(メディアン径D50)が4μmとなるまでジェットミルで粉砕したものを使用した。造孔材粉末として、平均粒径18μmの球状黒鉛粉末(日本カーボン株式会社製、商品名「ニカビーズ」)を使用した。
Example 1
As the silica raw material powder, an amorphous silica powder having a chemical purity of 99.9 wt% or more (trade name “MKC silica PS100” manufactured by Nippon Kasei Co., Ltd.) is used until the average particle diameter (median diameter D50) becomes 4 μm. What was pulverized with a jet mill was used. As the pore former powder, spherical graphite powder having an average particle diameter of 18 μm (manufactured by Nippon Carbon Co., Ltd., trade name “Nika Beads”) was used.

非晶質シリカ粉末と黒鉛粉末をその体積比が0.1になるように袋に入れ、3分間シェイクした後、目開き184μmのふるいを1回通して混合粉末とした。観察倍率×50で混合粉末を観察し、画像処理において、映り込んだスケール部分を除く90%以上の範囲を指定し、画像処理を行った。図3、4、5、6に実施例1の混合粉末の画像処理の過程における画像を、図11、12、13に実施例1の不透明石英ガラスの画像処理の過程における画像を示す。   Amorphous silica powder and graphite powder were put in a bag so that the volume ratio was 0.1, shaken for 3 minutes, and then passed through a sieve having an opening of 184 μm once to obtain a mixed powder. The mixed powder was observed at an observation magnification of × 50, and image processing was performed by designating a range of 90% or more excluding the reflected scale portion in image processing. 3, 4, 5 and 6 show images in the course of image processing of the mixed powder of Example 1, and FIGS. 11, 12 and 13 show images in the course of image processing of the opaque quartz glass of Example 1. FIG.

混合粉末を発泡スチロール製の型に充填し、発泡スチロール型全体をポリスチレン製袋で減圧封入し、圧力は280MPa、保持時間は1分間の条件で冷間等方圧プレス(CIP)成形した。   The mixed powder was filled in a foam polystyrene mold, the entire foam polystyrene mold was sealed under reduced pressure in a polystyrene bag, and cold isostatic pressing (CIP) molding was performed under the conditions of a pressure of 280 MPa and a holding time of 1 minute.

CIP成形後の直径173mm、厚み44mmの円柱状成形体を、炉床昇降式抵抗加熱電気炉((株)広築製、型式「HPF−7020」)にて、大気雰囲気下で、室温から650℃までは100℃/時、650℃から800℃まで50℃/時、800℃で36時間保持、800℃から最高焼成温度1425℃までは50℃/時で昇温し、最高焼成温度1425℃で4時間保持して焼成した。100℃/時で50℃まで降温し、その後炉冷し不透明石英ガラスを得た。使用した混合粉末のシリカ凝集体の個数密度、不透明石英ガラスの白抜けの個数密度をそれぞれ表1に示す。   A cylindrical molded body having a diameter of 173 mm and a thickness of 44 mm after CIP molding is heated from room temperature to 650 in a furnace floor raising and lowering resistance heating electric furnace (manufactured by Hiroki Co., Ltd., model “HPF-7020”) in an air atmosphere. Up to 100 ° C / hour, 50 ° C / hour from 650 ° C to 800 ° C, held at 800 ° C for 36 hours, heated from 800 ° C to maximum firing temperature of 1425 ° C at 50 ° C / hour, maximum firing temperature of 1425 ° C And baked for 4 hours. The temperature was lowered to 50 ° C. at 100 ° C./hour and then cooled in the furnace to obtain opaque quartz glass. Table 1 shows the number density of the silica aggregates of the used mixed powder and the number density of white spots in the opaque quartz glass.

実施例2
ふるいを通す回数を2回にした以外は実施例1と同様の方法で混合粉末を得た。得られた混合粉末を用いて、実施例1と同様の方法で成形体を作製し、実施例1と同様の条件で前記成形体を焼成して、不透明石英ガラスを得た。使用した混合粉末のシリカ凝集体の個数密度、不透明石英ガラスの白抜けの個数密度をそれぞれ表1に示す。
Example 2
A mixed powder was obtained in the same manner as in Example 1 except that the number of times of passing through the sieve was changed to 2. Using the obtained mixed powder, a molded body was produced in the same manner as in Example 1, and the molded body was fired under the same conditions as in Example 1 to obtain an opaque quartz glass. Table 1 shows the number density of the silica aggregates of the used mixed powder and the number density of white spots in the opaque quartz glass.

実施例3
ふるいを通す回数を3回にした以外は実施例1と同様の方法で混合粉末を得た。得られた混合粉末を用いて、実施例1と同様の方法で成形体を作製し、実施例1と同様の条件で前記成形体を焼成して、不透明石英ガラスを得た。使用した混合粉末のシリカ凝集体の個数密度、不透明石英ガラスの白抜けの個数密度をそれぞれ表1に示す。
実施例4
粉末混合をポットミルで3時間混合する方法に変えた以外は実施例1と同様の方法で混合粉末を得た。得られた混合粉末を用いて、実施例1と同様の方法で成形体を作製し、実施例1と同様の条件で前記成形体を焼成して、不透明石英ガラスを得た。使用した混合粉末のシリカ凝集体の個数密度は0個/cm、得られた不透明石英ガラスの白抜けの個数密度は0個/cmであった。得られた不透明石英ガラスの試料厚さ1mmのときの波長1.5μmから5μmにおける直線透過率は1%以下であり、波長2μmにおける透過率は0.82%、波長4μmにおける透過率は0.46%であった。
Example 3
A mixed powder was obtained in the same manner as in Example 1 except that the number of times of passing through the sieve was changed to 3. Using the obtained mixed powder, a molded body was produced in the same manner as in Example 1, and the molded body was fired under the same conditions as in Example 1 to obtain an opaque quartz glass. Table 1 shows the number density of the silica aggregates of the used mixed powder and the number density of white spots in the opaque quartz glass.
Example 4
A mixed powder was obtained in the same manner as in Example 1 except that the powder mixing was changed to a method of mixing for 3 hours in a pot mill. Using the obtained mixed powder, a molded body was produced in the same manner as in Example 1, and the molded body was fired under the same conditions as in Example 1 to obtain an opaque quartz glass. The number density of silica aggregates in the mixed powder used was 0 / cm 2 , and the number density of white spots in the obtained opaque quartz glass was 0 / cm 2 . When the sample thickness of the obtained opaque quartz glass is 1 mm, the linear transmittance at a wavelength of 1.5 μm to 5 μm is 1% or less, the transmittance at a wavelength of 2 μm is 0.82%, and the transmittance at a wavelength of 4 μm is 0.8. It was 46%.

比較例1
ふるいを通す回数を0回にした以外は実施例1と同様の方法で混合粉末を得た。得られた混合粉末を用いて、実施例1と同様の方法で成形体を作製し、実施例1と同様の条件で前記成形体を焼成して、不透明石英ガラスを得た。使用した混合粉末のシリカ凝集体の個数密度、不透明石英ガラスの白抜けの個数密度をそれぞれ表1に示す。
Comparative Example 1
A mixed powder was obtained in the same manner as in Example 1 except that the number of times of passing through the sieve was 0. Using the obtained mixed powder, a molded body was produced in the same manner as in Example 1, and the molded body was fired under the same conditions as in Example 1 to obtain an opaque quartz glass. Table 1 shows the number density of the silica aggregates of the used mixed powder and the number density of white spots in the opaque quartz glass.

図7、8、9、10に比較例1の混合粉末の画像処理の過程における画像を、図14、15、16に比較例1の不透明石英ガラスの画像処理の過程における画像を示す。   7, 8, 9 and 10 show images in the course of image processing of the mixed powder of Comparative Example 1, and FIGS. 14, 15 and 16 show images in the course of image processing of the opaque quartz glass of Comparative Example 1, respectively.

Figure 2017036203
Figure 2017036203

熱遮断効果が高い不透明石英ガラスであり、半導体製造装置用部材などに好適に用いることができる。   It is an opaque quartz glass having a high heat shielding effect, and can be suitably used for a member for a semiconductor manufacturing apparatus.

Claims (5)

画像処理によって得られるヒストグラムで、透過している部分とそれ以外に分かれるように閾値を設定して二値化し、閾値を超えた部分のうち0.04mm以上の面積を有する部分の個数をm、画像全体の面積をRcm として、m/Rが50以下であることを特徴とする不透明石英ガラス。 In the histogram obtained by image processing, a threshold value is set so as to be separated into a transparent part and other parts, and binarized, and the number of parts having an area of 0.04 mm 2 or more among the parts exceeding the threshold value is represented by m. An opaque quartz glass, wherein the area of the entire image is Rcm 2 and m / R is 50 or less. 試料厚さ1mmのときの波長1.5μmから5μmにおける透過率が1%以下であることを特徴とする請求項1に記載の不透明石英ガラス。 2. The opaque quartz glass according to claim 1, wherein the transmittance at a wavelength of 1.5 μm to 5 μm at a sample thickness of 1 mm is 1% or less. 非晶質シリカ粉末と造孔材粉末の混合粉末を原料とする不透明石英ガラスの製造方法であって、前記混合粉末が、画像処理によって得られるヒストグラムで、各輝度値に対する画素数が最も大きい輝度値を閾値に設定して二値化し、閾値を超えた部分のうち0.04mm以上の面積を有する部分の個数をn、画像全体の面積をScmとして、n/Sが100以下であることを特徴とする不透明石英ガラスの製造方法。 A method for producing opaque quartz glass using a mixed powder of amorphous silica powder and pore former powder, wherein the mixed powder is a histogram obtained by image processing, and has the largest number of pixels for each luminance value The value is set as a threshold value and binarized. Among the portions exceeding the threshold value, the number of portions having an area of 0.04 mm 2 or more is n, the area of the entire image is Scm 2 , and n / S is 100 or less. An opaque quartz glass manufacturing method characterized by the above. 前記造孔剤粉末が平均粒径5〜40μmであることを特徴とする請求項3に記載の不透明石英ガラスの製造方法。   4. The method for producing opaque quartz glass according to claim 3, wherein the pore-forming agent powder has an average particle diameter of 5 to 40 [mu] m. 前記造孔剤が黒鉛粉末であることを特徴とする請求項3又は4に記載の不透明石英ガラスの製造方法。   The method for producing opaque quartz glass according to claim 3 or 4, wherein the pore-forming agent is graphite powder.
JP2016155361A 2015-08-11 2016-08-08 Opaque quartz glass Active JP6885002B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015159201 2015-08-11
JP2015159201 2015-08-11

Publications (2)

Publication Number Publication Date
JP2017036203A true JP2017036203A (en) 2017-02-16
JP6885002B2 JP6885002B2 (en) 2021-06-09

Family

ID=58047231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016155361A Active JP6885002B2 (en) 2015-08-11 2016-08-08 Opaque quartz glass

Country Status (1)

Country Link
JP (1) JP6885002B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014088286A (en) * 2012-10-30 2014-05-15 Tosoh Corp Opaque quartz glass and production method thereof
JP2014091634A (en) * 2012-10-31 2014-05-19 Tosoh Corp Opaque quartz glass and method for manufacturing the same
WO2015122517A1 (en) * 2014-02-17 2015-08-20 東ソー株式会社 Opaque quartz glass and method for producing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014088286A (en) * 2012-10-30 2014-05-15 Tosoh Corp Opaque quartz glass and production method thereof
JP2014091634A (en) * 2012-10-31 2014-05-19 Tosoh Corp Opaque quartz glass and method for manufacturing the same
WO2015122517A1 (en) * 2014-02-17 2015-08-20 東ソー株式会社 Opaque quartz glass and method for producing same

Also Published As

Publication number Publication date
JP6885002B2 (en) 2021-06-09

Similar Documents

Publication Publication Date Title
US10005693B2 (en) Opaque quartz glass and method for its production
TWI454425B (en) Silica, silica containers and the manufacture of such powders or containers
JP5106340B2 (en) Silica container and method for producing the same
JPWO2008069194A1 (en) Synthetic opaque quartz glass and method for producing the same
TWI705045B (en) Method for producing a pore-containing opaque quartz glass
JP6379508B2 (en) Opaque quartz glass and method for producing the same
JP2014091634A (en) Opaque quartz glass and method for manufacturing the same
JP2010138034A (en) Silica container and method for producing the same
TWI777171B (en) Opaque quartz glass and method of making the same
Nečina et al. Magnesium fluoride (MgF2)–A novel sintering additive for the preparation of transparent YAG ceramics via SPS
JP2017154945A (en) Opaque quartz glass
JP2019199078A (en) Method for manufacturing ceramic molding for sintering and method for manufacturing ceramic sintered body
JP6885002B2 (en) Opaque quartz glass
JP2017536323A (en) Doped silica-titania glass having low expansion coefficient and method for producing the same
JP4966527B2 (en) Transparent silica sintered body and method for producing the same
Han et al. Large‐sized La2O3‐TiO2 high refractive glasses with low SiO2 fraction by hot‐press sintering
CN113631529A (en) Method for producing alumina sintered body and alumina sintered body
JP6273997B2 (en) Opaque quartz glass and method for producing the same
JPWO2019031105A1 (en) Oxide sintered body and sputtering target
JP6614527B2 (en) Luminescent glass composite and method for producing the same
JP6252257B2 (en) Opaque quartz glass and method for producing the same
JP6676826B1 (en) Method for producing opaque quartz glass
JP2003292337A (en) Plasma corrosion resisting silica glass, manufacturing method therefor and apparatus using the same
JP4587350B2 (en) Method for producing translucent ceramic body
KR101642327B1 (en) Apparatus for manufacturing high purity quartz glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210426

R151 Written notification of patent or utility model registration

Ref document number: 6885002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151