JP2017035732A - Cooling method of steel material, manufacturing method of steel material, cooling device of steel material and manufacturing facility of steel material - Google Patents

Cooling method of steel material, manufacturing method of steel material, cooling device of steel material and manufacturing facility of steel material Download PDF

Info

Publication number
JP2017035732A
JP2017035732A JP2016149078A JP2016149078A JP2017035732A JP 2017035732 A JP2017035732 A JP 2017035732A JP 2016149078 A JP2016149078 A JP 2016149078A JP 2016149078 A JP2016149078 A JP 2016149078A JP 2017035732 A JP2017035732 A JP 2017035732A
Authority
JP
Japan
Prior art keywords
steel material
mist
cooling
steel
pressure air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016149078A
Other languages
Japanese (ja)
Other versions
JP6343842B2 (en
Inventor
賢士 奥城
Kenji Okushiro
賢士 奥城
啓之 福田
Hiroyuki Fukuda
啓之 福田
木島 秀夫
Hideo Kijima
秀夫 木島
広和 杉原
Hirokazu Sugihara
広和 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2017035732A publication Critical patent/JP2017035732A/en
Application granted granted Critical
Publication of JP6343842B2 publication Critical patent/JP6343842B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a technology for manufacturing a steel material having uniform hardness in the thickness direction, by suppressing generation of a martensite structure in a surface layer and hardness increase of the surface layer of the steel material caused thereby.SOLUTION: In cooling method of a steel material, when cooling a steel material after hot rolling or a reheated steel material from a temperature region of Ar 3 points or more to a bainite transformation temperature region, high-pressure air and mist are jetted out simultaneously from separated nozzles to the steel material. The pressure of the high-pressure air is 0.3 MPa or higher, the average particle diameter of the mist is 0.1 mm or smaller, and the water volume density is 10-500 mL/(m-min).SELECTED DRAWING: Figure 1

Description

本発明は、鋼材を均一に冷却することによって、材質の均一性に優れた鋼材を製造する鋼材の冷却方法、鋼材の製造方法、鋼材の冷却装置および鋼材の製造設備に関する。   The present invention relates to a steel material cooling method, a steel material manufacturing method, a steel material cooling device, and a steel material manufacturing facility for manufacturing a steel material excellent in material uniformity by uniformly cooling the steel material.

厚鋼板(板厚6mm〜200mm)(以下、鋼材と称する)を製造するプロセスにおいては、例えば、加熱炉によって加熱されたスラブを、圧延機を用いて熱間で粗圧延及び仕上げ圧延を行った後、冷却装置で水冷または空冷を行って、鋼材の組織を制御する。あるいは、圧延後に一旦例えば室温近くまで冷却された鋼材をAr3点以上の温度に再加熱した後、冷却装置で水冷または空冷を実施して鋼材の組織を制御する。このとき、室温近くまで冷却した後、製品幅及び長さに切断した後に再加熱し、冷却を行う場合もある。   In the process of manufacturing a thick steel plate (plate thickness 6 mm to 200 mm) (hereinafter referred to as a steel material), for example, a slab heated by a heating furnace was subjected to hot rolling and finish rolling using a rolling mill. Then, water cooling or air cooling is performed with a cooling device to control the structure of the steel material. Alternatively, after rolling, the steel material once cooled to near room temperature, for example, is reheated to a temperature not lower than the Ar3 point, and then water cooling or air cooling is performed with a cooling device to control the steel structure. At this time, after cooling to near room temperature, it may be cut into product widths and lengths and then reheated for cooling.

特に、仕上げ圧延後の鋼材をAr3点以上の温度域から比較的低い温度、例えば300〜450℃程度の温度域に所定の冷却速度で冷却すると、あるいは、Ar3点以上の温度域に再加熱された鋼材を例えば300〜450℃程度の温度域に所定の冷却速度で冷却すると、ベイナイト組織が得られ、強度や靭性に優れる鋼材を製造することが出来る。冷却装置においては、スプレー冷却水やラミナー冷却水などを用いた水冷によって、鋼材を冷却する技術が一般的である。   In particular, the steel material after finish rolling is cooled at a predetermined cooling rate from a temperature range of Ar3 or higher to a relatively low temperature, for example, about 300 to 450 ° C, or reheated to a temperature range of Ar3 or higher. For example, when the steel material is cooled to a temperature range of about 300 to 450 ° C. at a predetermined cooling rate, a bainite structure is obtained, and a steel material having excellent strength and toughness can be produced. In a cooling device, a technique for cooling a steel material by water cooling using spray cooling water, laminar cooling water, or the like is common.

近年、鋼材の上下面に対し、多数のノズルから冷却水を高速で噴射して、非常に高い冷却速度で鋼材を冷却し、組織をより微細化して、製品となる鋼材の強度を上げる技術が研究されている。鋼材の板厚中心で所定の冷却速度を得るためには、表層を急速に冷却する必要がある。表層を急冷する場合には、長手方向及び幅方向の冷却が均一となり、表層の材質が均一になるという利点がある。   In recent years, a technology has been developed in which cooling water is sprayed from a large number of nozzles onto the upper and lower surfaces of steel at a high speed to cool the steel at a very high cooling rate, further refine the structure, and increase the strength of the steel material. It has been studied. In order to obtain a predetermined cooling rate at the thickness center of the steel material, it is necessary to rapidly cool the surface layer. When the surface layer is rapidly cooled, there is an advantage that the cooling in the longitudinal direction and the width direction becomes uniform, and the material of the surface layer becomes uniform.

しかし、鋼材を表層から急冷すると、必然的に板厚方向に冷却速度のばらつきが生じ、板厚方向で強度・靭性などの材質ばらつきが生じてしまう。強度・靭性などの材質ばらつきがあると、鋼材の用途によっては、部分的な(表層)の硬度上昇や、伸び低下、溶接性悪化などをきたす場合がある。特に、冷却速度が大きくなるほどマルテンサイトが生成しやすくなり、材質ばらつきは顕著に表れる。   However, when the steel material is rapidly cooled from the surface layer, the cooling rate inevitably varies in the plate thickness direction, and material variations such as strength and toughness occur in the plate thickness direction. If there are variations in materials such as strength and toughness, depending on the application of the steel material, there may be a partial increase in hardness (surface layer), a decrease in elongation, and a deterioration in weldability. In particular, as the cooling rate increases, martensite is more likely to be generated, and the material variation appears significantly.

そのため、表層の冷却を過度に大きくせずに、表層をいわゆる緩冷却させることが有効である。緩冷却を行って、表層のマルテンサイト分率を低下させるための技術が特許文献1及び2に開示されている。特許文献1では、冷却ゾーンを、加速冷却する冷却ゾーンと自然放熱で復熱させる空冷ゾーンとに区切り、間欠的に加速冷却を実施することで目標の冷却温度に制御する方法が開示されている。   Therefore, it is effective to cool the surface layer so-called slowly without excessively cooling the surface layer. Patent Documents 1 and 2 disclose techniques for performing slow cooling to lower the martensite fraction of the surface layer. Patent Document 1 discloses a method of controlling a cooling zone to a target cooling temperature by dividing the cooling zone into a cooling zone for accelerated cooling and an air cooling zone for reheating by natural heat dissipation and intermittently performing accelerated cooling. .

特許文献2では、特許文献1のように間欠的に加速冷却を実施する方法において、マルテンサイト変態開始点以下まで水冷により加速冷却した後、加速冷却を停止して復熱させる方法が提示されている。   In Patent Document 2, a method of intermittently performing accelerated cooling as in Patent Document 1 is proposed in which accelerated cooling is performed by water cooling to the martensite transformation start point or lower, and then the accelerated cooling is stopped and recuperated. Yes.

特開2005−154841号公報JP 2005-154841 A 特開2011−206793号公報JP 2011-206793 A

しかしながら、特許文献1に記載された方法では、加速冷却の冷却水が、冷却区間において鋼板上に残存し、冷却での復熱量が長手・幅方向にばらついて、材質が不均一になるという問題がある。   However, in the method described in Patent Document 1, the cooling water for accelerated cooling remains on the steel plate in the cooling section, the amount of recuperated heat varies in the longitudinal and width directions, and the material becomes uneven. There is.

また、特許文献2に記載された方法では、最初に水冷による加速冷却でマルテンサイト変態点以下まで冷却するため、表層にマルテンサイト組織が形成されて、表層の延性及び靭性が低下するという問題がある。   Moreover, in the method described in Patent Document 2, since the martensite transformation point is first cooled by accelerated cooling by water cooling, a martensitic structure is formed in the surface layer, and the ductility and toughness of the surface layer are reduced. is there.

なお、復熱量の増加によりマルテンサイト分率を低下させ、ベイナイト変態させる方法も知られているが、マルテンサイト分率をゼロにすることは困難であり、また材質の不均一性も大きい。   A method of reducing the martensite fraction by increasing the amount of recuperated and causing bainite transformation is also known, but it is difficult to make the martensite fraction zero, and the material is highly non-uniform.

本発明は、上記に鑑みてなされたものであり、熱間圧延後の鋼材を冷却する場合において、表層におけるマルテンサイト組織の生成とそれに伴う鋼材の表層の硬度上昇を抑制し、厚み方向において均一な硬さを持つ鋼材を製造する技術を提供することを目的とする。   The present invention has been made in view of the above, and in the case of cooling a steel material after hot rolling, it suppresses the formation of a martensite structure in the surface layer and the accompanying increase in the hardness of the surface layer of the steel material, and is uniform in the thickness direction. An object of the present invention is to provide a technique for manufacturing a steel material having a certain hardness.

本発明は、このような目的を達成するために、以下のような特徴を有している。
[1]熱間圧延後の鋼材、または、再加熱した鋼材を、Ar3点以上の温度域からベイナイト変態温度域まで冷却するに際し、 高圧空気とミストを、別々のノズルから高圧空気の圧力を0.3MPa以上、ミストの平均粒径を0.1mm以下、水量密度を10〜500mL/(m・min)で、同時に鋼材に噴射する鋼材の冷却方法。
[2]前記噴射は、高圧空気噴射とミスト噴射を近接させ、ミストと高圧空気を混合し鋼材へ衝突させる上記[1]に記載の鋼材の冷却方法。
[3]高圧空気とミストを鋼材に噴射する前および/または後に、熱伝達係数3000W/(mK)超えで鋼材を冷却する上記[1]または[2]に記載の鋼材の冷却方法。
[4]熱間圧延後、または、再加熱後の、Ar3点以上の温度の鋼材に、高圧空気とミストを、別々のノズルから高圧空気の圧力を0.3MPa以上、ミストの平均粒径を0.1mm以下、水量密度を10〜500mL/(m・min)で、同時に噴射し、ベイナイト変態温度域まで冷却する鋼材の製造方法。
[5]前記噴射は、高圧空気噴射とミスト噴射を近接させ、ミストと高圧空気を混合し鋼材へ衝突させる上記[4]に記載の鋼材の製造方法。
[6]高圧空気とミストを鋼材に噴射する前および/または後に、熱伝達係数3000W/(mK)超えで鋼材を冷却する上記[4]または[5]に記載の鋼材の製造方法。
[7]熱間圧延後の鋼材、または、再加熱した鋼材に、圧力0.3MPa以上の高圧空気を噴射する高圧空気噴射ノズルと、平均粒径0.1mm以下で水量密度10〜500mL/(m・min)のミストを噴射するミストノズルを有し、前記高圧空気噴射ノズルと前記ミストノズルを同時に噴射してベイナイト変態温度まで冷却する鋼材の冷却装置。
[8]前記ノズルは、スプレー冷却水またはラミナー冷却水を用いた加速冷却装置の前面あるいは後面の少なくとも一方に設けられている上記[7]に記載の鋼材の冷却装置。
[9]前記加速冷却装置は、熱伝達係数3000W/(mK)超えで鋼材を冷却する上記[8]に記載の鋼材の冷却装置
[10]圧延機と、請求項7乃至9のいずれかの冷却装置と、を有する鋼材の製造設備。
The present invention has the following features in order to achieve such an object.
[1] When cooling a steel material after hot rolling or a reheated steel material from the temperature range of Ar3 or higher to the bainite transformation temperature range, the pressure of the high pressure air and the pressure of high pressure air from separate nozzles are reduced to 0. The cooling method of the steel materials simultaneously injected to steel materials at 3 MPa or more, the average particle diameter of mist being 0.1 mm or less, and the water density is 10 to 500 mL / (m 2 · min).
[2] The steel material cooling method according to [1], wherein the high pressure air injection and the mist injection are brought close to each other, the mist and the high pressure air are mixed and collide with the steel material.
[3] The method for cooling a steel material according to the above [1] or [2], wherein the steel material is cooled at a heat transfer coefficient exceeding 3000 W / (m 2 K) before and / or after the high-pressure air and mist are injected onto the steel material.
[4] After hot rolling or after reheating, high pressure air and mist are applied to a steel material at a temperature of Ar3 or higher, the pressure of high pressure air from separate nozzles is 0.3 MPa or more, and the average particle diameter of mist is The manufacturing method of the steel material which injects simultaneously at 0.1-mm or less and a water density at 10-500 mL / (m < 2 > * min), and cools to a bainite transformation temperature range.
[5] The method for manufacturing a steel material according to [4], wherein the injection is performed by bringing high-pressure air injection and mist injection close to each other, mixing the mist and high-pressure air, and causing the steel material to collide.
[6] The method for producing a steel material according to the above [4] or [5], wherein the steel material is cooled at a heat transfer coefficient exceeding 3000 W / (m 2 K) before and / or after the high-pressure air and mist are injected onto the steel material.
[7] A high-pressure air injection nozzle that injects high-pressure air with a pressure of 0.3 MPa or more onto a steel material after hot rolling or a reheated steel material, and an average particle size of 0.1 mm or less and a water density of 10 to 500 mL / ( m 2 · min), a steel material cooling device having a mist nozzle for injecting mist, and simultaneously injecting the high-pressure air injection nozzle and the mist nozzle to cool to a bainite transformation temperature.
[8] The steel material cooling device according to [7], wherein the nozzle is provided on at least one of a front surface and a rear surface of an acceleration cooling device using spray cooling water or laminar cooling water.
[9] The steel cooling device according to [8], wherein the accelerated cooling device cools the steel material with a heat transfer coefficient exceeding 3000 W / (m 2 K), and any one of claims 7 to 9 And a cooling device.

本発明によれば、表層の硬度上昇を抑制し、厚み方向において均一な硬さを持つ鋼材を製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, the steel material which suppresses the raise of the hardness of a surface layer and has uniform hardness in the thickness direction can be manufactured.

図1は、本発明の実施形態にかかる鋼材製造ラインの一例を示す概略図である。FIG. 1 is a schematic diagram illustrating an example of a steel material production line according to an embodiment of the present invention. 図2は、本発明の実施の形態にかかる鋼材製造ラインの冷却装置を示す概略図である。FIG. 2 is a schematic view showing a cooling device of the steel material production line according to the embodiment of the present invention. 図3は、本発明の実施の形態にかかる緩冷却装置の概略を示す図である。FIG. 3 is a diagram showing an outline of the slow cooling device according to the embodiment of the present invention. 図4は、本発明の実施の形態にかかる緩冷却装置のミストノズルと空気噴射ノズルの配置を示す平面図である。FIG. 4 is a plan view showing the arrangement of mist nozzles and air injection nozzles of the slow cooling device according to the embodiment of the present invention. 図5は、ミスト粒径の測定方法を示す図である。FIG. 5 is a diagram showing a method for measuring the mist particle diameter. 図6は、本発明の実施の形態にかかる緩冷却装置のミストノズルと空気噴射ノズルの配置を示す平面図である。FIG. 6 is a plan view showing the arrangement of mist nozzles and air injection nozzles of the slow cooling device according to the embodiment of the present invention. 図7は、本発明の実施の形態にかかる緩冷却装置のミストノズルと空気噴射ノズルの配置を示す平面図である。FIG. 7 is a plan view showing the arrangement of mist nozzles and air injection nozzles of the slow cooling device according to the embodiment of the present invention. 図8は、本発明の実施の形態にかかる緩冷却装置のミストノズルと空気噴射ノズルの配置を示す平面図である。FIG. 8 is a plan view showing the arrangement of mist nozzles and air injection nozzles of the slow cooling device according to the embodiment of the present invention.

以下、添付した図面を参照し、本発明の実施の形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1は、本発明の実施の形態にかかる鋼材製造ラインの一例を示す概略図である。この鋼材製造ラインでは、加熱炉1から抽出されたスラブが、圧延機2によって粗圧延と仕上げ圧延が施され、所定の仕上げ板厚とされる。なお、熱間圧延後の鋼材の温度はAr3点以上である。熱間圧延終了後に、鋼材はオンラインにて冷却設備に搬送される。冷却設備は、第1加速冷却装置3、緩冷却装置4及び第2加速冷却装置5を有している。なお、第1加速冷却装置3の前に、プリレベラを配置して、鋼材の形状を整えてから冷却を行えば、冷却後の鋼材形状をより良好とすることが出来る。   FIG. 1 is a schematic diagram illustrating an example of a steel material production line according to an embodiment of the present invention. In this steel material production line, the slab extracted from the heating furnace 1 is subjected to rough rolling and finish rolling by a rolling mill 2 to a predetermined finished plate thickness. In addition, the temperature of the steel material after hot rolling is Ar3 point or more. After the hot rolling is completed, the steel material is transferred online to a cooling facility. The cooling facility includes a first accelerated cooling device 3, a slow cooling device 4, and a second accelerated cooling device 5. In addition, if the pre-leveler is arranged in front of the first accelerated cooling device 3 and the cooling is performed after adjusting the shape of the steel material, the shape of the steel material after cooling can be improved.

また、熱間圧延後に一旦例えば室温近くまで冷却された鋼材をAr3点以上の温度域に再加熱した後、第1加速冷却装置3、緩冷却装置4及び第2加速冷却装置5を用いて水冷または空冷を実施して鋼材の組織制御をしても良い。このとき、室温近くまで冷却した後、製品幅及び長さに切断した後に再加熱し、冷却を行っても良い。   Further, after the steel material once cooled to near room temperature after hot rolling is reheated to a temperature range of Ar3 or higher, water cooling is performed using the first accelerated cooling device 3, the slow cooling device 4, and the second accelerated cooling device 5. Alternatively, the structure of the steel material may be controlled by air cooling. At this time, after cooling to near room temperature, it may be reheated after being cut into a product width and length, and then cooled.

第1加速冷却装置3及び第2加速冷却装置5としては、スプレー冷却水やラミナー冷却水を供給する冷却装置を用いることが出来る。   As the 1st acceleration cooling device 3 and the 2nd acceleration cooling device 5, the cooling device which supplies spray cooling water or laminar cooling water can be used.

なお、本発明では、第1加速冷却装置3の前面、第2加速冷却装置5の後面、もしくは第1加速冷却装置3と第2加速冷却装置5の間のうち、少なくとも1箇所以上に、緩冷却装置4を配置すればよい。図1の例では、第1加速冷却装置3と第2加速冷却装置5の間に、緩冷却装置4が配置されている。   In the present invention, the front surface of the first accelerated cooling device 3, the rear surface of the second accelerated cooling device 5, or at least one place between the first accelerated cooling device 3 and the second accelerated cooling device 5 is loosened. A cooling device 4 may be arranged. In the example of FIG. 1, a slow cooling device 4 is disposed between the first accelerated cooling device 3 and the second accelerated cooling device 5.

緩冷却装置4は、後述するように、高圧空気とミスト状の冷却水(以下、ミストという)を同時に噴射し、好ましくは混合しながら鋼材を冷却する。   As will be described later, the slow cooling device 4 simultaneously injects high-pressure air and mist-like cooling water (hereinafter referred to as mist), and preferably cools the steel while mixing.

本発明においては、緩冷却装置4において、ミスト状の水が空気と同時に噴射されるので、鋼材にミストが噴射された後、空気によって吹き飛ばされるため、ミストが鋼材に残存しづらくなる。また、水滴径が微小であるほど、蒸発に要する時間が短くなるため、鋼材衝突より安定した冷却挙動を実現することが出来る。   In the present invention, since the mist-like water is injected simultaneously with air in the slow cooling device 4, the mist is injected into the steel material and then blown off by the air, so that it is difficult for the mist to remain in the steel material. Moreover, since the time required for evaporation becomes shorter as the water droplet diameter is smaller, a more stable cooling behavior can be realized than the steel material collision.

緩冷却装置4においては、熱伝達係数100〜3000W/(mK)の条件で鋼材を冷却することが好ましい。熱伝達係数が100W/(mK)未満では冷却速度が非常に遅くなるため、表層硬度及び中心硬度が低下し、また、急冷後に緩冷却を行う場合、内部よりの熱伝導によって復熱してしまうため、一部がフェライトやパーライトといった目的組織以外へ変態してしまい、厚み方向において硬度のばらつきが大きくなる場合がある。熱伝達係数が3000W/(mK)を超えると表層がマルテンサイト組織へ変態を起こし、靭性、延性を損なうため、好ましくない。 In the slow cooling device 4, it is preferable to cool the steel material under the condition of a heat transfer coefficient of 100 to 3000 W / (m 2 K). When the heat transfer coefficient is less than 100 W / (m 2 K), the cooling rate becomes very slow, so that the surface layer hardness and the center hardness are lowered, and when performing slow cooling after rapid cooling, the heat is restored by heat conduction from the inside. Therefore, a part of the material is transformed into a structure other than the target structure such as ferrite and pearlite, and the variation in hardness in the thickness direction may increase. If the heat transfer coefficient exceeds 3000 W / (m 2 K), the surface layer is transformed into a martensite structure, and the toughness and ductility are impaired.

図2は、本発明の実施の形態にかかる鋼材製造ラインの冷却設備を示す図である。第1加速冷却装置3、緩冷却装置4及び第2加速冷却装置5は、それぞれ複数のゾーンに分かれており、目標の冷却速度を達成するために、冷却水(緩冷却装置4では、高圧空気とミスト)の噴射の有無や、冷却媒体噴射量をゾーンごとに制御することが出来る。   FIG. 2 is a diagram showing a cooling facility of the steel material production line according to the embodiment of the present invention. The first accelerated cooling device 3, the slow cooling device 4, and the second accelerated cooling device 5 are each divided into a plurality of zones. In order to achieve a target cooling rate, the cooling water (in the slow cooling device 4, high-pressure air is used). Mist) and the amount of cooling medium injection can be controlled for each zone.

第1加速冷却装置3、緩冷却装置4及び第2加速冷却装置5には、それぞれ、鋼材の上面を冷却する上面ヘッダと、鋼材の下面を冷却する下面ヘッダが設けられている。緩冷却装置4の前面及び後面には、それぞれ温度計63、64が備わっており、緩冷却中の鋼材の温度を管理している。   The first accelerated cooling device 3, the slow cooling device 4, and the second accelerated cooling device 5 are each provided with an upper surface header that cools the upper surface of the steel material and a lower surface header that cools the lower surface of the steel material. Thermometers 63 and 64 are provided on the front surface and the rear surface of the slow cooling device 4, respectively, to control the temperature of the steel material during the slow cooling.

冷却ゾーンや冷却媒体の噴射量を用い、差分法などによって計算された値と温度計63、64によって測定された実績の値を比較し、差があった場合は学習係数を用い、熱伝達係数を修正することにより、鋼材温度履歴の制御を行う。   Using the cooling zone and the injection amount of the cooling medium, the value calculated by the difference method or the like is compared with the actual value measured by the thermometers 63 and 64, and if there is a difference, the learning coefficient is used and the heat transfer coefficient The steel material temperature history is controlled by correcting.

第1加速冷却装置3の前面、後面及び中間、第2加速冷却装置5の前面、後面及び中間には、それぞれ温度計(図示せず)が1箇所以上配置され、温度計によって計測された鋼材の温度に基づいて、鋼材の品質管理、冷却媒体を噴射するゾーンの設定、冷却水の流量制御を行う。各温度計は、鋼材の1点のみを測定する温度計でも良いし、幅方向及び長手方向に温度分布を測定できる温度計でもよい。   One or more thermometers (not shown) are arranged on the front surface, the rear surface and the middle of the first accelerated cooling device 3, and the front surface, the rear surface and the middle of the second accelerated cooling device 5, respectively, and the steel materials measured by the thermometer. Based on the temperature, quality control of the steel material, setting of the zone for injecting the cooling medium, and control of the flow rate of the cooling water are performed. Each thermometer may be a thermometer that measures only one point of the steel material, or may be a thermometer that can measure the temperature distribution in the width direction and the longitudinal direction.

テーブルロール61や水切りロール62は、鋼材に残った冷却水を除去する機能を有している。   The table roll 61 and the draining roll 62 have a function of removing the cooling water remaining on the steel material.

なお、図1及び2では、第1加速冷却装置3と第2加速冷却装置5の間に、緩冷却装置4が配置されている例を示したが、所望の熱履歴にあわせ、第1加速冷却装置3及び第2加速冷却装置5のいずれか一方、もしくは両方を配置しなくても良い。また、さまざまな熱履歴に対応できるように、第1加速冷却装置3及び第2加速冷却装置5を配置したまま、第1加速冷却装置3及び第2加速冷却装置5による冷却が不要の場合には、それぞれの冷却装置の冷却水を供給する水系統バルブを閉にして、冷却水の噴射を停止し、第1加速冷却装置3及び第2加速冷却装置5に鋼材を通過させるように構成しても良い。   1 and 2 show an example in which the slow cooling device 4 is arranged between the first accelerated cooling device 3 and the second accelerated cooling device 5, but the first accelerated cooling device 4 is arranged in accordance with a desired thermal history. Either one or both of the cooling device 3 and the second accelerated cooling device 5 may not be arranged. In addition, when the first acceleration cooling device 3 and the second acceleration cooling device 5 are arranged and cooling by the first acceleration cooling device 3 and the second acceleration cooling device 5 is not necessary so as to cope with various heat histories. Is configured to close the water system valve that supplies the cooling water of each cooling device, stop the injection of the cooling water, and allow the steel material to pass through the first accelerated cooling device 3 and the second accelerated cooling device 5. May be.

また、第1加速冷却装置3および/または第2加速冷却装置5を配置し、第1加速冷却装置3、第2加速冷却装置5の少なくとも一つにおいて、熱伝達係数3000W/(mK)超えで鋼材を冷却する構成としても良い。このように、緩冷却の前および/または後に加速冷却を行うことで、冷却にかかる時間を短縮しつつ、表層におけるマルテンサイト組織の生成とそれに伴う鋼材の表層の硬度上昇を抑制し、厚み方向において均一な硬さを持つ鋼材を製造することが可能となる。 Also, the first accelerated cooling device 3 and / or the second accelerated cooling device 5 is arranged, and in at least one of the first accelerated cooling device 3 and the second accelerated cooling device 5, a heat transfer coefficient of 3000 W / (m 2 K). It is good also as a structure which cools steel materials in excess. Thus, by performing accelerated cooling before and / or after slow cooling, while reducing the time required for cooling, the generation of martensite structure in the surface layer and the accompanying increase in hardness of the surface layer of the steel material is suppressed, and the thickness direction It is possible to produce a steel material having a uniform hardness.

続いて緩冷却装置4の概要について説明する。図3は、本発明の実施の形態にかかる鋼材製造ラインの緩冷却装置の概要を示す図である。   Next, the outline of the slow cooling device 4 will be described. Drawing 3 is a figure showing the outline of the slow cooling device of the steel material production line concerning an embodiment of the invention.

緩冷却装置4は、ミストノズル41と空気噴射ノズル42を有しており、ミストと高圧空気を同時に鋼材に噴射するように構成されている。ミストノズル41と空気噴射ノズル42は、鋼材の上下にそれぞれ設けられている。   The slow cooling device 4 has a mist nozzle 41 and an air injection nozzle 42, and is configured to inject mist and high-pressure air simultaneously onto a steel material. The mist nozzle 41 and the air injection nozzle 42 are respectively provided above and below the steel material.

ミストノズル41はミスト状の水を噴射する。ミストノズル41は、水のみを噴射する一流体ノズルでも良いし、水と空気を同時に噴射するに流体ノズルでも良い。図3のミストノズル41は、二流体ノズルを例として示している。図3のミストノズル41は、水槽44に貯留された水を、空気供給ヘッダ43から供給される空気と混合して噴射する。   The mist nozzle 41 ejects mist-like water. The mist nozzle 41 may be a one-fluid nozzle that ejects only water, or may be a fluid nozzle that ejects water and air simultaneously. The mist nozzle 41 of FIG. 3 shows a two-fluid nozzle as an example. The mist nozzle 41 of FIG. 3 mixes and sprays the water stored in the water tank 44 with the air supplied from the air supply header 43.

ミストの大きさは、平均粒径で0.1mm以下であり、0.05mm以下であることがより好ましく、0.02mm以下であることがさらに好ましく、0.01mm以下であることが一層好ましい。ミストの粒径が小さいほど鋼材にミストが凝縮しにくくなり、鋼材に冷却水が不均一に残存して鋼材の温度が不均一となることを低減することが出来る。   The size of the mist is 0.1 mm or less in average particle size, more preferably 0.05 mm or less, further preferably 0.02 mm or less, and further preferably 0.01 mm or less. The smaller the mist particle size, the more difficult it is to condense the mist on the steel material, and it is possible to reduce the non-uniform temperature of the steel material due to non-uniform cooling water remaining in the steel material.

二流体ノズルの場合、ミストの大きさは一般的にノズル形状及び気水比(空気量と水量との割合)によって決定される。ミストの大きさの管理については実際に用いるミスト形状によって気水比を管理することが好ましい。   In the case of a two-fluid nozzle, the size of the mist is generally determined by the nozzle shape and the air / water ratio (ratio of air volume to water volume). About management of the magnitude | size of mist, it is preferable to manage an air-water ratio with the mist shape actually used.

ミストノズル41から鋼材までの距離は、10mm以上500mm以下とすることが好ましい。ミストノズル41から鋼材までの距離が10mm未満では、ミストが蒸発後、逃げ場がなくなる。逃げ場がなくなったミストは、凝縮して大きな水滴となって鋼材に付着し、鋼材の表面に水滴が残存して温度不均一の原因となるためである。また、ミストノズル41から鋼材までの噴射距離が500mmを超えると、ミストが鋼材まで届かないため、冷却能力が低下し、また、ミストが鋼材に付着しづらくなるためである。   The distance from the mist nozzle 41 to the steel material is preferably 10 mm or more and 500 mm or less. When the distance from the mist nozzle 41 to the steel material is less than 10 mm, there is no escape space after the mist has evaporated. This is because the mist that has lost its escape is condensed and becomes large water droplets and adheres to the steel material, and water droplets remain on the surface of the steel material, causing uneven temperature. In addition, if the spray distance from the mist nozzle 41 to the steel material exceeds 500 mm, the mist does not reach the steel material, so that the cooling capacity is lowered and the mist is difficult to adhere to the steel material.

なお、ミストの水量密度は、10〜500mL/(m・min)とする。ミストの水量密度が10mL/(m・min)未満では、ミストの熱伝達係数が非常に小さく、鋼材を十分に冷却することが出来ず、鋼材の内部強度が低下する。また、ミストの水量密度が500mL/(m・min)を超えると、冷却終了後にミストを除去できず、残留水が発生するため、冷却停止温度制御が困難となる。 The water density of the mist is 10 to 500 mL / (m 2 · min). If the water density of the mist is less than 10 mL / (m 2 · min), the heat transfer coefficient of the mist is very small, the steel material cannot be sufficiently cooled, and the internal strength of the steel material is reduced. Further, if the water density of the mist exceeds 500 mL / (m 2 · min), the mist cannot be removed after the cooling is completed, and residual water is generated, so that the cooling stop temperature control becomes difficult.

なお、鋼材を冷却した水を回収し、ろ過や水温調整を行った後、水槽44へ戻して循環させるように構成しても良い。さらに、ミスト噴射時に必要な温度とするため水槽内に、電気ヒーターや蒸気を吹き込み、水槽内温度を加熱させて良い。また、配管にヒーターを取り付け、加熱しても良い。   In addition, you may comprise so that the water which cooled steel materials may be collect | recovered, and after filtering and water temperature adjustment, it may return to the water tank 44 and circulate. Furthermore, an electric heater or steam may be blown into the water tank to heat the water tank temperature in order to obtain a temperature necessary for mist injection. Further, a heater may be attached to the pipe and heated.

水温の管理は、水槽44の直近もしくは図3に示すように、ミストノズル41の直近に温度計45を設置すればよい。ただし、水温は配管通過時に変化するため、ミストノズル41の直近位置に配置するほうが好ましい。ミストノズル41から噴射される水温は30℃以上であり、さらに高温であるほど好ましい。   The water temperature may be managed by installing a thermometer 45 in the immediate vicinity of the water tank 44 or in the immediate vicinity of the mist nozzle 41 as shown in FIG. However, since the water temperature changes when passing through the pipe, it is preferable to arrange the water temperature at a position closest to the mist nozzle 41. The temperature of water sprayed from the mist nozzle 41 is 30 ° C. or higher, and the higher the temperature, the better.

空気噴射ノズル42は、空気供給ヘッダ43より空気が送られ、高圧空気を噴射する。なお、空気噴射ノズル42直前に圧力計を設置し、空気供給ヘッダ43の圧力を測定するように構成する。空気噴射ノズル42は、0.3MPa以上の噴射圧で空気を噴射する。空気噴射圧が0.3MPa未満であると、ミストの加速が不十分で鋼材にミストが衝突せず、冷却能力が低下するためである。
なお、高圧空気の量は、140L/(m・min)(nor)以上が好ましく、140L/(m・min)(nor)未満だと、0.3MPa以上の高圧の空気を作り出すことが困難となる場合がある。
The air injection nozzle 42 is supplied with air from the air supply header 43 and injects high-pressure air. A pressure gauge is installed immediately before the air injection nozzle 42 to measure the pressure of the air supply header 43. The air injection nozzle 42 injects air with an injection pressure of 0.3 MPa or more. This is because if the air injection pressure is less than 0.3 MPa, the mist is not sufficiently accelerated and the mist does not collide with the steel material, resulting in a decrease in cooling capacity.
The amount of high pressure air is preferably 140L / (m 2 · min) (nor) or, if it 140L / (m 2 · min) lower than (nor), is to create a high pressure air above 0.3MPa It can be difficult.

図4は、本発明の実施の形態に係る緩冷却装置のミストノズルと空気噴射ノズルの配置を示す平面図である。ミストノズル41から噴射されたミストを、鋼材に確実に到達させるためには、図4に示すように、ミストノズル41の周囲に、空気噴射ノズル42を配置することが好ましい。   FIG. 4 is a plan view showing the arrangement of mist nozzles and air injection nozzles of the slow cooling device according to the embodiment of the present invention. In order to ensure that the mist injected from the mist nozzle 41 reaches the steel material, it is preferable to arrange an air injection nozzle 42 around the mist nozzle 41 as shown in FIG.

高圧空気噴射とミスト噴射を近接させ、ミストノズル41と空気噴射ノズル42のノズル中心間の距離は、200mm以下とすることが好ましい。ノズルの中心間の距離が200mmを超えると、ミストが高圧空気によって加速されなくなるため、ミストの鋼材衝突速度が低下する。また、幅方向に冷却ムラが発生しやすくなる。なお、隣接する空気噴射ノズル42同士のノズル中心の距離も、ミストノズル41と空気噴射ノズル42のノズル中心の距離と同程度に設定すればよい。   It is preferable that the high pressure air injection and the mist injection are close to each other, and the distance between the nozzle centers of the mist nozzle 41 and the air injection nozzle 42 is 200 mm or less. If the distance between the centers of the nozzles exceeds 200 mm, the mist is not accelerated by the high-pressure air, so the steel material collision speed of the mist is reduced. In addition, uneven cooling tends to occur in the width direction. In addition, the distance between the nozzle centers of the adjacent air injection nozzles 42 may be set to be approximately the same as the distance between the nozzle centers of the mist nozzle 41 and the air injection nozzle 42.

なお、本発明は鋼材製造ラインを例として説明したが、本発明はこれに限られるものではなく、薄板製造ラインや形鋼製造ライン、パイプ製造ラインにも適用することも出来る。   In addition, although this invention demonstrated as an example the steel material manufacturing line, this invention is not restricted to this, It can also apply to a thin plate manufacturing line, a shape steel manufacturing line, and a pipe manufacturing line.

次に、本発明かかる鋼材の冷却方法について説明する。   Next, a method for cooling a steel material according to the present invention will be described.

本発明は、表層に硬質相(マルテンサイト組織)を出さない鋼材の冷却方法に適用することが出来る。このような冷却方法の一例として、熱間圧延後の鋼材をあるいは、再加熱した鋼材を、Ar3点以上の温度(オーステナイト相温度域)から、ベイナイト変態温度域まで冷却する方法がある。しかしながら、マルテンサイト変態開始点よりも低い温度域まで冷却をしてしまうと、厚み方向に温度分布が発生し、表層が冷えすぎて表層の延性、靭性が著しく低下する。そのためマルテンサイト変態開始点以上の温度で冷却を停止させる必要がある。また、加速冷却で使用した水が鋼材上に残留してしまうと、残留水によって冷却速度が上昇し、マルテンサイト変態してしまう。そのため、テーブルロール61及び水きりロール62を用いて残留水を除去することが好ましい。また、例として、テーブルロール61と水きりロール62によって残留水を除去する方法を挙げたが、エアパージをはじめとするほかの方法で残留水を除去しても良い。   The present invention can be applied to a method for cooling a steel material that does not produce a hard phase (martensite structure) on the surface layer. As an example of such a cooling method, there is a method in which a steel material after hot rolling or a reheated steel material is cooled from a temperature at an Ar3 point or higher (austenite phase temperature range) to a bainite transformation temperature range. However, if cooling is performed to a temperature range lower than the martensitic transformation start point, a temperature distribution is generated in the thickness direction, the surface layer is excessively cooled, and the ductility and toughness of the surface layer are significantly reduced. Therefore, it is necessary to stop the cooling at a temperature equal to or higher than the martensitic transformation start point. Moreover, if the water used for accelerated cooling remains on the steel material, the cooling rate increases due to the residual water and martensitic transformation occurs. Therefore, it is preferable to remove residual water using the table roll 61 and the draining roll 62. Further, as an example, the method of removing the residual water by the table roll 61 and the draining roll 62 has been described, but the residual water may be removed by other methods such as air purge.

通常、水を用いて鋼材を冷却する過程においては、高温域では、鋼材と冷却水との間に蒸気膜が形成されて、その蒸気膜を通して熱が伝達される膜沸騰状態が支配的となっている。この膜沸騰状態は、鋼材に直接冷却水が接触する核沸騰状態に比べて冷却能力が小さい。しかし、鋼材温度が450℃を下回ると、沸騰によって発生する蒸気膜が維持できなくなり、局所的に鋼材と冷却水とが直接接触する核沸騰状態の場所が発生する。   Normally, in the process of cooling steel with water, in a high temperature range, a vapor film is formed between the steel and cooling water, and the film boiling state in which heat is transferred through the vapor film becomes dominant. ing. This film boiling state has a smaller cooling capacity than the nucleate boiling state in which the cooling water is in direct contact with the steel material. However, when the steel material temperature is lower than 450 ° C., the vapor film generated by boiling cannot be maintained, and a nucleate boiling place where the steel material and the cooling water are in direct contact with each other is generated.

このような核沸騰状態の場所では、冷却速度が急激に上昇するため、鋼材の表層は、ベイナイト変態を起こす前に、マルテンサイト変態開始点を下回り、表層がマルテンサイト組織になる恐れがある。したがって、表層を例えば300〜450℃の範囲でベイナイト変態させるためには、緩冷却を行うことが好ましい。そして、本発明では、緩冷却を行うために、ミストによる冷却を行い、ミストの粒径を細かくさせたり、ミストの水温を上昇させることで、ミストを沸騰しやすくさせる。ミストを沸騰しやすくすることで、450℃以下の領域でも膜沸騰状態が安定しやすくなり、安定した緩冷却を行うことが出来る。   In such a nucleate boiling place, the cooling rate increases rapidly, so that the surface layer of the steel material falls below the martensitic transformation start point before the bainite transformation occurs, and the surface layer may become a martensitic structure. Therefore, in order to transform the surface layer into a bainite transformation in the range of 300 to 450 ° C., for example, it is preferable to perform slow cooling. And in this invention, in order to perform slow cooling, it cools by mist, makes the mist boil easily by making the particle size of mist fine or raising the water temperature of mist. By making the mist easily boiled, the film boiling state is easily stabilized even in a region of 450 ° C. or lower, and stable slow cooling can be performed.

本発明においては、核沸騰状態遷移しやすい温度域である300〜500℃での温度域で、緩冷却を実施することが好ましく、前記温度域内でベイナイト変態を終了させるまで保持させることが重要である。例えば、300℃以下まで急冷したのち、復熱させ、緩冷却を利用しつつ、温度保持させる方法や、400℃まで急冷させた後、緩冷却させ、300〜500℃の温度域に復熱制御、温度保持、緩冷却のいずれの温度パターンも行うことが出来る。また、ミストと同時に空気を噴射することで、鋼材の残留水を低減させることが出来るため、核沸騰が起こりづらくなり、より安定した緩冷却が可能となる。膜沸騰状態となる高温域やベイナイト変態が完了したあとの低温域では、ラミナー冷却やスプレー冷却など、水冷による加速冷却を実施してもかまわない。   In the present invention, it is preferable to carry out slow cooling in the temperature range of 300 to 500 ° C., which is a temperature range in which the nucleate boiling state is likely to change, and it is important that the bainite transformation is maintained in the temperature range until it is finished. is there. For example, after rapidly cooling to 300 ° C. or less, recuperating and using slow cooling, the temperature is maintained, or after rapidly cooling to 400 ° C., slowly cooling to control the recuperation to a temperature range of 300 to 500 ° C. Any temperature pattern of temperature holding and slow cooling can be performed. Moreover, since the residual water of the steel material can be reduced by injecting air simultaneously with the mist, nucleate boiling is less likely to occur, and more stable slow cooling is possible. Accelerated cooling by water cooling, such as laminar cooling or spray cooling, may be performed in a high temperature range where film boiling occurs or in a low temperature range after bainite transformation is completed.

表層のベイナイト変態が完了した後は、鋼材内部の硬度上昇させるために、再び加速冷却することが出来る。   After the surface bainite transformation is completed, accelerated cooling can be performed again in order to increase the hardness inside the steel material.

ここで、表層のベイナイト変態が完了したか否かは、以下のように判断すればよい。ベイナイト変態を起こす温度範囲と変態完了時間を、実験室的に、例えば加工フォーマスタのような熱間加工シミュレータを用いた試験を実施して、求めておく。そして鋼材の製造時に、緩冷却装置4の前後に配置した温度計63、64によって、鋼材の温度を測定する。そして、温度計63、64によって測定された温度と、緩冷却装置4の通過時間からベイナイト変態が完了したかどうかを判断すればよい。   Here, whether or not the bainite transformation of the surface layer has been completed may be determined as follows. The temperature range causing the bainite transformation and the transformation completion time are obtained in a laboratory by conducting a test using a hot working simulator such as a working for master. And the temperature of steel materials is measured by the thermometers 63 and 64 arrange | positioned before and behind the slow cooling apparatus 4 at the time of manufacture of steel materials. Then, it may be determined whether the bainite transformation has been completed from the temperatures measured by the thermometers 63 and 64 and the passing time of the slow cooling device 4.

なお、本発明で用いる「表層」は、鋼材表面から3mm以内の深さの部分を言うものとする。表面から3mmを超える深さでは、表面より冷却速度が大きくなることはないため、表層にマルテンサイト組織が形成されなかった場合、3mmより深い位置でマルテンサイト変態することはない。   The “surface layer” used in the present invention refers to a portion having a depth of 3 mm or less from the steel surface. At a depth of more than 3 mm from the surface, the cooling rate does not increase from the surface. Therefore, when a martensite structure is not formed on the surface layer, martensite transformation does not occur at a position deeper than 3 mm.

以下、実施例に基づいて説明する。
図1及び2に記載した鋼材製造ラインを用い、引張強さが600MPa級で、表層のビッカース硬さの上限がHv220である造船用鋼材を製造して、本発明の効果を検証した。鋼材の成分組成は、質量%で、C:0.06%、Si:0.15%、Mn:1.85%、P:0.005%、S:0.0005%、Cr:0.2%、Mo:0.2%、Nb:0.05%、残部はFe及び不可避的不純物であった。用いた緩冷却装置4の構成は、図3のとおりである。本実施例では引張強さ600MPa級の鋼種の鋼材を使用した。この鋼材のAr3点は724℃、ベイナイト変態温度は冷却速度によって異なるが300℃〜450℃の間である。
Hereinafter, a description will be given based on examples.
The steel production line described in FIGS. 1 and 2 was used to produce a steel material for shipbuilding having a tensile strength of 600 MPa class and an upper limit of surface layer Vickers hardness of Hv220, and the effect of the present invention was verified. The composition of the steel material is mass%, C: 0.06%, Si: 0.15%, Mn: 1.85%, P: 0.005%, S: 0.0005%, Cr: 0.2%, Mo: 0.2%, Nb: 0.05%, The balance was Fe and inevitable impurities. The structure of the slow cooling device 4 used is as shown in FIG. In this example, a steel material of a steel type having a tensile strength of 600 MPa was used. The Ar3 point of this steel material is 724 ° C., and the bainite transformation temperature is between 300 ° C. and 450 ° C. depending on the cooling rate.

図1に示すように、加熱炉1から抽出されたスラブを、圧延機2によって、粗圧延を行い、さらに仕上げ圧延を行って板厚を20mm、板幅を4.5mとした。仕上げ圧延直後に測定した鋼材の表面温度、すなわち仕上げ温度は800℃であった。   As shown in FIG. 1, the slab extracted from the heating furnace 1 was roughly rolled by a rolling mill 2 and further subjected to finish rolling to a plate thickness of 20 mm and a plate width of 4.5 m. The surface temperature of the steel material measured immediately after finish rolling, that is, the finish temperature was 800 ° C.

本発明例1〜4および比較例1〜4では、仕上げ圧延後に、プリレベラを通し、第1加速冷却装置3における第1の加速冷却を行なわずに、緩冷却装置4によりミストと高圧空気を同時に鋼材に噴射して緩冷却を行った。緩冷却開始温度は供試鋼のAr3点(724℃)よりも高温である780℃とし、緩冷却終了温度を比較例2以外は300〜350℃、比較例2は水量密度が足りず所望の冷却速度が得られないため450〜500℃とした。なお、鋼材の搬送速度は、12.5mpmとした。緩冷却終了後は第2加速冷却装置5による加速冷却を行わずに表層温度が100℃以下となるまで放冷した。   In the inventive examples 1 to 4 and the comparative examples 1 to 4, after the finish rolling, the mist and the high-pressure air are simultaneously applied by the slow cooling device 4 without passing through the pre-leveler and performing the first accelerated cooling in the first accelerated cooling device 3. The steel material was sprayed for slow cooling. The slow cooling start temperature is set to 780 ° C., which is higher than the Ar3 point (724 ° C.) of the test steel, and the slow cooling end temperature is 300 to 350 ° C. except for Comparative Example 2, and Comparative Example 2 has an insufficient water density and is desired. Since the cooling rate could not be obtained, the temperature was set to 450 to 500 ° C. In addition, the conveyance speed of steel materials was 12.5 mpm. After completion of the slow cooling, the second accelerated cooling device 5 was not subjected to accelerated cooling, and was allowed to cool until the surface layer temperature became 100 ° C. or lower.

本発明例5〜17および比較例5〜7では、仕上げ圧延後に、プリレベラを通して、第1加速冷却装置3において、熱伝達係数6500W/(mK)の第1の加速冷却を行った後、緩冷却装置4によりミストと高圧空気を同時に鋼材に噴射して緩冷却を行った。加速冷却開始温度は供試鋼のAr3点(724℃)よりも高温である780℃、加速冷却終了温度は450〜500℃とし、緩冷却終了温度を300〜350℃とした。なお、鋼材の搬送速度は、12.5mpmとした。緩冷却終了後は再び第2加速冷却装置5によって、熱伝達係数3200W/(mK)の加速冷却を行い、表層温度が100℃以下となるまで第2加速冷却を行った。 In Inventive Examples 5 to 17 and Comparative Examples 5 to 7, after finish rolling, the first accelerated cooling with a heat transfer coefficient of 6500 W / (m 2 K) is performed in the first accelerated cooling device 3 through the pre-leveler, Mist and high-pressure air were simultaneously jetted onto the steel material by the slow cooling device 4 to perform slow cooling. The accelerated cooling start temperature was 780 ° C. higher than the Ar3 point (724 ° C.) of the test steel, the accelerated cooling end temperature was 450 to 500 ° C., and the slow cooling end temperature was 300 to 350 ° C. In addition, the conveyance speed of steel materials was 12.5 mpm. After the end of the slow cooling, the second accelerated cooling apparatus 5 again performed the accelerated cooling with a heat transfer coefficient of 3200 W / (m 2 K), and the second accelerated cooling was performed until the surface layer temperature became 100 ° C. or lower.

ここで、緩冷却装置のノズル配置は図4に示す配置とした。ここで各ノズルの間隔は50mmとした。   Here, the nozzle arrangement of the slow cooling device is the arrangement shown in FIG. Here, the interval between the nozzles was 50 mm.

表1に、緩冷却中の条件である、空気の噴射圧力、ミスト平均粒径、水量密度、ミスト水温を示す。
ここでミスト粒径の測定方法について図5を用いて説明する。ノズル71の下に、ノズル71側から順にシャッター72と、油74が塗られた油付着板73を配置する。シャッター72には、穴またはスリット72aが形成されている。シャッター72は、水平方向に移動可能である。ノズル71からミストを噴射して、シャッター72を水平方向に高速で移動させる。これにより、ノズル71から噴射されたミストのうち、穴またはスリット72aを通過したミスト75が油付着板73に到達する。油付着板73に到達したミスト75を、拡大鏡や顕微鏡等により観察し、画像処理することによって、ミストの粒径を測定することが出来る。本実施例においては、各条件に対して油付着板73に到達したミスト75を500個以上観察し、その平均粒径を「ミスト平均粒径」と称することとした。
Table 1 shows air injection pressure, mist average particle diameter, water density, and mist water temperature, which are conditions during slow cooling.
Here, a method for measuring the mist particle diameter will be described with reference to FIG. Under the nozzle 71, a shutter 72 and an oil adhesion plate 73 coated with oil 74 are arranged in this order from the nozzle 71 side. The shutter 72 has a hole or slit 72a. The shutter 72 is movable in the horizontal direction. Mist is ejected from the nozzle 71 to move the shutter 72 in the horizontal direction at high speed. Thereby, of the mist ejected from the nozzle 71, the mist 75 that has passed through the hole or slit 72 a reaches the oil adhesion plate 73. The particle diameter of the mist can be measured by observing the mist 75 that has reached the oil adhering plate 73 with a magnifying glass or a microscope, and performing image processing. In this example, 500 or more mists 75 that reached the oil adhesion plate 73 were observed for each condition, and the average particle diameter was referred to as “mist average particle diameter”.

製造された鋼材のサンプルを切り取って以下の硬度測定を行った。得られた結果を表1に示す。   Samples of the manufactured steel material were cut out and the following hardness measurements were performed. The obtained results are shown in Table 1.

表1中の「硬度ばらつき」は、幅方向、長手方向、及び鋼材の厚み方向でJIS Z 2244に準拠して、それぞれ硬度を測定し、得られた硬度の中から最大値と最小値の差がHv40の範囲内であったものを「○」とし、Hv40の範囲を超えるものを「×」として示した。   “Hardness variation” in Table 1 is the difference between the maximum value and the minimum value among the obtained hardnesses measured in accordance with JIS Z 2244 in the width direction, the longitudinal direction, and the thickness direction of the steel material. Is within the range of Hv40 is indicated by “◯”, and those exceeding the range of Hv40 are indicated by “x”.

表層硬度は以下の方法にて行った。圧延方向に直角な断面について、JIS Z 2244に準拠して、ビッカース硬さを測定した。
サンプルは厚鋼板の長手両端部より10mmの位置、長手1/4位置、1/2位置の幅方向板厚方向の10mmの位置、幅1/4位置、1/2位置計25箇所よりサンプルを採取し、板厚方向に、1mmピッチで硬さを測定し、得られた硬さの中で一番高い硬さを表層硬度として表1に示す。
The surface hardness was measured by the following method. The Vickers hardness of the cross section perpendicular to the rolling direction was measured according to JIS Z 2244.
The sample is 10 mm from the longitudinal ends of the thick steel plate, 1/4 position in the longitudinal direction, 10 mm position in the width direction plate thickness direction at 1/2 position, 1/4 position in width, 1/2 position meter. The sample is collected, and the hardness is measured at a pitch of 1 mm in the thickness direction, and the highest hardness among the obtained hardness is shown in Table 1 as the surface layer hardness.

Figure 2017035732
Figure 2017035732

本発明例1〜17では、表層硬度Hv(98N)は、最高でHv219であり、硬度の許容上限の硬さHv220を満足した。また、本発明例1〜17では、硬度のばらつきもHv40の範囲内となった。   In Examples 1 to 17 of the present invention, the surface layer hardness Hv (98N) was Hv 219 at the maximum, and the hardness Hv 220 of the allowable upper limit of the hardness was satisfied. Further, in Examples 1 to 17 of the present invention, the variation in hardness was within the range of Hv40.

比較例1、3〜7では、表層硬度がHv220超えで、かつ硬度ばらつきがHv40の範囲外となり、目標の表層の硬度及び硬度ばらつきが得られなかった。比較例2は、水量密度が小さく、所望の冷却速度が得られず、緩冷却終了温度が高かったため、鋼の組織が所望のベイナイト単層ではなく、パーライトが混ざった組織となった。結果、表層硬度は許容範囲内であったが、硬度のばらつきが生じた。   In Comparative Examples 1 and 3 to 7, the surface layer hardness exceeded Hv220 and the hardness variation was outside the range of Hv40, and the target surface layer hardness and hardness variation could not be obtained. In Comparative Example 2, since the water density was small, the desired cooling rate was not obtained, and the slow cooling end temperature was high, the steel structure was not a desired bainite monolayer, but a pearlite mixed structure. As a result, the surface hardness was within the allowable range, but the hardness varied.

さらに、従来例1として、特許文献1に記載された方法を用いて鋼材を製造した。具体的には、緩冷却装置を用いずに、熱伝達係数6500W/(mK)の1つの加速冷却装置により鋼材を冷却した。加速冷却装置では、全11ゾーンのうち、第1、3、5〜11ゾーンで水冷を行い、第2、4ゾーンでは空冷を行った。表層硬度は、最高でHv400となり、硬度の許容上限Hv220を大きく上回り、硬度ばらつきも大きかった。 Further, as Conventional Example 1, a steel material was manufactured using the method described in Patent Document 1. Specifically, the steel material was cooled by one accelerated cooling device having a heat transfer coefficient of 6500 W / (m 2 K) without using a slow cooling device. In the accelerated cooling device, water cooling was performed in the first, third, and fifth to eleventh zones out of all eleven zones, and air cooling was performed in the second and fourth zones. The surface layer hardness was Hv400 at the maximum, greatly exceeding the allowable upper limit of hardness Hv220, and the hardness variation was large.

従来例2として、特許文献2に記載された方法を用いて鋼材を製造した。具体的には、緩冷却装置を用いずに、熱伝達係数6500W/(mK)の1つの加速冷却装置より鋼材を冷却した。冷却開始温度を785℃とし、最初の水冷により鋼材表層部を350℃以下まで冷却し、水冷を停止して復熱し、復熱後の到達温度を650℃とし、冷却停止温度を最高温度420℃、最低温度380℃とした。この結果、表層硬度は最大でHv300となり、従来例1よりは低下したものの、目標であるHv220以下にはならず、硬度ばらつきも大きかった。 As Conventional Example 2, a steel material was manufactured using the method described in Patent Document 2. Specifically, the steel material was cooled from one accelerated cooling device having a heat transfer coefficient of 6500 W / (m 2 K) without using a slow cooling device. The cooling start temperature is set to 785 ° C., the steel surface layer is cooled to 350 ° C. or less by the first water cooling, the water cooling is stopped and reheated, the reached temperature after the reheating is set to 650 ° C., and the cooling stop temperature is set to the maximum temperature of 420 ° C. The minimum temperature was 380 ° C. As a result, the maximum surface hardness was Hv300, which was lower than that of Conventional Example 1, but did not become the target Hv220 or less, and the hardness variation was large.

従来例1、2及び表1の本発明例および比較例の表層、1/4t、板厚中心部の断面を光学顕微鏡で観察したところ、本発明例の条件では全位置でベイナイト組織であったが、従来例1、2および比較例1、3〜7では表層にマルテンサイト組織が少なくとも10%以上観察され、比較例1、2、5では1/4t位置でパーライトが少なくとも10%以上観察された。   When the cross section of the surface layer of the present invention examples and comparative examples in Examples 1 and 2 and Table 1 and the comparative example, 1/4 t, and the central part of the plate thickness was observed with an optical microscope, the conditions of the present invention example were bainite structures at all positions However, in the conventional examples 1 and 2 and the comparative examples 1 and 3 to 7, at least 10% or more of the martensite structure is observed on the surface layer, and in the comparative examples 1, 2 and 5, pearlite is observed at least 10% or more at the 1/4 t position. It was.

比較例2では、水量密度が小さすぎ、所望の冷却速度が得られなかったため、板厚1/4付近にパーライト組織が生じた。比較例1、5では、空気噴射圧力が小さすぎたため、ミストにより表層が過冷却され、表層にマルテンサイト組織が生じた。比較例3、4、6、7では、ミスト平均粒径が大きすぎるまたは水量密度が大きすぎるため、ミストにより表層が過冷却され、表層にマルテンサイト組織が生じた。以上により、比較例1〜7ではいずれも硬度のばらつきが大きくなった。   In Comparative Example 2, since the water density was too small and a desired cooling rate could not be obtained, a pearlite structure was generated in the vicinity of the plate thickness ¼. In Comparative Examples 1 and 5, since the air injection pressure was too small, the surface layer was supercooled by the mist, and a martensite structure was generated in the surface layer. In Comparative Examples 3, 4, 6, and 7, since the mist average particle size was too large or the water density was too large, the surface layer was supercooled by the mist, and a martensite structure was generated in the surface layer. As described above, in Comparative Examples 1 to 7, the variation in hardness was large.

なお、本発明では、表層のマルテンサイト分率を必ずしも0%とする必要はなく、10%未満であれば、厚み方向において均一で十分な硬さを得るという本発明の効果を得ることが出来る。   In the present invention, the martensite fraction of the surface layer does not necessarily have to be 0%, and if it is less than 10%, the effect of the present invention can be obtained in which uniform and sufficient hardness is obtained in the thickness direction. .

次にミストノズル41と空気噴射ノズル42の配置による効果の検証を実施した。   Next, the effect by arrangement | positioning of the mist nozzle 41 and the air injection nozzle 42 was implemented.

図1及び2に記載した鋼材製造ラインを用い、引張強さが600MPa級で、表層のビッカース硬さの上限がHv220である造船用鋼材を製造して、本発明の効果を検証した。用いた緩冷却装置4の構成は、図3のとおりである。鋼材は、実施例1と同じ引張強さ600MPa級の鋼種の鋼材を使用した。   The steel production line described in FIGS. 1 and 2 was used to produce a steel material for shipbuilding having a tensile strength of 600 MPa class and an upper limit of surface layer Vickers hardness of Hv220, and the effect of the present invention was verified. The structure of the slow cooling device 4 used is as shown in FIG. As the steel material, the same steel material having a tensile strength of 600 MPa as in Example 1 was used.

図1に示すように、加熱炉1から抽出されたスラブを、圧延機2によって、粗圧延を行い、さらに仕上げ圧延を行って板厚を20mm、板幅を4.5mとした。仕上げ圧延直後に測定した鋼材の表面温度、すなわち仕上げ温度は800℃であった。
仕上げ圧延後に、プリレベラを通して、第1加速冷却装置3において、熱伝達係数3200W/(mK)の第1の加速冷却を行った後、緩冷却装置4によりミストと高圧空気を同時に鋼材に噴射して緩冷却を行った。本発明を適用した本発明例では、加速冷却開始温度は供試鋼のAr3点よりも高温である780℃、加速冷却終了温度は450〜500℃とし、緩冷却終了温度を300〜350℃とした。なお、鋼材の搬送速度は、12.5mpmとした。緩冷却終了後は再び第2加速冷却装置5によって、熱伝達係数5000W/(mK)の加速冷却を行い、表層温度が100℃以下となるまで第2加速冷却を行った。
As shown in FIG. 1, the slab extracted from the heating furnace 1 was roughly rolled by a rolling mill 2 and further subjected to finish rolling to a plate thickness of 20 mm and a plate width of 4.5 m. The surface temperature of the steel material measured immediately after finish rolling, that is, the finish temperature was 800 ° C.
After the finish rolling, the first accelerated cooling device 3 performs the first accelerated cooling with a heat transfer coefficient of 3200 W / (m 2 K) through the pre-leveler, and then the mist and high-pressure air are simultaneously injected onto the steel by the slow cooling device 4. Then, slow cooling was performed. In the present invention example to which the present invention is applied, the accelerated cooling start temperature is 780 ° C. higher than the Ar3 point of the test steel, the accelerated cooling end temperature is 450 to 500 ° C., and the slow cooling end temperature is 300 to 350 ° C. did. In addition, the conveyance speed of steel materials was 12.5 mpm. After the end of the slow cooling, the second accelerated cooling device 5 again performed the accelerated cooling with a heat transfer coefficient of 5000 W / (m 2 K), and the second accelerated cooling was performed until the surface layer temperature became 100 ° C. or lower.

緩冷却装置のノズル配置の効果を検証するために、ミストノズル41の割合を少なくし、空気噴射ノズル42の割合を増やした本発明例(本発明例18、図6に示す配置)、ミストノズル41と空気噴射ノズル42の数を同数とした本発明例(本発明例19、図7に示す配置)、同様にミストノズル41と空気噴射ノズル42の数を同数としたが、ミストノズル41が隣接するノズルが必ずしも空気噴射ノズル42ではなく、ミストノズル41と空気噴射ノズルの中心間距離が200mmを超えるノズルがある本発明例(本発明例20、図8に示す配置)とした。図6、7、8で隣接するノズルの間隔は50mmである。   In order to verify the effect of the nozzle arrangement of the slow cooling device, the ratio of the mist nozzle 41 is decreased and the ratio of the air injection nozzle 42 is increased (example 18 of the present invention, arrangement shown in FIG. 6), mist nozzle 41 and the number of air injection nozzles 42 are the same (Example 19 of the invention, arrangement shown in FIG. 7). Similarly, the number of mist nozzles 41 and the number of air injection nozzles 42 is the same. The present invention example (invention example 20, arrangement shown in FIG. 8) in which the adjacent nozzle is not necessarily the air injection nozzle 42 but has a nozzle whose center-to-center distance between the mist nozzle 41 and the air injection nozzle exceeds 200 mm. 6, 7, and 8, the interval between adjacent nozzles is 50 mm.

表2に、緩冷却中の条件である、空気噴射圧力、ミスト平均粒径、水量密度、ミスト水温を示す。ノズル配置以外は実施例1と同条件として試験を実施した。ミストノズル41の個数を変化させたが、水量密度も実施例1と同じとしたため、ミストノズル1本当たりの流量噴射量は変化している。
ミスト粒径の測定方法、硬度ばらつきおよび表層硬度の測定方法、判断基準は実施例1と同様である。得られた結果を表2に示す。
Table 2 shows air injection pressure, mist average particle diameter, water density, and mist water temperature, which are conditions during slow cooling. The test was conducted under the same conditions as in Example 1 except for the nozzle arrangement. Although the number of the mist nozzles 41 was changed, the water amount density was also the same as that of the first embodiment, so the flow rate injection amount per mist nozzle was changed.
The method for measuring the mist particle size, the method for measuring the hardness variation and the surface layer hardness, and the criteria for judgment are the same as in Example 1. The obtained results are shown in Table 2.

Figure 2017035732
Figure 2017035732

本発明例18及び19では、表層硬度Hv(98N)は、最高でHv183であり、硬度の許容上限の硬さHv220を十分に満足した。また、本発明例18、19では、硬度のばらつきもHv40の範囲内となった。本発明例20では、表層の硬度が最高でHv219となり、硬度の許容上限Hv220をぎりぎり下回り、ばらつきも許容範囲内ではあったが、Hv38とぎりぎりであった。ミストノズル41が隣接するノズルが必ずしも空気噴射ノズル42ではなく、ミストノズル41と空気噴射ノズルの中心間距離が200mmを超えるノズルがある場合は冷却が過度になってしまうため、ミストノズル41は空気噴射ノズル42と隣接させることが好ましい。 In Inventive Examples 18 and 19, the surface layer hardness Hv (98N) was Hv 183 at the maximum, sufficiently satisfying the hardness Hv 220 of the allowable upper limit of hardness. Further, in Examples 18 and 19 of the present invention, the variation in hardness was within the range of Hv40. In Inventive Example 20, the maximum hardness of the surface layer was Hv219, which was just below the allowable upper limit of hardness Hv220, and the variation was within the allowable range, but was very close to Hv38. Since the nozzle adjacent to the mist nozzle 41 is not necessarily the air injection nozzle 42 and there is a nozzle whose center distance between the mist nozzle 41 and the air injection nozzle exceeds 200 mm, the cooling becomes excessive. It is preferable to make it adjoin to the injection nozzle 42.

1 加熱炉
2 圧延機
3 第1加速冷却装置
4 緩冷却装置
5 第2加速冷却装置
41 ミストノズル
42 空気噴射ノズル
43 空気供給ヘッダ
44 水槽
45 温度計
61 テーブルロール
62 水切りロール
63、64 温度計
71 ノズル
72 シャッター
72a 穴またはスリット
73 油付着板
74 油
75 ミスト
DESCRIPTION OF SYMBOLS 1 Heating furnace 2 Rolling machine 3 1st acceleration cooling device 4 Slow cooling device 5 2nd acceleration cooling device 41 Mist nozzle 42 Air injection nozzle 43 Air supply header 44 Water tank 45 Thermometer 61 Table roll 62 Draining roll 63, 64 Thermometer 71 Nozzle 72 Shutter 72a Hole or slit 73 Oil adhesion plate 74 Oil 75 Mist

Claims (10)

熱間圧延後の鋼材、または、再加熱した鋼材を、Ar3点以上の温度域からベイナイト変態温度域まで冷却するに際し、
高圧空気とミストを、別々のノズルから高圧空気の圧力を0.3MPa以上、ミストの平均粒径を0.1mm以下、水量密度を10〜500mL/(m・min)で、同時に鋼材に噴射する鋼材の冷却方法。
When cooling the steel material after hot rolling or the reheated steel material from the temperature range of Ar3 point or higher to the bainite transformation temperature range,
High-pressure air and mist are jetted simultaneously onto steel from a separate nozzle at a high-pressure air pressure of 0.3 MPa or more, a mist average particle size of 0.1 mm or less, and a water density of 10 to 500 mL / (m 2 · min). To cool the steel.
前記噴射は、
高圧空気噴射とミスト噴射を近接させ、ミストと高圧空気を混合し鋼材へ衝突させる請求項1に記載の鋼材の冷却方法。
The jet is
The method for cooling a steel material according to claim 1, wherein the high pressure air injection and the mist injection are brought close to each other, the mist and the high pressure air are mixed and collide with the steel material.
高圧空気とミストを鋼材に噴射する前および/または後に、熱伝達係数3000W/(mK)超えで鋼材を冷却する請求項1または2に記載の鋼材の冷却方法。 The steel material cooling method according to claim 1 or 2, wherein the steel material is cooled at a heat transfer coefficient exceeding 3000 W / (m 2 K) before and / or after the high-pressure air and mist are injected into the steel material. 熱間圧延後、または、再加熱後の、Ar3点以上の温度の鋼材に、
高圧空気とミストを、別々のノズルから
高圧空気の圧力を0.3MPa以上、ミストの平均粒径を0.1mm以下、水量密度を10〜500mL/(m・min)で、
同時に噴射し、ベイナイト変態温度域まで冷却する鋼材の製造方法。
After hot rolling or after reheating, the steel material at a temperature of Ar3 point or higher,
The pressure of the high pressure air and the mist from separate nozzles is 0.3 MPa or more, the average particle size of the mist is 0.1 mm or less, and the water density is 10 to 500 mL / (m 2 · min),
A method for producing a steel material that is simultaneously injected and cooled to a bainite transformation temperature range.
前記噴射は、
高圧空気噴射とミスト噴射を近接させ、ミストと高圧空気を混合し鋼材へ衝突させる請求項4に記載の鋼材の製造方法。
The jet is
The manufacturing method of the steel materials of Claim 4 which makes high pressure air injection and mist injection adjoin, mixes mist and high pressure air, and collides with steel materials.
高圧空気とミストを鋼材に噴射する前および/または後に、熱伝達係数3000W/(mK)超えで鋼材を冷却する請求項4または5に記載の鋼材の製造方法。 The method for producing a steel material according to claim 4 or 5, wherein the steel material is cooled at a heat transfer coefficient exceeding 3000 W / (m 2 K) before and / or after the high-pressure air and mist are injected into the steel material. 熱間圧延後の鋼材、または、再加熱した鋼材に、圧力0.3MPa以上の高圧空気を噴射する高圧空気噴射ノズルと、平均粒径0.1mm以下で水量密度10〜500mL/(m・min)のミストを噴射するミストノズルを有し、前記高圧空気噴射ノズルと前記ミストノズルを同時に噴射してベイナイト変態温度まで冷却する鋼材の冷却装置。 A high-pressure air injection nozzle that injects high-pressure air having a pressure of 0.3 MPa or more onto a steel material after hot rolling or a reheated steel material, and an average particle size of 0.1 mm or less and a water density of 10 to 500 mL / (m 2 · a cooling apparatus for a steel material having a mist nozzle for injecting a mist of (min), and simultaneously cooling the high-pressure air injection nozzle and the mist nozzle to cool to a bainite transformation temperature. 前記ノズルは、スプレー冷却水またはラミナー冷却水を用いた加速冷却装置の前面あるいは後面の少なくとも一方に設けられている請求項7に記載の鋼材の冷却装置。   The steel nozzle cooling device according to claim 7, wherein the nozzle is provided on at least one of a front surface and a rear surface of an acceleration cooling device using spray cooling water or laminar cooling water. 前記加速冷却装置は、熱伝達係数3000W/(mK)超えで鋼材を冷却する請求項8に記載の鋼材の冷却装置 The steel cooling device according to claim 8, wherein the accelerated cooling device cools the steel material with a heat transfer coefficient exceeding 3000 W / (m 2 K). 圧延機と、請求項7乃至9のいずれかの冷却装置と、を有する鋼材の製造設備。   A steel production facility comprising a rolling mill and the cooling device according to claim 7.
JP2016149078A 2015-08-14 2016-07-29 Steel cooling method, steel manufacturing method, steel cooling device, and steel manufacturing equipment Expired - Fee Related JP6343842B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015160004 2015-08-14
JP2015160004 2015-08-14

Publications (2)

Publication Number Publication Date
JP2017035732A true JP2017035732A (en) 2017-02-16
JP6343842B2 JP6343842B2 (en) 2018-06-20

Family

ID=58047823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016149078A Expired - Fee Related JP6343842B2 (en) 2015-08-14 2016-07-29 Steel cooling method, steel manufacturing method, steel cooling device, and steel manufacturing equipment

Country Status (1)

Country Link
JP (1) JP6343842B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018178233A (en) * 2017-04-20 2018-11-15 Jfeスチール株式会社 Method and facility for manufacturing galvanized steel band with chemical conversion coating
CN108971244A (en) * 2018-09-25 2018-12-11 芜湖新兴铸管有限责任公司 Rolled steel cooling means
EP3705587A4 (en) * 2017-10-31 2020-11-25 JFE Steel Corporation Facility and method for producing thick steel sheet
CN114393045A (en) * 2021-11-30 2022-04-26 安阳钢铁股份有限公司 Method for controlling cooling uniformity of ultra-long low-carbon bainite steel plate
CN114729411A (en) * 2019-10-14 2022-07-08 法孚斯坦因公司 Rapid cooling of high yield strength steel plate
CN114728320A (en) * 2019-11-25 2022-07-08 杰富意钢铁株式会社 Steel plate manufacturing equipment and manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000313920A (en) * 1999-04-28 2000-11-14 Sumitomo Metal Ind Ltd Cooling apparatus of high temperature steel plate and cooling method thereof
JP2009529098A (en) * 2006-03-07 2009-08-13 アルセロールミタル・フランス Method for producing a steel sheet having very high strength, ductility and toughness properties, and a sheet thus produced

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000313920A (en) * 1999-04-28 2000-11-14 Sumitomo Metal Ind Ltd Cooling apparatus of high temperature steel plate and cooling method thereof
JP2009529098A (en) * 2006-03-07 2009-08-13 アルセロールミタル・フランス Method for producing a steel sheet having very high strength, ductility and toughness properties, and a sheet thus produced

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018178233A (en) * 2017-04-20 2018-11-15 Jfeスチール株式会社 Method and facility for manufacturing galvanized steel band with chemical conversion coating
EP3705587A4 (en) * 2017-10-31 2020-11-25 JFE Steel Corporation Facility and method for producing thick steel sheet
CN108971244A (en) * 2018-09-25 2018-12-11 芜湖新兴铸管有限责任公司 Rolled steel cooling means
CN114729411A (en) * 2019-10-14 2022-07-08 法孚斯坦因公司 Rapid cooling of high yield strength steel plate
CN114728320A (en) * 2019-11-25 2022-07-08 杰富意钢铁株式会社 Steel plate manufacturing equipment and manufacturing method
CN114393045A (en) * 2021-11-30 2022-04-26 安阳钢铁股份有限公司 Method for controlling cooling uniformity of ultra-long low-carbon bainite steel plate

Also Published As

Publication number Publication date
JP6343842B2 (en) 2018-06-20

Similar Documents

Publication Publication Date Title
JP6343842B2 (en) Steel cooling method, steel manufacturing method, steel cooling device, and steel manufacturing equipment
CN105793446A (en) Method and apparatus for continuous thermal treatment of steel strip
CN109563601A (en) High tensile hot rolled steel sheet and its manufacturing method with low inhomogeneities and excellent surface quality
CN103210098A (en) High-carbon hot-rolled steel sheet, cold-rolled steel sheet and a production method therefor
JP2010110813A (en) Secondary cooling method and apparatus for continuously cast slab
CN107414049B (en) Refining control method for metallographic structure of surface layer of corner of continuous casting slab
JP5811046B2 (en) Method for predicting temperature unevenness of hot-rolled steel sheet, method for controlling flatness, method for controlling temperature unevenness, and manufacturing method
JP5515483B2 (en) Thick steel plate cooling equipment and cooling method
JP3622687B2 (en) Steel continuous casting method
EP0293002B1 (en) Method for heat-treating steel rail head
JP5928412B2 (en) Steel plate vertical cooling device and method for producing hot dip galvanized steel plate using the same
JP2009241113A (en) Method of manufacturing hot-rolled steel plate
JP2018099704A (en) Continuous casting method for steel
JP5605136B2 (en) High strength steel plate with excellent material uniformity in steel plate and method for producing the same
KR100643362B1 (en) Method for manufacturing hot plate to minimize the deviation of width-directional tempreature
CN104169445B (en) The manufacture method of high strength cold rolled steel plate and manufacture device
CN108213367A (en) The uniform austenitic stainless steel continuous cast method of water distribution of secondary cooling platform
WO2020122061A1 (en) Continuous casting method for steel
KR100715264B1 (en) Device and method for controllably cooling thick steel plate
JP2016079492A (en) Thick steel sheet for sour resistant weld steel pipe having excellent scale peeling resistance, manufacturing method therefor and weld steel pipe
JP5482365B2 (en) Steel sheet cooling method, manufacturing method and manufacturing equipment
JP5663848B2 (en) Hot-rolled steel sheet cooling device and operation control method thereof
JPS5839210B2 (en) Cooling method of steel strip during continuous annealing
KR20220029743A (en) Steel plate manufacturing equipment and manufacturing method
JP2003048003A (en) Method for manufacturing hot-rolled steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180417

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180430

R150 Certificate of patent or registration of utility model

Ref document number: 6343842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

LAPS Cancellation because of no payment of annual fees