JP2017034731A - Ground fault detector - Google Patents

Ground fault detector Download PDF

Info

Publication number
JP2017034731A
JP2017034731A JP2013264403A JP2013264403A JP2017034731A JP 2017034731 A JP2017034731 A JP 2017034731A JP 2013264403 A JP2013264403 A JP 2013264403A JP 2013264403 A JP2013264403 A JP 2013264403A JP 2017034731 A JP2017034731 A JP 2017034731A
Authority
JP
Japan
Prior art keywords
ground fault
current
fault detector
electric vehicle
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013264403A
Other languages
Japanese (ja)
Inventor
英司 岩見
Eiji Iwami
英司 岩見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2013264403A priority Critical patent/JP2017034731A/en
Priority to PCT/IB2014/002829 priority patent/WO2015092529A1/en
Publication of JP2017034731A publication Critical patent/JP2017034731A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/18Cables specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/322Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Abstract

PROBLEM TO BE SOLVED: To properly prevent electric shock of a human body even when a ground default accident occurs in an electrically conductive cable or the like for connecting a power source and an electric vehicle in a ground fault detector.SOLUTION: A ground fault detector 6 is connected to an electrically conductive cable 5 for connecting a power supply 4 for charging and discharging electric power while insulated from the ground and an electric vehicle 7, and detects occurrence of a ground fault. The ground fault detector 6 includes: a current sensor 6a; and a ground fault determining unit 6d that sets the current of about half of human body protection current as a threshold value, determines that a ground fault has occurred when detection current detected by the current sensor 6a exceeds the threshold value, and that controls the power supply 4 and/or the electric vehicle 7 to stop power output. This configuration allows the ground fault detector 6 to appropriately prevent an electric shock to the human body even when a ground fault accident occurs in the conductive cable 5 or the like.SELECTED DRAWING: Figure 2

Description

本発明は、電源と電動車両とを繋ぐ導電性ケーブルからの地絡を検出する地絡検出器に関する。   The present invention relates to a ground fault detector that detects a ground fault from a conductive cable connecting a power source and an electric vehicle.

近年、電気自動車(EV)やプラグインハイブリッド自動車(PHEV)に搭載されている蓄電池に蓄えたエネルギーを放電させて自動車以外の負荷、例えば、住宅内の電気製品に給電する充放電システム(V2H:Vehicle-to-Home)が普及してきている。この充放電システムは、電力供給の役割を、電気自動車に搭載された蓄電池に担わせている。   In recent years, a charge / discharge system (V2H :) that discharges energy stored in a storage battery mounted on an electric vehicle (EV) or a plug-in hybrid vehicle (PHEV) to supply a load other than the vehicle, for example, an electric product in a house. Vehicle-to-Home) has become widespread. In this charge / discharge system, a storage battery mounted on an electric vehicle plays a role of supplying power.

このような従来の充放電システムを、図11を参照して説明する。充放電システム100は、大地と絶縁された電源101と、電動車両102と、これらを接続する導電性ケーブル103とを備えている。電源101は、住宅に設けられた充電コンセントなどであり、交流電力を直流電力に変換して電動車両102の蓄電池を充電し、また、電動車両102から放電される直流電流を交流電流に変換して負荷に給電する。電動車両102は、蓄電池を搭載した自動車である。   Such a conventional charge / discharge system will be described with reference to FIG. The charging / discharging system 100 includes a power source 101 that is insulated from the ground, an electric vehicle 102, and a conductive cable 103 that connects them. The power source 101 is a charging outlet or the like provided in a house, converts AC power into DC power, charges a storage battery of the electric vehicle 102, and converts DC current discharged from the electric vehicle 102 into AC current. To power the load. The electric vehicle 102 is an automobile equipped with a storage battery.

充放電システム100においては、最大20Vの電流が導電性ケーブル103に流れることが想定されており、電気的安全確保のため、例えば電源101に漏電ブレーカ101aが接続される。漏電ブレーカ101aは、導電性ケーブル103を流れる往きの電流と、戻りの電流とを比較して、その差が所定の閾値を超えた場合に漏電が発生していると判断して電路を遮断する。   In the charging / discharging system 100, it is assumed that a maximum current of 20 V flows through the conductive cable 103, and the earth leakage breaker 101a is connected to the power source 101, for example, to ensure electrical safety. The earth leakage breaker 101a compares the forward current flowing through the conductive cable 103 and the return current, and determines that the earth leakage has occurred when the difference exceeds a predetermined threshold, and interrupts the circuit. .

ところで、自動車を利用した充放電システムに関しては、例えば、電動車両用充電器における地絡を迅速に検出できる地絡検出器が開示されている(特許文献1参照)。また、給電中にケーブルなどで発生した地絡を検出し、電気車両に搭載されている蓄電池から電気車両外の負荷へ給電する際の安全性向上を図った電気車両用充放電装置なども開示されている(例えば、特許文献2参照)。   By the way, regarding the charging / discharging system using an automobile, for example, a ground fault detector capable of quickly detecting a ground fault in an electric vehicle charger is disclosed (see Patent Document 1). Also disclosed is a charging / discharging device for an electric vehicle that detects a ground fault occurring in a cable during power feeding and improves safety when power is supplied from a storage battery mounted on the electric vehicle to a load outside the electric vehicle. (For example, refer to Patent Document 2).

特開2010−239837号公報JP 2010-239837 A WO2013/051484WO2013 / 051484

しかしながら、上述のV2Hなどの充放電システムを想定した場合に、漏電ブレーカや電路を遮断するリレーの位置によっては、適切に人体を保護できない箇所が生じるという問題がある。これは、V2Hなどの充放電システムおいては、導電性ケーブルを介した人体への地絡事故が主に想定されており、この場合、人体抵抗や電動車両の絶縁抵抗をも考慮した地絡検出をする必要があるためである。   However, when the charge / discharge system such as V2H described above is assumed, there is a problem that a portion where the human body cannot be properly protected is generated depending on the position of the leakage breaker or the relay that interrupts the electric circuit. This is because, in charge / discharge systems such as V2H, a ground fault accident to the human body via a conductive cable is mainly assumed. In this case, a ground fault taking into account the human body resistance and the insulation resistance of the electric vehicle is also considered. This is because it is necessary to detect.

また、充放電システム100を構成する電源101、電動車両102、及び導電性ケーブル103のいずれかの箇所で地絡の事故点が生じても人体を適切に保護できるようにする必要が有る。   In addition, it is necessary to appropriately protect the human body even when a ground fault occurs at any of the power supply 101, the electric vehicle 102, and the conductive cable 103 constituting the charge / discharge system 100.

本発明は、上記課題に鑑みてなされたものであり、電源と電動車両とを接続する導電性ケーブルなどで地絡事故が生じた場合においても、適切に人体への感電を防止した地絡検出器を提供することを目的とする。   The present invention has been made in view of the above problems, and even when a ground fault occurs in a conductive cable connecting a power source and an electric vehicle, a ground fault detection that appropriately prevents an electric shock to a human body. The purpose is to provide a vessel.

上記目的を達成するために本発明は、大地と絶縁されて電力の充放電を行うための電源と、電動車両との間を接続する導電性ケーブルに接続され、地絡の発生を検出する地絡検出器であって、前記導電性ケーブルでの地絡電流を検出する電流センサと、人体保護電流の略半分の電流を閾値とし、前記電流センサで検出される検出電流が前記閾値を超える場合に地絡が発生していると判断し、前記電源又は/及び前記電動車両に対して電力を出力停止するよう制御する地絡判断部と、を備えることを特徴とするものである。   In order to achieve the above-mentioned object, the present invention is connected to a conductive cable that connects between a power source that is insulated from the ground and charges and discharges electric power and an electric vehicle, and detects a ground fault. A current detector that detects a ground fault current in the conductive cable and a current that is approximately half of the human body protection current as a threshold, and a detected current detected by the current sensor exceeds the threshold A ground fault determination unit that determines that a ground fault has occurred and controls to stop outputting power to the power source and / or the electric vehicle.

この地絡検出器において、前記閾値は、略10mAであることが好ましい。   In the ground fault detector, the threshold is preferably about 10 mA.

この地絡検出器において、前記地絡判断部は、前記電源と前記電動車両との両方が、略同時に前記導電性ケーブルに対する電力を出力停止するように制御することが好ましい。   In the ground fault detector, it is preferable that the ground fault determination unit controls so that both the power source and the electric vehicle stop outputting power to the conductive cable substantially simultaneously.

この地絡検出器において、前記電源は、その出力端子側において、電路をON/OFFするための遮断器又はリレーを備えることが好ましい。   In the ground fault detector, the power source preferably includes a circuit breaker or a relay for turning on / off the electric circuit on the output terminal side.

この地絡検出器において、前記電動車両は、その出力端子側において、電路をON/OFFするための遮断器又はリレーを備えることが好ましい。   In the ground fault detector, the electric vehicle preferably includes a circuit breaker or a relay for turning on / off the electric circuit on the output terminal side.

この地絡検出器において、さらに、前記電源に備わる遮断器又はリレーをON/OFFするための制御信号を前記電源に送信する通信手段を備えることが好ましい。   The ground fault detector preferably further includes communication means for transmitting a control signal for turning on / off a circuit breaker or a relay provided in the power source to the power source.

この地絡検出器において、さらに、前記電動車両に備わる遮断器又はリレーをON/OFFするための制御信号を前記電動車両に送信する通信手段を備えることが好ましい。   The ground fault detector preferably further includes communication means for transmitting a control signal for turning on / off a circuit breaker or a relay provided in the electric vehicle to the electric vehicle.

この地絡検出器において、前記電流センサは環状センサであり、前記地絡検出器は、さらに、前記導電性ケーブルの給電線間に直列接続され、互いに抵抗値が等しい一対の抵抗素子と、前記一対の抵抗素子の中性点とアースとを接続した接地線とを備え、前記接地線は、前記環状センサの開口部に貫通されることが好ましい。   In this ground fault detector, the current sensor is an annular sensor, and the ground fault detector is further connected in series between the feeder lines of the conductive cable, and a pair of resistance elements having the same resistance value, Preferably, a ground wire connecting a neutral point of a pair of resistance elements and ground is provided, and the ground wire is penetrated through an opening of the annular sensor.

この地絡検出器において、前記環状センサの開口部に、当該電流センサのオフセットを補正するための試験電流線を貫通させることが好ましい。   In this ground fault detector, it is preferable that a test current line for correcting an offset of the current sensor is passed through the opening of the annular sensor.

この地絡検出器において、前記試験電流線は、前記環状センサに複数回巻回されることが好ましい。   In the ground fault detector, it is preferable that the test current line is wound around the annular sensor a plurality of times.

この地絡検出器において、前記試験電流線に流す、ある極性の電流を流した時の電流センサの出力値と、大きさの等しい逆極性の電流とを流した時の電流センサの出力値との平均値を電流ゼロ点とすることが好ましい。   In this ground fault detector, the output value of the current sensor when a current of a certain polarity is passed through the test current line, and the output value of the current sensor when a current of the opposite polarity having the same magnitude is passed. It is preferable to set the average value of the current zero point.

この地絡検出器において、前記電源及び前記電動車両の前記導電性ケーブルに対する電路を開放し、この時の前記電流センサの出力値を電流ゼロ点とすることで前記電流センサをオフセット補正することが好ましい。   In the ground fault detector, the current sensor may be offset-corrected by opening an electric circuit for the power source and the conductive cable of the electric vehicle, and setting the output value of the current sensor at this time as a current zero point. preferable.

この地絡検出器において、前記地絡検出器は、前記導電性ケーブルと一体に備わることが好ましい。   In this ground fault detector, the ground fault detector is preferably provided integrally with the conductive cable.

この地絡検出器において、前記地絡検出器は、前記電源に備わることが好ましい。   In this ground fault detector, the ground fault detector is preferably provided in the power source.

また、本発明に係る充放電システムは、大地と絶縁されて電力の充放電を行うための電源と、電動車両と、前記電源及び前記電動車両の間を接続する導電性ケーブルと、前記地絡検出器とを備えることを特徴とする。   In addition, the charge / discharge system according to the present invention includes a power source that is insulated from the ground to charge and discharge power, an electric vehicle, a conductive cable that connects the power source and the electric vehicle, and the ground fault. And a detector.

本発明に係る地絡検出器によれば、人体保護電流の略半分の電流を閾値とし、電流センサで検出される検出電流が当該閾値を超える場合に地絡が発生していると判断し、電源又は/及び電動車両に対して電力を出力停止するよう制御する。この構成により、本発明では、電源と電動車両とを接続する導電性ケーブルなどで地絡事故が生じた場合においても、適切に人体の感電を防止できる。   According to the ground fault detector according to the present invention, it is determined that a ground fault has occurred when the detected current detected by the current sensor exceeds the threshold, with a current approximately half of the human body protection current as a threshold. Control to stop the output of power to the power source and / or the electric vehicle. With this configuration, in the present invention, even when a ground fault occurs in a conductive cable or the like that connects the power source and the electric vehicle, it is possible to appropriately prevent electric shock of the human body.

(a)本発明の実施の形態に係る充放電システムの全体図、(b)当該充放電システムの機能ブロック図である。(A) The whole figure of the charging / discharging system which concerns on embodiment of this invention, (b) It is a functional block diagram of the said charging / discharging system. 前記充放電システムのより詳細な機能ブロック図である。It is a more detailed functional block diagram of the charging / discharging system. 地絡事故発生時における前記充放電システムの等価回路図である。It is an equivalent circuit diagram of the charging / discharging system when a ground fault occurs. IEC規格における電流継続時間と直流漏電電流との関係を示す参考図である。It is a reference figure which shows the relationship between the electric current continuation time in IEC specification, and DC leakage current. 前記実施の形態の変形例1に係る充放電システムの説明図である。It is explanatory drawing of the charging / discharging system which concerns on the modification 1 of the said embodiment. (a)前記実施の形態の変形例2に係る充放電システムの説明図、(b)前記実施の形態の変形例3に係る充放電システムの説明図である。(A) Explanatory drawing of the charging / discharging system which concerns on the modification 2 of the said embodiment, (b) Explanatory drawing of the charging / discharging system which concerns on the modification 3 of the said embodiment. (a)前記実施の形態の変形例4に係る充放電システムに備わる地絡検出器での試験電流の説明図、(b)前記地絡検出器のオフセット補正時の動作手順を示すフローチャートである。(A) Explanatory drawing of the test electric current in the ground fault detector with which the charging / discharging system which concerns on the modification 4 of the said embodiment is equipped, (b) The flowchart which shows the operation | movement procedure at the time of the offset correction of the said ground fault detector. . (a)前記実施の形態の変形例5に係る充放電システムの説明図、(b)前記充放電システムに備わる地絡検出器のオフセット補正時の動作手順を示すフローチャートである。(A) Explanatory drawing of the charging / discharging system which concerns on the modification 5 of the said embodiment, (b) It is a flowchart which shows the operation | movement procedure at the time of the offset correction of the ground fault detector with which the said charging / discharging system is equipped. (a)前記実施の形態の変形例6に係る充放電システムに用いる導電性ケーブルの垂直方向断面図、(b)前記充放電システムの説明図である。(A) Vertical direction sectional drawing of the electroconductive cable used for the charging / discharging system which concerns on the modification 6 of the said embodiment, (b) It is explanatory drawing of the said charging / discharging system. 前記実施の形態の変形例7に係る充放電システムの説明図である。It is explanatory drawing of the charging / discharging system which concerns on the modification 7 of the said embodiment. 従来の充放電システムの一例を示す参考図である。It is a reference figure which shows an example of the conventional charging / discharging system.

(実施の形態)
本発明の実施の形態に係る地絡検出器について図面を参照して説明する。図1に示すように、充放電システムSは、交流電源1、交流電源1に接続された住宅用などの分電盤2、電気機器などの負荷3、分電盤2と接続された電源4、導電性ケーブル5、地絡検出器6、及び電動車両7から構成される。この充放電システムSは、V2Hと呼ばれており、電力の供給と需要のギャップを調整する役割を、電動車両7の蓄電池に担わせるものである。
(Embodiment)
A ground fault detector according to an embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, the charging / discharging system S includes an AC power source 1, a distribution board 2 for residential use connected to the AC power supply 1, a load 3 such as an electric device, and a power supply 4 connected to the distribution board 2. , Conductive cable 5, ground fault detector 6, and electric vehicle 7. This charging / discharging system S is called V2H, and makes the storage battery of the electric vehicle 7 play a role of adjusting a gap between supply of power and demand.

電源4は、住宅の充電コンセントや公共施設の充電スタンドなどであり、大地と絶縁され、単相交流100Vや200Vなどを分電盤2から電線を介して受ける。電源4は、図2に示すように、交流電源1から供給される交流電力を直流電力に変換して電動車両7に供給(具体的には100〜450Vの電圧)し、電動車両7から供給される直流電力を交流電力に変換して負荷3に供給するための変換部4aを備える。   The power source 4 is a charging outlet for a house, a charging station for a public facility, etc., is insulated from the ground, and receives a single-phase AC 100V, 200V, etc. from the distribution board 2 via electric wires. As shown in FIG. 2, the power source 4 converts the AC power supplied from the AC power source 1 into DC power and supplies the DC power to the electric vehicle 7 (specifically, a voltage of 100 to 450 V). The converter 4a for converting the direct-current power to be converted into alternating-current power and supplying it to the load 3 is provided.

電源4は、図2に示すように、地絡検出器6からの制御信号により、電路をON/OFFするための電磁的なリレー4b(又は遮断器)を備える。リレー4bは、充放電異常が発生した場合の人体保護を目的としており、電源4に予め設けられている。この構成により、地絡事故発生など電力を出力停止すべきときに、出力端子4c側に設けられたリレー4b(又は遮断器)を開放することで電路を遮断でき、電源4に備わる電源制御部の出力モードを停止処理する必要がなく、高速に電力の出力停止を実行できる。   As shown in FIG. 2, the power supply 4 includes an electromagnetic relay 4 b (or a circuit breaker) for turning on / off the electric circuit according to a control signal from the ground fault detector 6. The relay 4b is intended for human body protection when a charging / discharging abnormality occurs, and is provided in the power source 4 in advance. With this configuration, when power output should be stopped, such as when a ground fault occurs, the power circuit 4 can be cut off by opening the relay 4b (or circuit breaker) provided on the output terminal 4c side. Therefore, it is not necessary to stop the output mode, and the power output can be stopped at high speed.

導電性ケーブル5は、電源4と電動車両7との間の電路となり、電源プラグなどを介して一端は電源4に、充放電用コネクタなどを介して他端には電動車両7が接続される。なお、導電性ケーブル5は、少なくとも、充電と放電の直流電流が流れる一対の給電線を有する。   The conductive cable 5 serves as an electrical path between the power source 4 and the electric vehicle 7, and one end is connected to the power source 4 via a power plug and the like, and the other end of the electric vehicle 7 is connected via a charging / discharging connector. . The conductive cable 5 has at least a pair of power supply lines through which a direct current for charging and discharging flows.

地絡検出器6は、電源4と電動車両7との間を接続する導電性ケーブル5に接続されて、電源4と電動車両7との間の電路における地絡の発生を検出する。本実施の形態に係る地絡検出器6は、図2に示すように、電流センサ6a、一対の接地抵抗6b,6c、及び地絡判断部6dを備える。   The ground fault detector 6 is connected to the conductive cable 5 that connects the power source 4 and the electric vehicle 7, and detects the occurrence of a ground fault in the electric path between the power source 4 and the electric vehicle 7. As shown in FIG. 2, the ground fault detector 6 according to the present embodiment includes a current sensor 6a, a pair of ground resistors 6b and 6c, and a ground fault determination unit 6d.

電流センサ6aは、アース6eに接続された接地線6fに流れる直流電流のセンサ出力値(検出電流)を逐次出力し、例えば、磁性体からなる環状の磁性体コアと、当該磁性体コアにトロイダル状に巻回された励起コイルとを備える。電流センサ6aは、磁性体コアに形成された開口部を貫通する接地線6fを流れる電流による磁界の変化を検出して電流値に変換する。なお、電流センサ6aを環状センサとすることで、電流センサ6aの外形を絶縁体で覆うなどにより、接地線6fと電流センサ6a間の電気的な絶縁を図ることが容易となる。   The current sensor 6a sequentially outputs a sensor output value (detection current) of a direct current flowing through the ground line 6f connected to the earth 6e. For example, an annular magnetic core made of a magnetic material and a toroidal to the magnetic core And an excitation coil wound in a shape. The current sensor 6a detects a change in the magnetic field due to a current flowing through the ground line 6f that passes through the opening formed in the magnetic core and converts it into a current value. In addition, by using the current sensor 6a as an annular sensor, it becomes easy to achieve electrical insulation between the ground wire 6f and the current sensor 6a by covering the outer shape of the current sensor 6a with an insulator.

一対の抵抗素子6b,6cは、互いに抵抗値(例えば40KΩ)が等しい抵抗素子からなり、導電性ケーブル5の給電線間に直列接続されている。なお、抵抗素子6b,6cの中性点6gは接地線6fによって接地されている。つまり、接地線6fは、中性点6gとアース6eとを接続する。なお、抵抗素子6b,6cは必須の構成要件ではく、同じ合成抵抗値を有する一対の複数の抵抗素子で構成されてもよい。   The pair of resistance elements 6 b and 6 c are resistance elements having the same resistance value (for example, 40 KΩ), and are connected in series between the feeder lines of the conductive cable 5. The neutral point 6g of the resistance elements 6b and 6c is grounded by the ground line 6f. That is, the ground line 6f connects the neutral point 6g and the ground 6e. Note that the resistance elements 6b and 6c are not essential constituent elements, and may be configured by a pair of a plurality of resistance elements having the same combined resistance value.

地絡判断部6dは、人体保護電流の略半分の電流値を閾値として、電流センサ6cのセンサ出力値(検出電流)が当該閾値を超えるときに導電性ケーブル5のいずれかの箇所で地絡の事故点が生じていると判断する。この場合、地絡判断部6dは、電源4又は/及び電動車両7に対して電力を出力停止するよう制御する。具体的には、地絡判断部6dは、電源4及び電動車両7からの電力を出力停止するための制御信号を電源4又は/及び電動車両7に送信し、リレー4b,7bの少なくとも一方を制御して、電路を切り離す。また、本実施の形態においては、接地抵抗6b,6cを40KΩ、人体保護電流を25mAとした場合には、ばらつきを考慮して、当該閾値を人体保護電流の略半分、又は略10mAとする。   The ground fault determination unit 6d sets the current value of approximately half of the human body protection current as a threshold value, and when the sensor output value (detected current) of the current sensor 6c exceeds the threshold value, the ground fault is detected at any point of the conductive cable 5. It is determined that the accident point has occurred. In this case, the ground fault determination unit 6d controls the power supply 4 and / or the electric vehicle 7 to stop outputting power. Specifically, the ground fault determination unit 6d transmits a control signal for stopping output of power from the power source 4 and the electric vehicle 7 to the power source 4 and / or the electric vehicle 7, and turns on at least one of the relays 4b and 7b. Control and disconnect the circuit. In the present embodiment, when the ground resistances 6b and 6c are 40 KΩ and the human body protection current is 25 mA, the threshold is set to about half of the human body protection current or about 10 mA in consideration of variations.

なお、地絡判断部6dは、制御信号を送信して、電源4と電動車両7の両方の電力出力を、略同時に出力停止できる。このため、電源4側から電動車両7側に充電中、又は、電動車両7から電源4側に放電中のいずれの状態であっても電力供給を停止できるので、充放電状態に関わらず、人体への感電影響を少なくすることができる。   The ground fault determination unit 6d can stop the output of the power outputs of both the power source 4 and the electric vehicle 7 substantially simultaneously by transmitting a control signal. For this reason, since the power supply can be stopped in any state of charging from the power source 4 side to the electric vehicle 7 side or discharging from the electric vehicle 7 to the power source 4 side, the human body Can reduce the electric shock effect.

電動車両7は、リチウムイオン電池などの蓄電池7aを搭載した電気自動車(EV)やプラグインハイブリッド自動車(PHEV)である。電動車両7は、図2に示すように、地絡検出器6からの制御信号により、電路をON/OFFするための電磁的なリレー7b(又は遮断器)を備える。リレー7bは、充放電異常が発生した場合の人体保護を目的としており、電動車両7に予め設けられている。この構成により、地絡事故発生など電力を出力停止すべきときに、出力端子7c側に設けられたリレー7b(又は遮断器)を開放することで電路を遮断でき、電動車両7に備わる制御部の出力モードを停止処理する必要がなく、高速に電力の出力停止を実行できる。   The electric vehicle 7 is an electric vehicle (EV) or a plug-in hybrid vehicle (PHEV) equipped with a storage battery 7a such as a lithium ion battery. As shown in FIG. 2, the electric vehicle 7 includes an electromagnetic relay 7 b (or a circuit breaker) for turning on and off the electric circuit according to a control signal from the ground fault detector 6. The relay 7b is intended to protect a human body when a charging / discharging abnormality occurs, and is provided in the electric vehicle 7 in advance. With this configuration, when power output should be stopped, such as when a ground fault occurs, the electric circuit can be interrupted by opening the relay 7b (or circuit breaker) provided on the output terminal 7c side, and the control unit provided in the electric vehicle 7 Therefore, it is not necessary to stop the output mode, and the power output can be stopped at high speed.

次に、充放電時において、人体からの地絡と電動車両7からの地絡が導電性ケーブル5の正負極側の異なる給電線で発生した場合の地絡電流の流れに関して、図3を参照して説明する。   Next, see FIG. 3 for the flow of the ground fault current when a ground fault from the human body and a ground fault from the electric vehicle 7 are generated in different power supply lines on the positive and negative sides of the conductive cable 5 during charging and discharging. To explain.

本図では、電源4から供給される電圧Vdは、100〜450Vとする。接地抵抗6b,6cはそれぞれ40KΩである。人体抵抗8は、0.5〜2.5KΩの範囲とする。また、電動車両7に電源4からの電圧を加えると、表面や絶縁物内にわずかな電流が流れる。この際、電動車両7の絶縁抵抗7dは、100Ω/Vが確保されていることを前提とし、例えば、電源4の電圧450Vの場合は、車両の絶縁抵抗7dは45KΩとなる。なお、絶縁劣化を生じた電動車両7は、絶縁抵抗7dが低下して漏れ電流が大きくなる。   In this figure, the voltage Vd supplied from the power source 4 is 100 to 450V. The grounding resistors 6b and 6c are 40 KΩ each. The human resistance 8 is in the range of 0.5 to 2.5 KΩ. Further, when a voltage from the power source 4 is applied to the electric vehicle 7, a slight current flows through the surface and the insulator. At this time, it is assumed that the insulation resistance 7d of the electric vehicle 7 is 100Ω / V. For example, when the voltage of the power supply 4 is 450V, the insulation resistance 7d of the vehicle is 45KΩ. In addition, in the electric vehicle 7 in which the insulation deterioration has occurred, the insulation resistance 7d decreases and the leakage current increases.

そして、本図に示す回路では、人体へ流れる地絡電流が人体保護電流の25mAになると、地絡検出器6の電流センサ6aで検出する電流が略10mAとなる。すなわち、地絡検出器6の電流センサ6aが人体保護電流(約25mA)の略半分、又は略10mAの電流を検出すると、地絡判断部6dは電路を遮断する制御を開始する。   In the circuit shown in this figure, when the ground fault current flowing to the human body reaches the human body protection current of 25 mA, the current detected by the current sensor 6a of the ground fault detector 6 becomes approximately 10 mA. That is, when the current sensor 6a of the ground fault detector 6 detects a current that is approximately half of the human body protection current (about 25 mA) or about 10 mA, the ground fault determination unit 6d starts control for cutting off the electric circuit.

なお、ここで、地絡時における人体保護に必要な人体保護電流を、図4を参照して説明する。本実施の形態における「人体保護電流」は、IEC規格に基づいており、図4の縦軸の電流継続時間に関わらず横軸の直流漏電電流が生理学的に有害な影響は出ないとするDC−2の領域を超えない電流25mA(図中の点線Y)として設定している。   Here, the human body protection current necessary for human body protection at the time of ground fault will be described with reference to FIG. The “human body protection current” in the present embodiment is based on the IEC standard, and the DC leakage current on the horizontal axis does not have a physiologically harmful effect regardless of the current duration on the vertical axis in FIG. The current is set to 25 mA (dotted line Y in the figure) that does not exceed the region −2.

以上のように、地絡検出器6は、人体保護レベルの略半分の電流(又は略10mA)を閾値とし、電流センサ6aで検出したセンサ出力値が当該閾値を超える場合において電源4及び電動車両7の少なくとも一方のリレー4b,7bを切り離す。このことで、導電性ケーブル5を介した地絡事故発生時に人体に流れる電流を25mA以下に収め、電源4、導電性ケーブル5及び電動車両7のいずれかの箇所で地絡事故点が生じても人体を適切に保護できる。また、電源4及び電動車両7の少なくとも一方のリレー4b,7bを開極することで人体保護を図れるため、構成の簡略化や低コスト化をも図ることができる。   As described above, the ground fault detector 6 uses the current of approximately half the human body protection level (or approximately 10 mA) as a threshold value, and the sensor output value detected by the current sensor 6a exceeds the threshold value, the power supply 4 and the electric vehicle. 7, at least one of the relays 4b and 7b is disconnected. As a result, the current flowing to the human body at the time of occurrence of a ground fault through the conductive cable 5 is kept to 25 mA or less, and a ground fault point occurs at any of the power source 4, the conductive cable 5 and the electric vehicle 7. Can protect the human body properly. In addition, since the human body can be protected by opening at least one of the relays 4b and 7b of the power supply 4 and the electric vehicle 7, the configuration can be simplified and the cost can be reduced.

なお、本実施の形態において、地絡検出器6の地絡判断部6dは、制御信号を送信して、電源4と電動車両7の両方の電力出力を、略同時に出力停止できる。この場合、電源4側から電動車両7側に充電中、又は、電動車両7から電源4側に放電中のいずれの状態であっても電力供給を停止できるので、充放電状態に関わらず、人体への感電影響を少なくすることができる。   In the present embodiment, the ground fault determination unit 6d of the ground fault detector 6 can transmit a control signal to stop the power outputs of both the power supply 4 and the electric vehicle 7 at substantially the same time. In this case, the power supply can be stopped regardless of whether charging is performed from the power source 4 side to the electric vehicle 7 side or discharging from the electric vehicle 7 to the power source 4 side. Can reduce the electric shock effect.

(第1の変形例)
本実施の形態の第1の変形例について、図5を参照して説明する。本変形例1において、地絡検出器6は、電源4の出力端子4c側のリレー4b(又は遮断器)をON/OFFする通信部10を備えている。この構成により、地絡検出器6が人体保護電流の略半分又は略10mA以上の地絡電流を検出したとき、地絡検出器6からリレー4bを直接OFF制御する。このため、電源4の制御状態とは無関係に独立して電路を切り離すことができ、よって、高速動作が実現でき、人体への安全が確保される。なお、図示はしていないが、通信部10を、地絡検出器6と電動車両7との間に設けて、地絡検出器6から電動車両7のリレー7bを直接OFF制御することも考え得る。また、通信部10は有線、無線、電力線通信(PLC:Power Line Communication)など種々の形態で実現できる。
(First modification)
A first modification of the present embodiment will be described with reference to FIG. In the first modification, the ground fault detector 6 includes a communication unit 10 that turns on / off the relay 4b (or the circuit breaker) on the output terminal 4c side of the power supply 4. With this configuration, when the ground fault detector 6 detects a ground fault current of approximately half of the human body protection current or approximately 10 mA or more, the relay 4 b is directly OFF-controlled from the ground fault detector 6. For this reason, the electric circuit can be disconnected independently of the control state of the power supply 4, so that high-speed operation can be realized and safety for the human body is ensured. Although not shown, it is also conceivable that the communication unit 10 is provided between the ground fault detector 6 and the electric vehicle 7 and the relay 7b of the electric vehicle 7 is directly OFF-controlled from the ground fault detector 6. obtain. The communication unit 10 can be realized in various forms such as wired, wireless, and power line communication (PLC).

(第2の変形例)
本実施の形態の第2の変形例について、図6(a)を参照して説明する。本変形例2においては、図6(a)に示すように、電流センサ6aを環状センサとし、環状センサの開口部に試験電流線11を貫通させている。この試験電流線11は、地絡検出器6に備わる電流センサ6aのオフセットを補正するための試験線である。この構成により、本変形例2では、試験電流線11を用いて、地絡検出器6の動作確認を行うことができ、電流センサ6aの感度を高精度に維持できる。また、試験電流線11は接地線6fとは独立しているため、接地線6fへの電磁的影響を少なくすることができる。
(Second modification)
A second modification of the present embodiment will be described with reference to FIG. In the second modification, as shown in FIG. 6A, the current sensor 6a is an annular sensor, and the test current line 11 is passed through the opening of the annular sensor. This test current line 11 is a test line for correcting an offset of the current sensor 6 a provided in the ground fault detector 6. With this configuration, in the second modification, the operation of the ground fault detector 6 can be confirmed using the test current line 11, and the sensitivity of the current sensor 6a can be maintained with high accuracy. Further, since the test current line 11 is independent of the ground line 6f, the electromagnetic influence on the ground line 6f can be reduced.

(第3の変形例)
本実施の形態の第3の変形例について、図6(b)を参照して説明する。本変形例3において、地絡検出器6の電流センサ6aは環状センサであって、電流センサ6aに試験電流線11を複数回巻回している。このため、巻回数1に対して、巻回数Nであれば、同じセンサ出力を得るための試験電流を1/Nと低減できるため、本変形例3では、より低消費な構成にすることができる。
(Third Modification)
A third modification of the present embodiment will be described with reference to FIG. In the third modification, the current sensor 6a of the ground fault detector 6 is an annular sensor, and the test current wire 11 is wound around the current sensor 6a a plurality of times. For this reason, if the number of windings is N with respect to the number of windings 1, the test current for obtaining the same sensor output can be reduced to 1 / N. it can.

(第4の変形例)
本実施の形態の第4の変形例について、図7を参照して説明する。本変形例4は、地絡検出器6の電流センサ6aのオフセット補正を行うものであり、図7(a)に示すように、試験電流線11に試験電流として、ある極性の電流、及び大きさの等しい逆極性の電流を流す。
(Fourth modification)
A fourth modification of the present embodiment will be described with reference to FIG. In the fourth modification, offset correction of the current sensor 6a of the ground fault detector 6 is performed, and as shown in FIG. A current of the opposite polarity is sent.

以下、本変形例4に係る地絡検出器6のオフセット補正の動作手順を、図7(b)のフローチャーを参照して説明する。最初に、接地線6fには電流が流れていないことが確保されている状態において、試験電流線11にある極性の直流電流を流し(S71)、地絡検出器6の電流センサ6aにおけるセンサ出力値1を得る(S72)。次に、試験電流線11に逆極性の直流電流を流し(S73)、地絡検出器6の電流センサ6aにおけるセンサ出力値2を得る(S74)。最後に、(センサ出力値1+センサ出力値2)の平均値を電流ゼロ点とする補正を行う(S75)。   Hereinafter, an operation procedure of offset correction of the ground fault detector 6 according to Modification 4 will be described with reference to the flowchart of FIG. First, in a state where it is ensured that no current flows through the grounding wire 6f, a DC current having a polarity on the test current wire 11 is supplied (S71), and the sensor output of the current sensor 6a of the ground fault detector 6 is supplied. A value of 1 is obtained (S72). Next, a DC current having a reverse polarity is passed through the test current line 11 (S73), and a sensor output value 2 in the current sensor 6a of the ground fault detector 6 is obtained (S74). Finally, correction is performed with the average value of (sensor output value 1 + sensor output value 2) as the current zero point (S75).

この構成により、本変形例4では、試験電流線11を用いて試験電流を流すことにより、電流センサ6aのオフセットを補正することができる。また、当該補正により地絡検出器6の直流電流による地絡検出が精度よく行える。また、ある極性の電流と、逆極性の電流の大きさが等しいため、電流の絶対値が温度変化により変化しても精度良く電流センサ6aのオフセットの補正が行える。   With this configuration, in the fourth modification, the offset of the current sensor 6a can be corrected by flowing the test current using the test current line 11. Moreover, the ground fault detection by the direct current of the ground fault detector 6 can be accurately performed by the correction. In addition, since the current of a certain polarity is equal to the current of the opposite polarity, the offset of the current sensor 6a can be accurately corrected even if the absolute value of the current changes due to a temperature change.

(第5の変形例)
本実施の形態の第5の変形例について、図8を参照して説明する。本変形例5においては、図8(a)に示すように、電流センサ6aのオフセット補正時に、電源4側のリレー4b(又は遮断器)と、電動車両7側のリレー7b(又は遮断器)とを、いずれの側とも開放する。
(Fifth modification)
A fifth modification of the present embodiment will be described with reference to FIG. In the fifth modification, as shown in FIG. 8A, at the time of offset correction of the current sensor 6a, the relay 4b (or circuit breaker) on the power source 4 side and the relay 7b (or circuit breaker) on the electric vehicle 7 side. Are open on either side.

また、本変形例5に係る地絡検出器6のオフセット補正の動作手順を、図8(b)のフローチャーを参照して説明する。最初に、接地線6fには電流が流れていないことが確保されている状態において、いずれの側のリレー4b,7bも開放する(S81)。次に、このときの電流センサ6aからのセンサ出力値を電源ゼロ点とするオフセット補正を行う(S82)。   An operation procedure of offset correction of the ground fault detector 6 according to the fifth modification will be described with reference to the flowchart of FIG. First, in a state where it is ensured that no current flows through the grounding wire 6f, the relays 4b and 7b on either side are opened (S81). Next, offset correction is performed using the sensor output value from the current sensor 6a at this time as the power supply zero point (S82).

このように、本変形例5では、いずれの側とも地絡検出器6の主回路は電気的に絶縁されている状態とし、このとき、接地線6fには電源4が接続されていないので、当然接地線6fには電流が流れない。この場合における電流センサ6aの出力値を電流ゼロ点とすることで、電流センサ6をオフセット補正することができ、試験電流を流さない低消費な構成にすることができる。   Thus, in the present modification 5, the main circuit of the ground fault detector 6 is electrically insulated on either side, and at this time, since the power source 4 is not connected to the ground line 6f, Of course, no current flows through the ground line 6f. By setting the output value of the current sensor 6a in this case as the current zero point, the current sensor 6 can be offset-corrected, and a low-consumption configuration that does not allow the test current to flow can be achieved.

(第6の変形例)
本実施の形態の第6の変形例について、図9を参照して説明する。本変形例6おいて、導電性ケーブル5は、図9(a)に示すように、充放電時に直流電流が流れる一対の給電線5a、抵抗素子6b,6cの中性点に接続される接地線5b、及び接地線5bを被覆する絶縁樹脂の外皮5cからなる。また、図9(b)に示すように、導電性ケーブル5は、地絡検出器6をコントロールユニットなどの内部に一体化して収容する。この構成により、接地線5bは電源4側に備わるアースに接続され、接地線5bを導電性ケーブル5と一体化する構成がとれる。また、接地線5bをケーブル外皮5cに沿うように配置できるので、人体の感電の可能性を低減できる。
(Sixth Modification)
A sixth modification of the present embodiment will be described with reference to FIG. In the sixth modification, as shown in FIG. 9A, the conductive cable 5 is connected to the neutral point of a pair of feeders 5a and resistance elements 6b and 6c through which a direct current flows during charging and discharging. It consists of a sheath 5c of insulating resin that covers the wire 5b and the ground wire 5b. Moreover, as shown in FIG.9 (b), the conductive cable 5 accommodates the ground fault detector 6 integrally in the inside of a control unit. With this configuration, the ground line 5 b is connected to the ground provided on the power supply 4 side, and the ground line 5 b is integrated with the conductive cable 5. Moreover, since the ground wire 5b can be arrange | positioned so that the cable outer sheath 5c may be followed, the possibility of the electric shock of a human body can be reduced.

(第7の変形例)
本実施の形態の第7の変形例について、図10を参照して説明する。本変形例7において、電源4が地絡検出器6を備えている。この構成では、導電性ケーブル5が地絡検出器6を備えることが不要となるので導電性ケーブル5の小型軽量化が可能となり、人体への感電防止を図りつつ充放電作業を楽にすることができる。なお、本発明は、上記実施の形態の構成に限られず、発明の趣旨を変更しない範囲で種々の変形が可能である。
(Seventh Modification)
A seventh modification of the present embodiment will be described with reference to FIG. In the seventh modification, the power source 4 includes a ground fault detector 6. In this configuration, since it is not necessary for the conductive cable 5 to include the ground fault detector 6, the conductive cable 5 can be reduced in size and weight, and the charge / discharge work can be facilitated while preventing electric shock to the human body. it can. The present invention is not limited to the configuration of the embodiment described above, and various modifications can be made without departing from the spirit of the invention.

S 充放電システム
1 交流電源
2 分電盤
3 負荷
4 電源
4a 変換部
4b リレー(又は遮断部)
4c 出力端子
5 導電性ケーブル
5b 接地線
5c 外皮
6 地絡検出器
6a 電流センサ(環状センサ)
6b,6c 接地抵抗
6d 地絡判断部
6e アース
6f 接地線
6g 中性点
7 電動車両
7b リレー(又は遮断部)
7c 出力端子
8 人体抵抗
10 通信部(通信手段)
11 試験電流線
S Charging / Discharging System 1 AC Power Supply 2 Distribution Panel 3 Load 4 Power Supply 4a Conversion Unit 4b Relay (or Blocking Unit)
4c Output terminal 5 Conductive cable 5b Ground wire 5c Outer skin 6 Ground fault detector 6a Current sensor (annular sensor)
6b, 6c Grounding resistance 6d Ground fault judgment unit 6e Grounding 6f Grounding wire 6g Neutral point 7 Electric vehicle 7b Relay (or blocking unit)
7c Output terminal 8 Human resistance 10 Communication unit (communication means)
11 Test current line

Claims (15)

大地と絶縁されて電力の充放電を行うための電源と、電動車両との間を接続する導電性ケーブルに接続され、地絡の発生を検出する地絡検出器であって、
前記導電性ケーブルでの地絡電流を検出する電流センサと、
人体保護電流の略半分の電流を閾値とし、前記電流センサで検出される検出電流が前記閾値を超える場合に地絡が発生していると判断し、前記電源又は/及び前記電動車両に対して電力を出力停止するよう制御する地絡判断部と、を備える、ことを特徴とする地絡検出器。
A ground fault detector for detecting the occurrence of a ground fault, connected to a power cable for charging and discharging electric power insulated from the ground, and a conductive cable connecting between the electric vehicle,
A current sensor for detecting a ground fault current in the conductive cable;
A current value that is approximately half of the human body protection current is set as a threshold value, and it is determined that a ground fault has occurred when a detected current detected by the current sensor exceeds the threshold value, and the power source and / or the electric vehicle is A ground fault detector, comprising: a ground fault determination unit that controls to stop the output of electric power.
前記閾値は、略10mAである、ことを特徴とする請求項1記載の地絡検出器。   The ground fault detector according to claim 1, wherein the threshold is approximately 10 mA. 前記地絡判断部は、前記電源と前記電動車両との両方が、略同時に前記導電性ケーブルに対する電力を出力停止するように制御する、ことを特徴とする請求項1又は2記載の地絡検出器。   3. The ground fault detection according to claim 1, wherein the ground fault determination unit controls both the power source and the electric vehicle to stop outputting power to the conductive cable substantially simultaneously. vessel. 前記電源は、その出力端子側において、電路をON/OFFするための遮断器又はリレーを備える、ことを特徴とする請求項1乃至3のいずれか一項に記載の地絡検出器。   The ground fault detector according to any one of claims 1 to 3, wherein the power source includes a circuit breaker or a relay for turning on and off the electric circuit on an output terminal side thereof. 前記電動車両は、その出力端子側において、電路をON/OFFするための遮断器又はリレーを備える、ことを特徴とする請求項1乃至3のいずれか一項に記載の地絡検出器。   The ground fault detector according to any one of claims 1 to 3, wherein the electric vehicle includes a circuit breaker or a relay for turning on / off the electric circuit on an output terminal side thereof. さらに、前記電源に備わる遮断器又はリレーをON/OFFするための制御信号を前記電源に送信する通信手段を備えた、ことを特徴とする請求項4に記載の地絡検出器。   The ground fault detector according to claim 4, further comprising a communication unit that transmits a control signal for turning on / off a circuit breaker or a relay included in the power source to the power source. さらに、前記電動車両に備わる遮断器又はリレーをON/OFFするための制御信号を前記電動車両に送信する通信手段を備えた、ことを特徴とする請求項5記載の地絡検出器。   6. The ground fault detector according to claim 5, further comprising communication means for transmitting a control signal for turning on / off a circuit breaker or a relay provided in the electric vehicle to the electric vehicle. 前記電流センサは環状センサであり、
前記地絡検出器は、さらに、
前記導電性ケーブルの給電線間に直列接続され、互いに抵抗値が等しい一対の抵抗素子と、
前記一対の抵抗素子の中性点とアースとを接続した接地線とを備え、
前記接地線は、前記環状センサの開口部に貫通される、ことを特徴とする請求項1乃至7のいずれか一項に記載の地絡検出器。
The current sensor is an annular sensor;
The ground fault detector further includes:
A pair of resistance elements connected in series between the feeder lines of the conductive cable and having the same resistance value;
A ground wire connecting the neutral point of the pair of resistance elements and the ground, and
The ground fault detector according to any one of claims 1 to 7, wherein the grounding wire is penetrated through an opening of the annular sensor.
前記環状センサの開口部に、当該電流センサのオフセットを補正するための試験電流線を貫通させる、ことを特徴とする請求項8記載の地絡検出器。   The ground fault detector according to claim 8, wherein a test current line for correcting an offset of the current sensor is passed through the opening of the annular sensor. 前記試験電流線は、前記環状センサに複数回巻回される、ことを特徴とする請求項9記載の地絡検出器。   The ground fault detector according to claim 9, wherein the test current line is wound around the annular sensor a plurality of times. 前記試験電流線に流す、ある極性の電流を流した時の電流センサの出力値と、大きさの等しい逆極性の電流とを流した時の電流センサの出力値との平均値を電流ゼロ点とする、ことを特徴とする請求項9又は10に記載の地絡検出器。   The current zero point is the average value of the output value of the current sensor when a current of a certain polarity is passed through the test current line and the output value of the current sensor when a current of opposite polarity of the same magnitude is passed. The ground fault detector according to claim 9 or 10, wherein: 前記電源及び前記電動車両の前記導電性ケーブルに対する電路を開放し、この時の前記電流センサの出力値を電流ゼロ点とすることで前記電流センサをオフセット補正する、ことを特徴とする請求項9又は10に記載の地絡検出器。   The current sensor is offset-corrected by opening an electric circuit for the conductive cable of the power source and the electric vehicle, and setting an output value of the current sensor at this time as a current zero point. Or the ground fault detector of 10. 前記地絡検出器は、前記導電性ケーブルと一体に備わる、ことを特徴とする請求項1乃至12のいずれか一項に記載の地絡検出器。   The ground fault detector according to any one of claims 1 to 12, wherein the ground fault detector is provided integrally with the conductive cable. 前記地絡検出器は、前記電源に備わる、ことを特徴とする請求項1乃至12のいずれか一項に記載の地絡検出器。   The ground fault detector according to any one of claims 1 to 12, wherein the ground fault detector is provided in the power source. 大地と絶縁されて電力の充放電を行うための電源と、電動車両と、前記電源及び前記電動車両の間を接続する導電性ケーブルと、前記請求項1乃至14のいずれかに記載の地絡検出器と、を備えることを特徴とする充放電システム。   The power supply for charging / discharging electric power insulated from the ground, an electric vehicle, a conductive cable connecting the power source and the electric vehicle, and the ground fault according to any one of claims 1 to 14. A charge / discharge system comprising: a detector;
JP2013264403A 2013-12-20 2013-12-20 Ground fault detector Pending JP2017034731A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013264403A JP2017034731A (en) 2013-12-20 2013-12-20 Ground fault detector
PCT/IB2014/002829 WO2015092529A1 (en) 2013-12-20 2014-12-18 Ground fault detector and charging/discharging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013264403A JP2017034731A (en) 2013-12-20 2013-12-20 Ground fault detector

Publications (1)

Publication Number Publication Date
JP2017034731A true JP2017034731A (en) 2017-02-09

Family

ID=53402189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013264403A Pending JP2017034731A (en) 2013-12-20 2013-12-20 Ground fault detector

Country Status (2)

Country Link
JP (1) JP2017034731A (en)
WO (1) WO2015092529A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019221022A (en) * 2018-06-15 2019-12-26 株式会社デンソーテン Battery monitoring device, battery monitoring system, and battery monitoring method
CN111722021A (en) * 2019-03-19 2020-09-29 深圳市星恒通设备有限公司 Electric motor car electromagnetic radiation and charging seat insulation resistance detecting system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62163974A (en) * 1986-01-14 1987-07-20 Mitsubishi Electric Corp Electric current sensor
JP2010239837A (en) * 2009-03-31 2010-10-21 Tokyo Electric Power Co Inc:The Line-to-ground fault detector, charger for electric vehicles, and method of detecting line-to-ground fault
WO2013051484A1 (en) * 2011-10-03 2013-04-11 パナソニック株式会社 Power charging device for electric vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019221022A (en) * 2018-06-15 2019-12-26 株式会社デンソーテン Battery monitoring device, battery monitoring system, and battery monitoring method
JP7064392B2 (en) 2018-06-15 2022-05-10 株式会社デンソーテン Battery monitoring device, battery monitoring system, and battery monitoring method
CN111722021A (en) * 2019-03-19 2020-09-29 深圳市星恒通设备有限公司 Electric motor car electromagnetic radiation and charging seat insulation resistance detecting system
CN111722021B (en) * 2019-03-19 2023-03-28 深圳市星恒通设备有限公司 Electric motor car electromagnetic radiation and charging seat insulation resistance detecting system

Also Published As

Publication number Publication date
WO2015092529A8 (en) 2015-10-01
WO2015092529A1 (en) 2015-06-25

Similar Documents

Publication Publication Date Title
JP6127350B2 (en) Electric vehicle charging / discharging device
TWI514716B (en) Overcurrent detection device, and charge/discharge system, distribution board, charging controller, charge/discharge device for vehicle and electric apparatus for vehicle, using the overcurrent detction device
US8723477B2 (en) Charging cable connector for connecting an electric vehicle to a charging station
CN105610124B (en) EVSE handle with automatic thermal shut-off through NTC to ground
CN103338970B (en) For protecting method and the charging device of charging cables
US10640000B2 (en) Method and device for detecting a direct-current fault current
US20170151879A1 (en) Electric cable and winding device for such a cable
JP2010110055A (en) Charging cable for electric vehicle
US9841451B2 (en) Zone fault detection method and system for electric vehicle charging systems
US9166394B2 (en) Device and method for limiting leakage currents
US10181753B2 (en) Electric power system protection device, electric path switching device, and electric power supply system
US20140233138A1 (en) Ground fault circuit interrupter
EP2783902A3 (en) Power supply control device for charging an electric vehicle
JP2017034731A (en) Ground fault detector
JP2014505452A (en) Apparatus and method for estimating contact current and protecting electrical equipment from the contact current
CN102905931A (en) Method and arrangement of electrical conductors for charging a vehicle battery
US11486907B2 (en) Monitoring device and method of monitoring an impedance of a protective conductor, and charging control unit
CN102830327A (en) Judging method and device of single-phase grounding fault line of small-current grounding system
US11279244B2 (en) Electroplated AC charger with monitoring and diagnostic system
EP3166192A1 (en) Leakage protection device and leakage protection system
WO2013020575A1 (en) An electronic protection device for an electric vehicle charging device.