JP2017034373A - Radio communication system, radio device, radio communication method, and radio communication program - Google Patents

Radio communication system, radio device, radio communication method, and radio communication program Download PDF

Info

Publication number
JP2017034373A
JP2017034373A JP2015150446A JP2015150446A JP2017034373A JP 2017034373 A JP2017034373 A JP 2017034373A JP 2015150446 A JP2015150446 A JP 2015150446A JP 2015150446 A JP2015150446 A JP 2015150446A JP 2017034373 A JP2017034373 A JP 2017034373A
Authority
JP
Japan
Prior art keywords
radio
configuration
frequency
radio frequency
hot standby
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015150446A
Other languages
Japanese (ja)
Other versions
JP6514062B2 (en
Inventor
康喜 佐藤
Yasuki Sato
康喜 佐藤
相馬 一等
Kazutomo Souma
一等 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Engineering Ltd
Original Assignee
NEC Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Engineering Ltd filed Critical NEC Engineering Ltd
Priority to JP2015150446A priority Critical patent/JP6514062B2/en
Publication of JP2017034373A publication Critical patent/JP2017034373A/en
Application granted granted Critical
Publication of JP6514062B2 publication Critical patent/JP6514062B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a radio communication system, a radio device, and a radio communication method that can prevent deterioration in radio transmission quality due to adjacent channel interference waves independently for uplink and downlink lines.SOLUTION: If an interference wave occurs on an adjacent channel at a frequency f0' and affects transmission quality at the frequency f0' in an adjacent interference wave occurrence situation, a first radio device 101 and a second radio device 201 are changed from (1) a hot standby configuration time to (2) a FDD (Frequency Division Duplex) twin path configuration time. Then, the band of the frequency f0' is divided into two frequency bands of a lower side frequency f1' and an upper side frequency f2', and the same data is transmitted. Furthermore, in order to maintain transmission capacity, N of a modulation scheme 2is changed to a frequency scheme of twofold, where N is a natural number. Then, a transmission data synthesizer 111 synthesizes a radio signal with better quality among reception signals of a first receiver 103-1 and a second receiver 103-2.SELECTED DRAWING: Figure 8

Description

本発明は、無線通信システム、無線通信方法および無線通信プログラムに関し、特に、第一及び第二の無線送信系と、第一及び第二の無線受信系とを備えた(1+1)冗長構成からなる無線装置を無線空間対向させる固定型ポイントツーポイントで無線通信を行う無線通信システム、無線通信方法および無線通信プログラムに関する。   The present invention relates to a radio communication system, a radio communication method, and a radio communication program, and in particular, has a (1 + 1) redundant configuration including first and second radio transmission systems and first and second radio reception systems. The present invention relates to a wireless communication system, a wireless communication method, and a wireless communication program for performing wireless communication in a fixed point-to-point manner in which wireless devices face each other in a wireless space.

現在、無線通信システムの分野においては、各種の無線通信方式が活発に検討されており、限られた無線周波数帯域の中で、種々の無線通信システムが次々に実用に供されている。この結果、いずれかの無線通信システムが、隣接チャンネルを利用する他の無線通信システムからの干渉波の影響を受けて、当該無線通信システムの無線伝送品質が劣化してしまう事態が発生するようになってきている。   Currently, in the field of wireless communication systems, various wireless communication systems are being actively studied, and various wireless communication systems are being put to practical use one after another within a limited wireless frequency band. As a result, any one of the wireless communication systems may be affected by an interference wave from another wireless communication system that uses the adjacent channel, so that the wireless transmission quality of the wireless communication system is deteriorated. It has become to.

かくのごとき隣接チャンネルの干渉波の影響による無線伝送品質の劣化を回避するために、例えば、特許文献1に記載されているように、指向性を有する複数のアンテナを備えて、隣接チャンネルからの影響を最小限に抑えるように、受信アンテナの指向性をコントロールするような技術が開示されている。   In order to avoid the deterioration of the radio transmission quality due to the influence of the interference wave of the adjacent channel as described above, for example, as described in Patent Document 1, a plurality of antennas having directivity are provided, A technique for controlling the directivity of the receiving antenna so as to minimize the influence is disclosed.

特開2010−263472号公報(第4−6頁)JP 2010-263472 A (page 4-6)

しかしながら、特許文献1に記載のような従来の無線通信システムにおいては、隣接チャンネルの運用が継続する限り、該隣接チャンネルの干渉による無線伝送品質の低下状態がそのまま固定してしまう場合も生じて、隣接チャンネルの運用が停止して、当該隣接チャンネルの干渉波がなくなるまで自無線回線の無線信号の伝送品質が改善されない場合が生じてしまう。この結果、敷設後に生じた隣接チャンネルの干渉波により、無線伝送品質が定常的に劣化する状況に陥り、新たな無線周波数申請や新たな無線通信システムへの置換が求められる事態も発生している。   However, in the conventional wireless communication system as described in Patent Document 1, as long as the operation of the adjacent channel continues, there may be a case where the deterioration state of the wireless transmission quality due to the interference of the adjacent channel is fixed as it is. There is a case where the transmission quality of the radio signal of the own radio channel is not improved until the operation of the adjacent channel is stopped and the interference wave of the adjacent channel disappears. As a result, there is a situation where the radio transmission quality is constantly deteriorated due to the interference wave of the adjacent channel generated after laying, and a new radio frequency application or replacement with a new radio communication system is required. .

前記特許文献1の技術とは異なる従来の無線通信システムの例として、ポイントツーポイント無線通信システムが知られている。このポイントツーポイント無線通信システムでは、例えば、無線送信系を第一無線送信系および第二無線送信系で構成する。このように、無線送信系を第一および第二をもって二重に備えた(1+1)冗長構成とすることにより、いずれか一方の無線送信系、例えば第一無線送信系を現用運用中(無線送信中)として特定の無線周波数の周波数帯域を用いて無線出力し、他方の無線送信系、例えば第二無線送信系を、現用運用中の一方の無線送信系(第一無線送信系)の故障時や保守により運用を停止することで送信系を切り替える時に備えて、無線伝送品質を継続確保するための予備系として第二無線送信系を待機させることができるホットスタンバイ構成である。一方、無線送信系を第一および第二をもって二重に備えた(1+1)冗長構成であり、二つの無線周波数(無線チャンネル)を使用して同一データを第一無線送信系と第二無線送信系とで同時に無線送信する無線周波数冗長構成となるFDD(Frequency Division Duplex)ツインパス構成が一般的であり、無線周波数や無線送信系の冗長構成により無線送信、受信間の無線伝送路を冗長にすることで隣接チャンネルによる干渉波の影響を抑えている。   A point-to-point wireless communication system is known as an example of a conventional wireless communication system different from the technique of Patent Document 1. In this point-to-point wireless communication system, for example, a wireless transmission system is composed of a first wireless transmission system and a second wireless transmission system. In this way, by adopting a (1 + 1) redundant configuration in which the radio transmission system is dually provided with the first and the second, any one of the radio transmission systems, for example, the first radio transmission system is in operation (wireless transmission). When a failure occurs in one radio transmission system (first radio transmission system) that is currently in operation, the other radio transmission system, for example, the second radio transmission system, is output wirelessly using a frequency band of a specific radio frequency. This is a hot standby configuration in which the second radio transmission system can be put on standby as a standby system for continuously ensuring the radio transmission quality in preparation for switching the transmission system by stopping operation due to maintenance. On the other hand, it is a (1 + 1) redundant configuration with two wireless transmission systems, the first and second, and the same data is transmitted using the two wireless frequencies (wireless channels). FDD (Frequency Division Duplex) twin-pass configuration is generally used, which is a radio frequency redundancy configuration for radio transmission simultaneously with the system, and the radio transmission path between radio transmission and reception is made redundant by the radio frequency and radio transmission system redundancy configuration This suppresses the influence of interference waves from adjacent channels.

(本発明の目的)
本発明は、FDDポイントツーポイント1+1無線システムにおいて、上り下り回線で独立にホットスタンバイ構成、FDDツインパス構成無線伝送の回線再構築を行える混在運用することで、隣接チャンネル干渉波による無線伝送品質の劣化を上り下り回線で独立に防止することができる、無線通信システム、無線装置、及び無線通信方法を提供することを、その目的としている。
(Object of the present invention)
In the FDD point-to-point 1 + 1 wireless system, the present invention performs a mixed operation that can independently reconfigure the hot standby configuration and the FDD twin path configuration wireless transmission in the uplink and downlink, thereby degrading the wireless transmission quality due to the adjacent channel interference wave. It is an object of the present invention to provide a wireless communication system, a wireless device, and a wireless communication method that can independently prevent transmission and reception on the uplink and downlink.

前述の課題を解決するため、本発明による無線通信システム、無線通信方法および無線通信プログラムは、次のような特徴的な構成を採用している。   In order to solve the above-described problems, the wireless communication system, the wireless communication method, and the wireless communication program according to the present invention employ the following characteristic configuration.

本発明の無線通信システムは、対向する第一無線装置と第二無線装置との間をポイントツーポイントの無線通信を行う無線通信システムであって、
前記第一無線装置および前記第二無線装置のそれぞれは、
無線周波数帯域の中心周波数である動作周波数を個別に設定できる第一送信器と、変調方式および無線占有帯域を個別に設定できる第一変調器とを含む第一の無線送信系、
無線周波数帯域の中心周波数である動作周波数を個別に設定できる第二送信器と、変調方式および無線占有帯域を個別に設定できる第二変調器とを含む第二の無線送信系と、
無線周波数帯域の中心周波数である動作周波数を個別に設定できる第一受信器と、変調方式および無線占有帯域を個別に設定できる第一復調器とを含む第一の無線受信系と、
無線周波数帯域の中心周波数である動作周波数を個別に設定できる第二受信器と、変調方式および無線占有帯域を個別に設定できる第二復調器とを含む第二の無線受信系と、を備えた(1+1)冗長構成からなり、
前記第一無線装置および前記第二無線装置のそれぞれが、前記第一および第二の無線送信系のうちいずれか一方の無線送信系を現用として、あらかじめ割り当てられた特定の無線周波数を動作周波数として用いて相手側の無線装置への送信動作を行い、他方の無線送信系を予備系として無線出力を停止状態にして待機するホットスタンバイ構成が可能な無線通信システムにおいて、
前記第一無線装置および第二無線装置のそれぞれは、
自無線回線の受信信号の無線伝送品質が劣化したか否かを検出する回線品質監視手段と、
前記受信信号の伝送品質が劣化した原因が、自無線装置が使用する前記無線周波数として占有する無線周波数帯域への隣接チャンネル干渉波によるものか否かを検出する隣接干渉波検出手段と、
前記第一送信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の下側無線周波数に、且つ前記第二送信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の上側無線周波数に、または前記第一受信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の下側無線周波数に、且つ前記第二受信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の上側無線周波数に、前記ホットスタンバイ構成時の無線周波数から周波数変更する周波数制御手段と、
前記第一変調器と前記第二変調器、または前記第一復調器と前記第二復調器のそれぞれの変調方式2のN(N:自然数)を、前記ホットスタンバイ構成時の少なくとも2倍に変更する変調方式制御手段と、
前記第一変調器と前記第二変調器、または前記第一復調器と前記第二復調器のそれぞれの占有帯域を、前記ホットスタンバイ構成時の半分の占有帯域に変更する占有帯域制御手段と、
前記第一受信器および前記第二受信器のそれぞれが受信した前記受信信号から品質の良い方の受信信号を選択して、受信データとして合成する伝送データ合成手段と、
前記隣接チャンネル干渉波により前記受信信号の無線伝送品質が劣化したと判定した場合に、前記劣化を検出した第一および第二の無線受信系について前記周波数制御手段、前記変調方式制御手段、前記占有帯域制御手段を制御して、前記ホットスタンバイ構成から、前記下側無線周波数と前記上側無線周波数との二つの無線周波数を用いて同一データを受信するFDDツインパス構成に構成変更する、または無線対向する相手側の無線装置から前記隣接チャンネル干渉波による前記受信信号の無線伝送品質の劣化通知を受け取った場合に、第一および第二の無線送信系について前記周波数制御手段、前記変調方式制御手段、前記占有帯域制御手段を制御して、前記ホットスタンバイ構成から、前記下側無線周波数と前記上側無線周波数との二つの無線周波数を用いて同一データを送信するFDDツインパス構成に装置構成変更する構成変更手段と、
を有することを特徴とする無線通信システムである。
The wireless communication system of the present invention is a wireless communication system that performs point-to-point wireless communication between a first wireless device and a second wireless device facing each other,
Each of the first wireless device and the second wireless device is
A first radio transmission system including a first transmitter capable of individually setting an operating frequency which is a center frequency of a radio frequency band, and a first modulator capable of individually setting a modulation scheme and a radio occupied band;
A second radio transmission system including a second transmitter capable of individually setting an operating frequency which is a center frequency of a radio frequency band; and a second modulator capable of individually setting a modulation scheme and a radio occupied band;
A first radio receiving system including a first receiver capable of individually setting an operating frequency which is a center frequency of a radio frequency band, and a first demodulator capable of individually setting a modulation scheme and a radio occupied band;
A second radio receiving system including a second receiver capable of individually setting an operating frequency, which is a center frequency of the radio frequency band, and a second demodulator capable of individually setting a modulation scheme and a radio occupied band. (1 + 1) consisting of redundant configuration,
Each of the first radio device and the second radio device has one of the first radio transmission system and the second radio transmission system as active, and a specific radio frequency assigned in advance as an operating frequency. In a wireless communication system capable of a hot standby configuration that performs a transmission operation to a wireless device on the other side using the other wireless transmission system as a standby system and waits with a wireless output stopped.
Each of the first wireless device and the second wireless device is
Channel quality monitoring means for detecting whether or not the radio transmission quality of the received signal of the own radio channel has deteriorated;
An adjacent interference wave detecting means for detecting whether or not the cause of the deterioration of the transmission quality of the received signal is due to an adjacent channel interference wave in a radio frequency band occupied as the radio frequency used by the own radio device;
The operating frequency of the first transmitter is set to a lower radio frequency when the radio frequency band at the time of the hot standby configuration is divided into upper and lower parts, and the operating frequency of the second transmitter is set to the value at the time of the hot standby configuration. The upper radio frequency when the radio frequency band is divided into two parts up or down, or the operating frequency of the first receiver, the lower radio frequency when the radio frequency band when the hot standby configuration is divided into two parts up and down, And the frequency control means for changing the frequency of the operating frequency of the second receiver to the upper radio frequency when the radio frequency band at the time of the hot standby configuration is divided into two up and down from the radio frequency at the time of the hot standby configuration,
N (N: natural number) of each of the modulation schemes 2 N of the first modulator and the second modulator, or the first demodulator and the second demodulator is at least twice that in the hot standby configuration. Modulation method control means to be changed;
Occupied band control means for changing the occupied band of each of the first modulator and the second modulator, or the first demodulator and the second demodulator to a half occupied band in the hot standby configuration,
Transmission data combining means for selecting a reception signal having a higher quality from the reception signals received by each of the first receiver and the second receiver, and combining the received signal as reception data;
When it is determined that the radio transmission quality of the received signal has deteriorated due to the adjacent channel interference wave, the frequency control means, the modulation scheme control means, and the occupation for the first and second radio reception systems that have detected the deterioration The bandwidth control means is controlled to change the configuration from the hot standby configuration to an FDD twin path configuration that receives the same data using the two radio frequencies of the lower radio frequency and the upper radio frequency, or to face the radio When receiving a notice of deterioration of the radio transmission quality of the received signal due to the adjacent channel interference wave from the radio apparatus on the other side, the frequency control means, the modulation method control means, the first radio transmission system, By controlling the occupied band control means, from the hot standby configuration, the lower radio frequency and the upper radio frequency The configuration changing means for equipment configuration changes to FDD Tsuinpasu configured for transmitting the same data using One radio frequency,
It is a radio | wireless communications system characterized by having.

本発明の無線通信方法は、対向する第一無線装置と第二無線装置との間をポイントツーポイントの無線通信を行う無線通信システムによる無線通信方法であって、
前記第一無線装置および前記第二無線装置それぞれは、第一送信器と第一変調器とを含む第一の無線送信系、第一受信器と第一復調器とを含む第一の無線受信系、第二送信器と第二変調器とを含む第二の無線送信系、および第二受信器と第二復調器とを含む第二の無線受信系を備えた(1+1)冗長構成を前記無線通信システムに適用し、前記第一および第二の無線送信系のうちいずれか一方の無線送信系を現用として、あらかじめ割り当てられた特定の無線周波数を動作周波数として用いて相手側の無線装置への無線送信動作を行い、他方の無線送信系を予備系として無線送信動作を停止し待機するホットスタンバイ構成が可能な無線通信方法において、
前記第一無線装置は、
自無線回線の受信信号の無線伝送品質が劣化したか否かを検出する回線品質監視ステップと、
前記受信信号の無線伝送品質が劣化した原因が、自無線装置が使用する前記無線周波数として占有する無線受信周波数帯域への隣接チャンネル干渉波によるものか否かを検出する隣接干渉波検出ステップと、
前記第一受信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の下側無線周波数に、前記第二受信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の上側無線周波数に、前記ホットスタンバイ構成時の無線周波数から周波数変更する受信周波数制御ステップと、
前記第一復調器と前記第二復調器のそれぞれの変調方式2のN(N:自然数)を、前記ホットスタンバイ構成時の少なくとも2倍に変更する受信変調方式制御ステップと、
前記第一復調器と前記第二復調器のそれぞれの占有帯域を、前記ホットスタンバイ構成時の半分の占有帯域に変更する受信占有帯域制御ステップと、
前記第一受信器および前記第二受信器それぞれが受信した前記受信信号から無線伝送品質の良い方の受信信号を選択して、受信データとして合成する伝送データ合成ステップと、
前記隣接チャンネル干渉波により前記受信信号の無線伝送品質が劣化したと判定した場合には、前記受信周波数制御ステップ、前記受信変調方式制御ステップ、前記受信占有帯域制御ステップを用いて、第一および第二の受信系を前記ホットスタンバイ構成から、前記下側無線周波数と前記上側無線周波数との二つの無線周波数を用いて同一データを受信するFDDツインパス構成に構成変更する受信構成変更ステップと、を有し、
前記第二無線装置は、
前記第一送信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の下側無線周波数に、前記第二送信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の上側無線周波数に、前記ホットスタンバイ構成時の無線周波数から周波数変更する送信周波数制御ステップと、
前記第一変調器と前記第二変調器のそれぞれの変調方式2のN(N:自然数)を、前記ホットスタンバイ構成時の少なくとも2倍に変更する送信変調方式制御ステップと、
前記第一変調器と前記第二変調器のそれぞれの占有帯域を、前記ホットスタンバイ構成時の半分の占有帯域に変更する送信占有帯域制御ステップと、
前記第一無線装置から前記隣接チャンネル干渉波による前記受信信号の無線伝送品質の劣化通知を受け取った場合に、前記送信周波数制御ステップ、前記送信変調方式制御ステップ、前記送信占有帯域制御ステップを用いて、第一および第二の送信系を前記ホットスタンバイ構成から、前記下側無線周波数と前記上側無線周波数との二つの無線周波数を用いて同一データを送信するFDDツインパス構成に装置構成変更する送信構成変更ステップと、
を有していることを特徴とする無線通信方法である。
The wireless communication method of the present invention is a wireless communication method by a wireless communication system that performs point-to-point wireless communication between a first wireless device and a second wireless device facing each other,
Each of the first radio apparatus and the second radio apparatus includes a first radio transmission system including a first transmitter and a first modulator, and a first radio reception including a first receiver and a first demodulator. A (1 + 1) redundant configuration comprising a system, a second radio transmission system including a second transmitter and a second modulator, and a second radio reception system including a second receiver and a second demodulator Applying to a wireless communication system, using one of the first and second wireless transmission systems as a current one and using a specific radio frequency assigned in advance as an operating frequency, to the counterpart wireless device In a wireless communication method capable of a hot standby configuration in which a wireless transmission operation is performed and the other wireless transmission system is set as a standby system to stop and wait for the wireless transmission operation,
The first wireless device is
A line quality monitoring step for detecting whether or not the radio transmission quality of the received signal of the own radio line has deteriorated;
An adjacent interference wave detection step for detecting whether or not the cause of the deterioration of the radio transmission quality of the received signal is due to an adjacent channel interference wave in a radio reception frequency band occupied as the radio frequency used by the own radio device;
The operating frequency of the first receiver is set to a lower radio frequency when the radio frequency band at the time of the hot standby configuration is vertically divided into two, and the operating frequency of the second receiver is set to the radio at the time of the hot standby configuration. A reception frequency control step of changing the frequency from the radio frequency at the time of the hot standby configuration to the upper radio frequency when the frequency band is divided into upper and lower parts,
A reception modulation scheme control step of changing N (N: natural number) of each modulation scheme 2 N of the first demodulator and the second demodulator to at least twice that in the hot standby configuration;
Receiving occupied band control step of changing each occupied band of the first demodulator and the second demodulator to a half occupied band in the hot standby configuration,
A transmission data combining step of selecting a reception signal having a better wireless transmission quality from the reception signals received by the first receiver and the second receiver, respectively, and combining the received signal as reception data;
When it is determined that the radio transmission quality of the received signal has deteriorated due to the adjacent channel interference wave, the reception frequency control step, the reception modulation scheme control step, and the reception occupied band control step are used to A receiving configuration change step for changing the configuration of the second receiving system from the hot standby configuration to an FDD twin path configuration that receives the same data using the two radio frequencies of the lower radio frequency and the upper radio frequency. And
The second wireless device is
The operating frequency of the first transmitter is set to a lower radio frequency when the radio frequency band at the time of the hot standby configuration is vertically divided into two, and the operating frequency of the second transmitter is set to the radio at the time of the hot standby configuration. A transmission frequency control step for changing the frequency from the radio frequency at the time of the hot standby configuration to the upper radio frequency when the frequency band is divided into upper and lower parts,
A transmission modulation scheme control step of changing N (N: natural number) of each modulation scheme 2 N of the first modulator and the second modulator to at least twice that in the hot standby configuration;
A transmission occupied band control step of changing each occupied band of the first modulator and the second modulator to a half occupied band in the hot standby configuration,
When receiving a notification of deterioration in radio transmission quality of the received signal due to the adjacent channel interference wave from the first radio device, using the transmission frequency control step, the transmission modulation scheme control step, and the transmission occupied band control step A transmission configuration in which the first and second transmission systems are changed from the hot standby configuration to an FDD twin-path configuration that transmits the same data using two radio frequencies, the lower radio frequency and the upper radio frequency. Change steps,
A wireless communication method characterized by comprising:

本発明の無線装置は、対向する二つの無線装置の間をポイントツーポイントの無線通信を行う無線通信システムの無線装置であって、
無線周波数帯域の中心周波数である動作周波数を個別に設定できる第一送信器と、変調方式および無線占有帯域を個別に設定できる第一変調器とを含む第一の無線送信系、
無線周波数帯域の中心周波数である動作周波数を個別に設定できる第二送信器と、変調方式および無線占有帯域を個別に設定できる第二変調器とを含む第二の無線送信系と、
無線周波数帯域の中心周波数である動作周波数を個別に設定できる第一受信器と、変調方式および無線占有帯域を個別に設定できる第一復調器とを含む第一の無線受信系と、
無線周波数帯域の中心周波数である動作周波数を個別に設定できる第二受信器と、変調方式および無線占有帯域を個別に設定できる第二復調器とを含む第二の無線受信系と、を備えた(1+1)冗長構成からなり、
前記第一および第二の無線送信系のうちいずれか一方の無線送信系を現用として、あらかじめ割り当てられた特定の無線周波数を動作周波数として用いて無線通信の相手側の無線装置への送信動作を行い、他方の無線送信系を予備系として無線出力を停止状態にして待機するホットスタンバイ構成が可能な無線装置において、
自無線回線の受信信号の無線伝送品質が劣化したか否かを検出する回線品質監視手段と、
前記受信信号の伝送品質が劣化した原因が、自無線装置が使用する前記無線周波数として占有する無線周波数帯域への隣接チャンネル干渉波によるものか否かを検出する隣接干渉波検出手段と、
前記第一送信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の下側無線周波数に、且つ前記第二送信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の上側無線周波数に、または前記第一受信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の下側無線周波数に、且つ前記第二受信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の上側無線周波数に、前記ホットスタンバイ構成時の無線周波数から周波数変更する周波数制御手段と、
前記第一変調器と前記第二変調器、または前記第一復調器と前記第二復調器のそれぞれの変調方式2のN(N:自然数)を、前記ホットスタンバイ構成時の少なくとも2倍に変更する変調方式制御手段と、
前記第一変調器と前記第二変調器、または前記第一復調器と前記第二復調器のそれぞれの占有帯域を、前記ホットスタンバイ構成時の半分の占有帯域に変更する占有帯域制御手段と、
前記第一受信器および前記第二受信器のそれぞれが受信した前記受信信号から品質の良い方の受信信号を選択して、受信データとして合成する伝送データ合成手段と、
前記隣接チャンネル干渉波により前記受信信号の無線伝送品質が劣化したと判定した場合に、前記劣化を検出した第一および第二の無線受信系について前記周波数制御手段、前記変調方式制御手段、前記占有帯域制御手段を制御して、前記ホットスタンバイ構成から、前記下側無線周波数と前記上側無線周波数との二つの無線周波数を用いて同一データを受信するFDDツインパス構成に構成変更する、または無線対向する相手側の無線装置から前記隣接チャンネル干渉波による前記受信信号の無線伝送品質の劣化通知を受け取った場合に、第一および第二の無線送信系について前記周波数制御手段、前記変調方式制御手段、前記占有帯域制御手段を制御して、前記ホットスタンバイ構成から、前記下側無線周波数と前記上側無線周波数との二つの無線周波数を用いて同一データを送信するFDDツインパス構成に構成変更する構成変更手段と、
を有することを特徴とする無線装置である。
A wireless device of the present invention is a wireless device of a wireless communication system that performs point-to-point wireless communication between two opposing wireless devices,
A first radio transmission system including a first transmitter capable of individually setting an operating frequency which is a center frequency of a radio frequency band, and a first modulator capable of individually setting a modulation scheme and a radio occupied band;
A second radio transmission system including a second transmitter capable of individually setting an operating frequency which is a center frequency of a radio frequency band; and a second modulator capable of individually setting a modulation scheme and a radio occupied band;
A first radio receiving system including a first receiver capable of individually setting an operating frequency which is a center frequency of a radio frequency band, and a first demodulator capable of individually setting a modulation scheme and a radio occupied band;
A second radio receiving system including a second receiver capable of individually setting an operating frequency, which is a center frequency of the radio frequency band, and a second demodulator capable of individually setting a modulation scheme and a radio occupied band. (1 + 1) consisting of redundant configuration,
One of the first and second wireless transmission systems is used as a current transmission, and a specific wireless frequency assigned in advance is used as an operating frequency to perform a transmission operation to a wireless device on the other side of wireless communication. In a wireless device capable of a hot standby configuration in which the other wireless transmission system is set as a standby system and the wireless output is stopped and waits,
Channel quality monitoring means for detecting whether or not the radio transmission quality of the received signal of the own radio channel has deteriorated;
An adjacent interference wave detecting means for detecting whether or not the cause of the deterioration of the transmission quality of the received signal is due to an adjacent channel interference wave in a radio frequency band occupied as the radio frequency used by the own radio device;
The operating frequency of the first transmitter is set to a lower radio frequency when the radio frequency band at the time of the hot standby configuration is divided into upper and lower parts, and the operating frequency of the second transmitter is set to the value at the time of the hot standby configuration. The upper radio frequency when the radio frequency band is divided into two parts up or down, or the operating frequency of the first receiver, the lower radio frequency when the radio frequency band when the hot standby configuration is divided into two parts up and down, And the frequency control means for changing the frequency of the operating frequency of the second receiver to the upper radio frequency when the radio frequency band at the time of the hot standby configuration is divided into two up and down from the radio frequency at the time of the hot standby configuration,
N (N: natural number) of each of the modulation schemes 2 N of the first modulator and the second modulator, or the first demodulator and the second demodulator is at least twice that in the hot standby configuration. Modulation method control means to be changed;
Occupied band control means for changing the occupied band of each of the first modulator and the second modulator, or the first demodulator and the second demodulator to a half occupied band in the hot standby configuration,
Transmission data combining means for selecting a reception signal having a higher quality from the reception signals received by each of the first receiver and the second receiver, and combining the received signal as reception data;
When it is determined that the radio transmission quality of the received signal has deteriorated due to the adjacent channel interference wave, the frequency control means, the modulation scheme control means, and the occupation for the first and second radio reception systems that have detected the deterioration The bandwidth control means is controlled to change the configuration from the hot standby configuration to an FDD twin path configuration that receives the same data using the two radio frequencies of the lower radio frequency and the upper radio frequency, or to face the radio When receiving a notice of deterioration of the radio transmission quality of the received signal due to the adjacent channel interference wave from the radio apparatus on the other side, the frequency control means, the modulation method control means, the first radio transmission system, By controlling the occupied band control means, from the hot standby configuration, the lower radio frequency and the upper radio frequency The configuration changing means for configuration changes to the FDD Tsuinpasu configured for transmitting the same data using One radio frequency,
It is a radio | wireless apparatus characterized by having.

また本発明の無線通信方法は、対向する二つの無線装置の間をポイントツーポイントの無線通信を行う無線通信システムの無線装置による無線通信方法であって、
前記無線装置は、第一送信器と第一変調器とを含む第一の無線送信系、第一受信器と第一復調器とを含む第一の無線受信系、第二送信器と第二変調器とを含む第二の無線送信系、および第二受信器と第二復調器とを含む第二の無線受信系を備えた(1+1)冗長構成からなり、前記第一および第二の無線送信系のうちいずれか一方の無線送信系を現用として、あらかじめ割り当てられた特定の無線周波数を動作周波数として用いて相手側の無線装置への無線送信動作を行い、他方の無線送信系を予備系として無線送信動作を停止し待機するホットスタンバイ構成が可能な無線装置の無線通信方法において、
前記第一送信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の下側無線周波数に、且つ前記第二送信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の上側無線周波数に、または前記第一受信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の下側無線周波数に、且つ前記第二受信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の上側無線周波数に、前記ホットスタンバイ構成時の無線周波数から周波数変更する周波数制御ステップと、
前記第一変調器と前記第二変調器、または前記第一復調器と前記第二復調器のそれぞれの変調方式2のN(N:自然数)を、前記ホットスタンバイ構成時の少なくとも2倍に変更する変調方式制御ステップと、
前記第一変調器と前記第二変調器、または前記第一復調器と前記第二復調器のそれぞれの占有帯域を、前記ホットスタンバイ構成時の半分の占有帯域に変更する占有帯域制御ステップと、
自無線回線の受信信号の無線伝送品質が劣化したか否かを検出し、伝送品質が劣化した原因が、自無線装置が使用する前記無線周波数として占有する無線周波数帯域への隣接チャンネル干渉波によるものと判定した場合に、前記劣化を検出した第一および第二の無線受信系について前記周波数制御ステップ、前記変調方式制御ステップ、前記占有帯域制御ステップを用いて、前記ホットスタンバイ構成から、前記下側無線周波数と前記上側無線周波数との二つの無線周波数を用いて同一データを受信するFDDツインパス構成に構成変更する、または無線対向する相手側の無線装置から前記隣接チャンネル干渉波による前記受信信号の無線伝送品質の劣化通知を受け取った場合に、第一および第二の無線送信系について前記周波数制御ステップ、前記変調方式制御ステップ、前記占有帯域制御ステップを用いて、前記ホットスタンバイ構成から、前記下側無線周波数と前記上側無線周波数との二つの無線周波数を用いて同一データを送信するFDDツインパス構成に構成変更する構成変更ステップと、
を有することを特徴とする無線通信方法である。
The wireless communication method of the present invention is a wireless communication method by a wireless device of a wireless communication system that performs point-to-point wireless communication between two facing wireless devices,
The wireless device includes a first wireless transmission system including a first transmitter and a first modulator, a first wireless reception system including a first receiver and a first demodulator, a second transmitter and a second transmitter. A first radio transmission system comprising a (1 + 1) redundant configuration comprising a second radio transmission system including a modulator and a second radio reception system including a second receiver and a second demodulator; One of the transmission systems is used as a working system, a specific radio frequency assigned in advance is used as an operating frequency, and a radio transmission operation is performed to a radio device on the other side, and the other radio transmission system is used as a standby system. In a wireless communication method of a wireless device capable of a hot standby configuration to stop and wait for wireless transmission operation as
The operating frequency of the first transmitter is set to a lower radio frequency when the radio frequency band at the time of the hot standby configuration is divided into upper and lower parts, and the operating frequency of the second transmitter is set to the value at the time of the hot standby configuration. The upper radio frequency when the radio frequency band is divided into two parts up or down, or the operating frequency of the first receiver, the lower radio frequency when the radio frequency band when the hot standby configuration is divided into two parts up and down, And the frequency control step of changing the frequency from the radio frequency at the time of the hot standby configuration to the upper radio frequency when the operating frequency of the second receiver is divided into the upper and lower radio frequency bands at the time of the hot standby configuration, and
N (N: natural number) of each of the modulation schemes 2 N of the first modulator and the second modulator, or the first demodulator and the second demodulator is at least twice that in the hot standby configuration. A modulation scheme control step to be changed;
Occupied band control step of changing each occupied band of the first modulator and the second modulator, or the first demodulator and the second demodulator to half the occupied band in the hot standby configuration,
It is detected whether or not the radio transmission quality of the received signal of the own radio line is deteriorated, and the cause of the deterioration of the transmission quality is due to the adjacent channel interference wave to the radio frequency band occupied as the radio frequency used by the own radio device. If it is determined that the degradation is detected, the frequency control step, the modulation scheme control step, and the occupied band control step are used for the first and second radio reception systems from which the degradation has been detected. Change the configuration to an FDD twin path configuration that receives the same data using two radio frequencies of the side radio frequency and the upper radio frequency, or change the received signal by the adjacent channel interference wave from the radio device on the other side facing the radio The frequency control step is performed for the first and second radio transmission systems when a notice of degradation of radio transmission quality is received. The FDD twin path configuration that transmits the same data using the two radio frequencies of the lower radio frequency and the upper radio frequency from the hot standby configuration using the modulation scheme control step and the occupied band control step. A configuration change step for changing the configuration;
A wireless communication method characterized by comprising:

本発明によれば、隣接チャンネルの干渉波により、伝送品質が劣化する状況になった場合であっても、新たな周波数申請や新たな無線通信システムへの置き換えを行う必要がなく、無線装置内の設定変更を行うだけで、元の伝送容量のままで、隣接チャンネルの干渉波による伝送品質の劣化状態を解消させ、無線伝送品質を良好な状態に復帰させることができるという効果を奏することができる。また、上記動作を上り下りの無線回線で個別に行うため、一方の隣接チャンネルの干渉波により伝送品質が劣化した回線のシステム変更を実施にあたり、もう一方の伝送品質の劣化していない回線は切断することがない。   According to the present invention, there is no need to apply for a new frequency or replace with a new wireless communication system even when the transmission quality deteriorates due to an interference wave of an adjacent channel. It is possible to eliminate the deterioration of the transmission quality due to the interference wave of the adjacent channel and restore the wireless transmission quality to a good state simply by changing the setting of it can. In addition, since the above operations are performed individually on the uplink and downlink radio lines, when the system change of the line whose transmission quality has deteriorated due to the interference wave of one adjacent channel, the other line whose transmission quality has not deteriorated is disconnected. There is nothing to do.

本発明による無線通信システムの装置構成の一例を示す装置構成図である。It is an apparatus block diagram which shows an example of the apparatus structure of the radio | wireless communications system by this invention. 図1に示す無線通信システムを構成する無線装置内の隣接干渉波検出部の内部構成の一例を示すブロック構成図である。FIG. 2 is a block configuration diagram illustrating an example of an internal configuration of an adjacent interference wave detection unit in a wireless device that configures the wireless communication system illustrated in FIG. 1. 図1に示す無線通信システムを構成する無線装置内の無線信号制御部の内部構成の一例を示すブロック構成図である。FIG. 2 is a block configuration diagram illustrating an example of an internal configuration of a radio signal control unit in a radio apparatus configuring the radio communication system illustrated in FIG. 1. 図1に示した無線通信システムを構成する無線装置内の無線信号制御部において隣接チャンネルからの干渉が発生していることを判断する動作の一例を説明するためのフローチャートである。3 is a flowchart for explaining an example of an operation for determining that interference from an adjacent channel is occurring in a radio signal control unit in a radio apparatus constituting the radio communication system shown in FIG. 1. 図1に示した無線通信システムを構成する無線装置内の無線信号制御部において、無線伝送品質の劣化した回線をホットスタンバイ構成からFDDツインパス構成へ構成変更する動作の一例を説明するためのフローチャートである。FIG. 3 is a flowchart for explaining an example of an operation of changing the configuration of a line with degraded radio transmission quality from a hot standby configuration to an FDD twin path configuration in a radio signal control unit in a radio apparatus configuring the radio communication system shown in FIG. 1. is there. 図1に示した無線通信システムを構成する無線装置内の無線信号制御部においてFDDツインパス構成時の隣接チャンネルの干渉があらかじめ定めた干渉閾値よりも低下したことを判断する際の動作の一例を説明するためのフローチャートである。An example of operation when it is determined in the radio signal control unit in the radio apparatus constituting the radio communication system shown in FIG. 1 that the interference of adjacent channels in the FDD twin path configuration is lower than a predetermined interference threshold value will be described. It is a flowchart for doing. 図1に示した無線通信システムを構成する無線装置内の無線信号制御部においてFDDツインパス構成からホットスタンバイ構成へ復帰させる構成変更を行う動作の一例を説明するためのフローチャートの前半部分である。FIG. 6 is a first half of a flowchart for explaining an example of an operation for performing a configuration change for returning from the FDD twin path configuration to the hot standby configuration in the radio signal control unit in the radio apparatus configuring the radio communication system illustrated in FIG. 1. 図1に示した無線通信システムを構成する無線装置内の無線信号制御部においてFDDツインパス構成からホットスタンバイ構成へ復帰させる構成変更を行う動作の一例を説明するためのフローチャートの後半部分である。FIG. 6 is a second half of a flowchart for explaining an example of an operation of performing a configuration change for returning from the FDD twin path configuration to the hot standby configuration in the radio signal control unit in the radio apparatus configuring the radio communication system illustrated in FIG. 1. 図1〜図3に示した無線通信システムの動作の一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of operation | movement of the radio | wireless communications system shown in FIGS.

以下、本発明による無線通信システム、無線装置、無線通信方法および無線通信プログラムの好適な実施形態について添付図を参照して説明する。なお、以下の説明においては、本発明による無線通信システムよび無線通信方法について説明するが、かかる無線通信方法をコンピュータにより実行可能な無線通信プログラムとして実施するようにしても良いし、あるいは、無線通信プログラムをコンピュータにより読み取り可能な記録媒体に記録するようにしても良いことは言うまでもない。また、以下の各図面に付した図面参照符号は、理解を助けるための一例として各要素に便宜上付記したものであり、本発明を図示の態様に限定することを意図するものではないことも言うまでもない。   Preferred embodiments of a wireless communication system, a wireless device, a wireless communication method, and a wireless communication program according to the present invention will be described below with reference to the accompanying drawings. In the following description, a wireless communication system and a wireless communication method according to the present invention will be described. However, the wireless communication method may be implemented as a wireless communication program that can be executed by a computer, or wireless communication. Needless to say, the program may be recorded on a computer-readable recording medium. In addition, it is needless to say that the drawing reference numerals attached to the following drawings are added for convenience to the respective elements as an example for facilitating understanding, and are not intended to limit the present invention to the illustrated embodiments. Yes.

(本発明の特徴)
本発明の実施形態の説明に先立って、本発明の特徴についてその概要をまず説明する。
本発明は、空間対向する二つの無線装置間のポイントツーポイント通信を行う無線通信システムであって、それら二つの無線装置それぞれの送信系、受信系が、各々ホットスタンバイ動作が可能な(1+1)冗長構成からなる無線通信システムにおいて、
ホットスタンバイ構成時のf0’を中心周波数とする無線周波数帯域を下側無線周波数帯(f1’を中心周波数とする無線周波数帯A)と上側無線周波数帯(f2’を中心周波数とする無線周波数帯B)とに二分して無線伝送するための周波数制御機能と、
無線占有帯域をホットスタンバイ構成時の半分に設定する占有帯域制御機能と、
伝送容量すなわち変調方式2のN(N:自然数)をホットスタンバイ構成時の少なくとも2倍にするための変調方式制御機能とを送信系と受信系で個別に制御できる機能を少なくとも備えることにより、
隣接チャンネルの干渉波により、無線伝送品質が劣化する状況になった場合であっても、新たな無線周波数チャンネルへの変更や新たな無線通信システムへの置き換えを行う必要がなく、伝送品質が劣化した回線のみ無線装置内の設定変更を行うだけで、元の伝送容量のままで、隣接チャンネルからの干渉の影響を解消し、伝送品質の劣化していない無線回線を切断することなく、無線伝送品質を良好な状態に復帰させることを可能にしている。
(Features of the present invention)
Prior to the description of the embodiments of the present invention, an outline of the features of the present invention will be described first.
The present invention is a wireless communication system that performs point-to-point communication between two wireless devices facing each other, and each of the transmission system and the reception system of the two wireless devices can perform a hot standby operation (1 + 1). In a wireless communication system having a redundant configuration,
In the hot standby configuration, the radio frequency band centered on f0 ′ is the lower radio frequency band (radio frequency band A centered on f1 ′) and the upper radio frequency band (radio frequency band centered on f2 ′). B) A frequency control function for wireless transmission in half,
Occupied bandwidth control function that sets the wireless occupied bandwidth to half of the hot standby configuration,
By providing at least a function that can individually control the transmission capacity, that is, the modulation system control function for making N (N: natural number) of the modulation system 2 N at least twice that in the hot standby configuration, in the transmission system and the reception system,
Even if the radio transmission quality deteriorates due to the interference wave of the adjacent channel, there is no need to change to a new radio frequency channel or replace with a new radio communication system, and the transmission quality deteriorates. By changing the settings in the wireless device only for the changed line, the original transmission capacity remains unchanged, eliminating the effects of interference from adjacent channels, and wireless transmission without disconnecting a wireless line that has not deteriorated transmission quality. It is possible to return the quality to a good state.

より具体的には、本発明による無線通信システムは次のような構成を備えている。すなわち、本発明による無線通信システムは、
ポイントツーポイント通信を行う無線対向する二つの無線装置から構成されており、それぞれの無線装置は、第一および第二の無線送信系と、第一および第二の無線受信系と、を備えた(1+1)冗長構成からなり、前記第一および第二の無線送信系のうち、いずれか一方の無線送信系を現用として、あらかじめ割り当てられた特定の無線周波数を用いて相手側の無線装置への無線送信動作を行い、他方の無線送信系を機器冗長の予備系として待機するホットスタンバイ構成が可能であって、かつ、回線品質監視手段、隣接干渉波検出手段、周波数制御手段、占有帯域制御手段、変調方式制御手段、伝送データ合成手段、構成変更手段の各手段を少なくとも備えている。構成復帰手段をさらに備えていてもよい。なお、前記第一の無線送信系は、第一送信器、第二送信器、第一変調器、第二変調器を備え、前記第一の無線受信系としては、第一復調器、第二復調器、第一受信器、第二受信器を備える。そして、前記第二の無線送信系と前記第二の無線受信系としては、各々送信、受信で独立した周波数制御、占有帯域制御、変調方式制御に応じて動作できるような特徴を有している。
More specifically, the radio communication system according to the present invention has the following configuration. That is, the wireless communication system according to the present invention is:
It is composed of two radio devices that perform radio point-to-point communication, and each radio device includes a first and second radio transmission system and a first and second radio reception system. (1 + 1) It has a redundant configuration, and either one of the first and second radio transmission systems is used as an active line, and a specific radio frequency assigned in advance is used to transmit to the counterpart radio apparatus. A hot standby configuration is possible in which radio transmission operation is performed and the other radio transmission system is on standby as a redundant system for equipment redundancy, and line quality monitoring means, adjacent interference wave detection means, frequency control means, occupied bandwidth control means , Modulation method control means, transmission data synthesis means, and configuration change means. Configuration return means may be further provided. The first radio transmission system includes a first transmitter, a second transmitter, a first modulator, and a second modulator. The first radio reception system includes a first demodulator, a second demodulator, and a second demodulator. A demodulator, a first receiver, and a second receiver are provided. The second radio transmission system and the second radio reception system have characteristics that can operate according to independent frequency control, occupied band control, and modulation method control for transmission and reception, respectively. .

(1)前記回線品質監視手段は、自無線回線の受信信号の無線伝送品質が劣化したか否かを検出する手段である。無線伝送品質が劣化したかどうかは、ビットエラー率、CN比等により判断することができる。   (1) The line quality monitoring means is means for detecting whether or not the radio transmission quality of the received signal of the own radio line has deteriorated. Whether the radio transmission quality has deteriorated can be determined from the bit error rate, the CN ratio, or the like.

(2)前記隣接干渉波検出手段は、前記受信信号の伝送品質が劣化した原因が、自無線装置が使用する無線周波数として占有する無線周波数帯域への前記隣接チャンネル干渉波によるものか否かを検出する手段である。   (2) The adjacent interference wave detection means determines whether or not the cause of the deterioration in transmission quality of the received signal is due to the adjacent channel interference wave in a radio frequency band occupied as a radio frequency used by the own radio apparatus. It is a means to detect.

(3)前記周波数制御手段は、ホットスタンバイ構成時に、前記隣接チャンネル干渉波により第一無線装置の前記受信信号の伝送品質が劣化したと判定した時に、自無線装置の第一受信器の受信用動作周波数を、ホットスタンバイ構成時の無線周波数f0'の帯域を上下に二分した際の下側無線周波数f1'(もしくは上側無線周波数f2')に、自無線装置の第二受信器の受信用動作周波数を、無線周波数f0'の帯域の上側無線周波数f2'(もしくは下側無線周波数f1')に、無線周波数f0'から周波数変更する手段である。前記周波数制御手段は、前記隣接チャンネル干渉波による前記受信信号aの伝送品質劣化を解消することができたと判定した時には、自無線装置の前記第一受信器および前記第二受信器のそれぞれの受信用の動作周波数をホットスタンバイ構成時の無線周波数f0'に戻すことが好ましい。   (3) When the frequency control means determines that the transmission quality of the received signal of the first radio apparatus has deteriorated due to the adjacent channel interference wave in the hot standby configuration, the frequency control means is for receiving by the first receiver of the own radio apparatus. Operation for reception of the second receiver of the own radio device at the lower radio frequency f1 ′ (or upper radio frequency f2 ′) when the operating frequency is divided into two parts up and down in the band of the radio frequency f0 ′ in the hot standby configuration This is means for changing the frequency from the radio frequency f0 ′ to the upper radio frequency f2 ′ (or the lower radio frequency f1 ′) of the band of the radio frequency f0 ′. When the frequency control means determines that the transmission quality deterioration of the received signal a due to the adjacent channel interference wave can be eliminated, each reception of the first receiver and the second receiver of the own radio apparatus It is preferable to return the operating frequency to the radio frequency f0 ′ in the hot standby configuration.

なお、前記周波数制御手段は、無線対向する相手側の第二無線装置においては、対向する第一無線装置から前記隣接チャンネル干渉波による前記受信信号aの伝送品質劣化通知を受け取ると、自無線装置の第一送信器の送信用動作周波数を、自無線装置の無線周波数f0'の帯域を上下に二分した際の下側無線周波数f1'(もしくは上側無線周波数f2')に、自無線装置の第二送信器の送信用動作周波数を、無線周波数f0'の上側無線周波数f2'(もしくは下側無線周波数f1')に、無線周波数f0'から周波数変更する手段である。前記周波数制御手段は、前記受信信号aの品質劣化解消の通知を受け取ると、自無線装置の前記第一送信器および前記第二送信器のそれぞれの送信用動作周波数をホットスタンバイ構成時の無線周波数f0'に戻すことが好ましい。第一無線装置を第二無線装置に、第二無線装置を第一無線装置に置き換えても同様である。   When the frequency control means receives the transmission quality deterioration notification of the received signal a due to the adjacent channel interference wave from the opposing first wireless device in the wireless second opposing wireless device, the own wireless device The transmission frequency of the first transmitter is divided into the lower radio frequency f1 ′ (or the upper radio frequency f2 ′) when the band of the radio frequency f0 ′ of the own radio device is vertically divided into the upper and lower radio frequencies f1 ′ (or upper radio frequency f2 ′). This is means for changing the transmission operating frequency of the two transmitters from the radio frequency f0 ′ to the upper radio frequency f2 ′ (or the lower radio frequency f1 ′) of the radio frequency f0 ′. When the frequency control means receives notification of quality degradation cancellation of the received signal a, the transmission frequency of each of the first transmitter and the second transmitter of the own radio apparatus is a radio frequency in a hot standby configuration. It is preferable to return to f0 ′. The same applies when the first wireless device is replaced with the second wireless device and the second wireless device is replaced with the first wireless device.

(4)前記変調方式制御手段は、ホットスタンバイ構成時に、前記隣接チャンネル干渉波により第一無線装置の前記受信信号aの伝送品質が劣化したと判定した時に、自無線装置の第一復調器、および第二復調器のそれぞれの変調方式2のN(N:自然数)を、ホットスタンバイ構成時の少なくとも2倍に変更する手段である。前記変調方式制御手段は、前記隣接チャンネル干渉波による前記受信信号aの伝送品質劣化を解消することができたと判定した時には、自無線装置の前記第一復調器、および第二復調器のそれぞれの変調方式2のNを1/2にして、ホットスタンバイ構成時の元の変調方式に戻すことが好ましい。 (4) When the modulation scheme control means determines that the transmission quality of the received signal a of the first radio apparatus has deteriorated due to the adjacent channel interference wave in the hot standby configuration, the first demodulator of the own radio apparatus, And means for changing N (N: natural number) of each modulation scheme 2 N of the second demodulator to at least twice that in the hot standby configuration. When the modulation scheme control means determines that the transmission quality deterioration of the received signal a due to the adjacent channel interference wave can be eliminated, each of the first demodulator and the second demodulator of the own radio apparatus Modulation method 2 Preferably, N of N is halved to return to the original modulation method in the hot standby configuration.

なお、前記変調方式制御手段は、相手側の第二無線装置においては、対向する第一無線装置から前記隣接チャンネル干渉波による前記受信信号aの伝送品質劣化通知を受け取ると、自無線装置の第一変調器、および第二変調器のそれぞれの変調方式2のNを、ホットスタンバイ構成時の少なくとも2倍に変更する手段である。前記変調方式制御手段は、前記受信信号aの伝送品質劣化解消の通知を受け取ると、前記第二無線装置の前記第一変調器、および前記第二変調器のそれぞれの変調方式2のNを1/2にして、ホットスタンバイ構成時の元の変調方式に戻すことが好ましい。第一無線装置を第二無線装置に、第二無線装置を第一無線装置に置き換えても同様である。変調方式2のNは2倍以上であればよく、3倍、4倍、5倍等であってもよい。 The modulation scheme control means, when receiving the transmission quality deterioration notification of the received signal a due to the adjacent channel interference wave from the opposing first radio apparatus, in the counterpart second radio apparatus, This is means for changing the N of the modulation scheme 2N of each of the one modulator and the second modulator to at least twice that in the hot standby configuration. When the modulation scheme control means receives the notification of the transmission quality degradation cancellation of the received signal a, N of the modulation schemes 2 N of the first modulator and the second modulator of the second radio device is set. It is preferable to halve and return to the original modulation method in the hot standby configuration. The same applies when the first wireless device is replaced with the second wireless device and the second wireless device is replaced with the first wireless device. N of modulation method 2 N may be two times or more, and may be three times, four times, five times, or the like.

(5)前記占有帯域制御手段は、ホットスタンバイ構成時に、前記第一無線装置が前記隣接チャンネル干渉波により前記受信信号aの伝送品質が劣化したと判定した時に、自無線装置の前記第一復調器、および前記第二復調器のそれぞれの占有帯域を、ホットスタンバイ構成時の半分の占有帯域に変更する手段である。前記占有帯域制御手段は、前記隣接チャンネル干渉波による前記受信信号aの伝送品質劣化を解消することができたと判定した時には、自無線装置の前記第一復調器、および前記第二復調器のそれぞれの占有帯域を2倍して、ホットスタンバイ構成時の元の占有帯域に戻すことが好ましい。
なお、前記占有帯域制御手段は、無線対向する相手側の第二無線装置においては、対向する第一無線装置から前記隣接チャンネル干渉波による前記受信信号aの伝送品質劣化通知を受け取ると自無線装置の前記第一変調器、および前記第二変調器のそれぞれの占有帯域を、ホットスタンバイ構成時の半分の占有帯域に変更する手段である。前記占有帯域制御手段は、前記受信信号aの品質劣化解消の通知を受け取ると、自無線装置の前記第一変調器、および前記第二変調器のそれぞれの占有帯域を2倍して、ホットスタンバイ構成時の元の占有帯域に戻すことが好ましい。第一無線装置を第二無線装置に、第二無線装置を第一無線装置に置き換えても同様である。
(5) In the hot standby configuration, when the first radio apparatus determines that the transmission quality of the received signal a has deteriorated due to the adjacent channel interference wave in the hot standby configuration, the occupied band control means And a means for changing the occupied bands of the second demodulator to half the occupied bands in the hot standby configuration. When the occupied band control means determines that transmission quality deterioration of the received signal a due to the adjacent channel interference wave can be eliminated, each of the first demodulator and the second demodulator of the own radio apparatus Is preferably doubled to return to the original occupied bandwidth in the hot standby configuration.
In the second radio apparatus on the other side facing the radio, the occupied band control means receives the transmission quality deterioration notification of the received signal a due to the adjacent channel interference wave from the first radio apparatus facing the own radio apparatus. Means for changing the occupied bandwidth of each of the first modulator and the second modulator to a half occupied bandwidth in the hot standby configuration. When the occupied band control means receives the notification of the quality degradation cancellation of the received signal a, the occupied band control means doubles the occupied bands of the first modulator and the second modulator of its own radio apparatus, and performs hot standby. It is preferable to return to the original occupied band at the time of configuration. The same applies when the first wireless device is replaced with the second wireless device and the second wireless device is replaced with the first wireless device.

(6)隣接チャンネル干渉波による伝送品質劣化が分割した下側無線周波数f1'もしくは上側無線周波数f2'の何れかにのみ生じ、他方の伝送品質には影響を与えないため、少なくとも一方の伝送品質には劣化が生じていないため、前記伝送データ合成手段は、第一無線装置(または第二無線装置)の前記第一受信器および前記第二受信器のそれぞれが受信した前記受信信号aから品質の良い方の受信信号aを選択して、伝送データjとして合成する手段である。   (6) Transmission quality degradation due to adjacent channel interference waves occurs only in one of the divided lower radio frequency f1 'and upper radio frequency f2' and does not affect the other transmission quality, so at least one transmission quality Since no degradation has occurred in the transmission data combining means, the transmission data synthesizing means determines the quality from the received signal a received by each of the first receiver and the second receiver of the first radio apparatus (or second radio apparatus). Is a means for selecting the better received signal a and synthesizing it as transmission data j.

(7)前記構成変更手段は、前記第一無線装置が前記隣接チャンネル干渉波により前記受信信号aの伝送品質が劣化したと判定した時、前記周波数変更手段、前記変調方式制御手段、前記占有帯域制御手段を制御して、受信側をホットスタンバイ構成から、前記下側無線周波数f1'と前記上側無線周波数f2’との二つの無線周波数を用いて同一データを受信するFDDツインパス構成に構成変更する手段、もしくは前記第二無線装置が、対向する前記第一無線装置から前記隣接チャンネル干渉波による前記受信信号aの伝送品質劣化通知を受け取った時に、前記周波数変更手段、前記変調方式制御手段、前記占有帯域制御手段を制御して、送信側をホットスタンバイ構成から、前記下側無線周波数f1'と前記上側無線周波数f2'との二つの無線周波数を用いて同一データを送信するFDDツインパス構成に構成変更する手段である。すなわち構成変更手段は、通常運用状態の第一無線装置(または第二無線装置)の自無線回線で、あらかじめ割り当てられた無線周波数f0(f0')を用いて現用の前記第一送信器から送信し、前記第一受信器で受信し、予備側の前記第二送信器および予備側の前記第二受信器を待機させるという通常運用状態のホットスタンバイ構成から、前記無線周波数f0(f0')の帯域を下側無線周波数f1(f1')と上側無線周波数f2(f2')に送信系と受信系を個別に二分し、送信系は、前記第一送信器が、前記下側無線周波数f1(f1')で送信し、前記第二送信器が、前記上側無線周波数f2(f2')で送信し、受信系は、前記第一受信器が、前記下側無線周波数f1'(f1)で受信し、前記第二受信器が、前記上側無線周波数f2'(f2)で受信するFDDツインパス構成に変更するための手段である。   (7) When the first radio apparatus determines that the transmission quality of the received signal a has deteriorated due to the adjacent channel interference wave, the configuration changing unit is configured to change the frequency changing unit, the modulation scheme control unit, and the occupied band. By controlling the control means, the receiving side is reconfigured from a hot standby configuration to an FDD twin path configuration that receives the same data using the two radio frequencies of the lower radio frequency f1 ′ and the upper radio frequency f2 ′. Or when the second radio apparatus receives a transmission quality degradation notification of the received signal a due to the adjacent channel interference wave from the opposing first radio apparatus, the frequency changing means, the modulation scheme control means, By controlling the occupied band control means, the transmission side is switched from the hot standby configuration, and the two radio frequencies of the lower radio frequency f1 ′ and the upper radio frequency f2 ′ are set. It is a means for changing the configuration to an FDD twin path configuration that transmits the same data. That is, the configuration changing means transmits from the active first transmitter using the radio frequency f0 (f0 ′) assigned in advance on the own radio line of the first radio device (or the second radio device) in the normal operation state. From the hot standby configuration in a normal operation state in which the first receiver receives and the standby second transmitter and the standby second receiver are on standby, the radio frequency f0 (f0 ′) The transmission system and the reception system are separately divided into a lower radio frequency f1 (f1 ′) and an upper radio frequency f2 (f2 ′). The transmission system includes the first transmitter, and the lower radio frequency f1 ( f1 '), the second transmitter transmits at the upper radio frequency f2 (f2'), and the receiving system receives the first receiver at the lower radio frequency f1 '(f1) Then, the second receiver is changed to an FDD twin path configuration for receiving at the upper radio frequency f2 ′ (f2). It is a means to do.

(8)以上本発明の特徴となる構成について説明したが、さらに構成復帰手段を備えていてもよい。前記構成復帰手段は、前記隣接チャンネル干渉波による前記受信信号aの伝送品質劣化を解消することができたと判定した時、もしくは、対向する無線装置から前記隣接チャンネル干渉波による前記受信信号の伝送品質劣化解消の通知を受け取った時に、前記周波数変更手段、前記変調方式制御手段、前記占有帯域制御手段を制御して、FDDツインパス構成から元のホットスタンバイ構成に戻すための手段である。すなわち、該構成復帰手段は、前記構成変更手段の逆の動作を行うものであり、前記第一無線装置は前記第一受信器が前記下側無線周波数帯域f1'で受信し、前記第二受信器が前記上側無線周波数帯域f2'で受信し、無線対向する前記第二無線装置の前記第一送信器が、前記下側無線周波数帯域f1'で送信し、前記第二送信器が、前記上側無線周波数帯域f2'で送信するFDDツインパス構成から、前記第一無線装置は前記無線周波数f0'を用いて現用の前記第一受信器(もしくは前記第二受信器)から受信するホットスタンバイ構成に、無線対向する第二無線装置は前記無線周波数f0'を用いて現用の前記第一送信器(もしくは前記第二送信器)から送信するホットスタンバイ構成に構成を復帰させるための手段である。   (8) Although the configuration that characterizes the present invention has been described above, a configuration returning means may be further provided. The configuration recovery means determines that the transmission quality deterioration of the received signal a due to the adjacent channel interference wave can be eliminated, or the transmission quality of the received signal due to the adjacent channel interference wave from the opposing radio apparatus. When receiving the notification of degradation cancellation, the frequency change means, the modulation scheme control means, and the occupied band control means are controlled to return from the FDD twin path configuration to the original hot standby configuration. That is, the configuration recovery means performs the reverse operation of the configuration change means, and the first radio device receives the first receiver in the lower radio frequency band f1 ′, and the second reception Is received in the upper radio frequency band f2 ′, the first transmitter of the second radio device facing the radio is transmitted in the lower radio frequency band f1 ′, and the second transmitter is the upper radio frequency band f2 ′. From the FDD twin path configuration that transmits in the radio frequency band f2 ′, the first radio device uses the radio frequency f0 ′ to receive from the active first receiver (or the second receiver). The second radio apparatus facing the radio is a means for returning the configuration to the hot standby configuration in which the radio frequency f0 ′ is used to transmit from the active first transmitter (or the second transmitter).

隣接チャンネルの干渉波の影響を受けて無線伝送品質の劣化が発生した場合であっても、該干渉波が生じている無線回線を使用している二つの無線装置内の設定をFDDツインパス構成に設定を変更することにより、元の伝送容量のまま、隣接干渉波の影響を受けない状態の無線データ通信を復帰させることができ、無線伝送品質を良好な状態に戻すことができる。また、送信系と受信系を個別に設定変更できることにより、隣接チャンネルの干渉波の影響により、無線通信回線の上りと下りでどちらか一方のみ無線伝送品質の劣化が発生した場合であっても、無線伝送品質の劣化していないもう一方の回線は現状維持のままとし、切断することなく、無線伝送品質が劣化した回線のみを設定変更することで無線伝送品質を良好な状態に戻すことができる。   Even if wireless transmission quality deteriorates due to the influence of the interference wave of the adjacent channel, the settings in the two wireless devices using the wireless line where the interference wave is generated can be changed to the FDD twin path configuration. By changing the setting, it is possible to restore the wireless data communication in a state where the original transmission capacity is not affected by the adjacent interference wave, and to return the wireless transmission quality to a good state. In addition, because the transmission system and the reception system can be individually set and changed, even when the degradation of the radio transmission quality occurs in only one of the uplink and downlink of the radio communication line due to the influence of the interference wave of the adjacent channel, The other line where the wireless transmission quality has not deteriorated can be maintained as it is, and the wireless transmission quality can be returned to a good state by changing the setting of only the line with the deteriorated wireless transmission quality without being disconnected. .

(実施形態の構成例)
次に、本発明による無線通信システムの一実施形態の構成例について、図1を参照して詳細に説明する。図1は、本発明による無線通信システムの一実施形態の装置構成の一例を示す装置構成図である。
(Configuration example of embodiment)
Next, a configuration example of an embodiment of a wireless communication system according to the present invention will be described in detail with reference to FIG. FIG. 1 is an apparatus configuration diagram showing an example of an apparatus configuration of an embodiment of a wireless communication system according to the present invention.

図1に示す無線通信システムは、ポイントツーポイント無線通信を行う第一無線装置101、第二無線装置201として、互いに空間対向する第一無線装置101および第二無線装置201を含んで構成されている。ここで、第一無線装置101および第二無線装置201は、同一の装置構成からなり、それぞれ、二つの無線送信系と二つの無線受信系とを個別に備えている。そしてこれら二つの第一無線装置101および第二無線装置201を有する無線通信システムは、通常運用状態においては、いずれか一方の無線送信系を現用として、あらかじめ割り当てられた特定の無線周波数f0(第一無線装置101の場合)または無線周波数f0'(第二無線装置201の場合)を用いて、相手側の無線装置への送信動作を行い、他方の無線送信系を機器冗長の予備系として待機させるホットスタンバイ構成を採用している。
図1において、同一構成の無線装置101,201においては、同一の機能ブロックには、同一の参照符号が付してある。また、第一無線装置101および第二無線装置201のそれぞれは、同一の機能の送信器、受信器、変調器および復調器を二つずつ有するので、それら同一機能の二つの機器を識別するために、各機能ブロックの符号の末尾に「-1」又は「-2」なる符号を付した。同一機能の各機器の参照符号末尾に「-1」又は「-2」を付したことにより、両無線装置101,201が、同一機能を有する「第一の機能ブロック」および「第二の機能ブロック」でもって二重化した(1+1)冗長構成であることを示している。例えば、符号102-1と符号202-1とは、それぞれ、第一無線装置101内の第一送信器102-1と第二無線装置201内の第一送信器202-1を意味し、符号102-2と符号202-2とは、それぞれ、第一無線装置101内の第二送信器102-2と第二無線装置201内の第二送信器202-2を意味している。
The wireless communication system shown in FIG. 1 includes a first wireless device 101 and a second wireless device 201 that are spatially opposed to each other as a first wireless device 101 and a second wireless device 201 that perform point-to-point wireless communication. Yes. Here, the first radio apparatus 101 and the second radio apparatus 201 have the same apparatus configuration, and each include two radio transmission systems and two radio reception systems. In the normal operation state, the wireless communication system having these two first wireless device 101 and second wireless device 201 uses either one of the wireless transmission systems as a working specific wireless frequency f0 (first frequency). Using one radio device 101) or radio frequency f0 ′ (in the case of the second radio device 201), the transmission operation to the other radio device is performed, and the other radio transmission system is set as a standby system for redundant equipment. A hot standby configuration is adopted.
In FIG. 1, in the wireless devices 101 and 201 having the same configuration, the same reference numerals are assigned to the same functional blocks. Each of the first radio apparatus 101 and the second radio apparatus 201 has two transmitters, receivers, modulators, and demodulators having the same function, so that two devices having the same function are identified. In addition, the code | symbol of "-1" or "-2" was attached | subjected to the end of the code | symbol of each functional block. By adding “-1” or “-2” to the end of the reference sign of each device having the same function, both wireless devices 101 and 201 have “first function block” and “second function” having the same function. This indicates a redundant (1 + 1) redundant configuration with “block”. For example, reference numerals 102-1 and 202-1 mean the first transmitter 102-1 in the first radio apparatus 101 and the first transmitter 202-1 in the second radio apparatus 201, respectively. Reference numerals 102-2 and 202-2 mean the second transmitter 102-2 in the first radio apparatus 101 and the second transmitter 202-2 in the second radio apparatus 201, respectively.

図1において、第一無線装置101は、第一送信器102-1、第二送信器102-2、第一受信器103-1、第二受信器103-2、第一変調器104-1、第二変調器104-2、第一復調器105-1、第二復調器105-2、隣接干渉波検出部106、無線信号制御部107、インタフェース部108、アンテナ部109、無線信号合成器110および伝送データ合成器111を備えて構成されている。そして、第一送信器102-1および第一変調器104-1が、2系統でなる冗長構成の第一無線装置101における一方の送信系(第一の無線送信系に対応する)を、第一受信器103-1および第一復調器105-1が、2系統でなる冗長構成の第一無線装置101における一方の受信系(第一の無線受信系に対応する)をなす。また、第二送信器102-2および第二変調器104-2がその第一無線装置101における他方の送信系(第二の無線送信系に対応する)をなし、第二受信器103-2および第二復調器105-2が、その第一無線装置101における他方の受信系(第二の無線受信系に対応する)をなしている。このように、第一無線装置101は、上り下りの運用構成を個別に設定するため機器を分割し、二つに分割した無線送信系と二つに分割した無線受信系とを備えた(1+1)冗長構成を構成している。   In FIG. 1, the first radio apparatus 101 includes a first transmitter 102-1, a second transmitter 102-2, a first receiver 103-1, a second receiver 103-2, and a first modulator 104-1. , Second modulator 104-2, first demodulator 105-1, second demodulator 105-2, adjacent interference wave detection unit 106, radio signal control unit 107, interface unit 108, antenna unit 109, radio signal synthesizer 110 and a transmission data synthesizer 111. Then, the first transmitter 102-1 and the first modulator 104-1 have one transmission system (corresponding to the first radio transmission system) in the redundant first radio apparatus 101 having two systems. One receiver 103-1 and the first demodulator 105-1 form one reception system (corresponding to the first radio reception system) in the redundant first radio apparatus 101 having two systems. Further, the second transmitter 102-2 and the second modulator 104-2 constitute the other transmission system (corresponding to the second radio transmission system) in the first radio apparatus 101, and the second receiver 103-2. The second demodulator 105-2 constitutes the other reception system (corresponding to the second radio reception system) in the first radio apparatus 101. As described above, the first radio apparatus 101 divides a device in order to individually set up and down operation configurations, and includes a radio transmission system divided into two and a radio reception system divided into two (1 + 1). ) Redundant configuration is configured.

一方、第二無線装置201においても、第一無線装置101と同様の構成からなっている。すなわち、第二無線装置201は、第一送信器202-1、第二送信器202-2、第一受信器203-1、第二受信器203-2、第一変調器204-1、第二変調器204-2、第一復調器205-1、第二復調器205-2、隣接干渉波検出部206、無線信号制御部207、インタフェース部208、アンテナ部209、無線信号合成器210および伝送データ合成器211を備えて構成されている。そして、第一送信器202-1および第一変調器204-1が、2系統でなる冗長構成の第二無線装置201における一方の送信系(第一の無線送信系に対応する)をなし、第一受信器203-1および第一復調器205-1が、2系統でなる冗長構成の第二無線装置201における一方の受信系(第一の無線受信系に対応する)をなす。また、第二送信器202-2および第二変調器204-2が、その第二無線装置201における他方の送信系(第二の無線送信系に対応する)をなし、第二受信器203-2および第二復調器205-2が、その第二無線装置201における他方の受信系(第二の無線受信系に対応する)をなしている。このように、第二無線装置201も、上り下りの運用構成を個別に設定するため機器を分割し、二つに分割した無線送信系と二つに分割した無線受信系とを備えた(1+1)冗長構成を構成している。   On the other hand, the second radio apparatus 201 has the same configuration as that of the first radio apparatus 101. That is, the second radio apparatus 201 includes a first transmitter 202-1, a second transmitter 202-2, a first receiver 203-1, a second receiver 203-2, a first modulator 204-1, Two modulators 204-2, first demodulator 205-1, second demodulator 205-2, adjacent interference wave detection unit 206, radio signal control unit 207, interface unit 208, antenna unit 209, radio signal synthesizer 210 and A transmission data synthesizer 211 is provided. The first transmitter 202-1 and the first modulator 204-1 constitute one transmission system (corresponding to the first radio transmission system) in the redundant second radio apparatus 201 having two systems, The first receiver 203-1 and the first demodulator 205-1 form one reception system (corresponding to the first radio reception system) in the redundant second radio apparatus 201 having two systems. The second transmitter 202-2 and the second modulator 204-2 constitute the other transmission system (corresponding to the second radio transmission system) in the second radio apparatus 201, and the second receiver 203- 2 and the second demodulator 205-2 constitute the other reception system (corresponding to the second radio reception system) in the second radio apparatus 201. As described above, the second radio apparatus 201 also divides the device in order to individually set up and down operation configurations, and includes a radio transmission system divided into two and a radio reception system divided into two (1 + 1). ) Redundant configuration is configured.

第一無線装置101と第二無線装置201とは、それぞれのアンテナ部109とアンテナ部209とを無線空間対向させて配置してある。このようなアンテナ部109とアンテナ部209との無線空間対向配置が、第一無線装置101と第二無線装置201との間でのポイントツーポイントの相互の無線伝送を可能にしている。また、第一無線装置101内の無線信号合成器110は、第一送信器102-1および第二送信器102-2のそれぞれからの無線信号を合成して、アンテナ部109へ出力する。同様に、第二無線装置201内の無線信号合成器210は、第一送信器202-1および第二送信器202-2のそれぞれからの無線信号を合成して、アンテナ部209へ出力する。そして、通常運用状態のホットスタンバイ構成時においては、一方の送信器(例えば、第一送信器102-1、第一送信器202-1)が現用として送信信号をアンテナ部109、アンテナ部209へ出力し、他方の送信器(例えば、第二送信器102-2、第二送信器202-2)は機器冗長の予備系として待機し、送信信号をアンテナ部109、アンテナ部209には出力しない。また、第一無線装置101内のアンテナ部109、第二無線装置201内のアンテナ部209によって無線受信した無線受信信号は、それぞれ、第一無線装置101内の無線信号合成器110、第二無線装置201内の無線信号合成器210を介して、第一受信器103-1および第二受信器103-2の双方、第二無線装置201内の第一受信器203-1および第二受信器203-2の双方へ分岐出力される。そして、通常運用状態のホットスタンバイ構成時においては、一方の受信器(例えば、第一受信器103-1、第一受信器203-1)が現用として受信信号を復調器105-1と無線信号制御部107、復調器205-1と無線信号制御部207へ出力し、他方の受信器(例えば、第二受信器103-2、第二受信器203-2)は機器冗長の予備系として待機し、受信信号を復調器105-2と無線信号制御部107、復調器205-2と無線信号制御部207には出力しない。   The first radio apparatus 101 and the second radio apparatus 201 are arranged such that the antenna unit 109 and the antenna unit 209 are opposed to each other in the radio space. Such a radio space facing arrangement of the antenna unit 109 and the antenna unit 209 enables point-to-point wireless transmission between the first radio apparatus 101 and the second radio apparatus 201. The radio signal combiner 110 in the first radio apparatus 101 combines the radio signals from the first transmitter 102-1 and the second transmitter 102-2 and outputs them to the antenna unit 109. Similarly, the radio signal synthesizer 210 in the second radio apparatus 201 synthesizes radio signals from the first transmitter 202-1 and the second transmitter 202-2, and outputs them to the antenna unit 209. In the hot standby configuration in the normal operation state, one transmitter (for example, the first transmitter 102-1 and the first transmitter 202-1) sends the transmission signal to the antenna unit 109 and the antenna unit 209 as active. The other transmitter (for example, the second transmitter 102-2 and the second transmitter 202-2) stands by as a redundant system for equipment redundancy, and does not output the transmission signal to the antenna unit 109 and the antenna unit 209. . In addition, the wireless reception signals wirelessly received by the antenna unit 109 in the first wireless device 101 and the antenna unit 209 in the second wireless device 201 are the wireless signal synthesizer 110 and the second wireless device in the first wireless device 101, respectively. Via the radio signal synthesizer 210 in the device 201, both the first receiver 103-1 and the second receiver 103-2, the first receiver 203-1 and the second receiver in the second radio device 201 Branch output to both 203-2. In the hot standby configuration in the normal operation state, one of the receivers (for example, the first receiver 103-1 and the first receiver 203-1) uses the received signal as the current demodulator and the radio signal. Output to control unit 107, demodulator 205-1 and radio signal control unit 207, and other receivers (for example, second receiver 103-2 and second receiver 203-2) are on standby as a redundant system for equipment redundancy However, the received signal is not output to the demodulator 105-2 and the radio signal control unit 107, and the demodulator 205-2 and the radio signal control unit 207.

さらに、第一無線装置101内のアンテナ部109、第二無線装置201内のアンテナ部209によって無線受信した無線受信信号は、それぞれ、第一無線装置101内の無線信号合成器110、第二無線装置201内の無線信号合成器210を介して、第一無線装置101内の隣接干渉波検出部106、第二無線装置201内の隣接干渉波検出部206のそれぞれにも出力される。第一無線装置101内の隣接干渉波検出部106、第二無線装置201内の隣接干渉波検出部206は、それぞれ、入力されてくる無線受信信号に含まれている隣接チャンネル無線通信信号gの下側隣接干渉波と上側隣接干渉波との双方の干渉波の受信レベルrを予め設定した閾値比較して閾値以上か閾値未満かの判定で生成される干渉波受信レベルpとして検出して、下側隣接チャンネルの干渉波受信レベルと上側隣接チャンネルの干渉波受信レベルpのそれぞれを第一無線装置101内の無線信号制御部107、第二無線装置201内の無線信号制御部207に各々出力する。なお、第一無線装置101内の隣接干渉波検出部106、第二無線装置201内の隣接干渉波検出部206には、それぞれ、第一無線装置101内の無線信号制御部107、第二無線装置201内の無線信号制御部207から、検出対象とする無線周波数情報、占有帯域情報、変調方式情報が隣接チャンネル情報sとして伝達され、隣接チャンネル無線通信信号gの隣接チャンネル帯域が指示される。干渉波受信レベルpを受けた第一無線装置101内の無線信号制御部107および第二無線装置201内の無線信号制御部207は、干渉波受信レベルpが隣接チャンネルの干渉検出用としてあらかじめ設定部307に定めた占有帯域、変調方式により決まる干渉閾値以上になった場合に、隣接チャンネル干渉波有りと判定し、後に詳述するように、隣接チャンネル干渉波により伝送品質が劣化したものとそれぞれ判定する。   Further, the wireless reception signals wirelessly received by the antenna unit 109 in the first wireless device 101 and the antenna unit 209 in the second wireless device 201 are the wireless signal synthesizer 110 and the second wireless device in the first wireless device 101, respectively. The signals are also output to the adjacent interference wave detection unit 106 in the first radio apparatus 101 and the adjacent interference wave detection unit 206 in the second radio apparatus 201 via the radio signal synthesizer 210 in the apparatus 201, respectively. The adjacent interference wave detection unit 106 in the first radio apparatus 101 and the adjacent interference wave detection unit 206 in the second radio apparatus 201 are respectively connected to the adjacent channel radio communication signal g included in the input radio reception signal. The interference wave reception level p of both the lower adjacent interference wave and the upper adjacent interference wave is detected as an interference wave reception level p generated by determining whether the interference level is equal to or higher than the threshold value by comparing a predetermined threshold value, Output the interference wave reception level of the lower adjacent channel and the interference wave reception level p of the upper adjacent channel to the radio signal control unit 107 in the first radio apparatus 101 and the radio signal control unit 207 in the second radio apparatus 201, respectively. To do. Note that the adjacent interference wave detection unit 106 in the first wireless device 101 and the adjacent interference wave detection unit 206 in the second wireless device 201 are respectively connected to the wireless signal control unit 107 and the second wireless signal in the first wireless device 101. Radio frequency information, occupation band information, and modulation scheme information to be detected are transmitted as adjacent channel information s from the radio signal control unit 207 in the apparatus 201, and an adjacent channel band of the adjacent channel wireless communication signal g is instructed. The radio signal control unit 107 in the first radio apparatus 101 and the radio signal control unit 207 in the second radio apparatus 201 that have received the interference wave reception level p are set in advance so that the interference wave reception level p is used for detecting the interference of the adjacent channel. When the interference threshold determined by the occupied band and modulation method determined by the unit 307 is exceeded, it is determined that there is an adjacent channel interference wave, and the transmission quality deteriorates due to the adjacent channel interference wave, as described in detail later. judge.

また、図1によると第一無線装置101内の第一送信器102-1、第二送信器102-2、第一受信器103-1および第二受信器103-2、第二無線装置201内の第一送信器202-1、第二送信機202-2、第一受信器203-1および第二受信器203-2は、それぞれ、第一無線装置101内の無線信号制御部107、第二無線装置201内の無線信号制御部207から出力される周波数設定信号kにより、動作すべき周波数帯域が設定され、第一無線装置101と第二無線装置201との間で、通常運用状態においては、あらかじめ割り当てられた特定の無線周波数f0と無線周波数f0'とを用いたFDD方式による無線信号の送受信動作、もしくは、隣接チャンネル干渉波による伝送品質の劣化が検出された場合には、無線伝送品質の劣化した回線たとえば無線周波数f0'(またはf0)のみの伝送品質を改善すべく、劣化を検出した無線装置の受信器と無線対向するもう一方の無線装置の送信器の無線周波数f0'の帯域を上下に二分した二つの無線周波数(f1'およびf2')を用いて同一データを送受信するFDDツインパス方式による無線信号の送受信動作を行う。前記受信信号の伝送品質が劣化した無線受信系と無線対向する送信器で構成する無線送信系で無線対向する無線回線のみを、前記ホットスタンバイ構成から、前記下側無線周波数と前記上側無線周波数との二つの無線周波数を用いて同一データを送信するFDDツインパス構成に構成変更する無線信号制御を行い、前記受信信号が隣接チャンネル干渉波の影響で無線伝送品質が劣化していない方向、たとえば、無線装置101の隣接干渉波検出部106が隣接チャンネル干渉波を検出し、無線対向する無線装置201の隣接干渉波検出部206では隣接チャンネル干渉波が検出できていない場合には、無線装置101から無線装置201へ向かう方向の無線回線は、無線伝送の回線再構築による稼働停止を行うことなく、そのままの前記ホットスタンバイ構成でデータ伝送を継続する。また、その逆方向でも同一である。   Further, according to FIG. 1, the first transmitter 102-1, the second transmitter 102-2, the first receiver 103-1 and the second receiver 103-2, the second radio device 201 in the first radio device 101 are provided. The first transmitter 202-1, the second transmitter 202-2, the first receiver 203-1 and the second receiver 203-2 are respectively a wireless signal control unit 107 in the first wireless device 101, The frequency band to be operated is set by the frequency setting signal k output from the radio signal control unit 207 in the second radio apparatus 201, and the normal operation state is established between the first radio apparatus 101 and the second radio apparatus 201. In this case, when a transmission / reception operation of a radio signal by the FDD method using a specific radio frequency f0 and a radio frequency f0 ′ allocated in advance or a deterioration in transmission quality due to an adjacent channel interference wave is detected, In order to improve the transmission quality of only the radio frequency f0 '(or f0), for example, a line with degraded transmission quality, The same data is transmitted and received using two radio frequencies (f1 ′ and f2 ′) obtained by vertically dividing the band of the radio frequency f0 ′ of the transmitter of the other radio device opposite to the receiver of the issued radio device. The wireless signal transmission / reception operation is performed by the FDD twin pass method. From the hot standby configuration, only the lower radio frequency and the upper radio frequency are transmitted from the hot standby configuration to only the radio channel that is radio-opposed in a radio transmission system that is configured by a radio-opposing transmitter that is radio-opposed with the transmission quality of the received signal deteriorated. In the direction in which the received signal is not deteriorated in radio transmission quality due to the influence of adjacent channel interference waves, for example, wireless When the adjacent interference wave detection unit 106 of the device 101 detects the adjacent channel interference wave, and the adjacent interference wave detection unit 206 of the wireless device 201 that is wirelessly opposed cannot detect the adjacent channel interference wave, the wireless device 101 transmits the wireless signal. The wireless line in the direction toward the device 201 is not subjected to operation stop by reconfiguration of the wireless transmission, and the data is maintained in the hot standby configuration as it is. To continue feeding. The same applies to the opposite direction.

ここで、無線周波数f0、無線周波数(f1およびf2)は、第一無線装置101から第二無線装置201に送信する無線信号の無線周波数であり、無線周波数f0'、無線周波数(f1'およびf2')は、第二無線装置201から第一無線装置101に送信する無線信号の無線周波数である。無線周波数f1と無線周波数f2とは、それぞれ、無線周波数f0の帯域を上下に二分した際の下側無線周波数(周波数帯A)と上側無線周波数(周波数帯B)とである。また、無線周波数f1'と無線周波数f2'とは、それぞれ、無線周波数f0'の帯域を上下に二分した際の下側無線周波数(周波数帯A)と上側無線周波数(周波数帯B)とである。   Here, the radio frequency f0 and the radio frequencies (f1 and f2) are radio frequencies of a radio signal transmitted from the first radio apparatus 101 to the second radio apparatus 201. The radio frequency f0 ′, the radio frequencies (f1 ′ and f2) ') Is the radio frequency of the radio signal transmitted from the second radio apparatus 201 to the first radio apparatus 101. The radio frequency f1 and the radio frequency f2 are respectively a lower radio frequency (frequency band A) and an upper radio frequency (frequency band B) when the band of the radio frequency f0 is divided into two. Further, the radio frequency f1 ′ and the radio frequency f2 ′ are respectively a lower radio frequency (frequency band A) and an upper radio frequency (frequency band B) when the band of the radio frequency f0 ′ is divided into upper and lower parts. .

また、第一無線装置101内の第一受信器103-1および第二受信器103-2、第二無線装置201内の第一受信器203-1および第二受信器203-2は、それぞれ、第一無線装置101内の無線信号合成器110、第二無線装置201内の無線信号合成器210を介して、入力されてくる無線受信信号の受信周波数帯域内の受信レベルを検出して、無線通信信号受信レベルhとして、それぞれ、第一無線装置101内の無線信号制御部107、第二無線装置201内の無線信号制御部207に出力する。   Further, the first receiver 103-1 and the second receiver 103-2 in the first radio apparatus 101, the first receiver 203-1 and the second receiver 203-2 in the second radio apparatus 201 are respectively , Through the radio signal synthesizer 110 in the first radio apparatus 101 and the radio signal synthesizer 210 in the second radio apparatus 201, the reception level in the reception frequency band of the input radio reception signal is detected, The wireless communication signal reception level h is output to the wireless signal control unit 107 in the first wireless device 101 and the wireless signal control unit 207 in the second wireless device 201, respectively.

また、第一無線装置101内の第一変調器104-1および第二変調器104-2、第二無線装置201内の第一変調器204-1および第二変調器204-2は、それぞれ、第一無線装置101内の伝送データ合成器111、第二無線装置201内の伝送データ合成器211を介して入力されてくるインタフェ−ス信号eを変調デ−タfに変調して、それぞれ第一無線装置101内の第一送信器102-1および第二送信器102-2、第二無線装置201内の第一送信器202-1および第二送信器202-2に出力する。   Further, the first modulator 104-1 and the second modulator 104-2 in the first radio apparatus 101, the first modulator 204-1 and the second modulator 204-2 in the second radio apparatus 201, respectively, The interface signal e input via the transmission data synthesizer 111 in the first wireless device 101 and the transmission data synthesizer 211 in the second wireless device 201 is modulated into modulation data f, respectively. The data is output to the first transmitter 102-1 and the second transmitter 102-2 in the first radio apparatus 101, and to the first transmitter 202-1 and the second transmitter 202-2 in the second radio apparatus 201.

また、第一無線装置101内の第一復調器105-1および第二復調器105-2、第二無線装置201内の第一復調器205-1および第二復調器205-2は、それぞれ、第一無線装置101内の第一受信器103-1および第二受信器103-2、第二無線装置201内の第一受信器203-1および第二受信器203-2のそれぞれにおいて無線受信した受信信号aから、対向する相手側の無線装置が送信した無線チャンネル(つまり、対向無線装置201の変調データf)のみを復調して、復調信号bを生成して、それぞれ、第一無線装置101内の伝送データ合成器111、第二無線装置201内の伝送データ合成器211に出力する。   Further, the first demodulator 105-1 and the second demodulator 105-2 in the first radio apparatus 101, the first demodulator 205-1 and the second demodulator 205-2 in the second radio apparatus 201, respectively, In each of the first receiver 103-1 and the second receiver 103-2 in the first radio apparatus 101, the first receiver 203-1 and the second receiver 203-2 in the second radio apparatus 201 are wireless. From the received signal a, only the radio channel (that is, the modulation data f of the counter radio device 201) transmitted by the opposite radio device is demodulated to generate the demodulated signal b, and the first radio The data is output to the transmission data synthesizer 111 in the device 101 and the transmission data synthesizer 211 in the second wireless device 201.

また、第一無線装置101内の伝送データ合成器111、第二無線装置201内の伝送データ合成器211は、それぞれ、第一無線装置101内の第一復調器105-1および第二復調器105-2のそれぞれ、第二無線装置201内の第一復調器205-1および第二復調器205-2のそれぞれから同時に入力されてくる復調信号bの中からエラー率の低い方(伝送品質が良い方)の復調信号を判別して、エラーを解消するように合成して伝送データjを生成して、それぞれ第一無線装置101内のインタフェース部108、第二無線装置201内のインタフェース部208に出力する。すなわち、第一無線装置101内の伝送データ合成器111、第二無線装置201内の伝送データ合成器211は、それぞれ第一受信器103-1および第二受信器103-2、第一受信器203-1および第二受信器203-2それぞれが受信した受信信号のうち、受信信号品質の良い方(隣接チャンネル干渉波の影響を受けていない伝送品質の良い方)の受信信号を選択して、受信した伝送データjとして合成して出力する伝送データ合成手段を提供する。   The transmission data synthesizer 111 in the first radio apparatus 101 and the transmission data synthesizer 211 in the second radio apparatus 201 are respectively the first demodulator 105-1 and the second demodulator in the first radio apparatus 101. 105-2, one of the demodulated signals b simultaneously input from each of the first demodulator 205-1 and the second demodulator 205-2 in the second radio apparatus 201 (transmission quality) The demodulated signal of which is better) and synthesized so as to eliminate the error to generate transmission data j, and interface unit 108 in the first radio apparatus 101 and interface unit in the second radio apparatus 201, respectively. Output to 208. That is, the transmission data synthesizer 111 in the first radio apparatus 101 and the transmission data synthesizer 211 in the second radio apparatus 201 are the first receiver 103-1, the second receiver 103-2, and the first receiver, respectively. Of the received signals received by 203-1 and the second receiver 203-2, select the received signal having the better received signal quality (the better transmission quality not affected by the adjacent channel interference wave). Transmission data synthesizing means for synthesizing and outputting the received transmission data j is provided.

さらに、第一無線装置101内の伝送データ合成器111、無線装置201内の伝送データ合成器211は、それぞれ、無線装置101内の第一変調器104-1および第二変調器104-2、第二無線装置201内の第一変調器204-1および第二変調器204-2のそれぞれに対して、第一無線装置101内のインタフェース部108、第二無線装置201内のインタフェース部208のそれぞれからのインタフェース信号eを分岐出力する。   Further, the transmission data combiner 111 in the first radio apparatus 101 and the transmission data combiner 211 in the radio apparatus 201 are respectively a first modulator 104-1 and a second modulator 104-2 in the radio apparatus 101, For each of the first modulator 204-1 and the second modulator 204-2 in the second radio apparatus 201, the interface unit 108 in the first radio apparatus 101 and the interface unit 208 in the second radio apparatus 201 The interface signal e from each is branched and output.

また、第一無線装置101内のインタフェース部108、第二無線装置201内のインタフェース部208は、それぞれ対向する無線装置に対して第一無線装置101内の伝送データ合成器111、第二無線装置201内の伝送データ合成器211のそれぞれを介して送信しようとする送信データdを、インタフェース信号eとして、また、第一無線装置101内の伝送データ合成器111、第二無線装置201内の伝送データ合成器211のそれぞれを介して対向する無線装置から無線受信した伝送データjを、受信データcとして、外部とやり取りするためにインタフェースする。   Further, the interface unit 108 in the first radio apparatus 101 and the interface unit 208 in the second radio apparatus 201 are respectively connected to the transmission data synthesizer 111 and the second radio apparatus in the first radio apparatus 101 for the radio apparatuses facing each other. The transmission data d to be transmitted via each of the transmission data combiners 211 in 201 is used as the interface signal e, the transmission data combiner 111 in the first wireless device 101, and the transmission in the second wireless device 201 The transmission data j wirelessly received from the opposing wireless device via each of the data synthesizers 211 is interfaced as received data c for exchanging with the outside.

また、第一無線装置101内の無線信号制御部107、第二無線装置201内の無線信号制御部207は、それぞれ通常運用状態のホットスタンバイ構成時において、第一無線装置101内の第一復調器105-1および第二復調器105-2、第二無線装置201内の第一復調器205-1および第二復調器205-2のいずれかにおいて、復調信号bとしてエラーを含んだ信号が復調された時、当該エラーの原因が隣接干渉波の影響により生じたか否かを判断部304で判別し、干渉波受信レベルpにより隣接チャンネル干渉波が原因であることを検出した場合に、現状のホットスタンバイ構成をFDDツインパス構成へ変更することを決定して、周波数変更、占有帯域変更、および、変調方式変更の各変更制御を行う。さらに、第一無線装置101内の無線信号制御部107、第二無線装置201内の無線信号制御部207は、それぞれ、FDDツインパス構成時に、第一無線装置101内の第一復調器105-1および第二復調器105-2、第二無線装置201内の第一復調器205-1および第二復調器205-2のいずれにおいても、あらかじめ定めた復帰監視時間T1の間、継続して、復調信号bとしてエラーがない信号が復調された時、現状のFDDツインパス構成をホットスタンバイ構成に戻すことを決定して、装置構成変更するための周波数変更、占有帯域変更、および、変調方式変更の各変更制御を行う。   In addition, the radio signal control unit 107 in the first radio apparatus 101 and the radio signal control unit 207 in the second radio apparatus 201 are respectively configured to perform the first demodulation in the first radio apparatus 101 in the hot standby configuration in the normal operation state. In either of the demodulator 105-1 and the second demodulator 105-2, or the first demodulator 205-1 and the second demodulator 205-2 in the second radio apparatus 201, the demodulated signal b includes an error signal. When demodulated, the judgment unit 304 determines whether the cause of the error is caused by the influence of the adjacent interference wave, and when it is detected that the adjacent channel interference wave is caused by the interference wave reception level p, It is decided to change the hot standby configuration to the FDD twin path configuration, and each change control of frequency change, occupied band change, and modulation method change is performed. Further, the radio signal control unit 107 in the first radio apparatus 101 and the radio signal control unit 207 in the second radio apparatus 201 are respectively connected to the first demodulator 105-1 in the first radio apparatus 101 in the FDD twin path configuration. In both of the second demodulator 105-2, the first demodulator 205-1 and the second demodulator 205-2 in the second radio apparatus 201, during a predetermined return monitoring time T1, When a signal having no error is demodulated as the demodulated signal b, it is decided to return the current FDD twin path configuration to the hot standby configuration, and the frequency change, the occupied band change, and the modulation method change for changing the device configuration Perform each change control.

なお、かくのごとき装置構成の変更制御は、無線対向する相手側の無線装置と同期して実行するため、周波数変更、占有帯域変更、変調方式変更に関する内容は、あらかじめ、対向無線装置と調整して変更ステップを同期させて行うような構成を備えている。つまり、対向無線装置との調整は、次の仕組みにより行う。一方の無線装置例えば第一無線装置101においては、変更制御の内容を示す変調方式制御信号qを、第一無線装置101内の第一変調器104-1および第二変調器104-2のそれぞれにおいて、送信しようとする無線信号すなわちインタフェース信号eと多重化して、第一送信器102-1および第二送信器102-2のそれぞれから対向無線装置、例えば第二無線装置201側に送信する。一方、対向無線装置例えば第二無線装置201においては、相手側の無線装置例えば第一無線装置101から無線送信されてきた受信信号aの中から、変更制御の内容を示す変調方式制御信号qに相当する受信信号を、第二無線装置201内の第一復調器205-1および第二復調器205-2のそれぞれにおいて、受信情報mとして分離して、第二無線装置201内の無線信号制御部207に出力することにより、相手側の無線装置例えば第一無線装置101の変更制御に関する内容を確認する動作を行う。   Since the device configuration change control is executed in synchronization with the radio device on the other side facing the radio, the contents related to frequency change, occupied band change, and modulation method change are adjusted in advance with the opposite radio device. Thus, the configuration is such that the change steps are performed in synchronization. That is, the adjustment with the opposite wireless device is performed by the following mechanism. In one radio apparatus, for example, the first radio apparatus 101, the modulation method control signal q indicating the content of the change control is sent to each of the first modulator 104-1 and the second modulator 104-2 in the first radio apparatus 101. 2, the signal is multiplexed with the radio signal to be transmitted, that is, the interface signal e, and transmitted from each of the first transmitter 102-1 and the second transmitter 102-2 to the opposite radio apparatus, for example, the second radio apparatus 201 side. On the other hand, in the opposite radio apparatus, for example, the second radio apparatus 201, the modulation method control signal q indicating the content of the change control is received from the received signal a wirelessly transmitted from the counterpart radio apparatus, for example, the first radio apparatus 101. The corresponding reception signal is separated as reception information m in each of first demodulator 205-1 and second demodulator 205-2 in second radio apparatus 201, and radio signal control in second radio apparatus 201 is performed. By outputting to the unit 207, an operation for confirming the contents related to the change control of the counterpart wireless device, for example, the first wireless device 101 is performed.

次に、第一無線装置101内の隣接干渉波検出部106、第二無線装置201内の隣接干渉波検出部206の内部構成の一例について、図2を参照してさらに説明する。図2は、図1に示す無線通信システムを構成する第一無線装置101内の隣接干渉波検出部106の内部構成の一例を示すブロック構成図である。なお、図2には、第一無線装置101内の隣接干渉波検出部106の内部構成について示しているが、対向する第二無線装置201内の隣接干渉波検出部206についても全く同様の内部構成からなっている。   Next, examples of internal configurations of the adjacent interference wave detection unit 106 in the first radio apparatus 101 and the adjacent interference wave detection unit 206 in the second radio apparatus 201 will be further described with reference to FIG. FIG. 2 is a block configuration diagram showing an example of an internal configuration of the adjacent interference wave detection unit 106 in the first radio apparatus 101 constituting the radio communication system shown in FIG. 2 shows the internal configuration of the adjacent interference wave detection unit 106 in the first radio apparatus 101, but the adjacent interference wave detection unit 206 in the opposing second radio apparatus 201 also has the same internal configuration. It consists of a configuration.

図2に示すように、第一無線装置101内の隣接干渉波検出部106は、下側隣接チャンネル受信器401-1および上側隣接チャンネル受信器401-2と、下側受信レベル検出器402-1および上側受信レベル検出器402-2と、を少なくとも含んで構成される。また、隣接干渉波検出部206も隣接干渉波検出部106と同一構成である。
隣接干渉波検出部106は、下側隣接チャンネル帯域と上側隣接チャンネル帯域の受信信号を含んた隣接チャンネル無線通信信号gから、復調器で復調した受信信号の品質が劣化した原因が、自第一無線装置101が使用する受信用の無線周波数f0'として占有する無線周波数帯域への隣接チャンネル干渉波によるものか否かを検出する隣接干渉波検出手段を提供する。ここで、隣接干渉波検出部106は、前述したように、無線信号制御部107から、隣接チャンネル情報sにより、無線周波数情報、占有帯域情報が伝達され、検出対象となる隣接チャンネル無線通信信号gの下側隣接チャンネル帯域と上側隣接チャンネル帯域が指示される。
As shown in FIG. 2, the adjacent interference wave detection unit 106 in the first radio apparatus 101 includes a lower adjacent channel receiver 401-1 and an upper adjacent channel receiver 401-2, and a lower reception level detector 402-. 1 and an upper reception level detector 402-2. Also, the adjacent interference wave detection unit 206 has the same configuration as the adjacent interference wave detection unit 106.
The adjacent interference wave detection unit 106 is responsible for the deterioration of the quality of the received signal demodulated by the demodulator from the adjacent channel wireless communication signal g including the received signal of the lower adjacent channel band and the upper adjacent channel band. Provided is an adjacent interference wave detection means for detecting whether an adjacent channel interference wave is in a radio frequency band occupied as a reception radio frequency f0 ′ used by the radio apparatus 101. Here, as described above, the adjacent interference wave detection unit 106 receives the radio frequency information and the occupied band information from the radio signal control unit 107 by the adjacent channel information s, and detects the adjacent channel radio communication signal g to be detected. The lower adjacent channel band and the upper adjacent channel band are indicated.

下側隣接チャンネル受信器401-1は、無線信号合成器110から出力された隣接チャンネル無線通信信号gから無線装置101(もしくは無線装置201)の受信用の無線周波数f0'(もしくは無線周波数f0)の下側の隣接チャンネル受信信号rを抽出する。一方、上側隣接チャンネル受信器401-2は、隣接チャンネル無線通信信号gから無線装置101(もしくは無線装置201)の受信用の無線周波数f0'(もしくは無線周波数f0)の上側の隣接チャンネル受信信号rを抽出する。また、下側受信レベル検出器402-1、上側受信レベル検出器402-2は、それぞれ、下側隣接チャンネル受信器401-1が抽出した下側の隣接チャンネル受信信号rの受信レベル、上側隣接チャンネル受信器401-2が抽出した上側の隣接チャンネル受信信号rの受信レベルを検出する。検出した下側の隣接チャンネル受信信号rの受信レベルおよび上側の隣接チャンネル受信信号rの受信レベルは、それぞれ、干渉波受信レベルpとして無線信号制御部107に対して出力され、受信信号aの品質に対する隣接干渉波の影響の有無が無線信号制御部107から指示される干渉閾値との比較により判定される。前記干渉閾値は、無線伝送中の変調方式に応じて異なる値となる。これは、受信信号aが隣接チャンネル干渉波により伝送品質劣化の影響を受ける耐力(度合い)が変調方式毎に異なるためである。   The lower adjacent channel receiver 401-1 receives the radio frequency f0 ′ (or radio frequency f0) for reception of the radio device 101 (or radio device 201) from the adjacent channel radio communication signal g output from the radio signal synthesizer 110. The lower adjacent channel received signal r is extracted. On the other hand, the upper adjacent channel receiver 401-2 receives the adjacent channel reception signal r on the upper side of the radio frequency f0 ′ (or radio frequency f0) for reception of the wireless device 101 (or the wireless device 201) from the adjacent channel wireless communication signal g. To extract. Further, the lower reception level detector 402-1 and the upper reception level detector 402-2 are respectively the reception level of the lower adjacent channel reception signal r extracted by the lower adjacent channel receiver 401-1 and the upper adjacent reception level. The reception level of the upper adjacent channel reception signal r extracted by the channel receiver 401-2 is detected. The detected reception level of the lower adjacent channel reception signal r and the reception level of the upper adjacent channel reception signal r are each output to the radio signal control unit 107 as an interference wave reception level p, and the quality of the reception signal a The presence / absence of the influence of the adjacent interference wave is determined by comparison with the interference threshold value instructed from the radio signal control unit 107. The interference threshold value varies depending on the modulation method during wireless transmission. This is because the tolerance (degree) that the received signal a is affected by the transmission quality deterioration due to the adjacent channel interference wave differs for each modulation method.

次に、第一無線装置101内の無線信号制御部107、第二無線装置201内の無線信号制御部207の内部構成の一例について、図3を参照してさらに説明する。図3は、図1に示す無線通信システムを構成する第一無線装置101内の無線信号制御部107の内部構成の一例を示すブロック構成図である。なお、図3には、第一無線装置101内の無線信号制御部107の内部構成について示しているが、無線対向する第二無線装置201内の無線信号制御部207についても全く同様の内部構成からなっている。   Next, an example of the internal configuration of the radio signal control unit 107 in the first radio apparatus 101 and the radio signal control unit 207 in the second radio apparatus 201 will be further described with reference to FIG. FIG. 3 is a block configuration diagram showing an example of an internal configuration of the radio signal control unit 107 in the first radio apparatus 101 constituting the radio communication system shown in FIG. 3 shows the internal configuration of the radio signal control unit 107 in the first radio apparatus 101, the same internal configuration is also applied to the radio signal control unit 207 in the second radio apparatus 201 facing radio. It is made up of.

図3において破線枠によって囲んで示すように、第一無線装置101内の無線信号制御部107は、回線品質監視部301、対向局間同期判定部303、判断部304、設定部307、信号制御部308、送信周波数制御部309-T、受信周波数制御部309-R、送信占有帯域制御部310-T、受信占有帯域制御部310-R、送信変調方式制御部311-Tおよび受信変調方式制御部311-Rを少なくとも含んで構成される。なお、図3には、無線信号制御部107との間で情報のやり取りを行う周辺の機能ブロックとして、第一送信器102-1および第二送信器102-2、第一受信器103-1および第二受信器103-2、第一変調器104-1および第二変調器104-2、第一復調器105-1および第二復調器105-2、および、隣接干渉波検出部106も合わせて記載している。   3, the radio signal control unit 107 in the first radio apparatus 101 includes a line quality monitoring unit 301, a counter station synchronization determination unit 303, a determination unit 304, a setting unit 307, signal control, and the like. Unit 308, transmission frequency control unit 309-T, reception frequency control unit 309-R, transmission occupied band control unit 310-T, reception occupied band control unit 310-R, transmission modulation scheme control unit 311-T, and reception modulation scheme control Part 311-R is included at least. In FIG. 3, the first transmitter 102-1, the second transmitter 102-2, and the first receiver 103-1 are shown as peripheral functional blocks for exchanging information with the wireless signal control unit 107. And second receiver 103-2, first modulator 104-1 and second modulator 104-2, first demodulator 105-1 and second demodulator 105-2, and adjacent interference wave detector 106 It is described together.

回線品質監視部301は、第一復調器105-1および第二復調器105-2のそれぞれから出力される受信情報mに含まれている、第一復調器105-1および第二復調器105-2のそれぞれにおける回線信号のデータ誤り割合を示すエラー率情報である回線品質信号Aを監視する部位であり、監視結果に基づいて回線品質(受信信号の無線伝送品質)が劣化しているか否かを判別して、回線品質の劣化状態の有無を回線劣化信号Bとして判断部304へ伝達する。すなわち、回線品質監視部301は、自無線回線の第一復調器105-1および第二復調器105-2が復調した復調信号bの品質が劣化したか否かを検出する回線品質監視手段を提供する。   Channel quality monitoring section 301 includes first demodulator 105-1 and second demodulator 105 included in reception information m output from first demodulator 105-1 and second demodulator 105-2, respectively. -2 is a part that monitors the line quality signal A that is error rate information indicating the data error rate of the line signal, and whether the line quality (wireless transmission quality of the received signal) is deteriorated based on the monitoring result. And the presence / absence of the degradation state of the channel quality is transmitted to the determination unit 304 as a channel degradation signal B. That is, channel quality monitoring section 301 includes channel quality monitoring means for detecting whether or not the quality of demodulated signal b demodulated by first demodulator 105-1 and second demodulator 105-2 of its own radio channel has deteriorated. provide.

また、対向局間同期判定部303は、第一復調器105-1および第二復調器105-2のそれぞれから出力される受信情報mに含まれている対向局変更要求信号Fの情報を分離して抽出し、相手側の対向無線装置(図3の場合には、第二無線装置201)からの周波数変更、占有帯域変更、変調方式変更情報の要求や応答の有無を確認して、対向無線装置からの応答信号Gとして判断部304へ伝達する。つまり、対向局間同期判定部303は、ホットスタンバイ構成からFDDツインパス構成に構成変更する際に、もしくは、FDDツインパス構成から元のホットスタンバイ構成に戻す際に、対向する二つの第一無線装置101、第二無線装置201間で対向局変更要求情報Fを無線対向する無線装置間で交換し合うことにより、第一無線装置101と第二無線装置201との間の構成変更時の動作および構成復帰時の動作の構成変更シーケンスの同期合わせを行うための対向局間同期判定手段を提供する。   Further, the counter station synchronization determination unit 303 separates the information of the counter station change request signal F included in the reception information m output from each of the first demodulator 105-1 and the second demodulator 105-2. And check the frequency change, occupied band change, modulation method change information request and response from the opposite radio device (in the case of FIG. 3, the second radio device 201), and The response signal G from the wireless device is transmitted to the determination unit 304. That is, the counter-station synchronization determination unit 303 changes the two first radio apparatuses 101 facing each other when changing the configuration from the hot standby configuration to the FDD twin path configuration or when returning from the FDD twin path configuration to the original hot standby configuration. The operation and configuration at the time of configuration change between the first radio device 101 and the second radio device 201 by exchanging the opposite station change request information F between the second radio devices 201 between the radio devices facing each other Provided is an inter-station synchronization determination means for performing synchronization of a configuration change sequence of an operation at return.

また、設定部307は、隣接チャンネル干渉の有無判定のための干渉閾値情報や無線周波数の変更制御を行うための周波数チャンネル情報、隣接チャンネル情報とこれに伴う変調方式情報、占有帯域情報を保有して、設定情報Kとして、判断部304に通知することにより、通常運用状態時におけるホットスタンバイ構成と回線品質劣化時におけるFDDツインパス構成との間の構成変更時の無線周波数、変調方式、占有帯域に関する設定を実施し、実施した設定内容を、不揮発性メモリによりバックアップする。   The setting unit 307 also holds interference threshold information for determining the presence / absence of adjacent channel interference, frequency channel information for performing radio frequency change control, adjacent channel information and accompanying modulation method information, and occupied band information. Thus, by notifying the determination unit 304 as setting information K, the radio frequency, modulation scheme, and occupied bandwidth at the time of configuration change between the hot standby configuration in the normal operation state and the FDD twin path configuration at the time of line quality degradation Implement the settings and back up the implemented settings using nonvolatile memory.

また、判断部304は、設定部307からの設定情報Kによって、設定部307に設定されていたホットスタンバイ構成とFDDツインパス構成との構成変更時の周波数変更、占有帯域変更、変調方式変更情報を取得して、通常時の装置設定状態と回線品質劣化時の装置設定状態とを確認する。そして、回線品質監視部301から伝達された回線劣化情報Bにより、エラー率が劣化したことを検出した場合、その原因が、隣接チャンネル干渉波による品質劣化か否かを隣接干渉波検出部106から出力される干渉波受信レベルpの状態により判定する。つまり、隣接干渉波検出部106から出力される干渉波受信レベルpの確認結果、下側もしくは上側の隣接チャンネルの干渉波受信レベルpが、干渉検出用としてあらかじめ定めた前記干渉閾値以上であり、隣接チャンネル干渉波として存在している場合には、隣接チャンネル干渉波による回線品質の劣化が発生したものと判定する。   In addition, the determination unit 304 uses the setting information K from the setting unit 307 to obtain frequency change, occupied band change, and modulation method change information when the hot standby configuration and the FDD twin path configuration set in the setting unit 307 are changed. Acquire and confirm the normal device setting state and the device setting state when the line quality deteriorates. Then, when it is detected that the error rate has deteriorated based on the line deterioration information B transmitted from the line quality monitoring unit 301, whether or not the cause is quality deterioration due to the adjacent channel interference wave is determined from the adjacent interference wave detection unit 106. Judgment is made based on the state of the output interference wave reception level p. That is, the confirmation result of the interference wave reception level p output from the adjacent interference wave detection unit 106, the interference wave reception level p of the lower or upper adjacent channel is equal to or higher than the interference threshold predetermined for interference detection, If it is present as an adjacent channel interference wave, it is determined that the line quality has deteriorated due to the adjacent channel interference wave.

隣接チャンネル干渉波による回線品質の劣化が発生した場合、無線対向する相手側の第二無線装置201に対し、送信の周波数変更、占有帯域変更、変調方式変更を要求する要求情報を、変調方式制御信号qに含めて、第一変調器104-1および第二変調器104-2に出力する。その結果、第一変調器104-1および第二変調器104-2において、変調方式制御信号qとインタフェース信号eとを多重化して、第一送信器102-1および第二送信器102-2を介して、無線対向する相手側の第二無線装置201に対して伝達する。   When channel quality degradation due to adjacent channel interference occurs, request information requesting transmission side frequency change, occupied band change, modulation method change is sent to the second radio apparatus 201 on the opposite side of the radio. It is included in the signal q and output to the first modulator 104-1 and the second modulator 104-2. As a result, in the first modulator 104-1 and the second modulator 104-2, the modulation scheme control signal q and the interface signal e are multiplexed, and the first transmitter 102-1 and the second transmitter 102-2 are multiplexed. To the second radio apparatus 201 on the other side facing the radio.

また、第二の無線装置201では、変調方式制御信号qに含めて伝達した前記周波数変更、占有帯域変更、変調方式変更を要求する要求情報を受信した結果、無線対向する相手側の第一無線装置101が前記要求情報を受信した結果により装置の設定を変更しようとする要求への応答として、ACK(Acknowledge)信号(本実施形態においては対向局変更要求信号Fに含めて無線対向から伝達する確認信号)として、変調方式制御信号qに含めて第一の無線装置101へ伝達する。これにより第一の無線装置101では、受信情報mに含まれて返送された応答信号Gとして前記ACK信号の返送を確認する。このように、対向する相手側の第二無線装置201から返送されてきた受信情報mに含まれているACK信号を対向局間同期判定部303にて抽出して、応答信号Gとして生成した内容に基づいて、相手側の第二無線装置201の対応状況の確認が得られた時点で、判断部304は、受信のみホットスタンバイ構成からFDDツインパス構成に構成変更を行う。つまり、判断部304は、相手側の第二無線装置201と同期して構成変更を行うために、周波数信号N、占有帯域信号Q、変調方式信号Rを含む無線制御信号Mを生成して、信号制御部308に伝達する。さらに、構成変更時の隣接波に関する情報を、隣接チャンネル情報sとして隣接干渉波検出部106へ出力して、FDDツインパス構成時における下側隣接チャンネル帯域と上側隣接チャンネル帯域との受信レベルを検出するための設定を行わせる。   Further, in the second radio apparatus 201, as a result of receiving the request information for requesting the frequency change, the occupied band change, and the modulation method change transmitted by being included in the modulation scheme control signal q, the first radio on the opposite side facing the radio An ACK (Acknowledge) signal (in this embodiment, it is included in the opposite station change request signal F and transmitted from the wireless opposite side as a response to the request to change the setting of the apparatus based on the result of receiving the request information. (Confirmation signal) is included in the modulation scheme control signal q and transmitted to the first radio apparatus 101. As a result, the first radio apparatus 101 confirms the return of the ACK signal as the response signal G returned in the reception information m. As described above, the ACK signal included in the reception information m returned from the opposing second radio apparatus 201 is extracted by the inter-station synchronization determination unit 303 and generated as the response signal G The determination unit 304 changes the configuration from the hot standby configuration for reception only to the FDD twin path configuration when confirmation of the response status of the second radio apparatus 201 on the other side is obtained based on the above. That is, the determination unit 304 generates the radio control signal M including the frequency signal N, the occupied band signal Q, and the modulation scheme signal R in order to perform the configuration change in synchronization with the counterpart second radio apparatus 201, This is transmitted to the signal control unit 308. Further, information related to the adjacent wave at the time of configuration change is output to the adjacent interference wave detection unit 106 as adjacent channel information s, and the reception levels of the lower adjacent channel band and the upper adjacent channel band in the FDD twin path configuration are detected. Make settings for

また、図3に示す信号制御部308は、判断部304からの無線制御信号Mを受け取って、周波数信号N、占有帯域信号Qおよび変調方式信号Rを抽出し、それぞれ、送信周波数制御部309-T、受信周波数制御部309-R、送信占有帯域制御部310-T、受信占有帯域制御部310-R、送信変調方式制御部311-Tおよび受信変調方式制御部311-Rへ適宜変更のため情報を出力する。すなわち、たとえば無線装置101の信号制御部308は、隣接チャンネル干渉波により第一の復調器105-1もしくは第二の復調器105-2の受信信号の伝送品質が劣化したと判定した時、無線装置201からの前記ACK信号を確認して第一および第二の無線受信系の校正を変更するため、受信周波数制御部309-R、受信占有帯域制御部310-R、受信変調方式制御部311-Rの構成を変更する。もしくは、対向する無線装置201から隣接チャンネル干渉波による受信信号の伝送品質の劣化により装置構成を変更する要求を含む応答信号G(つまり、無線装置201からの装置構成変更に関する前記要求情報)を受け取った時に、無線装置201へ前記ACK信号を返送し、送信周波数制御部309-T、送信占有帯域制御部310-Tおよび送信変調方式制御部311-Tの制御により第一の無線送信系をf1’の下側無線帯域とし、第二の無線送信系をf2’の上側無線帯域を使用する構成に変更制御して、さらに運用状態のホットスタンバイ構成から周波数設定信号Tに含まれる無線送信出力開始信号(TX ON信号)により第一の送信器102-1および第二の送信器102-2ともに無線送信を行うFDDツインパス構成に構成変更する構成変更手段を提供する。また、信号制御部308は隣接チャンネル干渉波による受信信号の無線伝送品質劣化が定常的に解消することができたと判定した時、もしくは、対向する無線装置から隣接チャンネル干渉波による受信信号の無線伝送品質劣化解消の通知(つまり、構成復帰に関する前記要求情報)を受け取った時にはFDDツインパス構成から元のホットスタンバイ構成に戻すための構成復帰手段も提供している。また、対向する逆方向の無線回線における動作も上記と同一で、上り、下りの無線回線は独立して動作する。   Also, the signal control unit 308 shown in FIG. 3 receives the radio control signal M from the determination unit 304, extracts the frequency signal N, the occupied band signal Q, and the modulation scheme signal R, and transmits the transmission frequency control unit 309- T, reception frequency control unit 309-R, transmission occupied band control unit 310-T, reception occupied band control unit 310-R, transmission modulation scheme control unit 311-T and reception modulation scheme control unit 311-R Output information. That is, for example, when the signal control unit 308 of the wireless device 101 determines that the transmission quality of the received signal of the first demodulator 105-1 or the second demodulator 105-2 has deteriorated due to the adjacent channel interference wave, In order to check the ACK signal from the apparatus 201 and change the calibration of the first and second radio reception systems, a reception frequency control unit 309-R, a reception occupied band control unit 310-R, a reception modulation scheme control unit 311 Change the configuration of -R. Alternatively, a response signal G including a request to change the device configuration due to deterioration in transmission quality of the received signal due to the adjacent channel interference wave from the opposite radio device 201 (that is, the request information regarding the device configuration change from the radio device 201) is received. The ACK signal is returned to the wireless device 201, and the first wireless transmission system is set to f1 by the control of the transmission frequency control unit 309-T, the transmission occupied band control unit 310-T, and the transmission modulation scheme control unit 311-T. Change control to 'lower radio band and second radio transmission system to use upper radio band of f2', and start radio transmission output included in frequency setting signal T from hot standby configuration in operation state Provided is a configuration changing means for changing the configuration to an FDD twin path configuration in which both the first transmitter 102-1 and the second transmitter 102-2 perform radio transmission by a signal (TX ON signal). Also, when the signal control unit 308 determines that the wireless transmission quality degradation of the received signal due to the adjacent channel interference wave can be steadily eliminated, or the wireless transmission of the received signal by the adjacent channel interference wave from the opposing wireless device A configuration recovery means is also provided for returning from the FDD twin path configuration to the original hot standby configuration when a notification of quality degradation elimination (that is, the request information regarding the configuration recovery) is received. Further, the operation in the opposite radio channel in the opposite direction is the same as described above, and the uplink and downlink radio channels operate independently.

受信周波数制御部309-Rは、前記第一無線装置101が隣接チャンネル干渉波による受信信号aの伝送品質劣化を検出すると、信号制御部308からの周波数信号Nを受け取り、周波数設定信号Tを生成して第一受信器103-1および第二受信器103-2のそれぞれへ出力する。すなわち、受信周波数制御部309-Rは、隣接チャンネル干渉波により受信信号の品質が劣化したと判定した時、一方の第一受信器103-1の動作周波数を通常運用状態のホットスタンバイ構成時の無線周波数f0'の帯域を上下に二分した際の下側無線周波数f1'(もしくは上側無線周波数f2')に、他方の第二受信器103-2の動作周波数を無線周波数f0'の帯域を上下に二分した際の上側無線周波数f2'(もしくは下側無線周波数f1')に、無線周波数f0’から周波数変更し、また隣接チャンネル干渉波による受信信号の伝送品質劣化を解消することができたと判断した時、第一受信器103-1および第二受信器103-2のそれぞれの動作周波数をホットスタンバイ構成時のもとの無線周波数f0'に戻す周波数制御手段を提供する。   The reception frequency control unit 309-R receives the frequency signal N from the signal control unit 308 and generates the frequency setting signal T when the first radio apparatus 101 detects the transmission quality deterioration of the reception signal a due to the adjacent channel interference wave And output to each of the first receiver 103-1 and the second receiver 103-2. That is, when the reception frequency control unit 309-R determines that the quality of the received signal has deteriorated due to the adjacent channel interference wave, the reception frequency control unit 309-R sets the operating frequency of one first receiver 103-1 in the hot standby configuration in the normal operation state. The lower radio frequency f1 ′ (or upper radio frequency f2 ′) when the radio frequency f0 ′ band is divided into two parts up and down, the operating frequency of the other second receiver 103-2 is raised and lowered to the radio frequency f0 ′ band. The frequency was changed from the radio frequency f0 'to the upper radio frequency f2' (or lower radio frequency f1 ') when it was divided into two, and it was determined that the transmission quality degradation of the received signal due to the adjacent channel interference wave could be resolved Then, a frequency control means is provided for returning the operating frequencies of the first receiver 103-1 and the second receiver 103-2 to the original radio frequency f0 ′ in the hot standby configuration.

送信周波数制御部309-Tは、前記第二無線装置201が無線対向する前記第一無線装置101から隣接チャンネル干渉波による受信信号aの伝送品質劣化通知を受け取った時に、一方の第一送信器202-1の動作周波数を、通常運用状態のホットスタンバイ構成時の無線周波数f0'の帯域を上下に二分した際の下側無線周波数f1'(もしくは上側無線周波数f2')に、他方の第二送信器202-2の動作周波数を、無線周波数f0'の帯域の上側無線周波数f2’(もしくは下側無線周波数f1')に、無線周波数f0'から周波数変更し、また前記第二無線装置201が無線対向する前記第一無線装置101から隣接チャンネル干渉波による受信信号aの伝送品質劣化解消の通知を受け取った時には、第一送信器202-1および第二送信器202-2のそれぞれの動作周波数をホットスタンバイ構成時の元の無線周波数f0'に戻す周波数制御手段を提供する。   When the transmission frequency control unit 309-T receives the transmission quality deterioration notification of the reception signal a due to the adjacent channel interference wave from the first wireless device 101 with which the second wireless device 201 is wirelessly opposed, one of the first transmitters The operating frequency of 202-1 is divided into the lower radio frequency f1 ′ (or the upper radio frequency f2 ′) when the band of the radio frequency f0 ′ in the hot standby configuration in the normal operation state is vertically divided, and the other second frequency The operating frequency of the transmitter 202-2 is changed from the radio frequency f0 ′ to the upper radio frequency f2 ′ (or the lower radio frequency f1 ′) of the band of the radio frequency f0 ′, and the second radio apparatus 201 When the notification of the transmission quality degradation cancellation of the received signal a due to the adjacent channel interference wave is received from the first radio device 101 facing the radio, the respective operating frequencies of the first transmitter 202-1 and the second transmitter 202-2 The original no in hot standby configuration Providing a frequency control means for returning the frequency f0 '.

受信占有帯域制御部310-Rは、前記第一無線装置101が隣接チャンネル干渉波による受信信号aの伝送品質劣化を検出すると、信号制御部308からの占有帯域信号Qを受け取り、占有帯域設定信号Uを生成して第一復調器105-1および、第二復調器105-2のそれぞれに出力する。すなわち、受信占有帯域制御部310-Rは、隣接チャンネル干渉波により受信信号aの伝送品質が劣化したと判定した時、第一復調器105-1および第二復調器105-2のそれぞれの占有帯域を、通常運用状態のホットスタンバイ構成時の半分の占有帯域に変更し、また隣接チャンネル干渉波による受信信号aの伝送品質劣化を解消することができたと判定した時、第一復調器105-1および第二復調器105-2のそれぞれの占有帯域を2倍して、ホットスタンバイ構成時の元の占有帯域に戻す占有帯域制御手段を提供する。   The reception occupied band control unit 310-R receives the occupied band signal Q from the signal control unit 308 when the first wireless device 101 detects the transmission quality deterioration of the received signal a due to the adjacent channel interference wave, and the occupied band setting signal U is generated and output to each of first demodulator 105-1 and second demodulator 105-2. That is, when the reception occupation band control unit 310-R determines that the transmission quality of the reception signal a has deteriorated due to the adjacent channel interference wave, each of the first demodulator 105-1 and the second demodulator 105-2 is occupied. When it is determined that the bandwidth has been changed to half the occupied bandwidth of the hot standby configuration in the normal operation state and the transmission quality deterioration of the received signal a due to the adjacent channel interference wave has been eliminated, the first demodulator 105- Occupied band control means for doubling the respective occupied bands of the first and second demodulators 105-2 to restore the original occupied band in the hot standby configuration is provided.

送信占有帯域制御部310-Tは、前記第二無線装置201が無線対向する前記第一無線装置101から隣接チャンネル干渉波による受信信号aの伝送品質劣化通知を受け取った時、第一変調器204-1および第二変調器204-2のそれぞれの占有帯域を、通常運用状態のホットスタンバイ構成時の半分の占有帯域に変更し、また前記第二無線装置201が無線対向する前記第一無線装置101から前記隣接チャンネル干渉波による受信信号aの伝送品質劣化解消の通知を受け取った時には、第一変調器204-1および、第二変調器204-2のそれぞれの占有帯域を2倍して、ホットスタンバイ構成時の元の占有帯域に戻す占有帯域制御手段を提供する。   When the transmission occupied bandwidth control unit 310-T receives the transmission quality degradation notification of the received signal a due to the adjacent channel interference wave from the first wireless device 101 with which the second wireless device 201 is wirelessly opposed, the first modulator 204 -1 and the second modulator 204-2 are changed to half of the occupied bandwidth in the hot standby configuration in the normal operation state, and the second wireless device 201 is wirelessly opposed to the first wireless device When the notification of the transmission quality degradation cancellation of the received signal a due to the adjacent channel interference wave is received from 101, the occupied bands of the first modulator 204-1 and the second modulator 204-2 are doubled, Provided is an occupied band control means for returning to the original occupied band in the hot standby configuration.

受信変調方式制御部311-Rは、前記第一無線装置101が隣接チャンネル干渉波による受信信号aの伝送品質劣化を検出すると、信号制御部308からの変調方式信号Rを受け取り、変調方式設定信号Wを生成して、第一復調器105-1および第二復調器105-2のそれぞれに出力する。すなわち、受信変調方式制御部311-Rは、隣接チャンネル干渉波により受信信号aの伝送品質が劣化したと判定した時、第一復調器105-1および第二復調器105-2のそれぞれの変調方式2のN(N:自然数)を、通常運用状態のホットスタンバイ構成時の2倍に変更し、隣接チャンネル干渉波による受信信号aの伝送品質劣化を解消することができたと判定した時、第一復調器105-1および第二復調器105-2のそれぞれの変調方式2のNを(1/2)にして、ホットスタンバイ構成時の元の変調方式に戻す変調方式制御手段を提供する。 The reception modulation scheme control unit 311-R receives the modulation scheme signal R from the signal control unit 308 when the first radio apparatus 101 detects the transmission quality degradation of the reception signal a due to the adjacent channel interference wave, and receives the modulation scheme setting signal. W is generated and output to each of first demodulator 105-1 and second demodulator 105-2. That is, when receiving modulation scheme control section 311-R determines that the transmission quality of received signal a has deteriorated due to the adjacent channel interference wave, each modulation of first demodulator 105-1 and second demodulator 105-2 is performed. Method 2 When N of N (N: natural number) is changed to twice that of the hot standby configuration in the normal operation state, and it is determined that the transmission quality deterioration of the received signal a due to the adjacent channel interference wave can be eliminated, Modulation method control means for changing the N of each modulation method 2 N of the first demodulator 105-1 and the second demodulator 105-2 to (1/2) and returning to the original modulation method in the hot standby configuration is provided. To do.

送信変調方式制御部311-Tは、前記第二無線装置201が無線対向する前記第一無線装置101から隣接チャンネル干渉波による受信信号aの伝送品質劣化通知を受け取った時に、第一変調器204-1および第二変調器204-2のそれぞれの変調方式2のN(N:自然数)を、通常運用状態のホットスタンバイ構成時の2倍に変更し、また前記第二無線装置201が無線対向する前記第一無線装置101から前記隣接チャンネル干渉波による受信信号aの伝送品質劣化解消の通知を受け取った時には、第一変調器204-1および第二変調器204-2のそれぞれの変調方式2のNを(1/2)にして、ホットスタンバイ構成時の元の変調方式に戻す変調方式制御手段を提供する。 The transmission modulation scheme control unit 311-T receives the transmission quality deterioration notification of the reception signal a due to the adjacent channel interference wave from the first radio apparatus 101 with which the second radio apparatus 201 is wirelessly opposed. -1 and N- 2 of the second modulator 204-2, N (N: natural number) is changed to twice that of the hot standby configuration in the normal operation state, and the second radio apparatus 201 When receiving a notification of transmission quality degradation cancellation of the received signal a due to the adjacent channel interference wave from the opposing first radio apparatus 101, each modulation scheme of the first modulator 204-1 and the second modulator 204-2 the N of 2 N in the (1/2) to provide modulation scheme controlling means for returning to the original modulation scheme during hot standby configuration.

第一受信器103-1および第二受信器103-2は、受信周波数制御部309-Rからの周波数設定信号Tにより、無線通信する際の無線周波数(無線チャンネル)を設定すると同時に、受信帯域内の受信レベルを検出して、それぞれの無線通信信号受信レベルhとして、無線信号制御部107の判断部304へ出力する。
第一変調器104-1と第二変調器104-2は送信周波数制御部309-Tおよび第一復調器105-1と第二復調器105-2は受信周波数制御部309-Rからの占有帯域設定信号Uおよび変調方式設定信号Wにより、無線通信する際の占有帯域および変調方式を設定する。
The first receiver 103-1 and the second receiver 103-2 set the radio frequency (radio channel) for wireless communication by the frequency setting signal T from the reception frequency control unit 309-R, and at the same time receive band Are detected and output to the determination unit 304 of the radio signal control unit 107 as the respective radio communication signal reception levels h.
The first modulator 104-1 and the second modulator 104-2 are occupied by the transmission frequency control unit 309-T, and the first demodulator 105-1 and the second demodulator 105-2 are occupied by the reception frequency control unit 309-R. The band setting signal U and the modulation method setting signal W are used to set the occupied band and the modulation method for wireless communication.

(実施形態の動作例の説明)
次に、本発明の一実施形態として図1〜図3に示した無線通信システムの動作例について詳細に説明する。
(Description of operation example of embodiment)
Next, an exemplary operation of the wireless communication system shown in FIGS. 1 to 3 as an embodiment of the present invention will be described in detail.

なお、以下の説明において、第一無線装置101内の第一送信器102-1、第二送信器102-2、第一受信器103-1および第二受信器103-2、第二無線装置201内の第一送信器202-1、第二送信器202-2、第一受信器203-1および第二受信器203-2は、正常な通常運用状態のホットスタンバイ構成時には、第一無線装置101、第二無線装置201間における無線通信データの送信動作、受信動作を、それぞれ、無線周波数f0(第一無線装置101→第二無線装置201)、無線周波数f0'(第二無線装置201→第一無線装置101)を用いて行う。   In the following description, the first transmitter 102-1, the second transmitter 102-2, the first receiver 103-1, the second receiver 103-2, and the second radio device in the first radio device 101 The first transmitter 202-1, the second transmitter 202-2, the first receiver 203-1, and the second receiver 203-2 in the 201 are connected to the first radio in the normal standby state hot standby configuration. The transmission operation and the reception operation of the wireless communication data between the device 101 and the second wireless device 201 are respectively performed with a wireless frequency f0 (first wireless device 101 → second wireless device 201) and a wireless frequency f0 ′ (second wireless device 201). → Performed using the first wireless device 101).

一方、品質劣化状態のFDDツインパス構成時には、第一無線装置101、第二無線装置201間における無線通信データの送信動作、受信動作を、それぞれ、二つの無線周波数f1および無線周波数f2(第一無線装置101→第二無線装置201)、二つの無線周波数f1'および無線周波数f2'(第二無線装置201→第一無線装置101)を用いて行う。   On the other hand, when the FDD twin path is in a quality-degraded state, the wireless communication data transmission operation and reception operation between the first wireless device 101 and the second wireless device 201 are respectively performed with two wireless frequencies f1 and f2 (first wireless device f1). Device 101 → second radio device 201), two radio frequencies f1 ′ and radio frequency f2 ′ (second radio device 201 → first radio device 101).

ここで、無線周波数f0と無線周波数f0'とは、一般のFDDシステムのGo(上り回線)、Return(下り回線)のそれぞれの周波数に該当する。また、無線周波数f1と無線周波数f1'、 無線周波数f2と無線周波数f2'とについても、同様の関係であり、それぞれ、一般のFDDシステムのGo(上り回線)、Return(下り回線)のそれぞれの周波数に該当する。   Here, the radio frequency f0 and the radio frequency f0 ′ correspond to respective frequencies of Go (uplink) and Return (downlink) of a general FDD system. In addition, the same relationship exists between the radio frequency f1 and the radio frequency f1 ′, and the radio frequency f2 and the radio frequency f2 ′. Each of Go (uplink) and Return (downlink) of a general FDD system, respectively. Corresponds to the frequency.

また、第一無線装置101内の第一変調器104-1および第二変調器104-2、第二無線装置201内の第一変調器204-1および第二変調器204-2は、それぞれ、インタフェース部108および伝送データ合成器111、インタフェース部208および伝送データ合成器211を介して出力されてくるインタフェース信号eを、無線信号制御部107、無線信号制御部207それぞれからの変調方式設定信号Wにより設定される変調方式を用いて変調して、変調データfを生成する。   Further, the first modulator 104-1 and the second modulator 104-2 in the first radio apparatus 101, the first modulator 204-1 and the second modulator 204-2 in the second radio apparatus 201, respectively, The interface unit 108 and the transmission data synthesizer 111, the interface unit 208 and the interface signal e output via the transmission data synthesizer 211 are converted into modulation scheme setting signals from the radio signal control unit 107 and the radio signal control unit 207, respectively. Modulation is performed using the modulation scheme set by W to generate modulation data f.

また、第一無線装置101内の第一復調器105-1および第二復調器105-2、第二無線装置201内の第一復調器205-1および第二復調器205-2は、それぞれ、対向する相手側の第二無線装置201、第一無線装置101からの無線チャンネルから分離した受信信号aの中から、対向する相手側の第二無線装置201内の第一送信器202-1および第二送信器202-2、第一無線装置101内の第一送信器102-1および第送受信器102-2のそれぞれが送信した変調データfに該当する信号を、無線信号制御部107、無線信号制御部207のそれぞれからの変調方式設定信号Wにより設定される変調方式を用いて復調して、復調信号bを生成する。   Further, the first demodulator 105-1 and the second demodulator 105-2 in the first radio apparatus 101, the first demodulator 205-1 and the second demodulator 205-2 in the second radio apparatus 201, respectively, The first transmitter 202-1 in the second radio apparatus 201 on the opposite side, out of the received signal a separated from the radio channel from the opposite second radio apparatus 201 and the first radio apparatus 101 And the second transmitter 202-2, a signal corresponding to the modulation data f transmitted by each of the first transmitter 102-1 and the first transmitter / receiver 102-2 in the first radio apparatus 101, the radio signal control unit 107, Demodulation is performed using the modulation scheme set by the modulation scheme setting signal W from each of the radio signal control sections 207, and a demodulated signal b is generated.

また、第一無線装置101内の隣接干渉波検出部106、第二無線装置201内の隣接干渉波検出部206はそれぞれ、無線信号合成器110、無線信号合成器210からの隣接チャンネル無線通信信号gの中から、無線信号制御部107、無線信号制御部207のそれぞれの判断部304からの隣接チャンネル情報sに指定された下側チャンネルおよび上側チャンネルとの双方の信号の受信レベルを下側隣接チャンネル受信器401-1および上側隣接チャンネル受信器401-2で抽出し、占有帯域情報と変調方式情報からあらかじめ設定されている干渉閾値と比較することで隣接チャンネルの干渉波受信レベルpとして検出して、無線信号制御部107、無線信号制御部207のそれぞれの判断部304に出力する。   Also, the adjacent interference wave detection unit 106 in the first radio apparatus 101 and the adjacent interference wave detection unit 206 in the second radio apparatus 201 are adjacent channel radio communication signals from the radio signal synthesizer 110 and the radio signal synthesizer 210, respectively. The reception level of the signal of both the lower channel and the upper channel specified in the adjacent channel information s from the determination unit 304 of each of the radio signal control unit 107 and the radio signal control unit 207 is set to the lower side of g. Extracted by the channel receiver 401-1 and the upper adjacent channel receiver 401-2, and detected as the interference wave reception level p of the adjacent channel by comparing with the interference threshold set in advance from the occupied band information and the modulation method information. The wireless signal control unit 107 and the wireless signal control unit 207 respectively output the determination unit 304.

[隣接チャンネル干渉が生じていると判断する動作]
次に、第一無線装置101内の無線信号制御部107において、隣接チャンネルからの干渉が発生していることを判断する動作の一例について、図4のフローチャートを参照しながら詳細に説明する。図4は、図1に示した無線通信システムを構成する第一無線装置101内の無線信号制御部107において隣接チャンネルからの干渉が発生していることを判断する動作の一例を説明するためのフローチャートである。なお、図4のフローチャートの説明においては、第一無線装置101内の無線信号制御部107の場合について説明するが、無線対向する第二無線装置201内の無線信号制御部207についても、第一無線装置101と第二無線装置201とを入れ替えるだけで全く同様の動作を行うことは言うまでもない。
[Operation to determine that adjacent channel interference is occurring]
Next, an example of an operation of determining that interference from an adjacent channel has occurred in the radio signal control unit 107 in the first radio apparatus 101 will be described in detail with reference to the flowchart of FIG. FIG. 4 is a diagram for explaining an example of an operation for determining that interference from an adjacent channel has occurred in the radio signal control unit 107 in the first radio apparatus 101 constituting the radio communication system shown in FIG. It is a flowchart. In the description of the flowchart of FIG. 4, the case of the wireless signal control unit 107 in the first wireless device 101 will be described, but the wireless signal control unit 207 in the second wireless device 201 that is wirelessly opposed also is It goes without saying that the same operation is performed simply by replacing the wireless device 101 and the second wireless device 201.

図4のフローチャートに示すように、まず、通常運用状態のホットスタンバイ構成時には、第一無線装置101内の無線信号制御部107は、第一無線装置101内の第一復調器105-1および第二復調器105-2のそれぞれから出力される受信情報mに含まれている、第一復調器105-1および第二復調器105-2のそれぞれにおける回線信号のエラー率情報である回線品質信号Aを、回線品質監視部301において監視して、回線品質信号Aの監視結果に基づいて、回線品質が劣化していると認識した場合には、回線劣化信号Bとして、判断部304へ伝達する(ステップS1)。   As shown in the flowchart of FIG. 4, first, in the hot standby configuration in the normal operation state, the radio signal control unit 107 in the first radio apparatus 101 includes the first demodulator 105-1 and the first demodulator in the first radio apparatus 101. Line quality signal which is error rate information of the line signal in each of the first demodulator 105-1 and the second demodulator 105-2, included in the reception information m output from each of the two demodulators 105-2 A is monitored by the line quality monitoring unit 301, and when it is recognized that the line quality is deteriorated based on the monitoring result of the line quality signal A, it is transmitted to the determination unit 304 as the line deterioration signal B. (Step S1).

次に、回線品質監視部301からの回線劣化信号Bを受け取った判断部304は、第一無線装置101内の第一受信器103-1および第二受信器103-2のそれぞれから出力されてくる無線通信信号受信レベルhが、受信無線信号のエラーを生じるような低い受信レベルにあるか否かを、占有帯域情報、変調方式情報から決まるあらかじめ定めた受信閾値と比較することにより確認する(ステップS2)。降雨やフェーディング等の影響を受けて無線通信信号受信レベルhがあらかじめ定めた前記受信閾値よりも低下していた場合には(ステップS2のNo)、回線劣化信号Bが示す回線品質の劣化の原因は、隣接チャンネル干渉による劣化によるものではないと判定する(ステップS3)。ステップS2は回線品質監視ステップに対応する。   Next, the determination unit 304 that has received the line degradation signal B from the line quality monitoring unit 301 is output from each of the first receiver 103-1 and the second receiver 103-2 in the first radio apparatus 101. Whether or not the incoming radio communication signal reception level h is at a low reception level that causes an error in the received radio signal is confirmed by comparing with a predetermined reception threshold determined from occupied band information and modulation method information ( Step S2). When the radio communication signal reception level h is lower than the predetermined reception threshold value due to the influence of rainfall or fading (No in step S2), the line quality degradation indicated by the line degradation signal B It is determined that the cause is not due to deterioration due to adjacent channel interference (step S3). Step S2 corresponds to a line quality monitoring step.

一方、無線通信信号受信レベルhが前記受信閾値以上に達していて、低い受信レベルではなかった場合には(ステップS2のYes)、次に、隣接干渉波検出部106から出力されてくる下側隣接チャンネル、上側隣接チャンネルのいずれかの干渉波受信レベルpがあらかじめ定めた干渉閾値以上になっているか否かを確認する(ステップS4)。下側隣接チャンネル、上側隣接チャンネルのいずれの干渉波受信レベルpも、前記干渉閾値よりも低い場合は(ステップS4のNo)、回線劣化信号Bが示す回線品質の劣化の原因は、隣接チャンネル干渉による劣化によるものではないと判定する(ステップS3)。一方、下側隣接チャンネル、上側隣接チャンネルのいずれかの干渉波受信レベルpが前記干渉閾値以上であった場合には(ステップS4のYes)、隣接チャンネル干渉による品質劣化が発生しているものと判定する(ステップS5)。この図4のフローにおける判定シーケンスはホットスタンドバイ構成で無線装置運用中において継続して判定される。ステップS4は隣接干渉波検出ステップに対応する。   On the other hand, if the wireless communication signal reception level h has reached the reception threshold value or higher and is not a low reception level (Yes in step S2), the lower side output from the adjacent interference wave detection unit 106 next. It is confirmed whether the interference wave reception level p of either the adjacent channel or the upper adjacent channel is equal to or higher than a predetermined interference threshold (step S4). When the interference wave reception level p of both the lower adjacent channel and the upper adjacent channel is lower than the interference threshold (No in step S4), the cause of the deterioration of the line quality indicated by the line deterioration signal B is the adjacent channel interference. It is determined that the deterioration is not caused by (step S3). On the other hand, when the interference wave reception level p of either the lower adjacent channel or the upper adjacent channel is equal to or higher than the interference threshold (Yes in step S4), the quality degradation due to the adjacent channel interference has occurred. Determine (step S5). The determination sequence in the flow of FIG. 4 is continuously determined while the wireless device is operating in a hot standby configuration. Step S4 corresponds to the adjacent interference wave detection step.

そして、下側隣接チャンネルあるいは上側隣接チャンネルからの影響を解消させるために、ホットスタンバイ構成からFDDツインパス構成へ構成変更するための動作を起動する(ステップS6)。   Then, in order to eliminate the influence from the lower adjacent channel or the upper adjacent channel, an operation for changing the configuration from the hot standby configuration to the FDD twin path configuration is started (step S6).

[ホットスタンバイ構成からFDDツインパス構成へ構成変更するための動作]
次に、第一無線装置101内の無線信号制御部107において、ホットスタンバイ構成からFDDツインパス構成へ構成変更する動作の一例について、図5のフローチャートを参照しながら詳細に説明する。図5は、図1に示した無線通信システムを構成する第一無線装置101内の無線信号制御部107においてホットスタンバイ構成からFDDツインパス構成へ構成変更する動作の一例を説明するためのフローチャートである。なお、図5のフローチャートの説明においては、第一無線装置101内の無線信号制御部107が回線品質の劣化を検出した場合について説明するが、無線対向する第二無線装置201内の無線信号制御部207が回線品質の劣化を検出した場合についても、第一無線装置101と第二無線装置201とを入れ替えるだけで全く同様の動作を行うことは言うまでもない。
[Operation for changing the configuration from the hot standby configuration to the FDD twin-pass configuration]
Next, an example of the operation of changing the configuration from the hot standby configuration to the FDD twin path configuration in the radio signal control unit 107 in the first radio apparatus 101 will be described in detail with reference to the flowchart of FIG. FIG. 5 is a flowchart for explaining an example of the operation of changing the configuration from the hot standby configuration to the FDD twin path configuration in the radio signal control unit 107 in the first radio apparatus 101 configuring the radio communication system shown in FIG. . In the description of the flowchart of FIG. 5, a case will be described in which the wireless signal control unit 107 in the first wireless device 101 detects deterioration of channel quality, but wireless signal control in the second wireless device 201 that is wirelessly opposed is described. Needless to say, even when the unit 207 detects deterioration of the line quality, the same operation is performed simply by replacing the first radio apparatus 101 and the second radio apparatus 201.

図5のフローチャートに示すように、隣接チャンネルからの干渉波の影響を解消させるために、ホットスタンバイ構成からFDDツインパス構成へ構成変更するための動作を開始するのに先立って、まず、無線対向する相手側の第二無線装置201との構成変更シーケンスの同期取りを行うために、第一無線装置101内の無線信号制御部107の判断部304において、相手側の第二無線装置201に対して構成の変更を要求する対向局構成変更要求信号Fを、変調方式制御信号qに含めて、第一変調器104-1および第二変調器104-2においてインタフェース信号eと多重化して、無線対向する相手側の第二無線装置201に対して送信する(ステップS11)。ステップS11は第一無線装置101が、隣接チャンネル干渉波による自無線回線受信信号aの伝送品質劣化を検出すると、空間対向するもう一方の第二無線装置201へ、システム構成の変更を要求するシステム変更要求ステップとなる。   As shown in the flowchart of FIG. 5, in order to eliminate the influence of the interference wave from the adjacent channel, first, the wireless facing is started before the operation for changing the configuration from the hot standby configuration to the FDD twin path configuration is started. In order to synchronize the configuration change sequence with the second radio apparatus 201 on the counterpart side, the determination unit 304 of the radio signal control unit 107 in the first radio apparatus 101 determines the second radio apparatus 201 on the counterpart side. The opposite station configuration change request signal F for requesting the configuration change is included in the modulation scheme control signal q, multiplexed with the interface signal e in the first modulator 104-1 and the second modulator 104-2, and wirelessly opposed. To the other party's second wireless device 201 (step S11). In step S11, when the first radio apparatus 101 detects the transmission quality deterioration of the reception signal a of the own radio line due to the adjacent channel interference wave, the system requests the other second radio apparatus 201 facing the space to change the system configuration. This is a change request step.

無線対向する相手側の第二無線装置201は、第一無線装置101からの変調方式制御信号qに含まれた対向局構成変更要求信号Fを受け取ると(ステップS12)、第一復調器205-1および第二復調器205-2において、変調方式制御信号qに含まれた対向局構成変更要求信号Fを分離して、第二無線装置201内の無線信号制御部207の対向局間同期判定部303へ出力する。対向局間同期判定部303は、相手側の第一無線装置101においてホットスタンバイ構成からFDDツインパス構成へ構成変更しようとしているので、当該第二無線装置201も同期を取って、同様の構成変更動作を行う必要があることを認識し、構成変更を行うための応答信号Gを生成して、無線信号制御部207の判断部304に出力するとともに、要求を受け付けた旨を示すACK(Acknowledge)信号として、対向局構成変更要求信号Fを含む変調方式制御信号qを相手側の第一無線装置101に返送する(ステップS13)。ステップS12はステップS11による無線送信系の構成変更要求を受信するステップ、ステップS13は無線送信系のシステム変更を開始することを返送するステップとなる。   When receiving the opposite station configuration change request signal F included in the modulation scheme control signal q from the first radio apparatus 101 (step S12), the second radio apparatus 201 on the other side facing the radio receives the first demodulator 205- In 1 and 2 demodulators 205-2, the opposite station configuration change request signal F included in the modulation scheme control signal q is separated, and the synchronization determination between the opposite stations of the radio signal control unit 207 in the second radio apparatus 201 is performed. Output to the unit 303. Since the counter-station synchronization determination unit 303 is attempting to change the configuration from the hot standby configuration to the FDD twin path configuration in the counterpart first radio device 101, the second radio device 201 also synchronizes and performs the same configuration change operation. ACK (Acknowledge) signal indicating that the request has been accepted, and generating a response signal G for changing the configuration and outputting the response signal G to the determination unit 304 of the radio signal control unit 207 Then, the modulation scheme control signal q including the opposite station configuration change request signal F is returned to the first radio apparatus 101 on the counterpart side (step S13). Step S12 is a step of receiving the configuration change request of the wireless transmission system in step S11, and step S13 is a step of returning that the system change of the wireless transmission system is started.

無線対向する相手側の第二無線装置201内の無線信号制御部207の判断部304は、無線制御信号Mを信号制御部308に出力して、送信側をホットスタンバイ構成からFDDツインパス構成に構成を変更するために、送信の無線周波数変更、占有帯域変更、変調方式変更を行うことを指示する(ステップS15)。同様に、無線対向する相手側の第二無線装置201に対して対向局構成変更要求信号Fを含む変調方式制御信号qを送信した第一無線装置101側の判断部304においても、無線対向する相手側の第二無線装置201側からACK信号として返送されてきた対向局構成変更要求信号Fを含む変調方式制御信号qを検知すると、対向局間同期判定部303にて応答信号Gを生成して、判断部304に出力してくる(ステップS14)。応答信号Gを受け取った判断部304は、無線制御信号Mを第一無線装置101内の信号制御部308に出力して、受信側をホットスタンバイ構成からFDDツインパス構成に構成を変更するために、受信の無線周波数変更、占有帯域変更、変調方式変更を行うことを指示する(ステップS16)。ステップS16は無線受信系をホットスタンバイ構成からFDDツインパス構成へ変更する受信構成変更指示ステップとなる。   The determination unit 304 of the radio signal control unit 207 in the second radio apparatus 201 on the opposite side of the radio outputs the radio control signal M to the signal control unit 308, and configures the transmission side from the hot standby configuration to the FDD twin path configuration. To change the transmission radio frequency, occupied band, and modulation method (step S15). Similarly, in the determination unit 304 on the first radio apparatus 101 side that has transmitted the modulation scheme control signal q including the opposite station configuration change request signal F to the second radio apparatus 201 on the other side facing the radio, the radio unit is also opposed When the modulation scheme control signal q including the opposite station configuration change request signal F returned from the counterpart second radio apparatus 201 side is detected, the opposite station synchronization determination unit 303 generates a response signal G. Is output to the determination unit 304 (step S14). The determination unit 304 that has received the response signal G outputs the radio control signal M to the signal control unit 308 in the first radio apparatus 101 to change the configuration from the hot standby configuration to the FDD twin path configuration. It is instructed to change the reception radio frequency, the occupied band, and the modulation method (step S16). Step S16 is a reception configuration change instruction step for changing the wireless reception system from the hot standby configuration to the FDD twin path configuration.

第二無線装置201内の無線信号制御部207から、信号制御部308および周波数制御部309を介して、無線周波数変更の指示となる周波数設定信号Tを受け取った第二無線装置201内の一方の第一送信器202-1においては、動作周波数を、ホットスタンバイ構成時の無線周波数f0'の帯域を上下に二分した下側チャンネルすなわち下側無線周波数f1'に無線周波数f0'から変更して設定し、他方の第二送信器202-2においては、動作周波数を、無線周波数f0'の帯域を上下に二分した上側チャンネルすなわち上側無線周波数f2'に無線周波数f0'から変更して設定する(ステップS17)。同様に、第一無線装置101内の無線信号制御部107から、信号制御部308および周波数制御部309を介して、無線周波数変更の指示となる周波数設定信号Tを受け取った第一無線装置101内の一方の第一受信器103-1においては、動作周波数をホットスタンバイ構成時の無線周波数f0'を上下に二分した下側チャンネルすなわち下側無線周波数f1'に無線周波数f0'から変更して設定し、他方の第二受信器103-2においては、無線周波数f0'を上下に二分した上側チャンネルすなわち上側無線周波数f2'に無線周波数f0'から変更して設定する(ステップS18)。ステップS17は送信周波数制御ステップに対応し、ステップS18は受信周波数制御ステップに対応する。   From the radio signal control unit 207 in the second radio apparatus 201, via the signal control unit 308 and the frequency control unit 309, one of the second radio apparatus 201 in the second radio apparatus 201 that has received the frequency setting signal T that is an instruction to change the radio frequency In the first transmitter 202-1, the operating frequency is set by changing the radio frequency f0 ′ from the radio frequency f0 ′ to the lower channel, that is, the lower radio frequency f1 ′ obtained by dividing the band of the radio frequency f0 ′ in the hot standby configuration into upper and lower parts. In the other second transmitter 202-2, the operating frequency is set by changing the radio frequency f0 ′ from the radio frequency f0 ′ to the upper channel, that is, the upper radio frequency f2 ′ obtained by dividing the band of the radio frequency f0 ′ up and down (step). S17). Similarly, in the first radio apparatus 101 that has received the frequency setting signal T that is an instruction to change the radio frequency from the radio signal control section 107 in the first radio apparatus 101 via the signal control section 308 and the frequency control section 309. In one of the first receivers 103-1, the operating frequency is set by changing the radio frequency f0 'from the radio frequency f0' to a lower channel obtained by dividing the radio frequency f0 'in the hot standby configuration into two vertically. In the other second receiver 103-2, the radio frequency f0 'is divided into upper and lower channels, that is, the upper radio frequency f2' is changed from the radio frequency f0 'and set (step S18). Step S17 corresponds to a transmission frequency control step, and step S18 corresponds to a reception frequency control step.

また、第二無線装置201内の無線信号制御部207から、信号制御部308および占有帯域制御部310を介して、占有帯域変更の指示となる占有帯域設定信号Uを受け取った第二無線装置201内の第一変調器204-1、および第二変調器204-2において、占有周波数帯域をホットスタンバイ構成時の占有周波数帯域の半分の(1/2)に変更して設定する(ステップS19)。同様に、第一無線装置101内の無線信号制御部107から、信号制御部308および占有帯域制御部310を介して、占有帯域変更の指示となる占有帯域設定信号Uを受け取った第一無線装置101内の第一復調器105-1、および第二復調器105-2において、それぞれの占有周波数帯域を、ホットスタンバイ構成時の占有周波数帯域の半分の(1/2)に変更して設定する(ステップS20)。ステップS19は送信占有帯域制御ステップに対応し、ステップS20は受信占有帯域制御ステップに対応する。   Also, the second radio apparatus 201 that has received the occupied band setting signal U that is an instruction to change the occupied band from the radio signal control section 207 in the second radio apparatus 201 via the signal control section 308 and the occupied band control section 310. In the first modulator 204-1 and the second modulator 204-2, the occupied frequency band is changed and set to (1/2) half of the occupied frequency band in the hot standby configuration (step S19). . Similarly, the first radio apparatus that has received the occupied band setting signal U that is an instruction to change the occupied band from the radio signal control unit 107 in the first wireless apparatus 101 via the signal control unit 308 and the occupied band control unit 310. In the first demodulator 105-1 and the second demodulator 105-2 in 101, the respective occupied frequency bands are changed and set to (1/2) half of the occupied frequency band in the hot standby configuration. (Step S20). Step S19 corresponds to the transmission occupied bandwidth control step, and step S20 corresponds to the reception occupied bandwidth control step.

また、第二無線装置201内の無線信号制御部207から、信号制御部308および変調方式制御部311を介して、変調方式変更の指示となる変調方式設定信号Wを受け取った第二無線装置201内の第一変調器204-1、および第二変調器204-2において、それぞれの変調方式をホットスタンバイ構成時の変調方式2のNを2倍にした値すなわち22Nと等価な値に変更して設定する(ステップS21)。同様に、第一無線装置101内の無線信号制御部107から、信号制御部308および変調方式制御部311を介して、変調方式変更の指示となる変調方式設定信号Wを受け取った第一無線装置101内の第一復調器105-1、および第二復調器105-2において、それぞれの変調方式をホットスタンバイ構成時の変調方式2のNを2倍にした値すなわち22Nと等価な値に変更して設定する(ステップS22)。ステップS21は送信変調方式制御ステップに対応し、ステップS22は受信変調方式制御ステップに対応する。 The second radio apparatus 201 receives a modulation scheme setting signal W that is an instruction to change the modulation scheme from the radio signal control section 207 in the second radio apparatus 201 via the signal control section 308 and the modulation scheme control section 311. In each of the first modulator 204-1 and the second modulator 204-2, each modulation method is a value obtained by doubling N of the modulation method 2N in the hot standby configuration, that is, a value equivalent to 22N. Change and set (step S21). Similarly, the first radio apparatus that has received a modulation scheme setting signal W that is an instruction to change the modulation scheme from the radio signal control section 107 in the first radio apparatus 101 via the signal control section 308 and the modulation scheme control section 311 In first demodulator 105-1 and second demodulator 105-2 in 101, each modulation method is a value obtained by doubling N of modulation method 2N in the hot standby configuration, that is, a value equivalent to 22N. To be set (step S22). Step S21 corresponds to a transmission modulation scheme control step, and step S22 corresponds to a reception modulation scheme control step.

しかる後、第二無線装置201内の無線信号制御部207の判断部304は、自第二無線装置201および相手側の第一無線装置101の双方ともに、無線周波数、占有帯域、変調方式の変更設定が完了したか否かを確認し(ステップS23)、変更設定が完了したことを認識した場合(ステップS23のYes)、無線送信系として、下側チャンネルf1'および上側チャンネルf2'を用いたFDDツインパス構成への変更動作を完了する(ステップS25)。同様に、第一無線装置101内の無線信号制御部107の判断部304は、自第一無線装置101および相手側の第二無線装置201の双方ともに、無線周波数、占有帯域、変調方式の変更設定が完了したか否かを確認し(ステップS24)、変更設定が完了した場合(ステップS24のYes)、無線受信系として、下側チャンネルf1'および上側チャンネルf2'を用いたFDDツインパス構成への変更動作を完了する(ステップS26)。   Thereafter, the determination unit 304 of the radio signal control unit 207 in the second radio apparatus 201 changes the radio frequency, occupied band, and modulation method for both the own second radio apparatus 201 and the counterpart first radio apparatus 101. It is confirmed whether or not the setting is completed (step S23), and when the change setting is recognized (Yes in step S23), the lower channel f1 ′ and the upper channel f2 ′ are used as the wireless transmission system. The change operation to the FDD twin path configuration is completed (step S25). Similarly, the determination unit 304 of the radio signal control unit 107 in the first radio apparatus 101 changes the radio frequency, occupied band, and modulation method for both the own first radio apparatus 101 and the counterpart second radio apparatus 201. It is confirmed whether or not the setting is completed (step S24). When the change setting is completed (Yes in step S24), the wireless reception system is changed to the FDD twin path configuration using the lower channel f1 ′ and the upper channel f2 ′. The changing operation is completed (step S26).

一方、第二無線装置201内の無線信号制御部206の判断部304は、自第二無線装置201および相手側の第一無線装置101の双方またはいずれか一方において、変更設定が完了したことを認識できなかった場合(ステップS23のNo)、FDDツインパス構成への構成変更動作が失敗した場合であり、構成変更前の構成であるホットスタンバイ構成に一旦復帰させた後(ステップS27)、ステップS12に復帰して、相手側の第一無線装置101からの再度の構成変更要求を待ち合わせる状態に戻る。同様に、第一無線装置101内の無線信号制御部107の判断部304は、自第一無線装置101および相手側の第二無線装置201の双方またはいずれか一方において、変更設定が完了したことを認識できなかった場合(ステップS24のNo)、FDDツインパス構成への構成変更動作が失敗した場合であり、構成変更前の構成であるホットスタンバイ構成に一旦復帰させた後(ステップS28)、図4に示したステップS1に復帰して、再度、回線品質の劣化を検出する動作からやり直す。   On the other hand, the determination unit 304 of the radio signal control unit 206 in the second radio apparatus 201 confirms that the change setting has been completed in both or either of the own second radio apparatus 201 and the counterpart first radio apparatus 101. If it cannot be recognized (No in step S23), the configuration change operation to the FDD twin path configuration has failed, and after returning to the hot standby configuration that is the configuration before the configuration change (step S27), step S12 To return to a state of waiting for another configuration change request from the first radio apparatus 101 on the other side. Similarly, the determination unit 304 of the wireless signal control unit 107 in the first wireless device 101 has completed the change setting in both or any one of the first wireless device 101 and the second wireless device 201 on the counterpart side. Is not recognized (No in step S24), the configuration change operation to the FDD twin path configuration has failed, and after returning to the hot standby configuration that is the configuration before the configuration change (step S28), FIG. Returning to step S1 shown in FIG. 4, the operation for detecting deterioration of the line quality is performed again.

以上の動作に示すように、隣接チャンネルの干渉波による回線品質の劣化が発生した場合には、第一無線装置101側の受信用の動作周波数、相手側の第二無線装置201側の送信用の動作周波数として、無線周波数f0/f0'それぞれを用いた通常運用状態のホットスタンバイ構成から、Go(上り回線)は変更することなく、劣化が発生したReturn(下り回線)のみ下側チャンネル(ホットスタンバイ構成時の無線周波数f0'の帯域を上下に二分した下側の無線周波数f1')と上側チャンネル(ホットスタンバイ構成時の無線周波数f0'の帯域を上下に二分した上側の無線周波数f2')との二つの周波数を用いたFDDツインパス構成に第一無線装置101/第二無線装置201の構成を変更し、f0/f1'+f2'で無線通信する。   As shown in the above operation, when channel quality deterioration occurs due to the interference wave of the adjacent channel, the operating frequency for reception on the first radio apparatus 101 side, the transmission frequency on the second radio apparatus 201 side on the counterpart side From the hot standby configuration in the normal operation state using each of the radio frequencies f0 / f0 ′ as the operating frequency, the Go (uplink) is not changed, and only the return (downlink) in which the degradation has occurred is changed to the lower channel (hot). The lower radio frequency f1 ′ obtained by vertically dividing the band of the radio frequency f0 ′ in the standby configuration) and the upper channel (the upper radio frequency f2 ′ obtained by dividing the band of the radio frequency f0 ′ in the hot standby configuration by upper and lower). The configuration of the first radio apparatus 101 / second radio apparatus 201 is changed to an FDD twin path configuration using two frequencies, and radio communication is performed using f0 / f1 ′ + f2 ′.

ここで、下側無線周波数f1'と上側無線周波数f2'とに二分した二つの無線周波数を用いるFDDツインパス構成よりも、より広い占有帯域の無線周波数(f0')を用いたホットスタンバイ構成の方が、降雨やフェーディング等の伝搬路変動が生じても、回線品質信号のエラーを発生させない伝搬路変動耐力が高いため、ホットスタンバイ構成が、通常運用時に適している。   Here, the hot standby configuration using a radio frequency (f0 ′) having a wider occupied band than the FDD twin-pass configuration using two radio frequencies divided into the lower radio frequency f1 ′ and the upper radio frequency f2 ′. However, the hot standby configuration is suitable for normal operation because it has a high resistance against propagation path fluctuation that does not cause an error in the channel quality signal even if propagation path fluctuation such as rainfall or fading occurs.

また、ホットスタンバイ構成においては、第一無線装置101においては第一送信器102-1、第二送信器102-2、第一受信器103-1および第二受信器103-2、第二無線装置201においては第一送信器202-1、第二送信器202-2、第一受信器203-1および第二受信器203-2とそれぞれ二つの送信器/受信器により、一方を現用とし、他方を待機状態とする送信器/受信器の現用・予備構成を構築することができるため、機器故障発生率や低消費電力運用面においても有利である。   In the hot standby configuration, in the first radio apparatus 101, the first transmitter 102-1, the second transmitter 102-2, the first receiver 103-1 and the second receiver 103-2, the second radio In the device 201, the first transmitter 202-1, the second transmitter 202-2, the first receiver 203-1, and the second receiver 203-2 are each used as two transmitters / receivers, and one of them is used as an active device. Since it is possible to construct a working / standby configuration of the transmitter / receiver in which the other is in a standby state, it is advantageous in terms of equipment failure occurrence rate and low power consumption operation.

したがって、隣接チャンネル干渉状態が解消し、回線品質が正常な状態に復帰したことを検知した場合、頻発な構成変更・構成復帰動作の繰り返しを防止するために、隣接チャンネル干渉状態の解消を検知してからあらかじめ定めた復帰監視時間T1が経過するまで、隣接チャンネル干渉状態が解消している状態が継続しているか否かを監視することにし、該復帰監視時間T1を経過するまで解消状態が継続していた場合には、隣接チャンネル干渉状態が確かに解消したものと判断して、FDDツインパス構成からホットスタンバイ構成へ復帰させる動作を行うことが望ましい。   Therefore, when it is detected that the adjacent channel interference state has been resolved and the line quality has returned to the normal state, it is detected that the adjacent channel interference state has been canceled in order to prevent frequent reconfiguration and reconfiguration operations. Until the preset return monitoring time T1 elapses, whether or not the adjacent channel interference state has been canceled continues to be monitored, and the cancellation status continues until the return monitoring time T1 elapses In such a case, it is desirable to perform an operation of returning from the FDD twin path configuration to the hot standby configuration by determining that the adjacent channel interference state is surely resolved.

[隣接チャンネル干渉が低下したことを判断する動作]
次に、第一無線装置101内の無線信号制御部107において、FDDツインパス構成において隣接チャンネルの干渉があらかじめ定めた干渉閾値よりも低下したことを判断する際の動作の一例について、図6のフローチャートを参照しながら詳細に説明する。図6は、図1に示した無線通信システムを構成する第一無線装置101内の無線信号制御部107においてFDDツインパス構成時の隣接チャンネルの干渉があらかじめ定めた干渉閾値よりも低下したことを判断する際の動作の一例を説明するためのフローチャートである。なお、図7のフローチャートの説明においては、第一無線装置101内の無線信号制御部107が隣接チャンネルの干渉の低下を検出した場合について説明するが、対向する第二無線装置201内の無線信号制御部207が隣接チャンネルの干渉の低下を検出した場合についても、第一無線装置101と第二無線装置201とを入れ替えるだけで全く同様の動作を行うことは言うまでもない。
[Operation to determine that adjacent channel interference has decreased]
Next, an example of an operation when the radio signal control unit 107 in the first radio apparatus 101 determines that the interference of the adjacent channel is lower than a predetermined interference threshold in the FDD twin path configuration is shown in the flowchart of FIG. Will be described in detail with reference to FIG. FIG. 6 shows that the radio signal control unit 107 in the first radio apparatus 101 constituting the radio communication system shown in FIG. 1 determines that the interference of adjacent channels when the FDD twin path is configured is lower than a predetermined interference threshold. It is a flowchart for demonstrating an example of the operation | movement at the time of doing. In the description of the flowchart of FIG. 7, the case where the radio signal control unit 107 in the first radio apparatus 101 detects a decrease in interference of adjacent channels will be described. Needless to say, even when the control unit 207 detects a decrease in interference between adjacent channels, the same operation is performed simply by replacing the first radio apparatus 101 and the second radio apparatus 201.

図6のフローチャートに示すように、まず、第一無線装置101内の無線信号制御部107の回線品質監視部301は、FDDツインパス構成時において、第一復調器105-1および第二復調器105-2のそれぞれから出力される受信情報mを監視しており、受信情報mに含まれている第一復調器105-1および第二復調器105-2のそれぞれにおける回線信号のエラー率情報である回線品質信号Aの監視結果として、第一復調器105-1および第二復調器105-2の双方とも無線回線品質の劣化状態が解消し、正常な回線品質に復帰していることを検出すると、回線品質の劣化が解消したことを示す回線劣化信号Bを生成して、判断部304に出力する(ステップS31)。   As shown in the flowchart of FIG. 6, first, the channel quality monitoring unit 301 of the radio signal control unit 107 in the first radio apparatus 101 performs the first demodulator 105-1 and the second demodulator 105 in the FDD twin path configuration. -2 monitoring the reception information m output from each of the -2, and the error rate information of the line signal in each of the first demodulator 105-1 and the second demodulator 105-2 included in the reception information m As a result of monitoring a certain channel quality signal A, it is detected that both the first demodulator 105-1 and the second demodulator 105-2 have recovered from the deteriorated state of the radio channel quality and have returned to normal channel quality. Then, a line deterioration signal B indicating that the deterioration of the line quality has been eliminated is generated and output to the determination unit 304 (step S31).

次に、回線品質の劣化が解消したことを示す回線劣化信号Bを受け取った判断部304は、第一無線装置101内の第一受信器103-1および第二受信器103-2のそれぞれから出力されてくる無線通信信号受信レベルhが、受信無線信号のエラーを生じるような異常な受信レベルにあるか否かを、あらかじめ定めた受信閾値と比較することにより確認する(ステップS32)。降雨やフェーディング等の影響を受けて無線通信信号受信レベルhがあらかじめ定めた前記受信閾値よりも低下していた場合には(ステップS32のNo)、回線劣化信号Bが示す回線品質の回復の原因は、隣接チャンネル干渉の解消によるものではないと判定する(ステップS33)。   Next, the determination unit 304 that has received the line degradation signal B indicating that the degradation of the line quality has been resolved, from each of the first receiver 103-1 and the second receiver 103-2 in the first radio apparatus 101. It is confirmed by comparing with a predetermined reception threshold whether or not the output radio communication signal reception level h is an abnormal reception level that causes an error of the reception radio signal (step S32). When the radio communication signal reception level h is lower than the predetermined reception threshold value due to the influence of rainfall or fading (No in step S32), the line quality indicated by the line deterioration signal B is recovered. It is determined that the cause is not due to cancellation of adjacent channel interference (step S33).

一方、無線通信信号受信レベルhが前記受信閾値以上に達していて、異常な受信レベルではなかった場合には(ステップS32のYes)、次に、隣接干渉波検出部107から出力されてくる下側隣接チャンネル、上側隣接チャンネルの双方とも、干渉波受信レベルpがあらかじめ定めた干渉閾値よりも低下したか否かを確認する(ステップS34)。下側隣接チャンネル、上側隣接チャンネルのいずれかまたは双方の干渉波受信レベルpが、前記干渉閾値よりも低下していない場合(ステップS34のNo)、まだ、隣接チャンネル干渉の影響が発生する可能性が残っているものと判定して、ホットスタンバイ構成への復帰動作は中止して、FDDツインパス構成をそのまま継続する(ステップS37)。一方、下側隣接チャンネル、上側隣接チャンネルの双方の干渉波受信レベルpが前記干渉閾値よりも低下した場合には(ステップS34のYes)、隣接チャンネル干渉による品質劣化が解消したものと判定する(ステップS35)。なお、隣接干渉波検出部106は、FDDツインパス構成時においても、隣接チャンネルからの干渉の検出動作を継続しており、下側隣接チャンネル、上側隣接チャンネルのそれぞれの受信レベルが、下側受信レベル検出器402-1、上側受信レベル検出器402-2のそれぞれにおいて、双方とも、検出されなくなった際に、隣接チャンネルの干渉波が発生していないことを示す干渉波受信レベルpを生成して出力する動作を行う。   On the other hand, if the wireless communication signal reception level h has reached the reception threshold value or higher and is not an abnormal reception level (Yes in step S32), the next output from the adjacent interference wave detection unit 107 is as follows. In both the side adjacent channel and the upper side adjacent channel, it is confirmed whether or not the interference wave reception level p has decreased below a predetermined interference threshold (step S34). When the interference wave reception level p of either or both of the lower adjacent channel and the upper adjacent channel is not lower than the interference threshold (No in step S34), the influence of adjacent channel interference may still occur. Therefore, the operation for returning to the hot standby configuration is stopped, and the FDD twin path configuration is continued as it is (step S37). On the other hand, when the interference wave reception level p of both the lower adjacent channel and the upper adjacent channel is lower than the interference threshold (Yes in step S34), it is determined that the quality degradation due to the adjacent channel interference has been resolved ( Step S35). The adjacent interference wave detection unit 106 continues the operation of detecting interference from the adjacent channel even in the FDD twin path configuration, and the reception levels of the lower adjacent channel and the upper adjacent channel are the lower reception levels. In each of the detector 402-1 and the upper reception level detector 402-2, when both are no longer detected, an interference wave reception level p indicating that no interference wave of the adjacent channel is generated is generated. Perform the output operation.

隣接チャンネル干渉による品質劣化が解消したものと判定すると、無線信号制御部107の判断部304は、あらかじめ定めた一定の復帰監視時間T1を経過しても、隣接チャンネル干渉波による品質劣化の解消状態が継続しているかを確認するという条件を付けて、FDDツインパス構成からホットスタンバイ構成へ構成を戻す変更動作を起動する(ステップS36)。この図6のフローにおける判定シーケンスはFDDツインパス構成で無線装置運用中において継続して判定される。   If it is determined that the quality degradation due to the adjacent channel interference has been resolved, the determination unit 304 of the radio signal control unit 107 is in a state in which the quality degradation due to the adjacent channel interference wave is eliminated even after a predetermined return monitoring time T1 has elapsed. A change operation for returning the configuration from the FDD twin path configuration to the hot standby configuration is started with a condition of confirming whether or not the process continues (step S36). The determination sequence in the flow of FIG. 6 is continuously determined while the wireless device is operating in the FDD twin path configuration.

[FDDツインパス構成からホットスタンバイ構成へ戻すための動作]
次に、第一無線装置101内の無線信号制御部107において、FDDツインパス構成からホットスタンバイ構成へ復帰させる構成変更を行う動作の一例について、図7A及び図7Bのフローチャートを参照しながら詳細に説明する。図7Aは、図1に示した無線通信システムを構成する第一無線装置101内の無線信号制御部107においてFDDツインパス構成からホットスタンバイ構成へ復帰させる構成変更を行う動作の一例を説明するためのフローチャートの前半部分であり、図7Bはそのフローチャートの後半部分である。図7Aの下部に○で囲んで記載したA,B及びCの点は、図7Bの上部に○で囲んで記載したA,B及びCの点にそれぞれ繋がっているものとする。即ち、図7A及び図7Bを、両図における点A,B及びCでもって結合した図が、1つのフローチャートを表している。このように、図7A及び図7Bを、両図におけるA,B及びCの点でもって結合した1つの図が1つのフローチャートを表しているので、以下では、結合された図7A及び図7Bを図7と総称することとする。なお、図7のフローチャートの説明においては、第一無線装置101内の無線信号制御部107が回線品質の劣化の解消を検出した場合について説明するが、無線対向する第二無線装置201内の無線信号制御部207が回線品質の劣化の解消を検出した場合についても、第一無線装置101と第二無線装置201とを入れ替えるだけで全く同様の動作を行うことは言うまでもない。
[Operation to return from FDD twin-pass configuration to hot standby configuration]
Next, an example of an operation for changing the configuration to return from the FDD twin path configuration to the hot standby configuration in the radio signal control unit 107 in the first radio apparatus 101 will be described in detail with reference to the flowcharts of FIGS. 7A and 7B. To do. FIG. 7A is a diagram for explaining an example of an operation for performing a configuration change for returning from the FDD twin path configuration to the hot standby configuration in the radio signal control unit 107 in the first radio apparatus 101 configuring the radio communication system illustrated in FIG. 1. FIG. 7B is the first half of the flowchart, and FIG. 7B is the second half of the flowchart. Assume that the points A, B, and C indicated by circles at the bottom of FIG. 7A are connected to the points A, B, and C indicated by circles at the top of FIG. 7B. That is, a diagram obtained by combining FIGS. 7A and 7B with points A, B, and C in both diagrams represents one flowchart. In this way, since FIG. 7A and FIG. 7B are combined with the points A, B, and C in both drawings to represent one flow chart, the combined FIG. 7A and FIG. This is collectively referred to as FIG. In the description of the flowchart of FIG. 7, a case will be described in which the wireless signal control unit 107 in the first wireless device 101 detects the cancellation of the degradation of the line quality. Needless to say, even when the signal control unit 207 detects the cancellation of the degradation of the line quality, the same operation is performed simply by replacing the first radio apparatus 101 and the second radio apparatus 201.

前述したように、隣接干渉波検出部106は、FDDツインパス構成時においても、隣接チャンネルからの干渉の有無を継続して監視しており、下側隣接チャンネル、上側隣接チャンネルのそれぞれの受信レベルが、下側受信レベル検出器402-1、上側受信レベル検出器402-2のそれぞれにおいて、双方とも、検出されなくなった際に、隣接チャンネルの干渉波が発生していないことを示す干渉波受信レベルpを、判断部304に出力してくる。   As described above, the adjacent interference wave detection unit 106 continuously monitors the presence / absence of interference from the adjacent channel even in the FDD twin path configuration, and the reception levels of the lower adjacent channel and the upper adjacent channel are determined. In the lower reception level detector 402-1 and the upper reception level detector 402-2, when both are no longer detected, the interference wave reception level indicating that no interference wave of the adjacent channel is generated p is output to the determination unit 304.

該干渉波受信レベルpを受け取った無線信号制御部107の判断部304は、隣接チャンネル干渉による回線品質劣化が解消したものと判定し、該干渉波受信レベルpの受信後、無線回線毎にあらかじめ定めた復帰監視時間T1が経過するまで、隣接チャンネル干渉による回線品質劣化が解消している状態が継続しているか否かを監視し、該復帰監視時間T1が経過するまで解消状態が継続していた場合に、隣接チャンネル干渉状態が確かに解消したものと判断して、FDDツインパス構成から元のホットスタンバイ構成へ戻す動作を実行する。ここで、復帰監視時間T1は、無線回線毎にあらかじめ設定する時間であり、設定部307にあらかじめ登録して保存されている。   The determination unit 304 of the radio signal control unit 107 that has received the interference wave reception level p determines that the channel quality deterioration due to adjacent channel interference has been eliminated, and after receiving the interference wave reception level p, for each radio channel in advance Until the specified return monitoring time T1 elapses, it is monitored whether or not the line quality degradation due to adjacent channel interference continues, and the canceled state continues until the return monitoring time T1 elapses. If it is determined that the adjacent channel interference state has been resolved, the operation of returning from the FDD twin path configuration to the original hot standby configuration is executed. Here, the return monitoring time T1 is a time set in advance for each wireless line, and is registered and stored in the setting unit 307 in advance.

図7Aおよび図7Bのフローチャートに示すように、FDDツインパス構成からホットスタンバイ構成の構成に復帰させる動作は、図5に示したホットスタンバイ構成からFDDツインパス構成へ構成変更する場合の動作とは逆の動作になる。   As shown in the flowcharts of FIGS. 7A and 7B, the operation for returning from the FDD twin path configuration to the hot standby configuration is the reverse of the operation for changing the configuration from the hot standby configuration to the FDD twin path configuration shown in FIG. It becomes operation.

すなわち、まず、第一無線装置101内の無線信号制御部107の判断部304は、隣接干渉波検出部106から出力される干渉波受信レベルpにより、隣接チャンネルの干渉波レベルが低下したことを確認すると、あらかじめ定めた復帰監視時間T1の計数を開始する(ステップS41)。復帰監視時間T1が経過しない間に(ステップS42のNo)、隣接チャンネルの干渉波レベルすなわち干渉波受信レベルpがあらかじめ定めた前記干渉閾値以上になる状態が発生した場合(ステップS43のNo)、FDDツインパス構成からホットスタンバイ構成に構成を復帰させる変更動作を実行することなく、再度、隣接チャンネル干渉による回線品質劣化状態が解消したことを確認するまで、FDDツインパス構成をそのまま維持する。   That is, first, the determination unit 304 of the radio signal control unit 107 in the first radio apparatus 101 confirms that the interference wave level of the adjacent channel has decreased due to the interference wave reception level p output from the adjacent interference wave detection unit 106. If confirmed, counting of a predetermined return monitoring time T1 is started (step S41). When the return monitoring time T1 does not elapse (No in step S42), when a state occurs in which the interference wave level of the adjacent channel, that is, the interference wave reception level p is equal to or higher than the predetermined interference threshold (No in step S43), The FDD twin path configuration is maintained as it is until it is confirmed again that the line quality deterioration state due to the adjacent channel interference has been resolved without executing the change operation for returning the configuration from the FDD twin path configuration to the hot standby configuration.

一方、復帰監視時間T1が経過するまで(ステップS42のYes)、隣接チャンネルの干渉波レベルすなわち干渉波受信レベルpが前記干渉閾値よりも低下した状態が継続していた場合には(ステップS43のYes)、ステップS44に移行して、FDDツインパス構成からホットスタンバイ構成に構成を復帰させる変更動作を開始する。   On the other hand, if the state in which the interference wave level of the adjacent channel, that is, the interference wave reception level p is lower than the interference threshold, continues until the return monitoring time T1 elapses (Yes in step S42) (step S43). Yes), the process proceeds to step S44, and a change operation for returning the configuration from the FDD twin path configuration to the hot standby configuration is started.

ホットスタンバイ構成への復帰動作を開始するのに先立って、まず、無線対向する相手側の第二無線装置201との構成変更シーケンスの同期取りを行うために、第一無線装置101内の無線信号制御部107の判断部304において、相手側の第二無線装置201に対して構成の復帰を要求する対向局構成変更要求信号Fを、変調方式制御信号qに含めて、第一変調器104-1および第二変調器104-2においてインタフェース信号eと多重化して、対向する相手側の第二無線装置201に対して送信する(ステップS44)。   Prior to starting the operation of returning to the hot standby configuration, first, in order to synchronize the configuration change sequence with the second radio device 201 on the opposite side of the radio, the radio signal in the first radio device 101 In the determination unit 304 of the control unit 107, an opposite station configuration change request signal F for requesting the restoration of the configuration to the counterpart second radio apparatus 201 is included in the modulation scheme control signal q, and the first modulator 104- The first and second modulators 104-2 are multiplexed with the interface signal e and transmitted to the opposing second radio apparatus 201 (step S44).

無線対向する相手側の第二無線装置201は、第一無線装置101からの変調方式制御信号qに含まれた対向局構成変更要求信号Fを受け取ると(ステップS45)、第一復調器205-1および第二復調器205-2において、変調方式制御信号qに含まれた対向局構成変更要求信号Fを分離して、第二無線装置201内の無線信号制御部207の対向局間同期判定部303へ出力する。対向局間同期判定部303は、相手側の第一無線装置101においてFDDツインパス構成からホットスタンバイ構成へ復帰しようとしているので、当該第二無線装置201も同期を取って、同様の構成復帰動作を行う必要があることを認識し、構成復帰を行うための応答信号Gを生成して、無線信号制御部207の判断部304に出力するとともに、要求を受け付けた旨を示すACK(Acknowledge)信号として、対向局構成変更要求信号Fを含む変調方式制御信号qを相手側の第一無線装置101に返送する(ステップS46)。   When receiving the opposite station configuration change request signal F included in the modulation scheme control signal q from the first radio apparatus 101 (step S45), the second radio apparatus 201 on the other side facing the radio receives the first demodulator 205- In 1 and 2 demodulators 205-2, the opposite station configuration change request signal F included in the modulation scheme control signal q is separated, and the synchronization determination between the opposite stations of the radio signal controller 207 in the second radio apparatus 201 is performed. Output to the unit 303. The counter-station synchronization determination unit 303 is trying to return from the FDD twin-pass configuration to the hot standby configuration in the first wireless device 101 on the other side, so that the second wireless device 201 also synchronizes and performs the same configuration recovery operation. A response signal G for recognizing that it is necessary to perform configuration recovery is generated and output to the determination unit 304 of the wireless signal control unit 207, and as an ACK (Acknowledge) signal indicating that the request has been received Then, the modulation scheme control signal q including the opposite station configuration change request signal F is returned to the counterpart first radio apparatus 101 (step S46).

応答信号Gを受け取った第二無線装置201内の無線信号制御部207の判断部304は、無線制御信号Mを信号制御部308に出力して、送信側をFDDツインパス構成からホットスタンバイ構成に復帰させる構成変更を行うために、送信の無線周波数変更、占有帯域変更、変調方式変更を行うことを指示する(ステップS48)。同様に、対向する相手側の第二無線装置201に対して対向局構成変更要求信号Fを含む変調方式制御信号qを送信した第一無線装置101側の判断部304においても、対向する相手側の第二無線装置201側からACK信号として返送されてきた対向局構成変更要求信号Fを含む変調方式制御信号qを検知すると、対向局間同期判定部303にて応答信号Gを生成して、判断部304に出力してくる(ステップS47)。応答信号Gを受け取った判断部304は、無線制御信号Mを第一無線装置101内の信号制御部308に出力して、受信側をFDDツインパス構成からホットスタンバイ構成に復帰させる構成変更を行うために、受信の無線周波数変更、占有帯域変更、変調方式変更を行うことを指示する(ステップS49)。   Receiving the response signal G, the determination unit 304 of the wireless signal control unit 207 in the second wireless device 201 outputs the wireless control signal M to the signal control unit 308 and returns the transmission side from the FDD twin path configuration to the hot standby configuration. In order to change the configuration to be transmitted, it is instructed to change the transmission radio frequency, the occupied band, and the modulation scheme (step S48). Similarly, in the determination unit 304 on the first radio apparatus 101 side that has transmitted the modulation scheme control signal q including the opposite station configuration change request signal F to the opposite second radio apparatus 201 on the opposite party, the opposite counterpart side When the modulation scheme control signal q including the opposite station configuration change request signal F returned as the ACK signal from the second wireless device 201 side is detected, the opposite station synchronization determination unit 303 generates the response signal G, The data is output to the determination unit 304 (step S47). The determination unit 304 that has received the response signal G outputs the radio control signal M to the signal control unit 308 in the first radio apparatus 101 to change the configuration so that the receiving side is restored from the FDD twin path configuration to the hot standby configuration. To change the reception radio frequency, change the occupied band, and change the modulation method (step S49).

第二無線装置201内の無線信号制御部207から、信号制御部308および送信周波数制御部309-Tを介して、無線周波数変更の指示となる周波数設定信号Tを受け取った第二無線装置201内の一方の第一送信器202-1においては、動作周波数をFDDツインパス構成時の下側チャンネルすなわち下側無線周波数f1'からホットスタンバイ構成時の無線周波数f0'に変更して設定し、他方の第二送信器202-2においては、動作周波数をFDDツインパス構成時の上側チャンネルすなわち上側無線周波数f2'からホットスタンバイ構成時の無線周波数f0'に変更して設定する(ステップS50)。同様に、第一無線装置101内の無線信号制御部107から、信号制御部308および受信周波数制御部309-Rを介して、無線周波数変更の指示となる周波数設定信号Tを受け取った第一無線装置101内の一方の第一受信器103-1においては、動作周波数をFDDツインパス構成時の下側チャンネルすなわち下側無線周波数f1'からホットスタンバイ構成時の無線周波数f0'に変更して設定し、他方の第二受信器103-2においては、動作周波数を、FDDツインパス構成時の上側チャンネルすなわち上側無線周波数f1'からホットスタンバイ構成時の無線周波数f0'に変更して設定する(ステップS51)。   In the second radio apparatus 201 that has received the frequency setting signal T that is an instruction to change the radio frequency from the radio signal control section 207 in the second radio apparatus 201 via the signal control section 308 and the transmission frequency control section 309-T. In one of the first transmitters 202-1, the operating frequency is set by changing the lower channel in the FDD twin path configuration, that is, the lower radio frequency f1 ′ to the radio frequency f0 ′ in the hot standby configuration. In the second transmitter 202-2, the operating frequency is changed and set from the upper channel in the FDD twin path configuration, that is, the upper radio frequency f2 ′ to the radio frequency f0 ′ in the hot standby configuration (step S50). Similarly, the first radio that has received the frequency setting signal T that is an instruction to change the radio frequency from the radio signal control unit 107 in the first radio apparatus 101 via the signal control unit 308 and the reception frequency control unit 309-R. In one of the first receivers 103-1 in the apparatus 101, the operating frequency is set by changing the lower channel in the FDD twin path configuration, that is, the lower radio frequency f1 ′ to the radio frequency f0 ′ in the hot standby configuration. In the other second receiver 103-2, the operating frequency is changed from the upper channel in the FDD twin path configuration, that is, the upper radio frequency f1 ′ to the radio frequency f0 ′ in the hot standby configuration (step S51). .

また、第二無線装置201内の無線信号制御部207から、信号制御部308および送信占有帯域制御部310-Tを介して、占有帯域変更の指示となる占有帯域設定信号Uを受け取った第二無線装置201内の第一変調器204-1および第二変調器204-2において、それぞれの占有周波数帯域をFDDツインパス構成時における占有周波数帯域の2倍のホットスタンバイ構成時の占有周波数帯域に変更して設定する(ステップS52)。同様に、第一無線装置101内の無線信号制御部107から、信号制御部308および受信占有帯域制御部310-Rを介して、占有帯域変更の指示となる占有帯域設定信号Uを受け取った第一無線装置101内の第一復調器105-1および第二復調器105-2において、それぞれの占有周波数帯域をFDDツインパス構成時における占有周波数帯域の2倍のホットスタンバイ構成時の占有周波数帯域に変更して設定する(ステップS53)。   In addition, the second received from the radio signal control unit 207 in the second radio apparatus 201 via the signal control unit 308 and the transmission occupied band control unit 310-T the occupied band setting signal U that is an instruction to change the occupied band In the first modulator 204-1 and the second modulator 204-2 in the wireless device 201, the respective occupied frequency bands are changed to the occupied frequency bands in the hot standby configuration that is twice the occupied frequency band in the FDD twin path configuration. To set (step S52). Similarly, the first reception of the occupied band setting signal U, which is an instruction to change the occupied band, from the wireless signal control unit 107 in the first wireless device 101 via the signal control unit 308 and the received occupied band control unit 310-R. In the first demodulator 105-1 and the second demodulator 105-2 in one radio apparatus 101, the occupied frequency bands are set to the occupied frequency bands in the hot standby configuration that is twice the occupied frequency band in the FDD twin path configuration. Change and set (step S53).

また、第二無線装置201内の無線信号制御部207から、信号制御部308および送信変調方式制御部311-Tを介して、変調方式変更の指示となる変調方式設定信号Wを受け取った第二無線装置201内の第一変調器204-1および第二変調器204-2において、それぞれの変調方式をFDDツインパス構成時の変調方式2のNを(1/2)にした値すなわちホットスタンバイ構成時の変調方式2のNと等価な値に変更して設定する(ステップS54)。同様に、第一無線装置101内の無線信号制御部107から、信号制御部308および受信変調方式制御部311-Rを介して、変調方式変更の指示となる変調方式設定信号Wを受け取った第一無線装置101内の第一復調器105-1および第二復調器105-2において、それぞれの変調方式を、FDDツインパス構成時の変調方式2のNを(1/2)にした値すなわちホットスタンバイ構成時の変調方式2のNと等価な値に変更して設定する(ステップS55)。 Also, the second receiving the modulation scheme setting signal W, which is an instruction to change the modulation scheme, from the radio signal control section 207 in the second radio apparatus 201 via the signal control section 308 and the transmission modulation scheme control section 311-T. In first modulator 204-1 and second modulator 204-2 in radio apparatus 201, each modulation method is a value obtained by setting N of modulation method 2 N in the FDD twin path configuration to (1/2), that is, hot standby. Modulation method 2 at configuration is changed and set to a value equivalent to N of N (step S54). Similarly, the first radio signal control unit 107 in the first radio apparatus 101 receives the modulation scheme setting signal W, which is an instruction to change the modulation scheme, via the signal control unit 308 and the reception modulation scheme control unit 311-R. In the first demodulator 105-1 and the second demodulator 105-2 in one radio apparatus 101, the respective modulation methods are values obtained by setting N of the modulation method 2N in the FDD twin path configuration to (1/2), that is, Modulation method 2 in hot standby configuration The value is changed to a value equivalent to N of N (step S55).

しかる後、第二無線装置201内の無線信号制御部207の判断部304は、第二無線装置201および相手側の第一無線装置101の双方ともに、無線周波数、占有帯域、変調方式の変更設定が完了したか否かを確認し(ステップS56)、変更設定が完了したことを認識した場合(ステップS56のYes)、無線送信系として、無線チャンネルf0'を用いたホットスタンバイ構成への復帰動作を完了し、二つの送信系、すなわち、第一送信器202-1および第一変調器204-1、あるいは、第二送信器202-2および第二変調器204-2のうち、いずれか一方の送信系(例えば、最新に運用系としていた送信系)を現用系として用いて(他方の送信系は待機状態の予備系として)、無線送信動作を開始する(ステップS58)。同様に、第一無線装置101内の無線信号制御部107の判断部304は、自第一無線装置101および相手側の第二無線装置201の双方ともに、無線周波数、占有帯域、変調方式の変更設定が完了したか否かを確認し(ステップS57)、変更設定が完了した場合(ステップS57のYes)、無線受信系として、無線チャンネルf0'を用いたホットスタンバイ構成への復帰動作を完了し、二つの受信系すなわち、第一受信器103-1および第一復調器105-1、あるいは第二受信器103-2および第二復調器105-2のうち、いずれかの受信系(例えば、最新に運用系としていた受信系)を、現用系として用いて(他方の受信系は待機状態の予備系として)、無線受信動作を開始する(ステップS59)。   Thereafter, the determination unit 304 of the radio signal control unit 207 in the second radio apparatus 201 sets the change of the radio frequency, the occupied band, and the modulation method for both the second radio apparatus 201 and the counterpart first radio apparatus 101. Is confirmed (step S56), and if the change setting is recognized (Yes in step S56), the wireless transmission system returns to the hot standby configuration using the radio channel f0 ′. The two transmission systems, that is, one of the first transmitter 202-1 and the first modulator 204-1 or the second transmitter 202-2 and the second modulator 204-2 The transmission system (for example, the transmission system that was the latest active system) is used as the active system (the other transmission system is the standby standby system), and the wireless transmission operation is started (step S58). Similarly, the determination unit 304 of the radio signal control unit 107 in the first radio apparatus 101 changes the radio frequency, occupied band, and modulation method for both the own first radio apparatus 101 and the counterpart second radio apparatus 201. Check whether the setting is completed (step S57), and when the change setting is completed (Yes in step S57), the operation for returning to the hot standby configuration using the wireless channel f0 ′ is completed as the wireless reception system. , Two reception systems, that is, one of the first receiver 103-1 and the first demodulator 105-1, or the second receiver 103-2 and the second demodulator 105-2 (for example, The radio reception operation is started using the reception system that was the latest active system) as the active system (the other reception system is the standby standby system) (step S59).

なお、二つの送信系/受信系のうち、いずれか一方の送信系/受信系(例えば、最新に運用系としていた送信系)のいずれかの機器に故障が発生していることが判明した場合には、他方の送信系/受信系(例えば、最新に予備系としていた送信系)を用いて無線送受信動作を開始する。   If it is found that a failure has occurred in any one of the two transmission systems / reception systems (for example, the transmission system that was the latest active system). First, the wireless transmission / reception operation is started using the other transmission system / reception system (for example, the transmission system that was the latest standby system).

一方、第二無線装置201内の無線信号制御部207の判断部304は、変更設定が完了したことを認識できなかった場合(ステップS56のNo)、ホットスタンバイ構成への構成復帰動作が失敗した場合であり、構成復帰前の構成であるFDDスタンバイ構成に一旦復帰させた後(ステップS60)、ステップS45に復帰して、相手側の第一無線装置101からの再度の構成復帰要求を待ち合わせる状態に戻る。同様に、第一無線装置101内の無線信号制御部107の判断部304は、変更設定が完了したことを認識できなかった場合(ステップS57のNo)、ホットスタンバイ構成への構成復帰動作が失敗した場合であり、構成復帰前の構成であるFDDツインパス構成に一旦復帰させた後(ステップS61)、図6に示したステップS31に復帰して、再度、回線品質の劣化の解消を検出する動作からやり直す。   On the other hand, if the determination unit 304 of the radio signal control unit 207 in the second radio apparatus 201 cannot recognize that the change setting has been completed (No in step S56), the configuration return operation to the hot standby configuration has failed. In this case, after temporarily returning to the FDD standby configuration that is the configuration before the configuration recovery (step S60), the processing returns to step S45 and waits for another configuration recovery request from the first radio apparatus 101 on the other side. Return to. Similarly, if the determination unit 304 of the wireless signal control unit 107 in the first wireless device 101 cannot recognize that the change setting has been completed (No in step S57), the configuration return operation to the hot standby configuration has failed. In this case, after returning to the FDD twin path configuration that is the configuration before the configuration recovery (step S61), the operation returns to step S31 shown in FIG. 6 to detect the cancellation of the degradation of the line quality again. Start over.

以上の動作に示すように、隣接チャンネルの干渉波による回線品質の劣化の解消を検知した場合には、下側チャンネル(ホットスタンバイ構成時の無線受信周波数f0'の帯域を上下に二分した下側の無線周波数f1')と上側チャンネル(ホットスタンバイ構成時の無線受信周波数f0'それぞれの帯域を上下に二分した上側の無線周波数f2')との二つの周波数を用いたFDDツインパス構成から、無線受信周波数f0'を用いた通常運用状態のホットスタンバイ構成に構成を復帰させる。   As shown in the above operation, when it is detected that the degradation of the line quality due to the interference wave of the adjacent channel is detected, the lower channel (the lower side obtained by dividing the band of the radio reception frequency f0 ′ in the hot standby configuration into upper and lower parts) Wireless reception from an FDD twin-path configuration using two frequencies: an upper frequency (f1 ') and an upper channel (upper radio frequency f2' obtained by dividing each band of the radio reception frequency f0 'in the hot standby configuration up and down) The configuration is restored to the hot standby configuration in the normal operation state using the frequency f0 ′.

次に、本発明の一実施形態として図1〜図3に示した無線通信システムの動作例について、図8の説明図を参照してさらに詳細に説明する。図8は、図1〜図3に示した無線通信システムの動作の一例を説明するための説明図であり、第一無線装置101のReturn(下り回線:無線受信周波数f0')が隣接干渉波の影響により回線伝送品質が劣化した場合を例にとって、ホットスタンバイ構成からFDDツインパス構成へ構成変更する際の無線周波数変更、占有帯域変更、変調方式変更を実施するための動作、受信データcを外部に出力する伝送データ合成器111の動作の一例を、説明している。図8は、ホットスタンバイ構成時の概略を説明と、FDDツインパス構成時の概略を説明している。   Next, the operation example of the radio communication system shown in FIGS. 1 to 3 as an embodiment of the present invention will be described in more detail with reference to the explanatory diagram of FIG. FIG. 8 is an explanatory diagram for explaining an example of the operation of the radio communication system shown in FIGS. 1 to 3, and the return (downlink: radio reception frequency f0 ′) of the first radio apparatus 101 is an adjacent interference wave. Taking as an example the case where the line transmission quality deteriorates due to the influence of the radio frequency, the operation for performing the radio frequency change, the occupied band change, the modulation system change when changing the configuration from the hot standby configuration to the FDD twin path configuration, and the received data c externally An example of the operation of the transmission data synthesizer 111 that outputs to the above is described. FIG. 8 illustrates an outline of the hot standby configuration and an outline of the FDD twin path configuration.

なお、図8は、図面の簡素化を図るために、各機能ブロックの名称の記載を省略して、図1に付した符号のみを各機能ブロックの枠内に記載して表示している。つまり、図8の機能ブロック内に示す符号101、102-1、102-2、103-1、103-2、104-1、104-2、105-1、105-2、110、111、201、202-1、202-2、203-1、203-2、204-1、204-2、205-1、205-2、210および211のそれぞれは、図1に示す無線通信システムにおける第一無線装置101内の第一送信器102-1、第二送信機102-2、第一受信器103-1、第二受信器103-2、第一変調器104-1、第二変調器104-2、第一復調器105-1、第二復調器105-2、無線信号合成器110、伝送データ合成器111、第二無線装置201内の第一送信器202-1、第二送信機202-2、第一受信器203-1、第二受信器203-2、第一変調器204-1、第二変調器204-2、第一復調器205-1、第二復調器205-2、無線信号合成器210および伝送データ合成器211それぞれを意味している。   In FIG. 8, in order to simplify the drawing, the names of the functional blocks are omitted, and only the reference numerals given in FIG. 1 are described and displayed in the frame of the functional blocks. That is, reference numerals 101, 102-1, 102-2, 103-1, 103-2, 104-1, 104-2, 105-1, 105-2, 110, 111, 201 shown in the functional block of FIG. , 202-1, 202-2, 203-1, 203-2, 204-1, 204-2, 205-1, 205-2, 210, and 211 are the first in the wireless communication system shown in FIG. First transmitter 102-1, second transmitter 102-2, first receiver 103-1, second receiver 103-2, first modulator 104-1, second modulator 104 in radio apparatus 101 -2, first demodulator 105-1, second demodulator 105-2, radio signal synthesizer 110, transmission data synthesizer 111, first transmitter 202-1 in second radio apparatus 201, second transmitter 202-2, first receiver 203-1, second receiver 203-2, first modulator 204-1, second modulator 204-2, first demodulator 205-1, second demodulator 205- 2 means a wireless signal synthesizer 210 and a transmission data synthesizer 211, respectively.

また、図8のホットスタンバイ構成(1)は、第一無線装置101および第二無線装置201とも変調方式をQPSKで運用し、第一送信系および第二送信系を現用とし、第二送信系と第二受信系を予備としている場合を表記している。ホットスタンバイ構成時において、第二無線装置201の伝送データ合成器211に入力される伝送データdが、無線周波数f0'を用いて、対向局の第一無線装置101へ無線伝送され、第一無線装置101側は、無線周波数f0'を用いて無線伝送されてきた無線信号を第一無線装置101の伝送データ合成器111から受信データcとして外部に出力する様子を示している。一方、図8FDDツインパス構成(2)は、第一無線装置101のReturn(下り回線:無線受信周波数f0')が下側隣接チャンネルからの干渉波の影響によりFDDツインパス構成で運用されている場合を示しており、第二無線装置201の伝送データ合成器211に入力される伝送データdが、ホットスタンバイ構成時の無線周波数f0'の帯域を上下に二分した下側無線周波数f1'、上側無線周波数f2'の二つの周波数を用いて、かつ16QAM変調方式に変更して無線周波数帯Aと無線周波数帯Bの2冗長で無線伝送され、第一無線装置101側は、二つの下側無線周波数f1'、上側無線周波数f2'を用いてFDD方式で無線伝送されてきた無線信号を第一無線装置101の伝送データ合成器111から受信データc(すなわち、受信した伝送データ111(j))として外部に出力する様子を示している。下側隣接チャンネルに干渉波があることから、無線周波数帯Aで伝送され復調されてデータには105-1(b)のように誤りが混入しているが、無線周波数帯Bで伝送され復調されたデータ105-2(b)には誤りが生じていない状態を示している。   Further, in the hot standby configuration (1) of FIG. 8, both the first radio apparatus 101 and the second radio apparatus 201 operate with a modulation scheme of QPSK, the first transmission system and the second transmission system are used, and the second transmission system And the case where the second receiving system is reserved. In the hot standby configuration, the transmission data d input to the transmission data synthesizer 211 of the second radio apparatus 201 is wirelessly transmitted to the first radio apparatus 101 of the opposite station using the radio frequency f0 ′, and the first radio The device 101 side shows a state in which a radio signal wirelessly transmitted using the radio frequency f0 ′ is output to the outside from the transmission data synthesizer 111 of the first radio device 101 as received data c. On the other hand, FIG. 8 FDD twin path configuration (2) shows a case where the return (downlink: radio reception frequency f0 ′) of the first radio apparatus 101 is operated in the FDD twin path configuration due to the influence of interference waves from the lower adjacent channel. The transmission data d input to the transmission data synthesizer 211 of the second wireless device 201 is represented by a lower radio frequency f1 ′ and an upper radio frequency obtained by vertically dividing the band of the radio frequency f0 ′ in the hot standby configuration. Using the two frequencies f2 ′ and changing to the 16QAM modulation system, the radio frequency band A and the radio frequency band B are wirelessly transmitted with two redundancy, and the first radio apparatus 101 side has two lower radio frequencies f1. ', The radio signal transmitted wirelessly by the FDD method using the upper radio frequency f2' is externally received as transmission data c (ie, received transmission data 111 (j)) from the transmission data synthesizer 111 of the first wireless device 101. Output to It shows the state. Since there is an interference wave in the lower adjacent channel, it is transmitted and demodulated in the radio frequency band A, and the data contains an error as shown in 105-1 (b), but is transmitted and demodulated in the radio frequency band B. The data 105-2 (b) shows a state where no error has occurred.

図8に示すホットスタンバイ構成(1)の場合には、第一無線装置101側は、第一変調器104-1および第一送信器102-1と、第二変調器104-2および第二送信器102-2とからなる第一、第二の二つの無線送信系と、第一受信器103-1および第一復調器105-1と、第二受信器103-2および第二復調器105-2とからなる第一、第二の二つの無線受信系のうち、いずれか一方の無線送信/受信系を現用系として用いて、無線周波数f0の無線信号を送信し、無線周波数f0'を受信および復調し受信データcを生成する。一方、対向する第二無線装置201側は、第一変調器204-1および第一送信器202-1と、第二変調器204-2および第二送信器202-2とからなる第一、第二の二つの無線送信系と、第一受信器203-1および第一復調器205-1と、第二受信器203-2および第二復調器205-2とからなる第一、第二の二つの無線受信系のうち、いずれか一方の無線送信/受信系を現用系として用いて、無線周波数f0'の無線信号を送信し、無線周波数f0を受信および復調し受信データcを生成する。   In the case of the hot standby configuration (1) shown in FIG. 8, the first radio apparatus 101 side includes the first modulator 104-1 and the first transmitter 102-1, the second modulator 104-2, and the second modulator 102-1. First and second two radio transmission systems comprising a transmitter 102-2, a first receiver 103-1 and a first demodulator 105-1, a second receiver 103-2 and a second demodulator A radio signal having a radio frequency f0 is transmitted using either one of the first and second radio receiving systems 105-2 as the active system, and the radio frequency f0 ′. Is received and demodulated to generate received data c. On the other hand, the opposing second radio apparatus 201 side includes a first modulator 204-1 and a first transmitter 202-1, a first modulator 204-2 and a second transmitter 202-2, The first and second radio transmission systems include a first receiver 203-1 and a first demodulator 205-1, and a second receiver 203-2 and a second demodulator 205-2. One of the two radio reception systems is used as the active system to transmit a radio signal having the radio frequency f0 ′, and receives and demodulates the radio frequency f0 to generate reception data c. .

図8に示すホットスタンバイ構成(2)において、例えば、無線周波数f0'のQPSK(Quadrature Phase Shift Keying:4位相偏移変調)変調方式を用いて運用していた際に、自無線回線の上下いずれかの隣接チャンネル(図8に示す例においては、左側すなわち下側の隣接チャンネル)に、新たに隣接干渉波が追加された場合、「隣接干渉発生状況」に示す斜線部のような干渉が発生して、自無線回線のQPSK信号にエラーが発生することになる。かくのごとき隣接チャンネル干渉が発生した場合、該隣接チャンネル干渉が継続する限り、f0’の無線周波数で運用中の無線通信の伝送品質が低下した状態が継続してしまう。   In the hot standby configuration (2) shown in FIG. 8, for example, when operating using the QPSK (Quadrature Phase Shift Keying) modulation method of the radio frequency f0 ′, either the upper or lower side of the own radio line When an adjacent interference wave is newly added to the adjacent channel (the adjacent channel on the left side, ie, the lower adjacent channel in the example shown in FIG. 8), interference such as the shaded portion shown in the “adjacent interference occurrence state” occurs. As a result, an error occurs in the QPSK signal of the own radio line. When adjacent channel interference occurs as described above, as long as the adjacent channel interference continues, a state in which the transmission quality of the wireless communication being operated at the radio frequency of f0 ′ is deteriorated continues.

従来の無線通信システムにおいては、かかる隣接チャンネルの運用が継続する限り、該隣接チャンネルの干渉による伝送品質の低下状態がそのまま固定してしまい、隣接チャンネルの運用が停止して、当該隣接チャンネルの干渉波がなくなるまで自無線回線の無線信号の伝送品質が改善されない状態が継続してしまう。本発明の一実施形態を示す図1〜図3のような構成の無線通信システムにおいては、隣接チャンネル干渉による伝送品質の低下状態が発生した場合には、図8に示すFDDツインパス構成のように、ホットスタンバイ構成をFDDツインパス構成に装置構成を変更することによって、f2’の無線周波数で伝送する無線周波数帯Bには干渉波の影響が無いため、隣接チャンネル干渉による伝送品質の低下状態から脱して、無線伝送品質を改善することができる。また、無線送信系と無線受信系を独立して装置構成を変更することで、f0の無線周波数で伝送する無線回線には装置構成の変更も無くホットスタンドバイ構成のままで、隣接チャンネル干渉波の影響も無いため、無線伝送品質も劣化することなく運用を継続できる。   In the conventional wireless communication system, as long as the operation of the adjacent channel is continued, the degradation state of the transmission quality due to the interference of the adjacent channel is fixed as it is, the operation of the adjacent channel is stopped, and the interference of the adjacent channel is stopped. Until the wave disappears, the state in which the transmission quality of the radio signal of the own radio link is not improved continues. In the wireless communication system configured as shown in FIG. 1 to FIG. 3 showing an embodiment of the present invention, when a deterioration in transmission quality due to adjacent channel interference occurs, the FDD twin path configuration shown in FIG. By changing the device configuration from the hot standby configuration to the FDD twin-path configuration, the radio frequency band B transmitted at the radio frequency of f2 ′ is not affected by interference waves, so it is removed from the state of transmission quality degradation due to adjacent channel interference. Wireless transmission quality can be improved. In addition, by changing the device configuration independently for the radio transmission system and the radio reception system, the radio channel transmitted at the radio frequency of f0 has no change in the device configuration and remains in the hot standby configuration, and the adjacent channel interference wave Therefore, the operation can be continued without deterioration of the radio transmission quality.

図8に示すFDDツインパス構成(2)においては、下り回線(無線受信周波数f0')に隣接チャンネル干渉波による影響が生じて構成変更した場合の例を示している。よって、上り回線(無線受信周波数f0)はホットスタンドバイ構成で運用継続している運用構成である。   In the FDD twin path configuration (2) shown in FIG. 8, an example is shown in which the configuration is changed due to the influence of the adjacent channel interference wave on the downlink (wireless reception frequency f0 ′). Therefore, the uplink (wireless reception frequency f0) is an operational configuration that continues to operate in a hot standby configuration.

第一無線装置101の第一受信器103-1の受信周波数、第二無線装置201の第一送信器202-1の送信周波数を、ホットスタンバイ構成時の無線周波数f0'から無線周波数f1'(無線周波数f0'の帯域を上下に二分した下側の無線周波数帯A)に変更し、第一無線装置101の第二受信器103-2の受信周波数、第二無線装置201の第二送信器202-2の送信周波数を、ホットスタンバイ構成時の無線周波数f0'から無線周波数f2'(無線周波数f0'の帯域を上下に二分した上側の無線周波数帯B)に変更することによって、二つの無線周波数(f1'、f2')を使用するFDDツインパス構成に変更し、ホットスタンバイ構成時の無線周波数f0'から二つの無線周波数(f1'、f2')を用いた無線信号によって無線通信する状態に変更する。つまり、伝送品質が劣化が発生していない無線周波数f0の上り回線の装置構成は変更しない。 The reception frequency of the first receiver 103-1 of the first radio apparatus 101 and the transmission frequency of the first transmitter 202-1 of the second radio apparatus 201 are changed from the radio frequency f0 ′ in the hot standby configuration to the radio frequency f1 ′ ( The band of the radio frequency f0 ′ is changed to the lower radio frequency band A) which is divided into two parts up and down, the reception frequency of the second receiver 103-2 of the first radio apparatus 101, the second transmitter of the second radio apparatus 201 By changing the transmission frequency of 202-2 from the radio frequency f0 ′ in the hot standby configuration to the radio frequency f2 ′ (the upper radio frequency band B obtained by dividing the radio frequency f0 ′ band up and down) Change to FDD twin-path configuration that uses frequencies (f1 ', f2'), and change to a state where wireless communication is performed by radio signals using two radio frequencies (f1 ', f2') from the radio frequency f0 'in the hot standby configuration. change. That is, the uplink device configuration of the radio frequency f0 in which the transmission quality has not deteriorated is not changed.

また、FDDツインパス構成においては、図8に示すように、第一無線装置101の第一復調器105-1、第二復調器105-2および第二無線装置201の第一変調器204-1、第二変調器204-2のそれぞれは、変調方式をホットスタンバイ構成時のQPSK変調方式から変調方式2のNが2倍の16QAM変調方式(つまり変調方式2のN=2からN=4(2x2)へとNの2倍の変調方式)に変更する。さらに、二つの無線周波数(f1'、f2')それぞれの占有帯域を、図8記載の「FDDツインパス構成へ変更した状態」に示すように、ホットスタンバイ構成時における無線周波数帯を下側の無線周波数帯A(無線周波数f1')と上側の無線周波数帯B(無線周波数f2')とに二等分して、ホットスタンバイ構成時の(1/2)ずつの占有領域に変更することによって、ホットスタンバイ構成時において使用していた占有帯域幅内に2波のツインパス伝送を実現する仕組みを構築する。 Further, in the FDD twin path configuration, as shown in FIG. 8, the first demodulator 105-1, the second demodulator 105-2 of the first radio apparatus 101, and the first modulator 204-1 of the second radio apparatus 201. , each of the second modulator 204-2, N is twice the 16QAM modulation method of the modulation scheme 2 N modulation scheme from QPSK modulation during hot standby configuration (i.e. modulation method 2 N N = 2 from N = 4 (2 × 2), a modulation scheme twice as large as N). Further, as shown in the “state in which the occupied bands of the two radio frequencies (f1 ′, f2 ′) are changed to the FDD twin path configuration” shown in FIG. 8, the radio frequency band in the hot standby configuration is set to the lower radio frequency. By dividing the frequency band A (radio frequency f1 ′) and the upper radio frequency band B (radio frequency f2 ′) into two equal parts and changing to (1/2) occupied areas in the hot standby configuration, Build a mechanism to realize twin-path transmission of two waves within the occupied bandwidth used in the hot standby configuration.

この結果、「FDDツインパス構成へ変更した状態」に示すように、FDDツインパス構成に変更した場合、第二無線装置201からの無線信号を受信した第一無線装置101においては、下側の無線周波数帯A(無線周波数f1')の復調データ105-1(b)には、依然として、復調データに誤り(エラー)が残ってしまうが、上側の無線周波数帯B(無線周波数f2')の復調データ105-2(b)には、干渉波の影響が無いためエラーが発生せず、該下側の無線周波数帯B(無線周波数f2')の復調データ105-2(b)を用いれば、無線伝送を行うことが可能になる。   As a result, as shown in “the state changed to the FDD twin path configuration”, when the first radio device 101 that has received the radio signal from the second radio device 201 has changed to the FDD twin path configuration, the lower radio frequency The demodulated data 105-1 (b) of the band A (radio frequency f1 ′) still has an error (error) in the demodulated data, but the demodulated data of the upper radio frequency band B (radio frequency f2 ′) In 105-2 (b), no error occurs because there is no influence of the interference wave. If demodulated data 105-2 (b) of the lower radio frequency band B (radio frequency f2 ′) is used, Transmission can be performed.

つまり、図8「復調データの合成」に示すように、第一無線装置101の伝送データ合成器111には、エラーを含んでいない復調データ105-2(b)とエラーを含んでいる復調データ105-1(b)との双方のデータが入力されるが、伝送データ合成器111は、エラー発生状況から、復調データ105-1(b)には隣接干渉波の影響で復調誤りが発生していることを認識して、受信品質が良好な方の復調データ105-2(b)を選択して、受信した伝送データ111(j)すなわち受信データcとして出力することにする。而して、伝送データ合成器111の出力である受信データcは、隣接チャンネルの干渉波が発生していても、該干渉波によるエラーが解消され、エラーは含まない正常な伝送データを出力することができる。   That is, as shown in FIG. 8 “Synthesis of Demodulated Data”, the transmission data synthesizer 111 of the first radio apparatus 101 includes demodulated data 105-2 (b) that does not include an error and demodulated data that includes an error. 105-1 (b) is input, but the transmission data synthesizer 111 receives a demodulation error in the demodulated data 105-1 (b) due to the influence of adjacent interference wave due to the error occurrence. The demodulated data 105-2 (b) having the better reception quality is selected and output as the received transmission data 111 (j), that is, the received data c. Thus, the received data c, which is the output of the transmission data synthesizer 111, outputs the normal transmission data that does not include an error, even if an interference wave of an adjacent channel is generated, the error due to the interference wave is eliminated. be able to.

ここで、エラー発生状況に応じていずれの復調データを選択するかという選択方法としては、例えば、復調器の誤り訂正符号による誤り訂正状況やパリティ符号を用いた誤り検出状況、受信レベル変動状況等から判定する方法を適用することができることは、既知の技術からも自明のことである。   Here, as a selection method for selecting which demodulated data depending on the error occurrence status, for example, error correction status by demodulator error correction code, error detection status using parity code, reception level fluctuation status, etc. It is obvious from known techniques that the method of determining from the above can be applied.

以上に詳細に説明したように、本実施形態の無線通信システムにおける特徴は、次の点にある。すなわち、図1〜図3、図8に示すように、本実施形態の無線通信システムは、通常運用状態のホットスタンバイ構成として、周波数有効利用の観点から、例えば、第一無線装置101と第二無線装置201の無線対向で無線伝送を行う場合、あらかじめ割り当てられた一つの無線周波数f0、f0'のみを用いて、割り当てられた特定の周波数帯域を占有して無線通信を行う、(1+1)冗長構成の無線通信システムを対象にしている。かくのごとき構成の無線通信システムにおいて、例えば、別の無線通信システムが新たに運用を開始して、その干渉波が無線周波数f0'の無線チャンネルの隣接チャンネルに発生して、無線周波数f0'の無線信号の伝送品質にのみ影響を与えた場合には、第一無線装置101の受信系と第二無線装置201の送信系をホットスタンバイ構成からFDDツインパス構成へ変更する。そして、無線周波数f0'の周波数帯域を(1/2)に分割して、下側無線周波数帯A(無線周波数f1')と上側無線周波数帯B(無線周波数f2')との二つの周波数帯域に分けて、同一のデータを、一方の系の第一無線装置101の第一受信器103-1、第二無線装置201の第一送信器202-1については、二つの周波数帯域のうち、下側無線周波数帯A(もしくは上側無線周波数帯B)を用いて無線伝送し、他方の系の第一無線装置101の第二受信器103-2、第二無線装置201の第二送信器202-2については、上側無線周波数帯B(もしくは下側無線周波数帯A)を用いて無線伝送する。   As described in detail above, the features of the wireless communication system of the present embodiment are as follows. That is, as shown in FIG. 1 to FIG. 3 and FIG. 8, the wireless communication system according to the present embodiment has, for example, the first wireless device 101 and the second wireless communication device as a hot standby configuration in a normal operation state from the viewpoint of effective frequency use. When wireless transmission is performed in a wireless facing manner of the wireless device 201, wireless communication is performed using only one pre-assigned radio frequency f0, f0 ′ and occupying a specific frequency band assigned (1 + 1) redundancy. It is intended for a wireless communication system having a configuration. In the wireless communication system having such a configuration, for example, another wireless communication system starts a new operation, and the interference wave is generated in the adjacent channel of the wireless channel having the wireless frequency f0 ′, and the wireless communication system having the wireless frequency f0 ′ is When only the transmission quality of the radio signal is affected, the reception system of the first radio apparatus 101 and the transmission system of the second radio apparatus 201 are changed from the hot standby configuration to the FDD twin path configuration. Then, the frequency band of the radio frequency f0 ′ is divided into (1/2), and two frequency bands of the lower radio frequency band A (radio frequency f1 ′) and the upper radio frequency band B (radio frequency f2 ′) are obtained. Divided into the same data, the first receiver 103-1 of the first wireless device 101 of one system, the first transmitter 202-1 of the second wireless device 201, of the two frequency bands, Wireless transmission is performed using the lower radio frequency band A (or upper radio frequency band B), the second receiver 103-2 of the first radio apparatus 101 of the other system, and the second transmitter 202 of the second radio apparatus 201. For -2, radio transmission is performed using the upper radio frequency band B (or the lower radio frequency band A).

さらに、無線信号の伝送容量をそのまま維持するために、下側無線周波数帯Aと上側無線周波数帯Bとのそれぞれの占有帯域をホットスタンバイ構成時の(1/2)に変更するとともに、変調方式2のNを、ホットスタンバイ構成時のQPSK変調方式の(N=2)から、Nが2倍の16QAM変調方式の(N=4)に変更する。そして、第一無線装置101の第一受信器103-1および第二受信器103-2それぞれの無線受信信号のうち、受信品質が良好な無線信号を、第一無線装置101の伝送データ合成器111において合成することによって、隣接チャンネル干渉による無線信号の伝送品質の劣化を改善することを可能にしている。 Further, in order to maintain the transmission capacity of the radio signal as it is, the occupied bands of the lower radio frequency band A and the upper radio frequency band B are changed to (1/2) in the hot standby configuration, and the modulation method 2 N is changed from (N = 2) of the QPSK modulation method in the hot standby configuration to (N = 4) of the 16QAM modulation method in which N is doubled. Of the radio reception signals of the first receiver 103-1 and the second receiver 103-2 of the first radio apparatus 101, a radio signal with good reception quality is converted into a transmission data combiner of the first radio apparatus 101. Combining at 111 makes it possible to improve the deterioration of the transmission quality of the radio signal due to adjacent channel interference.

なお、図8に示す無線通信システムにおいては、ホットスタンバイ構成からFDDツインパス構成に構成変更する際に、変調方式2のNが、QPSK変調方式(2)の(N=2)から、2倍の16QAM変調方式(2)の(N=4)へ変更する場合の例を示したが、本発明はかかる場合のみに限るものではない。例えば、16QAM変調方式(2)の(N=4)から、変調方式2のNが2倍の256QAM変調方式(2)の(N=8)へ変更する場合であっても構わない。つまり、変調方式2のNを2倍に変更制御するようにすれば、Nの値が如何なる値の変調方式であっても、前述した場合と同様の効果を奏することができる。 In the wireless communication system shown in FIG. 8, when the configuration changes to FDD Tsuinpasu consist hot standby configuration, N modulation schemes 2 N is, QPSK modulation scheme (2 2) from (N = 2), 2 Although an example in the case of changing to (N = 4) in the double 16QAM modulation system (2 4 ) has been shown, the present invention is not limited to such a case. For example, there may be a case where the N of modulation method 2 N is changed to (N = 8) of 256 QAM modulation method (2 8 ), where N of modulation method 2 N is doubled, from (N = 4) of 16 QAM modulation method (2 4 ). . In other words, if the modulation scheme 2N is controlled to change N twice, the same effect as described above can be obtained regardless of the modulation scheme with any value of N.

以上説明した各実施形態及び実施例の無線通信システム、無線装置、及びそれらの無線通信方法の全部又は一部は、ハードウェア、ソフトウェア又はこれらの組合せにより実現することができる。ここで、ソフトウェアによって実現されるとは、コンピュータがプログラムを読み込んで実行することにより実現されることを意味する。ハードウェアで構成する場合、図1〜図3に示す、無線通信システム、無線装置の構成部の一部又は全部を、例えば、LSI(Large Scale Integrated circuit)、ASIC(Application Specific Integrated Circuit)、ゲートアレイ、FPGA(Field Programmable Gate Array)等の集積回路(IC)で構成することができる。   All or part of the wireless communication system, the wireless device, and the wireless communication method of each embodiment and example described above can be realized by hardware, software, or a combination thereof. Here, “realized by software” means realized by a computer reading and executing a program. When configured by hardware, some or all of the components of the wireless communication system and the wireless device shown in FIGS. An integrated circuit (IC) such as an array or an FPGA (Field Programmable Gate Array) can be used.

ソフトウェアで構成する場合、アンテナ部109、209等のハードウェアで構成される部分以外の図1〜図3に示す、無線通信システム、無線装置の構成部(例えば、隣接干渉波検出部106,206、無線信号制御部107,207)の一部又は全部の機能を、当該機能を記述したプログラムを記憶した、ハードディスク、ROM等の記憶部、液晶ディスプレイ等の表示部、演算に必要なデータを記憶するDRAM、CPU、各部を接続するバスで構成されたコンピュータにおいて、演算に必要な情報をDRAMに記憶し、CPUで当該プログラムを動作させることで実現することができる。   When configured by software, components other than the components configured by hardware such as the antenna units 109 and 209 shown in FIG. 1 to FIG. 3 (for example, adjacent interference wave detection units 106 and 206). , A part or all of the functions of the radio signal control units 107 and 207), a storage unit such as a hard disk or ROM storing a program describing the function, a display unit such as a liquid crystal display, and data necessary for calculation are stored. This can be realized by storing information necessary for calculation in the DRAM and operating the program by the CPU in a computer composed of a DRAM, a CPU, and a bus connecting each unit.

プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えば、フレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば、光磁気ディスク)、CD−ROM(Read Only Memory)、CD−R、CD−R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(random access memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。   The program may be stored using various types of non-transitory computer readable media and supplied to a computer. Non-transitory computer readable media include various types of tangible storage media. Examples of non-transitory computer-readable media include magnetic recording media (for example, flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (for example, magneto-optical disks), CD-ROMs (Read Only Memory), CD-ROMs. R, CD-R / W, semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (random access memory)). The program may also be supplied to the computer by various types of transitory computer readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves. The temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.

以上、本発明の好適な実施形態の構成を説明した。しかし、かかる実施形態は、本発明の単なる例示に過ぎず、何ら本発明を限定するものではないことに留意されたい。本発明の要旨を逸脱することなく、特定用途に応じて種々の変形変更が可能であることが、当業者には容易に理解できよう。   The configuration of the preferred embodiment of the present invention has been described above. However, it should be noted that such embodiments are merely examples of the present invention and do not limit the present invention in any way. Those skilled in the art will readily understand that various modifications and changes can be made according to a specific application without departing from the gist of the present invention.

上記の実施の形態の一部又は全部は、以下の付記のようにも記載されうるが、以下の構成には限られない。   A part or all of the above embodiment can be described as the following supplementary notes, but is not limited to the following configuration.

(付記1)
対向する第一無線装置と第二無線装置との間をポイントツーポイントの無線通信を行う無線通信システムであって、
前記第一無線装置および前記第二無線装置のそれぞれは、
無線周波数帯域の中心周波数である動作周波数を個別に設定できる第一送信器と、変調方式および無線占有帯域を個別に設定できる第一変調器とを含む第一の無線送信系、
無線周波数帯域の中心周波数である動作周波数を個別に設定できる第二送信器と、変調方式および無線占有帯域を個別に設定できる第二変調器とを含む第二の無線送信系と、
無線周波数帯域の中心周波数である動作周波数を個別に設定できる第一受信器と、変調方式および無線占有帯域を個別に設定できる第一復調器とを含む第一の無線受信系と、
無線周波数帯域の中心周波数である動作周波数を個別に設定できる第二受信器と、変調方式および無線占有帯域を個別に設定できる第二復調器とを含む第二の無線受信系と、を備えた(1+1)冗長構成からなり、
前記第一無線装置および前記第二無線装置のそれぞれが、前記第一および第二の無線送信系のうちいずれか一方の無線送信系を現用として、あらかじめ割り当てられた特定の無線周波数を動作周波数として用いて相手側の無線装置への送信動作を行い、他方の無線送信系を予備系として無線出力を停止状態にして待機するホットスタンバイ構成が可能な無線通信システムにおいて、
前記第一無線装置および第二無線装置のそれぞれは、
自無線回線の受信信号の無線伝送品質が劣化したか否かを検出する回線品質監視手段と、
前記受信信号の伝送品質が劣化した原因が、自無線装置が使用する前記無線周波数として占有する無線周波数帯域への隣接チャンネル干渉波によるものか否かを検出する隣接干渉波検出手段と、
前記第一送信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の下側無線周波数に、且つ前記第二送信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の上側無線周波数に、または前記第一受信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の下側無線周波数に、且つ前記第二受信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の上側無線周波数に、前記ホットスタンバイ構成時の無線周波数から周波数変更する周波数制御手段と、
前記第一変調器と前記第二変調器、または前記第一復調器と前記第二復調器のそれぞれの変調方式2のN(N:自然数)を、前記ホットスタンバイ構成時の少なくとも2倍に変更する変調方式制御手段と、
前記第一変調器と前記第二変調器、または前記第一復調器と前記第二復調器のそれぞれの占有帯域を、前記ホットスタンバイ構成時の半分の占有帯域に変更する占有帯域制御手段と、
前記第一受信器および前記第二受信器のそれぞれが受信した前記受信信号から品質の良い方の受信信号を選択して、受信データとして合成する伝送データ合成手段と、
前記隣接チャンネル干渉波により前記受信信号の無線伝送品質が劣化したと判定した場合に、前記劣化を検出した第一および第二の無線受信系について前記周波数制御手段、前記変調方式制御手段、前記占有帯域制御手段を制御して、前記ホットスタンバイ構成から、前記下側無線周波数と前記上側無線周波数との二つの無線周波数を用いて同一データを受信するFDDツインパス構成に構成変更する、または無線対向する相手側の無線装置から前記隣接チャンネル干渉波による前記受信信号の無線伝送品質の劣化通知を受け取った場合に、第一および第二の無線送信系について前記周波数制御手段、前記変調方式制御手段、前記占有帯域制御手段を制御して、前記ホットスタンバイ構成から、前記下側無線周波数と前記上側無線周波数との二つの無線周波数を用いて同一データを送信するFDDツインパス構成に装置構成変更する構成変更手段と、
を有することを特徴とする無線通信システム。
(Appendix 1)
A wireless communication system that performs point-to-point wireless communication between an opposing first wireless device and a second wireless device,
Each of the first wireless device and the second wireless device is
A first radio transmission system including a first transmitter capable of individually setting an operating frequency which is a center frequency of a radio frequency band, and a first modulator capable of individually setting a modulation scheme and a radio occupied band;
A second radio transmission system including a second transmitter capable of individually setting an operating frequency which is a center frequency of a radio frequency band; and a second modulator capable of individually setting a modulation scheme and a radio occupied band;
A first radio receiving system including a first receiver capable of individually setting an operating frequency which is a center frequency of a radio frequency band, and a first demodulator capable of individually setting a modulation scheme and a radio occupied band;
A second radio receiving system including a second receiver capable of individually setting an operating frequency, which is a center frequency of the radio frequency band, and a second demodulator capable of individually setting a modulation scheme and a radio occupied band. (1 + 1) consisting of redundant configuration,
Each of the first radio device and the second radio device has one of the first radio transmission system and the second radio transmission system as active, and a specific radio frequency assigned in advance as an operating frequency. In a wireless communication system capable of a hot standby configuration that performs a transmission operation to a wireless device on the other side using the other wireless transmission system as a standby system and waits with a wireless output stopped.
Each of the first wireless device and the second wireless device is
Channel quality monitoring means for detecting whether or not the radio transmission quality of the received signal of the own radio channel has deteriorated;
An adjacent interference wave detecting means for detecting whether or not the cause of the deterioration of the transmission quality of the received signal is due to an adjacent channel interference wave in a radio frequency band occupied as the radio frequency used by the own radio device;
The operating frequency of the first transmitter is set to a lower radio frequency when the radio frequency band at the time of the hot standby configuration is divided into upper and lower parts, and the operating frequency of the second transmitter is set to the value at the time of the hot standby configuration. The upper radio frequency when the radio frequency band is divided into two parts up or down, or the operating frequency of the first receiver, the lower radio frequency when the radio frequency band when the hot standby configuration is divided into two parts up and down, And the frequency control means for changing the frequency of the operating frequency of the second receiver to the upper radio frequency when the radio frequency band at the time of the hot standby configuration is divided into two up and down from the radio frequency at the time of the hot standby configuration,
N (N: natural number) of each of the modulation schemes 2 N of the first modulator and the second modulator, or the first demodulator and the second demodulator is at least twice that in the hot standby configuration. Modulation method control means to be changed;
Occupied band control means for changing the occupied band of each of the first modulator and the second modulator, or the first demodulator and the second demodulator to a half occupied band in the hot standby configuration,
Transmission data combining means for selecting a reception signal having a higher quality from the reception signals received by each of the first receiver and the second receiver, and combining the received signal as reception data;
When it is determined that the radio transmission quality of the received signal has deteriorated due to the adjacent channel interference wave, the frequency control means, the modulation scheme control means, and the occupation for the first and second radio reception systems that have detected the deterioration The bandwidth control means is controlled to change the configuration from the hot standby configuration to an FDD twin path configuration that receives the same data using the two radio frequencies of the lower radio frequency and the upper radio frequency, or to face the radio When receiving a notice of deterioration of the radio transmission quality of the received signal due to the adjacent channel interference wave from the radio apparatus on the other side, the frequency control means, the modulation method control means, the first radio transmission system, By controlling the occupied band control means, from the hot standby configuration, the lower radio frequency and the upper radio frequency The configuration changing means for equipment configuration changes to FDD Tsuinpasu configured for transmitting the same data using One radio frequency,
A wireless communication system comprising:

(付記2)
前記周波数制御手段は、前記第一送信器と前記第二送信器、または前記第一受信器と前記第二受信器が使用する無線周波数帯域の中心周波数である動作周波数を個別に設定することで、それぞれの動作周波数を、各々の前記動作周波数を前記下側無線周波数および前記上側無線周波数から前記ホットスタンバイ構成時の元の無線周波数に戻す機能をさらに備え、
前記変調方式制御手段は、前記第一変調器と前記第二変調器、または前記第一復調器と前記第二復調器のそれぞれの変調方式2のNを半分にして、前記ホットスタンバイ構成時の元の変調方式に戻す機能をさらに備え、
前記占有帯域制御手段は、前記第一変調器と前記第二変調器、または前記第一復調器と前記第二復調器のそれぞれの無線占有帯域を2倍して、前記ホットスタンバイ構成時の元の占有帯域に戻す機能をさらに備えるとともに、
前記隣接チャンネル干渉波による前記受信信号の無線伝送品質劣化を解消することができたと判定した場合、第一及び第二の無線受信系を前記周波数制御手段、前記変調方式制御手段、前記占有帯域制御手段を制御して、前記FDDツインパス構成から元の前記ホットスタンバイ構成に戻す、または対向する無線装置から前記隣接チャンネル干渉波による前記受信信号の無線伝送品質劣化解消の通知を受け取った場合に、第一及び第二の無線送信系を前記周波数制御手段、前記変調方式制御手段、前記占有帯域制御手段を制御して、前記FDDツインパス構成から元の前記ホットスタンバイ構成に戻すための構成復帰手段
をさらに備えていることを特徴とする付記1に記載の無線通信システム。
(Appendix 2)
The frequency control means is configured to individually set an operating frequency that is a center frequency of a radio frequency band used by the first transmitter and the second transmitter, or the first receiver and the second receiver. And a function of returning each operating frequency from the lower radio frequency and the upper radio frequency to the original radio frequency at the time of the hot standby configuration.
The modulation scheme control means halves the N of the modulation scheme 2N of the first modulator and the second modulator, or the first demodulator and the second demodulator, and when the hot standby configuration is used. The function to return to the original modulation system of
The occupied band control means doubles the respective radio occupied bands of the first modulator and the second modulator, or the first demodulator and the second demodulator, and And a function to return to the occupied bandwidth of
When it is determined that radio transmission quality degradation of the received signal due to the adjacent channel interference wave can be resolved, the first and second radio reception systems are changed to the frequency control unit, the modulation scheme control unit, and the occupied band control. Control means to return from the FDD twin path configuration to the original hot standby configuration, or when receiving a notification of cancellation of radio transmission quality degradation of the received signal due to the adjacent channel interference wave from the opposite radio apparatus. Configuration return means for controlling the frequency control means, the modulation scheme control means, and the occupied band control means for the first and second radio transmission systems to return from the FDD twin path configuration to the original hot standby configuration. The wireless communication system according to appendix 1, wherein the wireless communication system is provided.

(付記3)
前記構成復帰手段は、前記隣接チャンネル干渉波による前記受信信号の無線伝送品質劣化解消状態が、復帰監視時間としてあらかじめ定めた時間の間継続していた際に、前記FDDツインパス構成から元の前記ホットスタンバイ構成に復帰する動作を実行することを特徴とする付記2に記載の無線通信システム。
(Appendix 3)
The configuration recovery means is configured to reset the original hot signal from the FDD twin path configuration when the wireless transmission quality degradation elimination state of the received signal due to the adjacent channel interference wave continues for a predetermined time as a recovery monitoring time. The wireless communication system according to appendix 2, wherein an operation for returning to the standby configuration is executed.

(付記4)
前記構成変更手段により前記ホットスタンバイ構成から前記FDDツインパス構成に構成変更する際に、または、前記構成復帰手段により前記FDDツインパス構成から元の前記ホットスタンバイ構成に戻す際に、対向する前記第一無線装置と前記第二無線装置との間の構成変更時の動作または構成復帰時の動作の同期合わせを行うための対向局間同期判定手段
をさらに備えていることを特徴とする付記1から3のいずれかに記載の無線通信システム。
(Appendix 4)
When the configuration change unit changes the configuration from the hot standby configuration to the FDD twin path configuration, or when the configuration return unit returns the FDD twin path configuration to the original hot standby configuration, the first radios facing each other Additional inter-station synchronization determination means for performing synchronization of operation at the time of configuration change or operation at the time of configuration recovery between the device and the second wireless device. The radio | wireless communications system in any one.

(付記5)
対向する第一無線装置と第二無線装置との間をポイントツーポイントの無線通信を行う無線通信システムによる無線通信方法であって、
前記第一無線装置および前記第二無線装置それぞれは、第一送信器と第一変調器とを含む第一の無線送信系、第一受信器と第一復調器とを含む第一の無線受信系、第二送信器と第二変調器とを含む第二の無線送信系、および第二受信器と第二復調器とを含む第二の無線受信系を備えた(1+1)冗長構成を前記無線通信システムに適用し、前記第一および第二の無線送信系のうちいずれか一方の無線送信系を現用として、あらかじめ割り当てられた特定の無線周波数を動作周波数として用いて相手側の無線装置への無線送信動作を行い、他方の無線送信系を予備系として無線送信動作を停止し待機するホットスタンバイ構成が可能な無線通信方法において、
前記第一無線装置は、
自無線回線の受信信号の無線伝送品質が劣化したか否かを検出する回線品質監視ステップと、
前記受信信号の無線伝送品質が劣化した原因が、自無線装置が使用する前記無線周波数として占有する無線受信周波数帯域への隣接チャンネル干渉波によるものか否かを検出する隣接干渉波検出ステップと、
前記第一受信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の下側無線周波数に、前記第二受信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の上側無線周波数に、前記ホットスタンバイ構成時の無線周波数から周波数変更する受信周波数制御ステップと、
前記第一復調器と前記第二復調器のそれぞれの変調方式2のN(N:自然数)を、前記ホットスタンバイ構成時の少なくとも2倍に変更する受信変調方式制御ステップと、
前記第一復調器と前記第二復調器のそれぞれの占有帯域を、前記ホットスタンバイ構成時の半分の占有帯域に変更する受信占有帯域制御ステップと、
前記第一受信器および前記第二受信器それぞれが受信した前記受信信号から無線伝送品質の良い方の受信信号を選択して、受信データとして合成する伝送データ合成ステップと、
前記隣接チャンネル干渉波により前記受信信号の無線伝送品質が劣化したと判定した場合には、前記受信周波数制御ステップ、前記受信変調方式制御ステップ、前記受信占有帯域制御ステップを用いて、第一および第二の受信系を前記ホットスタンバイ構成から、前記下側無線周波数と前記上側無線周波数との二つの無線周波数を用いて同一データを受信するFDDツインパス構成に構成変更する受信構成変更ステップと、を有し、
前記第二無線装置は、
前記第一送信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の下側無線周波数に、前記第二送信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の上側無線周波数に、前記ホットスタンバイ構成時の無線周波数から周波数変更する送信周波数制御ステップと、
前記第一変調器と前記第二変調器のそれぞれの変調方式2のN(N:自然数)を、前記ホットスタンバイ構成時の少なくとも2倍に変更する送信変調方式制御ステップと、
前記第一変調器と前記第二変調器のそれぞれの占有帯域を、前記ホットスタンバイ構成時の半分の占有帯域に変更する送信占有帯域制御ステップと、
前記第一無線装置から前記隣接チャンネル干渉波による前記受信信号の無線伝送品質の劣化通知を受け取った場合に、前記送信周波数制御ステップ、前記送信変調方式制御ステップ、前記送信占有帯域制御ステップを用いて、第一および第二の送信系を前記ホットスタンバイ構成から、前記下側無線周波数と前記上側無線周波数との二つの無線周波数を用いて同一データを送信するFDDツインパス構成に装置構成変更する送信構成変更ステップと、
を有していることを特徴とする無線通信方法。
(Appendix 5)
A wireless communication method using a wireless communication system that performs point-to-point wireless communication between a first wireless device and a second wireless device facing each other,
Each of the first radio apparatus and the second radio apparatus includes a first radio transmission system including a first transmitter and a first modulator, and a first radio reception including a first receiver and a first demodulator. A (1 + 1) redundant configuration comprising a system, a second radio transmission system including a second transmitter and a second modulator, and a second radio reception system including a second receiver and a second demodulator Applying to a wireless communication system, using one of the first and second wireless transmission systems as a current one and using a specific radio frequency assigned in advance as an operating frequency, to the counterpart wireless device In a wireless communication method capable of a hot standby configuration in which a wireless transmission operation is performed and the other wireless transmission system is set as a standby system to stop and wait for the wireless transmission operation,
The first wireless device is
A line quality monitoring step for detecting whether or not the radio transmission quality of the received signal of the own radio line has deteriorated;
An adjacent interference wave detection step for detecting whether or not the cause of the deterioration of the radio transmission quality of the received signal is due to an adjacent channel interference wave in a radio reception frequency band occupied as the radio frequency used by the own radio device;
The operating frequency of the first receiver is set to a lower radio frequency when the radio frequency band at the time of the hot standby configuration is vertically divided into two, and the operating frequency of the second receiver is set to the radio at the time of the hot standby configuration. A reception frequency control step of changing the frequency from the radio frequency at the time of the hot standby configuration to the upper radio frequency when the frequency band is divided into upper and lower parts,
A reception modulation scheme control step of changing N (N: natural number) of each modulation scheme 2 N of the first demodulator and the second demodulator to at least twice that in the hot standby configuration;
Receiving occupied band control step of changing each occupied band of the first demodulator and the second demodulator to a half occupied band in the hot standby configuration,
A transmission data combining step of selecting a reception signal having a better wireless transmission quality from the reception signals received by the first receiver and the second receiver, respectively, and combining the received signal as reception data;
When it is determined that the radio transmission quality of the received signal has deteriorated due to the adjacent channel interference wave, the reception frequency control step, the reception modulation scheme control step, and the reception occupied band control step are used to A receiving configuration change step for changing the configuration of the second receiving system from the hot standby configuration to an FDD twin path configuration that receives the same data using the two radio frequencies of the lower radio frequency and the upper radio frequency. And
The second wireless device is
The operating frequency of the first transmitter is set to a lower radio frequency when the radio frequency band at the time of the hot standby configuration is vertically divided into two, and the operating frequency of the second transmitter is set to the radio at the time of the hot standby configuration. A transmission frequency control step for changing the frequency from the radio frequency at the time of the hot standby configuration to the upper radio frequency when the frequency band is divided into upper and lower parts,
A transmission modulation scheme control step of changing N (N: natural number) of each modulation scheme 2 N of the first modulator and the second modulator to at least twice that in the hot standby configuration;
A transmission occupied band control step of changing each occupied band of the first modulator and the second modulator to a half occupied band in the hot standby configuration,
When receiving a notification of deterioration in radio transmission quality of the received signal due to the adjacent channel interference wave from the first radio device, using the transmission frequency control step, the transmission modulation scheme control step, and the transmission occupied band control step A transmission configuration in which the first and second transmission systems are changed from the hot standby configuration to an FDD twin-path configuration that transmits the same data using two radio frequencies, the lower radio frequency and the upper radio frequency. Change steps,
A wireless communication method characterized by comprising:

(付記6)
前記受信周波数制御ステップは、前記第一受信器および前記第二受信器のそれぞれの動作周波数を、前記下側無線周波数および前記上側無線周波数から前記ホットスタンバイ構成時の元の無線周波数に戻すステップをさらに有し、
前記送信周波数制御ステップは、前記第一送信器および前記第二送信器のそれぞれの動作周波数を、前記下側無線周波数および前記上側無線周波数から前記ホットスタンバイ構成時の元の無線周波数に戻すステップをさらに有し、
前記受信変調方式制御ステップは、前記第一復調器と前記第二復調器のそれぞれの変調方式2NのNを半分にして、前記ホットスタンバイ構成時の元の変調方式に戻すステップをさらに有し、
前記送信変調方式制御ステップは、前記第一変調器と前記第二変調器のそれぞれの変調方式2NのNを半分にして、前記ホットスタンバイ構成時の元の変調方式に戻すステップをさらに有し、
前記受信占有帯域制御ステップは、前記第一復調器と前記第二復調器のそれぞれの占有帯域を2倍して、前記ホットスタンバイ構成時の元の占有帯域に戻すステップをさらに有し、
前記送信占有帯域制御ステップは、前記第一変調器と前記第二変調器のそれぞれの占有帯域を2倍して、前記ホットスタンバイ構成時の元の占有帯域に戻すステップをさらに有し、
前記隣接チャンネル干渉波による前記受信信号の無線伝送品質劣化を解消することができたと判定した場合、前記第一無線装置は前記受信周波数制御ステップ、前記受信変調方式制御ステップ、前記受信占有帯域制御ステップを用いて、前記FDDツインパス構成から元の前記ホットスタンバイ構成に戻すための受信構成復帰ステップをさらに有し、
前記第二無線装置は第一無線装置から前記隣接チャンネル干渉波による前記受信信号の品質劣化解消の通知を受け取った場合には、前記送信周波数制御ステップ、前記送信変調方式制御ステップ、前記送信占有帯域制御ステップを用いて、前記FDDツインパス構成から元の前記ホットスタンバイ構成に戻すための送信構成復帰ステップをさらに有していることを特徴とする付記5に記載の無線通信方法。
(Appendix 6)
The reception frequency control step is a step of returning the operating frequencies of the first receiver and the second receiver from the lower radio frequency and the upper radio frequency to the original radio frequency in the hot standby configuration. In addition,
The transmission frequency control step returns the operating frequency of each of the first transmitter and the second transmitter to the original radio frequency in the hot standby configuration from the lower radio frequency and the upper radio frequency. In addition,
The reception modulation scheme control step further includes the step of halving the N of the modulation scheme 2N of each of the first demodulator and the second demodulator and returning to the original modulation scheme in the hot standby configuration,
The transmission modulation scheme control step further includes the step of halving N of the modulation scheme 2N of each of the first modulator and the second modulator and returning to the original modulation scheme in the hot standby configuration,
The reception occupied band control step further includes a step of doubling each occupied band of the first demodulator and the second demodulator to return to the original occupied band in the hot standby configuration,
The transmission occupied band control step further includes a step of doubling each occupied band of the first modulator and the second modulator to return to the original occupied band in the hot standby configuration,
When it is determined that radio transmission quality degradation of the received signal due to the adjacent channel interference wave can be eliminated, the first radio apparatus performs the reception frequency control step, the reception modulation scheme control step, and the reception occupied band control step. And a reception configuration return step for returning from the FDD twin path configuration to the original hot standby configuration using
When the second radio apparatus receives a notification of quality degradation cancellation of the received signal due to the adjacent channel interference wave from the first radio apparatus, the transmission frequency control step, the transmission modulation scheme control step, the transmission occupation band The wireless communication method according to appendix 5, further comprising a transmission configuration return step for returning from the FDD twin path configuration to the original hot standby configuration using a control step.

(付記7)
前記受信構成復帰ステップ及び送信構成復帰ステップは、前記隣接チャンネル干渉波による前記受信信号の無線伝送品質劣化解消状態が、復帰監視時間としてあらかじめ定めた時間の間継続していた際に、前記FDDツインパス構成から元の前記ホットスタンバイ構成に復帰する動作を実行することを特徴とする付記6に記載の無線通信方法。
(Appendix 7)
The reception configuration return step and the transmission configuration return step include the FDD twin path when the wireless transmission quality degradation elimination state of the received signal due to the adjacent channel interference wave continues for a predetermined time as a return monitoring time. The wireless communication method according to appendix 6, wherein an operation of returning from the configuration to the original hot standby configuration is executed.

(付記8)
前記受信構成変更ステップ及び送信構成変更ステップにより前記ホットスタンバイ構成から前記FDDツインパス構成に構成変更する際に、または、前記受信構成復帰ステップ及び送信構成復帰ステップにより前記FDDツインパス構成から元の前記ホットスタンバイ構成に戻す際に、無線対向する二つの前記第一無線装置と前記第二無線装置との間の構成変更時の動作または構成復帰時の動作の構成変更シーケンスの同期合わせを行うための対向局間同期判定ステップ
をさらに有していることを特徴とする付記5から7のいずれかに記載の無線通信方法。
(Appendix 8)
When changing the configuration from the hot standby configuration to the FDD twin path configuration by the reception configuration change step and the transmission configuration change step, or from the FDD twin path configuration to the original hot standby by the reception configuration return step and the transmission configuration return step. When returning to the configuration, the opposite station for synchronizing the configuration change sequence of the operation at the time of configuration change or the operation at the time of configuration return between the two radio devices facing each other wirelessly The wireless communication method according to any one of appendices 5 to 7, further comprising an inter-synchronization determination step.

(付記9)
対向する二つの無線装置の間をポイントツーポイントの無線通信を行う無線通信システムの無線装置であって、
無線周波数帯域の中心周波数である動作周波数を個別に設定できる第一送信器と、変調方式および無線占有帯域を個別に設定できる第一変調器とを含む第一の無線送信系、
無線周波数帯域の中心周波数である動作周波数を個別に設定できる第二送信器と、変調方式および無線占有帯域を個別に設定できる第二変調器とを含む第二の無線送信系と、
無線周波数帯域の中心周波数である動作周波数を個別に設定できる第一受信器と、変調方式および無線占有帯域を個別に設定できる第一復調器とを含む第一の無線受信系と、
無線周波数帯域の中心周波数である動作周波数を個別に設定できる第二受信器と、変調方式および無線占有帯域を個別に設定できる第二復調器とを含む第二の無線受信系と、を備えた(1+1)冗長構成からなり、
前記第一および第二の無線送信系のうちいずれか一方の無線送信系を現用として、あらかじめ割り当てられた特定の無線周波数を動作周波数として用いて無線通信の相手側の無線装置への送信動作を行い、他方の無線送信系を予備系として無線出力を停止状態にして待機するホットスタンバイ構成が可能な無線装置において、
自無線回線の受信信号の無線伝送品質が劣化したか否かを検出する回線品質監視手段と、
前記受信信号の伝送品質が劣化した原因が、自無線装置が使用する前記無線周波数として占有する無線周波数帯域への隣接チャンネル干渉波によるものか否かを検出する隣接干渉波検出手段と、
前記第一送信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の下側無線周波数に、且つ前記第二送信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の上側無線周波数に、または前記第一受信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の下側無線周波数に、且つ前記第二受信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の上側無線周波数に、前記ホットスタンバイ構成時の無線周波数から周波数変更する周波数制御手段と、
前記第一変調器と前記第二変調器、または前記第一復調器と前記第二復調器のそれぞれの変調方式2のN(N:自然数)を、前記ホットスタンバイ構成時のすくなくとも2倍に変更する変調方式制御手段と、
前記第一変調器と前記第二変調器、または前記第一復調器と前記第二復調器のそれぞれの占有帯域を、前記ホットスタンバイ構成時の半分の占有帯域に変更する占有帯域制御手段と、
前記第一受信器および前記第二受信器のそれぞれが受信した前記受信信号から品質の良い方の受信信号を選択して、受信データとして合成する伝送データ合成手段と、
前記隣接チャンネル干渉波により前記受信信号の無線伝送品質が劣化したと判定した場合に、前記劣化を検出した第一および第二の無線受信系について前記周波数制御手段、前記変調方式制御手段、前記占有帯域制御手段を制御して、前記ホットスタンバイ構成から、前記下側無線周波数と前記上側無線周波数との二つの無線周波数を用いて同一データを受信するFDDツインパス構成に構成変更する、または無線対向する相手側の無線装置から前記隣接チャンネル干渉波による前記受信信号の無線伝送品質の劣化通知を受け取った場合に、第一および第二の無線送信系について前記周波数制御手段、前記変調方式制御手段、前記占有帯域制御手段を制御して、前記ホットスタンバイ構成から、前記下側無線周波数と前記上側無線周波数との二つの無線周波数を用いて同一データを送信するFDDツインパス構成に構成変更する構成変更手段と、
を有することを特徴とする無線装置。
(Appendix 9)
A wireless device of a wireless communication system that performs point-to-point wireless communication between two opposing wireless devices,
A first radio transmission system including a first transmitter capable of individually setting an operating frequency which is a center frequency of a radio frequency band, and a first modulator capable of individually setting a modulation scheme and a radio occupied band;
A second radio transmission system including a second transmitter capable of individually setting an operating frequency which is a center frequency of a radio frequency band; and a second modulator capable of individually setting a modulation scheme and a radio occupied band;
A first radio receiving system including a first receiver capable of individually setting an operating frequency which is a center frequency of a radio frequency band, and a first demodulator capable of individually setting a modulation scheme and a radio occupied band;
A second radio receiving system including a second receiver capable of individually setting an operating frequency, which is a center frequency of the radio frequency band, and a second demodulator capable of individually setting a modulation scheme and a radio occupied band. (1 + 1) consisting of redundant configuration,
One of the first and second wireless transmission systems is used as a current transmission, and a specific wireless frequency assigned in advance is used as an operating frequency to perform a transmission operation to a wireless device on the other side of wireless communication. In a wireless device capable of a hot standby configuration in which the other wireless transmission system is set as a standby system and the wireless output is stopped and waits,
Channel quality monitoring means for detecting whether or not the radio transmission quality of the received signal of the own radio channel has deteriorated;
An adjacent interference wave detecting means for detecting whether or not the cause of the deterioration of the transmission quality of the received signal is due to an adjacent channel interference wave in a radio frequency band occupied as the radio frequency used by the own radio device;
The operating frequency of the first transmitter is set to a lower radio frequency when the radio frequency band at the time of the hot standby configuration is divided into upper and lower parts, and the operating frequency of the second transmitter is set to the value at the time of the hot standby configuration. The upper radio frequency when the radio frequency band is divided into two parts up or down, or the operating frequency of the first receiver, the lower radio frequency when the radio frequency band when the hot standby configuration is divided into two parts up and down, And the frequency control means for changing the frequency of the operating frequency of the second receiver to the upper radio frequency when the radio frequency band at the time of the hot standby configuration is divided into two up and down from the radio frequency at the time of the hot standby configuration,
N (N: natural number) of each modulation method 2 N of the first modulator and the second modulator or the first demodulator and the second demodulator is at least doubled in the hot standby configuration. Modulation method control means to be changed;
Occupied band control means for changing the occupied band of each of the first modulator and the second modulator, or the first demodulator and the second demodulator to a half occupied band in the hot standby configuration,
Transmission data combining means for selecting a reception signal having a higher quality from the reception signals received by each of the first receiver and the second receiver, and combining the received signal as reception data;
When it is determined that the radio transmission quality of the received signal has deteriorated due to the adjacent channel interference wave, the frequency control means, the modulation scheme control means, and the occupation for the first and second radio reception systems that have detected the deterioration The bandwidth control means is controlled to change the configuration from the hot standby configuration to an FDD twin path configuration that receives the same data using the two radio frequencies of the lower radio frequency and the upper radio frequency, or to face the radio When receiving a notice of deterioration of the radio transmission quality of the received signal due to the adjacent channel interference wave from the radio apparatus on the other side, the frequency control means, the modulation method control means, the first radio transmission system, By controlling the occupied band control means, from the hot standby configuration, the lower radio frequency and the upper radio frequency The configuration changing means for configuration changes to the FDD Tsuinpasu configured for transmitting the same data using One radio frequency,
A wireless device comprising:

(付記10)
前記周波数制御手段は、前記第一送信器と前記第二送信器、または前記第一受信器と前記第二受信器が使用する無線周波数帯域の中心周波数である動作周波数を個別に設定することで、それぞれの動作周波数を、各々の前記動作周波数を前記下側無線周波数および前記上側無線周波数から前記ホットスタンバイ構成時の元の無線周波数に戻す機能をさらに備え、
前記変調方式制御手段は、前記第一変調器と前記第二変調器、または前記第一復調器と前記第二復調器のそれぞれの変調方式2のNを半分にして、前記ホットスタンバイ構成時の元の変調方式に戻す機能をさらに備え、
前記占有帯域制御手段は、前記第一変調器と前記第二変調器、または前記第一復調器と前記第二復調器のそれぞれの無線占有帯域を2倍して、前記ホットスタンバイ構成時の元の占有帯域に戻す機能をさらに備えるとともに、
前記隣接チャンネル干渉波による前記受信信号の無線伝送品質劣化を解消することができたと判定した場合、第一及び第二の無線受信系を前記周波数制御手段、前記変調方式制御手段、前記占有帯域制御手段を制御して、前記FDDツインパス構成から元の前記ホットスタンバイ構成に戻す、または対向する無線装置から前記隣接チャンネル干渉波による前記受信信号の無線伝送品質劣化解消の通知を受け取った場合に、第一及び第二の無線送信系を前記周波数制御手段、前記送信変調方式制御手段、前記送信占有帯域制御手段を制御して、前記FDDツインパス構成から元の前記ホットスタンバイ構成に戻すための構成復帰手段
をさらに備えていることを特徴とする付記9に記載の無線装置。
(Appendix 10)
The frequency control means is configured to individually set an operating frequency that is a center frequency of a radio frequency band used by the first transmitter and the second transmitter, or the first receiver and the second receiver. And a function of returning each operating frequency from the lower radio frequency and the upper radio frequency to the original radio frequency at the time of the hot standby configuration.
The modulation scheme control means halves the N of the modulation scheme 2N of the first modulator and the second modulator, or the first demodulator and the second demodulator, and when the hot standby configuration is used. The function to return to the original modulation system of
The occupied band control means doubles the respective radio occupied bands of the first modulator and the second modulator, or the first demodulator and the second demodulator, and And a function to return to the occupied bandwidth of
When it is determined that radio transmission quality degradation of the received signal due to the adjacent channel interference wave can be resolved, the first and second radio reception systems are changed to the frequency control unit, the modulation scheme control unit, and the occupied band control. Control means to return from the FDD twin path configuration to the original hot standby configuration, or when receiving a notification of cancellation of radio transmission quality degradation of the received signal due to the adjacent channel interference wave from the opposite radio apparatus. Configuration return means for controlling the frequency control means, the transmission modulation scheme control means, and the transmission occupied band control means for the first and second radio transmission systems to return from the FDD twin path configuration to the original hot standby configuration The wireless device according to appendix 9, further comprising:

(付記11)
前記構成復帰手段は、前記隣接チャンネル干渉波による前記受信信号の無線伝送品質劣化解消状態が、復帰監視時間としてあらかじめ定めた時間の間継続していた際に、前記FDDツインパス構成から元の前記ホットスタンバイ構成に復帰する動作を実行することを特徴とする付記10に記載の無線装置。
(Appendix 11)
The configuration recovery means is configured to reset the original hot signal from the FDD twin path configuration when the wireless transmission quality degradation elimination state of the received signal due to the adjacent channel interference wave continues for a predetermined time as a recovery monitoring time. The wireless apparatus according to appendix 10, wherein an operation for returning to the standby configuration is executed.

(付記12)
前記構成変更手段により前記ホットスタンバイ構成から前記FDDツインパス構成に構成変更する際に、または、前記構成復帰手段により前記FDDツインパス構成から元の前記ホットスタンバイ構成に戻す際に、対向する前記第一無線装置と前記第二無線装置との間の構成変更時の動作または構成復帰時の動作の同期合わせを行うための対向局間同期判定手段
をさらに備えていることを特徴とする付記9から11のいずれかに記載の無線装置。
(Appendix 12)
When the configuration changing means changes the configuration from the hot standby configuration to the FDD twin path configuration, or when the configuration returning means returns the FDD twin path configuration to the original hot standby configuration, the first radios facing each other Additional inter-station synchronization determination means for performing synchronization of operation at the time of configuration change or operation at the time of configuration recovery between the device and the second wireless device. A wireless device according to any one of the above.

(付記13)
対向する二つの無線装置の間をポイントツーポイントの無線通信を行う無線通信システムの無線装置による無線通信方法であって、
前記無線装置は、第一送信器と第一変調器とを含む第一の無線送信系、第一受信器と第一復調器とを含む第一の無線受信系、第二送信器と第二変調器とを含む第二の無線送信系、および第二受信器と第二復調器とを含む第二の無線受信系を備えた(1+1)冗長構成からなり、前記第一および第二の無線送信系のうちいずれか一方の無線送信系を現用として、あらかじめ割り当てられた特定の無線周波数を動作周波数として用いて相手側の無線装置への無線送信動作を行い、他方の無線送信系を予備系として無線送信動作を停止し待機するホットスタンバイ構成が可能な無線装置の無線通信方法において、
前記第一送信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の下側無線周波数に、且つ前記第二送信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の上側無線周波数に、または前記第一受信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の下側無線周波数に、且つ前記第二受信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の上側無線周波数に、前記ホットスタンバイ構成時の無線周波数から周波数変更する周波数制御ステップと、
前記第一変調器と前記第二変調器、または前記第一復調器と前記第二復調器のそれぞれの変調方式2のN(N:自然数)を、前記ホットスタンバイ構成時の少なくとも2倍に変更する変調方式制御ステップと、
前記第一変調器と前記第二変調器、または前記第一復調器と前記第二復調器のそれぞれの占有帯域を、前記ホットスタンバイ構成時の半分の占有帯域に変更する占有帯域制御ステップと、
自無線回線の受信信号の無線伝送品質が劣化したか否かを検出し、伝送品質が劣化した原因が、自無線装置が使用する前記無線周波数として占有する無線周波数帯域への隣接チャンネル干渉波によるものと判定した場合に、前記劣化を検出した第一および第二の無線受信系について前記周波数制御ステップ、前記変調方式制御ステップ、前記占有帯域制御ステップを用いて、前記ホットスタンバイ構成から、前記下側無線周波数と前記上側無線周波数との二つの無線周波数を用いて同一データを受信するFDDツインパス構成に構成変更する、または無線対向する相手側の無線装置から前記隣接チャンネル干渉波による前記受信信号の無線伝送品質の劣化通知を受け取った場合に、第一および第二の無線送信系について前記周波数制御ステップ、前記変調方式制御ステップ、前記占有帯域制御ステップを用いて、前記ホットスタンバイ構成から、前記下側無線周波数と前記上側無線周波数との二つの無線周波数を用いて同一データを送信するFDDツインパス構成に構成変更する構成変更ステップと、
を有することを特徴とする無線通信方法。
(Appendix 13)
A wireless communication method by a wireless device of a wireless communication system that performs point-to-point wireless communication between two facing wireless devices,
The wireless device includes a first wireless transmission system including a first transmitter and a first modulator, a first wireless reception system including a first receiver and a first demodulator, a second transmitter and a second transmitter. A first radio transmission system comprising a (1 + 1) redundant configuration comprising a second radio transmission system including a modulator and a second radio reception system including a second receiver and a second demodulator; One of the transmission systems is used as a working system, a specific radio frequency assigned in advance is used as an operating frequency, and a radio transmission operation is performed to a radio device on the other side, and the other radio transmission system is used as a standby system. In a wireless communication method of a wireless device capable of a hot standby configuration to stop and wait for wireless transmission operation as
The operating frequency of the first transmitter is set to a lower radio frequency when the radio frequency band at the time of the hot standby configuration is divided into upper and lower parts, and the operating frequency of the second transmitter is set to the value at the time of the hot standby configuration. The upper radio frequency when the radio frequency band is divided into two parts up or down, or the operating frequency of the first receiver, the lower radio frequency when the radio frequency band when the hot standby configuration is divided into two parts up and down, And the frequency control step of changing the frequency from the radio frequency at the time of the hot standby configuration to the upper radio frequency when the operating frequency of the second receiver is divided into the upper and lower radio frequency bands at the time of the hot standby configuration, and
N (N: natural number) of each of the modulation schemes 2 N of the first modulator and the second modulator, or the first demodulator and the second demodulator is at least twice that in the hot standby configuration. A modulation scheme control step to be changed;
Occupied band control step of changing each occupied band of the first modulator and the second modulator, or the first demodulator and the second demodulator to half the occupied band in the hot standby configuration,
It is detected whether or not the radio transmission quality of the received signal of the own radio line is deteriorated, and the cause of the deterioration of the transmission quality is due to the adjacent channel interference wave to the radio frequency band occupied as the radio frequency used by the own radio device. If it is determined that the degradation is detected, the frequency control step, the modulation scheme control step, and the occupied band control step are used for the first and second radio reception systems from which the degradation has been detected. Change the configuration to an FDD twin path configuration that receives the same data using two radio frequencies of the side radio frequency and the upper radio frequency, or change the received signal by the adjacent channel interference wave from the radio device on the other side facing the radio The frequency control step is performed for the first and second radio transmission systems when a notice of degradation of radio transmission quality is received. The FDD twin path configuration that transmits the same data using the two radio frequencies of the lower radio frequency and the upper radio frequency from the hot standby configuration using the modulation scheme control step and the occupied band control step. A configuration change step for changing the configuration;
A wireless communication method comprising:

(付記14)
前記周波数制御ステップは、前記第一送信器と前記第二送信器、または前記第一受信器と前記第二受信器が使用する無線周波数帯域の中心周波数である動作周波数を個別に設定することで、それぞれの動作周波数を、各々の前記動作周波数を前記下側無線周波数および前記上側無線周波数から前記ホットスタンバイ構成時の元の無線周波数に戻すステップをさらに備え、
前記変調方式制御ステップは、前記第一変調器と前記第二変調器、または前記第一復調器と前記第二復調器のそれぞれの変調方式2のNを半分にして、前記ホットスタンバイ構成時の元の変調方式に戻すステップをさらに備え、
前記占有帯域制御ステップは、前記第一変調器と前記第二変調器、または前記第一復調器と前記第二復調器のそれぞれの無線占有帯域を2倍して、前記ホットスタンバイ構成時の元の占有帯域に戻すステップをさらに備えるとともに、
前記隣接チャンネル干渉波による前記受信信号の無線伝送品質劣化を解消することができたと判定した場合、第一及び第二の無線受信系を前記周波数制御ステップ、前記変調方式制御ステップ、前記占有帯域制御ステップを用いて、前記FDDツインパス構成から元の前記ホットスタンバイ構成に戻す、または対向する無線装置から前記隣接チャンネル干渉波による前記受信信号の無線伝送品質劣化解消の通知を受け取った場合に、第一及び第二の無線送信系を前記周波数制御ステップ、前記送信変調方式制御ステップ、前記送信占有帯域制御ステップを制御して、前記FDDツインパス構成から元の前記ホットスタンバイ構成に戻すための構成復帰ステップ
をさらに備えていることを特徴とする付記13に記載の無線通信方法。
(Appendix 14)
In the frequency control step, an operating frequency that is a center frequency of a radio frequency band used by the first transmitter and the second transmitter or the first receiver and the second receiver is individually set. Returning each operating frequency to the original radio frequency in the hot standby configuration from the lower radio frequency and the upper radio frequency, respectively,
The modulation scheme control step includes halving N of the modulation scheme 2 N of each of the first modulator and the second modulator, or the first demodulator and the second demodulator, and in the hot standby configuration. The step of returning to the original modulation scheme of
The occupied band control step doubles the respective radio occupied bands of the first modulator and the second modulator, or the first demodulator and the second demodulator, And a step of returning to the occupied bandwidth of
When it is determined that radio transmission quality deterioration of the received signal due to the adjacent channel interference wave can be eliminated, the first and second radio reception systems are controlled by the frequency control step, the modulation scheme control step, and the occupied band control. Step 1 is used to return to the original hot standby configuration from the FDD twin path configuration, or when a notification of elimination of radio transmission quality degradation of the received signal due to the adjacent channel interference wave is received from the opposing radio apparatus. And a configuration return step for returning the FDD twin path configuration to the original hot standby configuration by controlling the frequency control step, the transmission modulation scheme control step, and the transmission occupied band control step for the second radio transmission system. The wireless communication method according to appendix 13, further comprising:

(付記15)
前記構成復帰ステップは、前記隣接チャンネル干渉波による前記受信信号の無線伝送品質劣化解消状態が、復帰監視時間としてあらかじめ定めた時間の間継続していた際に、前記FDDツインパス構成から元の前記ホットスタンバイ構成に復帰する動作を実行することを特徴とする付記14に記載の無線通信方法。
(Appendix 15)
In the configuration recovery step, when the wireless transmission quality degradation elimination state of the received signal due to the adjacent channel interference wave has continued for a predetermined time as a recovery monitoring time, the hot recovery from the FDD twin path configuration is performed. 15. The wireless communication method according to appendix 14, wherein an operation for returning to a standby configuration is executed.

(付記16)
前記構成変更ステップにより前記ホットスタンバイ構成から前記FDDツインパス構成に構成変更する際に、または、前記構成復帰手段により前記FDDツインパス構成から元の前記ホットスタンバイ構成に戻す際に、対向する前記第一無線装置と前記第二無線装置との間の構成変更時の動作または構成復帰時の動作の同期合わせを行うための対向局間同期判定ステップ
をさらに備えていることを特徴とする付記13から15のいずれかに記載の無線通信方法。
(Appendix 16)
When the configuration change step changes the configuration from the hot standby configuration to the FDD twin-pass configuration, or when the configuration return means returns the FDD twin-pass configuration to the original hot standby configuration, the first radios facing each other Additional steps 13 to 15 are further provided: a synchronization determination step between opposite stations for performing synchronization of the operation at the time of configuration change between the device and the second radio device or the operation at the time of the configuration return. A wireless communication method according to any one of the above.

(付記17)
付記13から16のいずれかに記載の無線通信方法を、コンピュータによって実行可能なプログラムとして実施することを特徴とする無線通信プログラム。
(Appendix 17)
A wireless communication program that implements the wireless communication method according to any one of appendices 13 to 16 as a program executable by a computer.

本発明は、隣接チャンネルの干渉波の影響による無線伝送品質の劣化が問題となる無線通信システム、無線装置、無線通信方法および無線通信プログラムに適用される。   The present invention is applied to a radio communication system, a radio apparatus, a radio communication method, and a radio communication program in which deterioration of radio transmission quality due to the influence of interference waves of adjacent channels is a problem.

101 無線装置(第一無線装置)
102−1 第一送信器
102−2 第二送信器
103−1 第一受信器
103−2 第二受信器
104−1 第一変調器
104−2 第二変調器
105−1 第一復調器
105−1(b) 無線周波数帯Aの復調データ
105−2 第二復調器
105−2(b) 無線周波数帯Bの復調データ
106 隣接干渉波検出部
107 無線信号制御部
108 インタフェース部
109 アンテナ部
110 無線信号合成器
111 伝送データ合成器
111(j) 無線周波数帯AおよびBの復調データの合成器出力データ
201 無線装置(第二無線装置)
202−1 第一送信器
202−2 第二送信器
203−1 第一受信器
203−2 第二受信器
204−1 第一変調器
204−2 第二変調器
205−1 第一復調器
205−2 第二復調器
206 隣接干渉波検出部
207 無線信号制御部
208 インタフェース部
209 アンテナ部
210 無線信号合成器
211 伝送データ合成器
301 回線品質監視部
303 対向局間同期判定部
304 判断部
307 設定部
308 信号制御部
309−T 送信周波数制御部
309−R 受信周波数変換部
310−T 送信占有帯域制御部
310−R 受信占有帯域制御部
311−T 送信変調方式制御部
311−R 受信変調方式制御部
401−1 下側隣接チャンネル受信器
401−2 上側隣接チャンネル受信器
402−1 下側受信レベル検出器
402−2 上側受信レベル検出器
a 受信信号
b 復調信号
c 受信データ
d 伝送データ
e インタフェース信号
f 変調データ
g 隣接チャンネル無線通信信号
h 無線通信信号受信レベル
j 伝送データ
k 周波数設定信号
m 受信情報
n 復調制御信号
p 隣接波受信レベル
q 変調制御信号
r 隣接チャンネル受信信号
s 隣接チャンネル情報
A 回線品質信号
B 回線劣化信号
F 対向局変更要求信号
G 応答信号
K 設定情報
M 無線制御信号
N 周波数信号
Q 占有帯域信号
R 変調方式信号
T 周波数設定信号
U 占有帯域設定信号
W 変調方式設定信号
101 wireless device (first wireless device)
102-1 first transmitter 102-2 second transmitter 103-1 first receiver 103-2 second receiver 104-1 first modulator 104-2 second modulator 105-1 first demodulator 105 -1 (b) Demodulated data 105-2 of radio frequency band A Second demodulator 105-2 (b) Demodulated data 106 of radio frequency band B Adjacent interference detection unit 107 Radio signal control unit 108 Interface unit 109 Antenna unit 110 Radio signal synthesizer 111 Transmission data synthesizer 111 (j) Synthesizer output data 201 of demodulated data of radio frequency bands A and B Radio apparatus (second radio apparatus)
202-1 first transmitter 202-2 second transmitter 203-1 first receiver 203-2 second receiver 204-1 first modulator 204-2 second modulator 205-1 first demodulator 205 -2nd demodulator 206 adjacent interference wave detection unit 207 radio signal control unit 208 interface unit 209 antenna unit 210 radio signal synthesizer 211 transmission data synthesizer 301 channel quality monitoring unit 303 counter station synchronization determination unit 304 determination unit 307 setting Unit 308 signal control unit 309-T transmission frequency control unit 309-R reception frequency conversion unit 310-T transmission occupied band control unit 310-R reception occupied band control unit 311-T transmission modulation scheme control unit 311-R reception modulation scheme control Unit 401-1 Lower adjacent channel receiver 401-2 Upper adjacent channel receiver 402-1 Lower reception level detector 402-2 Upper reception Bell detector a Reception signal b Demodulation signal c Reception data d Transmission data e Interface signal f Modulation data g Adjacent channel radio communication signal h Radio communication signal reception level j Transmission data k Frequency setting signal m Reception information n Demodulation control signal p Adjacent wave Reception level q Modulation control signal r Adjacent channel reception signal s Adjacent channel information A Channel quality signal B Channel degradation signal F Opposite station change request signal G Response signal K Setting information M Radio control signal N Frequency signal Q Occupied band signal R Modulation method signal T Frequency setting signal U Occupied band setting signal W Modulation method setting signal

Claims (10)

対向する第一無線装置と第二無線装置との間をポイントツーポイントの無線通信を行う無線通信システムであって、
前記第一無線装置および前記第二無線装置のそれぞれは、
無線周波数帯域の中心周波数である動作周波数を個別に設定できる第一送信器と、変調方式および無線占有帯域を個別に設定できる第一変調器とを含む第一の無線送信系、
無線周波数帯域の中心周波数である動作周波数を個別に設定できる第二送信器と、変調方式および無線占有帯域を個別に設定できる第二変調器とを含む第二の無線送信系と、
無線周波数帯域の中心周波数である動作周波数を個別に設定できる第一受信器と、変調方式および無線占有帯域を個別に設定できる第一復調器とを含む第一の無線受信系と、
無線周波数帯域の中心周波数である動作周波数を個別に設定できる第二受信器と、変調方式および無線占有帯域を個別に設定できる第二復調器とを含む第二の無線受信系と、を備えた(1+1)冗長構成からなり、
前記第一無線装置および前記第二無線装置のそれぞれが、前記第一および第二の無線送信系のうちいずれか一方の無線送信系を現用として、あらかじめ割り当てられた特定の無線周波数を動作周波数として用いて相手側の無線装置への送信動作を行い、他方の無線送信系を予備系として無線出力を停止状態にして待機するホットスタンバイ構成が可能な無線通信システムにおいて、
前記第一無線装置および第二無線装置のそれぞれは、
自無線回線の受信信号の無線伝送品質が劣化したか否かを検出する回線品質監視手段と、
前記受信信号の伝送品質が劣化した原因が、自無線装置が使用する前記無線周波数として占有する無線周波数帯域への隣接チャンネル干渉波によるものか否かを検出する隣接干渉波検出手段と、
前記第一送信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の下側無線周波数に、且つ前記第二送信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の上側無線周波数に、または前記第一受信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の下側無線周波数に、且つ前記第二受信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の上側無線周波数に、前記ホットスタンバイ構成時の無線周波数から周波数変更する周波数制御手段と、
前記第一変調器と前記第二変調器、または前記第一復調器と前記第二復調器のそれぞれの変調方式2のN(N:自然数)を、前記ホットスタンバイ構成時の少なくとも2倍に変更する変調方式制御手段と、
前記第一変調器と前記第二変調器、または前記第一復調器と前記第二復調器のそれぞれの占有帯域を、前記ホットスタンバイ構成時の半分の占有帯域に変更する占有帯域制御手段と、
前記第一受信器および前記第二受信器のそれぞれが受信した前記受信信号から品質の良い方の受信信号を選択して、受信データとして合成する伝送データ合成手段と、
前記隣接チャンネル干渉波により前記受信信号の無線伝送品質が劣化したと判定した場合に、前記劣化を検出した第一および第二の無線受信系について前記周波数制御手段、前記変調方式制御手段、前記占有帯域制御手段を制御して、前記ホットスタンバイ構成から、前記下側無線周波数と前記上側無線周波数との二つの無線周波数を用いて同一データを受信するFDDツインパス構成に構成変更する、または無線対向する相手側の無線装置から前記隣接チャンネル干渉波による前記受信信号の無線伝送品質の劣化通知を受け取った場合に、第一および第二の無線送信系について前記周波数制御手段、前記変調方式制御手段、前記占有帯域制御手段を制御して、前記ホットスタンバイ構成から、前記下側無線周波数と前記上側無線周波数との二つの無線周波数を用いて同一データを送信するFDDツインパス構成に装置構成変更する構成変更手段と、
を有することを特徴とする無線通信システム。
A wireless communication system that performs point-to-point wireless communication between an opposing first wireless device and a second wireless device,
Each of the first wireless device and the second wireless device is
A first radio transmission system including a first transmitter capable of individually setting an operating frequency which is a center frequency of a radio frequency band, and a first modulator capable of individually setting a modulation scheme and a radio occupied band;
A second radio transmission system including a second transmitter capable of individually setting an operating frequency which is a center frequency of a radio frequency band; and a second modulator capable of individually setting a modulation scheme and a radio occupied band;
A first radio receiving system including a first receiver capable of individually setting an operating frequency which is a center frequency of a radio frequency band, and a first demodulator capable of individually setting a modulation scheme and a radio occupied band;
A second radio receiving system including a second receiver capable of individually setting an operating frequency, which is a center frequency of the radio frequency band, and a second demodulator capable of individually setting a modulation scheme and a radio occupied band. (1 + 1) consisting of redundant configuration,
Each of the first radio device and the second radio device has one of the first radio transmission system and the second radio transmission system as active, and a specific radio frequency assigned in advance as an operating frequency. In a wireless communication system capable of a hot standby configuration that performs a transmission operation to a wireless device on the other side using the other wireless transmission system as a standby system and waits with a wireless output stopped.
Each of the first wireless device and the second wireless device is
Channel quality monitoring means for detecting whether or not the radio transmission quality of the received signal of the own radio channel has deteriorated;
An adjacent interference wave detecting means for detecting whether or not the cause of the deterioration of the transmission quality of the received signal is due to an adjacent channel interference wave in a radio frequency band occupied as the radio frequency used by the own radio device;
The operating frequency of the first transmitter is set to a lower radio frequency when the radio frequency band at the time of the hot standby configuration is divided into upper and lower parts, and the operating frequency of the second transmitter is set to the value at the time of the hot standby configuration. The upper radio frequency when the radio frequency band is divided into two parts up or down, or the operating frequency of the first receiver, the lower radio frequency when the radio frequency band when the hot standby configuration is divided into two parts up and down, And the frequency control means for changing the frequency of the operating frequency of the second receiver to the upper radio frequency when the radio frequency band at the time of the hot standby configuration is divided into two up and down from the radio frequency at the time of the hot standby configuration,
N (N: natural number) of each of the modulation schemes 2 N of the first modulator and the second modulator, or the first demodulator and the second demodulator is at least twice that in the hot standby configuration. Modulation method control means to be changed;
Occupied band control means for changing the occupied band of each of the first modulator and the second modulator, or the first demodulator and the second demodulator to a half occupied band in the hot standby configuration,
Transmission data combining means for selecting a reception signal having a higher quality from the reception signals received by each of the first receiver and the second receiver, and combining the received signal as reception data;
When it is determined that the radio transmission quality of the received signal has deteriorated due to the adjacent channel interference wave, the frequency control means, the modulation scheme control means, and the occupation for the first and second radio reception systems that have detected the deterioration The bandwidth control means is controlled to change the configuration from the hot standby configuration to an FDD twin path configuration that receives the same data using the two radio frequencies of the lower radio frequency and the upper radio frequency, or to face the radio When receiving a notice of deterioration of the radio transmission quality of the received signal due to the adjacent channel interference wave from the radio apparatus on the other side, the frequency control means, the modulation method control means, the first radio transmission system, By controlling the occupied band control means, from the hot standby configuration, the lower radio frequency and the upper radio frequency The configuration changing means for equipment configuration changes to FDD Tsuinpasu configured for transmitting the same data using One radio frequency,
A wireless communication system comprising:
前記周波数制御手段は、前記第一送信器と前記第二送信器、または前記第一受信器と前記第二受信器が使用する無線周波数帯域の中心周波数である動作周波数を個別に設定することで、それぞれの動作周波数を、各々の前記動作周波数を前記下側無線周波数および前記上側無線周波数から前記ホットスタンバイ構成時の元の無線周波数に戻す機能をさらに備え、
前記変調方式制御手段は、前記第一変調器と前記第二変調器、または前記第一復調器と前記第二復調器のそれぞれの変調方式2のNを半分にして、前記ホットスタンバイ構成時の元の変調方式に戻す機能をさらに備え、
前記占有帯域制御手段は、前記第一変調器と前記第二変調器、または前記第一復調器と前記第二復調器のそれぞれの無線占有帯域を2倍して、前記ホットスタンバイ構成時の元の占有帯域に戻す機能をさらに備えるとともに、
前記隣接チャンネル干渉波による前記受信信号の無線伝送品質劣化を解消することができたと判定した場合に、第一及び第二の無線受信系を前記周波数制御手段、前記変調方式制御手段、前記占有帯域制御手段を制御して、前記FDDツインパス構成から元の前記ホットスタンバイ構成に戻す、または対向する無線装置から前記隣接チャンネル干渉波による前記受信信号の無線伝送品質劣化解消の通知を受け取った場合に、第一及び第二の無線送信系を前記周波数制御手段、前記変調方式制御手段、前記占有帯域制御手段を制御して、前記FDDツインパス構成から元の前記ホットスタンバイ構成に戻すための構成復帰手段
をさらに備えていることを特徴とする請求項1に記載の無線通信システム。
The frequency control means is configured to individually set an operating frequency that is a center frequency of a radio frequency band used by the first transmitter and the second transmitter, or the first receiver and the second receiver. And a function of returning each operating frequency from the lower radio frequency and the upper radio frequency to the original radio frequency at the time of the hot standby configuration.
The modulation scheme control means halves the N of the modulation scheme 2N of the first modulator and the second modulator, or the first demodulator and the second demodulator, and when the hot standby configuration is used. The function to return to the original modulation system of
The occupied band control means doubles the respective radio occupied bands of the first modulator and the second modulator, or the first demodulator and the second demodulator, and And a function to return to the occupied bandwidth of
When it is determined that radio transmission quality degradation of the received signal due to the adjacent channel interference wave can be eliminated, the first and second radio receiving systems are changed to the frequency control unit, the modulation scheme control unit, and the occupied band. When the control means is controlled to return from the FDD twin path configuration to the original hot standby configuration, or when a notification of radio transmission quality degradation cancellation of the received signal due to the adjacent channel interference wave is received from an opposing radio device, Configuration return means for controlling the frequency control means, the modulation scheme control means, and the occupied band control means for the first and second radio transmission systems to return from the FDD twin path configuration to the original hot standby configuration. The wireless communication system according to claim 1, further comprising:
前記構成復帰手段は、前記隣接チャンネル干渉波による前記受信信号の無線伝送品質劣化解消状態が、復帰監視時間としてあらかじめ定めた時間の間継続していた際に、前記FDDツインパス構成から元の前記ホットスタンバイ構成に復帰する動作を実行することを特徴とする請求項2に記載の無線通信システム。   The configuration recovery means is configured to reset the original hot signal from the FDD twin path configuration when the wireless transmission quality degradation elimination state of the received signal due to the adjacent channel interference wave continues for a predetermined time as a recovery monitoring time. The wireless communication system according to claim 2, wherein an operation for returning to a standby configuration is executed. 前記構成変更手段により前記ホットスタンバイ構成から前記FDDツインパス構成に構成変更する際に、または、前記構成復帰手段により前記FDDツインパス構成から元の前記ホットスタンバイ構成に戻す際に、対向する前記第一無線装置と前記第二無線装置との間の構成変更時の動作または構成復帰時の動作の同期合わせを行うための対向局間同期判定手段
をさらに備えていることを特徴とする請求項1から3のいずれかに記載の無線通信システム。
When the configuration changing means changes the configuration from the hot standby configuration to the FDD twin path configuration, or when the configuration returning means returns the FDD twin path configuration to the original hot standby configuration, the first radios facing each other 4. The inter-station synchronization determination means for performing synchronization of operation at the time of configuration change between the device and the second wireless device or operation at the time of configuration return. A wireless communication system according to any one of the above.
対向する第一無線装置と第二無線装置との間をポイントツーポイントの無線通信を行う無線通信システムによる無線通信方法であって、
前記第一無線装置および前記第二無線装置それぞれは、第一送信器と第一変調器とを含む第一の無線送信系、第一受信器と第一復調器とを含む第一の無線受信系、第二送信器と第二変調器とを含む第二の無線送信系、および第二受信器と第二復調器とを含む第二の無線受信系を備えた(1+1)冗長構成を前記無線通信システムに適用し、前記第一および第二の無線送信系のうちいずれか一方の無線送信系を現用として、あらかじめ割り当てられた特定の無線周波数を動作周波数として用いて相手側の無線装置への無線送信動作を行い、他方の無線送信系を予備系として無線送信動作を停止し待機するホットスタンバイ構成が可能な無線通信方法において、
前記第一無線装置は、
自無線回線の受信信号の無線伝送品質が劣化したか否かを検出する回線品質監視ステップと、
前記受信信号の無線伝送品質が劣化した原因が、自無線装置が使用する前記無線周波数として占有する無線受信周波数帯域への隣接チャンネル干渉波によるものか否かを検出する隣接干渉波検出ステップと、
前記第一受信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の下側無線周波数に、前記第二受信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の上側無線周波数に、前記ホットスタンバイ構成時の無線周波数から周波数変更する受信周波数制御ステップと、
前記第一復調器と前記第二復調器のそれぞれの変調方式2のN(N:自然数)を、前記ホットスタンバイ構成時のすくなくとも2倍に変更する受信変調方式制御ステップと、
前記第一復調器と前記第二復調器のそれぞれの占有帯域を、前記ホットスタンバイ構成時の半分の占有帯域に変更する受信占有帯域制御ステップと、
前記第一受信器および前記第二受信器それぞれが受信した前記受信信号から無線伝送品質の良い方の受信信号を選択して、受信データとして合成する伝送データ合成ステップと、
前記隣接チャンネル干渉波により前記受信信号の無線伝送品質が劣化したと判定した場合には、前記受信周波数制御ステップ、前記受信変調方式制御ステップ、前記受信占有帯域制御ステップを用いて、第一および第二の受信系を前記ホットスタンバイ構成から、前記下側無線周波数と前記上側無線周波数との二つの無線周波数を用いて同一データを受信するFDDツインパス構成に構成変更する受信構成変更ステップと、を有し、
前記第二無線装置は、
前記第一送信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の下側無線周波数に、前記第二送信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の上側無線周波数に、前記ホットスタンバイ構成時の無線周波数から周波数変更する送信周波数制御ステップと、
前記第一変調器と前記第二変調器のそれぞれの変調方式2のN(N:自然数)を、前記ホットスタンバイ構成時の少なくとも2倍に変更する送信変調方式制御ステップと、
前記第一変調器と前記第二変調器のそれぞれの占有帯域を、前記ホットスタンバイ構成時の半分の占有帯域に変更する送信占有帯域制御ステップと、
前記第一無線装置から前記隣接チャンネル干渉波による前記受信信号の無線伝送品質の劣化通知を受け取った場合に、前記送信周波数制御ステップ、前記送信変調方式制御ステップ、前記送信占有帯域制御ステップを用いて、第一および第二の送信系を前記ホットスタンバイ構成から、前記下側無線周波数と前記上側無線周波数との二つの無線周波数を用いて同一データを送信するFDDツインパス構成に装置構成変更する送信構成変更ステップと、
を有していることを特徴とする無線通信方法。
A wireless communication method using a wireless communication system that performs point-to-point wireless communication between a first wireless device and a second wireless device facing each other,
Each of the first radio apparatus and the second radio apparatus includes a first radio transmission system including a first transmitter and a first modulator, and a first radio reception including a first receiver and a first demodulator. A (1 + 1) redundant configuration comprising a system, a second radio transmission system including a second transmitter and a second modulator, and a second radio reception system including a second receiver and a second demodulator Applying to a wireless communication system, using one of the first and second wireless transmission systems as a current one and using a specific radio frequency assigned in advance as an operating frequency, to the counterpart wireless device In a wireless communication method capable of a hot standby configuration in which a wireless transmission operation is performed and the other wireless transmission system is set as a standby system to stop and wait for the wireless transmission operation,
The first wireless device is
A line quality monitoring step for detecting whether or not the radio transmission quality of the received signal of the own radio line has deteriorated;
An adjacent interference wave detection step for detecting whether or not the cause of the deterioration of the radio transmission quality of the received signal is due to an adjacent channel interference wave in a radio reception frequency band occupied as the radio frequency used by the own radio device;
The operating frequency of the first receiver is set to a lower radio frequency when the radio frequency band at the time of the hot standby configuration is vertically divided into two, and the operating frequency of the second receiver is set to the radio at the time of the hot standby configuration. A reception frequency control step of changing the frequency from the radio frequency at the time of the hot standby configuration to the upper radio frequency when the frequency band is divided into upper and lower parts,
A reception modulation scheme control step for changing N (N: natural number) of each modulation scheme 2 N of the first demodulator and the second demodulator at least twice as much as in the hot standby configuration;
Receiving occupied band control step of changing each occupied band of the first demodulator and the second demodulator to a half occupied band in the hot standby configuration,
A transmission data combining step of selecting a reception signal having a better wireless transmission quality from the reception signals received by the first receiver and the second receiver, respectively, and combining the received signal as reception data;
When it is determined that the radio transmission quality of the received signal has deteriorated due to the adjacent channel interference wave, the reception frequency control step, the reception modulation scheme control step, and the reception occupied band control step are used to A receiving configuration change step for changing the configuration of the second receiving system from the hot standby configuration to an FDD twin path configuration that receives the same data using the two radio frequencies of the lower radio frequency and the upper radio frequency. And
The second wireless device is
The operating frequency of the first transmitter is set to a lower radio frequency when the radio frequency band at the time of the hot standby configuration is vertically divided into two, and the operating frequency of the second transmitter is set to the radio at the time of the hot standby configuration. A transmission frequency control step for changing the frequency from the radio frequency at the time of the hot standby configuration to the upper radio frequency when the frequency band is divided into upper and lower parts,
A transmission modulation scheme control step of changing N (N: natural number) of each modulation scheme 2 N of the first modulator and the second modulator to at least twice that in the hot standby configuration;
A transmission occupied band control step of changing each occupied band of the first modulator and the second modulator to a half occupied band in the hot standby configuration,
When receiving a notification of deterioration in radio transmission quality of the received signal due to the adjacent channel interference wave from the first radio device, using the transmission frequency control step, the transmission modulation scheme control step, and the transmission occupied band control step A transmission configuration in which the first and second transmission systems are changed from the hot standby configuration to an FDD twin-path configuration that transmits the same data using two radio frequencies, the lower radio frequency and the upper radio frequency. Change steps,
A wireless communication method characterized by comprising:
前記受信周波数制御ステップは、前記第一受信器および前記第二受信器のそれぞれの動作周波数を、前記下側無線周波数および前記上側無線周波数から前記ホットスタンバイ構成時の元の無線周波数に戻すステップをさらに有し、
前記送信周波数制御ステップは、前記第一送信器および前記第二送信器のそれぞれの動作周波数を、前記下側無線周波数および前記上側無線周波数から前記ホットスタンバイ構成時の元の無線周波数に戻すステップをさらに有し、
前記受信変調方式制御ステップは、前記第一復調器と前記第二復調器のそれぞれの変調方式2NのNを半分にして、前記ホットスタンバイ構成時の元の変調方式に戻すステップをさらに有し、
前記送信変調方式制御ステップは、前記第一変調器と前記第二変調器のそれぞれの変調方式2NのNを半分にして、前記ホットスタンバイ構成時の元の変調方式に戻すステップをさらに有し、
前記受信占有帯域制御ステップは、前記第一復調器と前記第二復調器のそれぞれの占有帯域を2倍して、前記ホットスタンバイ構成時の元の占有帯域に戻すステップをさらに有し、
前記送信占有帯域制御ステップは、前記第一変調器と前記第二変調器のそれぞれの占有帯域を2倍して、前記ホットスタンバイ構成時の元の占有帯域に戻すステップをさらに有し、
前記隣接チャンネル干渉波による前記受信信号の無線伝送品質劣化を解消することができたと判定した場合に、前記第一無線装置は前記受信周波数制御ステップ、前記受信変調方式制御ステップ、前記受信占有帯域制御ステップを用いて、前記FDDツインパス構成から元の前記ホットスタンバイ構成に戻すための受信構成復帰ステップをさらに有し、
前記第二無線装置は第一無線装置から前記隣接チャンネル干渉波による前記受信信号の品質劣化解消の通知を受け取った場合に、前記送信周波数制御ステップ、前記送信変調方式制御ステップ、前記送信占有帯域制御ステップを用いて、前記FDDツインパス構成から元の前記ホットスタンバイ構成に戻すための送信構成復帰ステップをさらに有していることを特徴とする請求項5に記載の無線通信方法。
The reception frequency control step is a step of returning the operating frequencies of the first receiver and the second receiver from the lower radio frequency and the upper radio frequency to the original radio frequency in the hot standby configuration. In addition,
The transmission frequency control step returns the operating frequency of each of the first transmitter and the second transmitter to the original radio frequency in the hot standby configuration from the lower radio frequency and the upper radio frequency. In addition,
The reception modulation scheme control step further includes the step of halving the N of the modulation scheme 2N of each of the first demodulator and the second demodulator and returning to the original modulation scheme in the hot standby configuration,
The transmission modulation scheme control step further includes the step of halving N of the modulation scheme 2N of each of the first modulator and the second modulator and returning to the original modulation scheme in the hot standby configuration,
The reception occupied band control step further includes a step of doubling each occupied band of the first demodulator and the second demodulator to return to the original occupied band in the hot standby configuration,
The transmission occupied band control step further includes a step of doubling each occupied band of the first modulator and the second modulator to return to the original occupied band in the hot standby configuration,
When it is determined that radio transmission quality degradation of the received signal due to the adjacent channel interference wave can be eliminated, the first radio apparatus performs the reception frequency control step, the reception modulation scheme control step, and the reception occupied band control. And further comprising a reception configuration return step for returning from the FDD twin path configuration to the original hot standby configuration using a step,
When the second radio apparatus receives a notification of quality degradation cancellation of the received signal due to the adjacent channel interference wave from the first radio apparatus, the transmission frequency control step, the transmission modulation scheme control step, and the transmission occupied band control The wireless communication method according to claim 5, further comprising: a transmission configuration return step for returning from the FDD twin path configuration to the original hot standby configuration using a step.
前記受信構成復帰ステップ及び送信構成復帰ステップは、前記隣接チャンネル干渉波による前記受信信号の無線伝送品質劣化解消状態が、復帰監視時間としてあらかじめ定めた時間の間継続していた際に、前記FDDツインパス構成から元の前記ホットスタンバイ構成に復帰する動作を実行することを特徴とする請求項6に記載の無線通信方法。   The reception configuration return step and the transmission configuration return step include the FDD twin path when the wireless transmission quality degradation elimination state of the received signal due to the adjacent channel interference wave continues for a predetermined time as a return monitoring time. The wireless communication method according to claim 6, wherein an operation of returning from the configuration to the original hot standby configuration is executed. 前記受信構成変更ステップ及び送信構成変更ステップにより前記ホットスタンバイ構成から前記FDDツインパス構成に構成変更する際に、または、前記受信構成復帰ステップ及び送信構成復帰ステップにより前記FDDツインパス構成から元の前記ホットスタンバイ構成に戻す際に、無線対向する二つの前記第一無線装置と前記第二無線装置との間の構成変更時の動作または構成復帰時の動作の構成変更シーケンスの同期合わせを行うための対向局間同期判定ステップ
をさらに有していることを特徴とする請求項5から7のいずれかに記載の無線通信方法。
When changing the configuration from the hot standby configuration to the FDD twin path configuration by the reception configuration change step and the transmission configuration change step, or from the FDD twin path configuration to the original hot standby configuration by the reception configuration return step and the transmission configuration return step. When returning to the configuration, the opposite station for synchronizing the configuration change sequence of the operation at the time of configuration change or the operation at the time of configuration return between the two radio devices facing each other wirelessly The wireless communication method according to claim 5, further comprising an inter-synchronization determination step.
対向する二つの無線装置の間をポイントツーポイントの無線通信を行う無線通信システムの無線装置であって、
無線周波数帯域の中心周波数である動作周波数を個別に設定できる第一送信器と、変調方式および無線占有帯域を個別に設定できる第一変調器とを含む第一の無線送信系、
無線周波数帯域の中心周波数である動作周波数を個別に設定できる第二送信器と、変調方式および無線占有帯域を個別に設定できる第二変調器とを含む第二の無線送信系と、
無線周波数帯域の中心周波数である動作周波数を個別に設定できる第一受信器と、変調方式および無線占有帯域を個別に設定できる第一復調器とを含む第一の無線受信系と、
無線周波数帯域の中心周波数である動作周波数を個別に設定できる第二受信器と、変調方式および無線占有帯域を個別に設定できる第二復調器とを含む第二の無線受信系と、を備えた(1+1)冗長構成からなり、
前記第一および第二の無線送信系のうちいずれか一方の無線送信系を現用として、あらかじめ割り当てられた特定の無線周波数を動作周波数として用いて無線通信の相手側の無線装置への送信動作を行い、他方の無線送信系を予備系として無線出力を停止状態にして待機するホットスタンバイ構成が可能な無線装置において、
自無線回線の受信信号の無線伝送品質が劣化したか否かを検出する回線品質監視手段と、
前記受信信号の伝送品質が劣化した原因が、自無線装置が使用する前記無線周波数として占有する無線周波数帯域への隣接チャンネル干渉波によるものか否かを検出する隣接干渉波検出手段と、
前記第一送信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の下側無線周波数に、且つ前記第二送信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の上側無線周波数に、または前記第一受信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の下側無線周波数に、且つ前記第二受信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の上側無線周波数に、前記ホットスタンバイ構成時の無線周波数から周波数変更する周波数制御手段と、
前記第一変調器と前記第二変調器、または前記第一復調器と前記第二復調器のそれぞれの変調方式2のN(N:自然数)を、前記ホットスタンバイ構成時の少なくとも2倍に変更する変調方式制御手段と、
前記第一変調器と前記第二変調器、または前記第一復調器と前記第二復調器のそれぞれの占有帯域を、前記ホットスタンバイ構成時の半分の占有帯域に変更する占有帯域制御手段と、
前記第一受信器および前記第二受信器のそれぞれが受信した前記受信信号から品質の良い方の受信信号を選択して、受信データとして合成する伝送データ合成手段と、
前記隣接チャンネル干渉波により前記受信信号の無線伝送品質が劣化したと判定した場合に、前記劣化を検出した第一および第二の無線受信系について前記周波数制御手段、前記変調方式制御手段、前記占有帯域制御手段を制御して、前記ホットスタンバイ構成から、前記下側無線周波数と前記上側無線周波数との二つの無線周波数を用いて同一データを受信するFDDツインパス構成に構成変更する、または無線対向する相手側の無線装置から前記隣接チャンネル干渉波による前記受信信号の無線伝送品質の劣化通知を受け取った場合に、第一および第二の無線送信系について前記周波数制御手段、前記変調方式制御手段、前記占有帯域制御手段を制御して、前記ホットスタンバイ構成から、前記下側無線周波数と前記上側無線周波数との二つの無線周波数を用いて同一データを送信するFDDツインパス構成に構成変更する構成変更手段と、
を有することを特徴とする無線装置。
A wireless device of a wireless communication system that performs point-to-point wireless communication between two opposing wireless devices,
A first radio transmission system including a first transmitter capable of individually setting an operating frequency which is a center frequency of a radio frequency band, and a first modulator capable of individually setting a modulation scheme and a radio occupied band;
A second radio transmission system including a second transmitter capable of individually setting an operating frequency which is a center frequency of a radio frequency band; and a second modulator capable of individually setting a modulation scheme and a radio occupied band;
A first radio receiving system including a first receiver capable of individually setting an operating frequency which is a center frequency of a radio frequency band, and a first demodulator capable of individually setting a modulation scheme and a radio occupied band;
A second radio receiving system including a second receiver capable of individually setting an operating frequency, which is a center frequency of the radio frequency band, and a second demodulator capable of individually setting a modulation scheme and a radio occupied band. (1 + 1) consisting of redundant configuration,
One of the first and second wireless transmission systems is used as a current transmission, and a specific wireless frequency assigned in advance is used as an operating frequency to perform a transmission operation to a wireless device on the other side of wireless communication. In a wireless device capable of a hot standby configuration in which the other wireless transmission system is set as a standby system and the wireless output is stopped and waits,
Channel quality monitoring means for detecting whether or not the radio transmission quality of the received signal of the own radio channel has deteriorated;
An adjacent interference wave detecting means for detecting whether or not the cause of the deterioration of the transmission quality of the received signal is due to an adjacent channel interference wave in a radio frequency band occupied as the radio frequency used by the own radio device;
The operating frequency of the first transmitter is set to a lower radio frequency when the radio frequency band at the time of the hot standby configuration is divided into upper and lower parts, and the operating frequency of the second transmitter is set to the value at the time of the hot standby configuration. The upper radio frequency when the radio frequency band is divided into two parts up or down, or the operating frequency of the first receiver, the lower radio frequency when the radio frequency band when the hot standby configuration is divided into two parts up and down, And the frequency control means for changing the frequency of the operating frequency of the second receiver to the upper radio frequency when the radio frequency band at the time of the hot standby configuration is divided into two up and down from the radio frequency at the time of the hot standby configuration,
N (N: natural number) of each of the modulation schemes 2 N of the first modulator and the second modulator, or the first demodulator and the second demodulator is at least twice that in the hot standby configuration. Modulation method control means to be changed;
Occupied band control means for changing the occupied band of each of the first modulator and the second modulator, or the first demodulator and the second demodulator to a half occupied band in the hot standby configuration,
Transmission data combining means for selecting a reception signal having a higher quality from the reception signals received by each of the first receiver and the second receiver, and combining the received signal as reception data;
When it is determined that the radio transmission quality of the received signal has deteriorated due to the adjacent channel interference wave, the frequency control means, the modulation scheme control means, and the occupation for the first and second radio reception systems that have detected the deterioration The bandwidth control means is controlled to change the configuration from the hot standby configuration to an FDD twin path configuration that receives the same data using the two radio frequencies of the lower radio frequency and the upper radio frequency, or to face the radio When receiving a notice of deterioration of the radio transmission quality of the received signal due to the adjacent channel interference wave from the radio apparatus on the other side, the frequency control means, the modulation method control means, the first radio transmission system, By controlling the occupied band control means, from the hot standby configuration, the lower radio frequency and the upper radio frequency The configuration changing means for configuration changes to the FDD Tsuinpasu configured for transmitting the same data using One radio frequency,
A wireless device comprising:
対向する二つの無線装置の間をポイントツーポイントの無線通信を行う無線通信システムの無線装置による無線通信方法であって、
前記無線装置は、第一送信器と第一変調器とを含む第一の無線送信系、第一受信器と第一復調器とを含む第一の無線受信系、第二送信器と第二変調器とを含む第二の無線送信系、および第二受信器と第二復調器とを含む第二の無線受信系を備えた(1+1)冗長構成からなり、前記第一および第二の無線送信系のうちいずれか一方の無線送信系を現用として、あらかじめ割り当てられた特定の無線周波数を動作周波数として用いて相手側の無線装置への無線送信動作を行い、他方の無線送信系を予備系として無線送信動作を停止し待機するホットスタンバイ構成が可能な無線装置の無線通信方法において、
前記第一送信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の下側無線周波数に、且つ前記第二送信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の上側無線周波数に、または前記第一受信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の下側無線周波数に、且つ前記第二受信器の動作周波数を、前記ホットスタンバイ構成時の無線周波数の帯域を上下に二分した際の上側無線周波数に、前記ホットスタンバイ構成時の無線周波数から周波数変更する周波数制御ステップと、
前記第一変調器と前記第二変調器、または前記第一復調器と前記第二復調器のそれぞれの変調方式2のN(N:自然数)を、前記ホットスタンバイ構成時の少なくとも2倍に変更する変調方式制御ステップと、
前記第一変調器と前記第二変調器、または前記第一復調器と前記第二復調器のそれぞれの占有帯域を、前記ホットスタンバイ構成時の半分の占有帯域に変更する占有帯域制御ステップと、
自無線回線の受信信号の無線伝送品質が劣化したか否かを検出し、伝送品質が劣化した原因が、自無線装置が使用する前記無線周波数として占有する無線周波数帯域への隣接チャンネル干渉波によるものと判定した場合に、前記劣化を検出した第一および第二の無線受信系について前記周波数制御ステップ、前記変調方式制御ステップ、前記占有帯域制御ステップを用いて、前記ホットスタンバイ構成から、前記下側無線周波数と前記上側無線周波数との二つの無線周波数を用いて同一データを受信するFDDツインパス構成に構成変更する、または無線対向する相手側の無線装置から前記隣接チャンネル干渉波による前記受信信号の無線伝送品質の劣化通知を受け取った場合に、第一および第二の無線送信系について前記周波数制御ステップ、前記変調方式制御ステップ、前記占有帯域制御ステップを用いて、前記ホットスタンバイ構成から、前記下側無線周波数と前記上側無線周波数との二つの無線周波数を用いて同一データを送信するFDDツインパス構成に構成変更する構成変更ステップと、
を有することを特徴とする無線通信方法。
A wireless communication method by a wireless device of a wireless communication system that performs point-to-point wireless communication between two facing wireless devices,
The wireless device includes a first wireless transmission system including a first transmitter and a first modulator, a first wireless reception system including a first receiver and a first demodulator, a second transmitter and a second transmitter. A first radio transmission system comprising a (1 + 1) redundant configuration comprising a second radio transmission system including a modulator and a second radio reception system including a second receiver and a second demodulator; One of the transmission systems is used as a working system, a specific radio frequency assigned in advance is used as an operating frequency, and a radio transmission operation is performed to a radio device on the other side, and the other radio transmission system is used as a standby system. In a wireless communication method of a wireless device capable of a hot standby configuration to stop and wait for wireless transmission operation as
The operating frequency of the first transmitter is set to a lower radio frequency when the radio frequency band at the time of the hot standby configuration is divided into upper and lower parts, and the operating frequency of the second transmitter is set to the value at the time of the hot standby configuration. The upper radio frequency when the radio frequency band is divided into two parts up or down, or the operating frequency of the first receiver, the lower radio frequency when the radio frequency band when the hot standby configuration is divided into two parts up and down, And the frequency control step of changing the frequency from the radio frequency at the time of the hot standby configuration to the upper radio frequency when the operating frequency of the second receiver is divided into the upper and lower radio frequency bands at the time of the hot standby configuration, and
N (N: natural number) of each of the modulation schemes 2 N of the first modulator and the second modulator, or the first demodulator and the second demodulator is at least twice that in the hot standby configuration. A modulation scheme control step to be changed;
Occupied band control step of changing each occupied band of the first modulator and the second modulator, or the first demodulator and the second demodulator to half the occupied band in the hot standby configuration,
It is detected whether or not the radio transmission quality of the received signal of the own radio line is deteriorated, and the cause of the deterioration of the transmission quality is due to the adjacent channel interference wave to the radio frequency band occupied as the radio frequency used by the own radio device. If it is determined that the degradation is detected, the frequency control step, the modulation scheme control step, and the occupied band control step are used for the first and second radio reception systems from which the degradation has been detected. Change the configuration to an FDD twin path configuration that receives the same data using two radio frequencies of the side radio frequency and the upper radio frequency, or change the received signal by the adjacent channel interference wave from the radio device on the other side facing the radio The frequency control step is performed for the first and second radio transmission systems when a notice of degradation of radio transmission quality is received. The FDD twin path configuration that transmits the same data using the two radio frequencies of the lower radio frequency and the upper radio frequency from the hot standby configuration using the modulation scheme control step and the occupied band control step. A configuration change step for changing the configuration;
A wireless communication method comprising:
JP2015150446A 2015-07-30 2015-07-30 Wireless communication system, wireless device, wireless communication method and wireless communication program Active JP6514062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015150446A JP6514062B2 (en) 2015-07-30 2015-07-30 Wireless communication system, wireless device, wireless communication method and wireless communication program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015150446A JP6514062B2 (en) 2015-07-30 2015-07-30 Wireless communication system, wireless device, wireless communication method and wireless communication program

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019072495A Division JP6799105B2 (en) 2019-04-05 2019-04-05 Wireless communication program

Publications (2)

Publication Number Publication Date
JP2017034373A true JP2017034373A (en) 2017-02-09
JP6514062B2 JP6514062B2 (en) 2019-05-15

Family

ID=57989138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015150446A Active JP6514062B2 (en) 2015-07-30 2015-07-30 Wireless communication system, wireless device, wireless communication method and wireless communication program

Country Status (1)

Country Link
JP (1) JP6514062B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023152834A1 (en) * 2022-02-09 2023-08-17 日本電信電話株式会社 Wireless communication system, wireless communication method, and wireless communication device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06204914A (en) * 1992-12-28 1994-07-22 Fujitsu Ltd Hot stand-by system for radio equipment
JP2009171263A (en) * 2008-01-17 2009-07-30 Nec Engineering Ltd Modulation mode switching type communication device and modulation mode switching method
WO2011145540A1 (en) * 2010-05-20 2011-11-24 日本電気株式会社 Wireless communication apparatus and wireless communication method
JP2015226252A (en) * 2014-05-29 2015-12-14 Necエンジニアリング株式会社 Radio communication system, radio communication method and radio communication program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06204914A (en) * 1992-12-28 1994-07-22 Fujitsu Ltd Hot stand-by system for radio equipment
JP2009171263A (en) * 2008-01-17 2009-07-30 Nec Engineering Ltd Modulation mode switching type communication device and modulation mode switching method
WO2011145540A1 (en) * 2010-05-20 2011-11-24 日本電気株式会社 Wireless communication apparatus and wireless communication method
JP2015226252A (en) * 2014-05-29 2015-12-14 Necエンジニアリング株式会社 Radio communication system, radio communication method and radio communication program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
金子 一郎 ICHIRO KANEKO: "携帯電話バックホール,企業専用線,海外の中継回線で活躍! わかるマイクロ波通信システム", RFワールド (トランジスタ技術 増刊), vol. No.19, JPN6019009399, 1 August 2012 (2012-08-01), JP, pages P. 23-35 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023152834A1 (en) * 2022-02-09 2023-08-17 日本電信電話株式会社 Wireless communication system, wireless communication method, and wireless communication device

Also Published As

Publication number Publication date
JP6514062B2 (en) 2019-05-15

Similar Documents

Publication Publication Date Title
JP4829970B2 (en) Base station apparatus and reception processing method in the same
JP4462043B2 (en) Microwave radio communication system
JP2008236721A (en) Data rate adjustment in protected variable rate link
JP2010045729A (en) Method of transmission under fault occurrence in mimo communication and radio base station device performing mimo communication
JP6315571B2 (en) Wireless communication system, wireless communication method, and wireless communication program
US8942160B2 (en) Communication system, communication apparatus, and data transmission method
JP2017034373A (en) Radio communication system, radio device, radio communication method, and radio communication program
EP2461489B1 (en) Microwave transmission device
US8520706B2 (en) Transmitting method, receiving method, transmitting device and receiving device
JP6799105B2 (en) Wireless communication program
WO2004028023A1 (en) Radio communication device and radio communication system using the same
JPH0746801B2 (en) Delay compensation method
JP6003386B2 (en) Wireless communication apparatus, wireless frame generation method, and communication system
JP5423007B2 (en) Wireless communication apparatus and communication method
JP4817969B2 (en) COMMUNICATION METHOD AND BASE STATION DEVICE USING THE SAME
JP6450607B2 (en) Communication terminal and communication method thereof
JP2017228911A (en) Radio communication system, radio equipment, radio communication method, and radio communication program
US10764955B2 (en) Microwave link transmission control with transmission of low rate dummy data
WO2022244152A1 (en) Communication system, communication method, and base station communication device
JP6366878B1 (en) Wireless communication apparatus and wireless communication method
JP3139411B2 (en) Line switching method and device
US8743935B2 (en) Wireless communication system, wireless communication apparatus and wireless communication method
WO2023152834A1 (en) Wireless communication system, wireless communication method, and wireless communication device
US9509536B2 (en) Communication apparatus, circuit for communication apparatus, and communication method
JP2012175133A (en) Digital radio transmission device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170707

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190411

R150 Certificate of patent or registration of utility model

Ref document number: 6514062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150