JP2017032795A - Mirror supporting method, mirror support structure, and mirror structure - Google Patents

Mirror supporting method, mirror support structure, and mirror structure Download PDF

Info

Publication number
JP2017032795A
JP2017032795A JP2015152916A JP2015152916A JP2017032795A JP 2017032795 A JP2017032795 A JP 2017032795A JP 2015152916 A JP2015152916 A JP 2015152916A JP 2015152916 A JP2015152916 A JP 2015152916A JP 2017032795 A JP2017032795 A JP 2017032795A
Authority
JP
Japan
Prior art keywords
mirror
support
deformation
support rods
bipod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015152916A
Other languages
Japanese (ja)
Other versions
JP6540341B2 (en
Inventor
壯一 小倉
Soichi Ogura
壯一 小倉
一男 濱田
Kazuo Hamada
一男 濱田
上田 智弘
Toshihiro Ueda
智弘 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2015152916A priority Critical patent/JP6540341B2/en
Publication of JP2017032795A publication Critical patent/JP2017032795A/en
Application granted granted Critical
Publication of JP6540341B2 publication Critical patent/JP6540341B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Telescopes (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a mirror supporting method, a mirror support mechanism, and mirror structure that allow for optimally supporting a mirror by minimizing self-weight deformation of the mirror.SOLUTION: A mirror support structure has a plurality of support rods 100 for supporting a mirror 10 at a plurality of support points, each support rod 100 being tilted at a predetermined angle with respect to a bottom surface of the mirror 10 such that self-weight deformation of the mirror 10 is balanced out by composite reaction forces (F1b, F2b) of the plurality of support rods 100. The plurality of support rods 100 are located in a peripheral area of the mirror 10 and are tilted toward an inner portion of the bottom surface of the mirror.SELECTED DRAWING: Figure 6

Description

本発明はミラーを高精度で支持するミラー支持方法、ミラー支持構造およびミラー構造体に関する。   The present invention relates to a mirror support method for supporting a mirror with high accuracy, a mirror support structure, and a mirror structure.

人工衛星等に搭載する光学式望遠鏡に使用されるミラーでは、その反射面に高い精度が要求される反面、軽量化の要求により反射面の板厚を、ミラーの剛性が許す限り、薄くする必要がある。このようなミラーは地上での取り扱いや測定において自重による変形が常に問題となる。特に宇宙用のミラーの場合、宇宙空間で使用している間は重力の影響は無視できるので、ミラーの自重変形は考慮しなくて良いが、地上試験時では常に重力が作用するため、宇宙空間での最終使用状態と地上試験時には1G分の差異が発生する。地上で試験を実施する場合、この差分は試験または解析にて補正を行うが、何らかの誤差は避けられない。自重変形が小さいほど、宇宙環境との差異が小さく誤差の影響も小さくなり、より高い精度で事前予測が可能となるので、宇宙用ミラーの場合でも自重変形を小さくすることが重要となる。   For mirrors used in optical telescopes mounted on artificial satellites, etc., high accuracy is required for the reflecting surface, but the thickness of the reflecting surface needs to be reduced as long as the mirror rigidity permits due to the demand for light weight. There is. Such mirrors are always subject to deformation due to their own weight in handling and measurement on the ground. In particular, in the case of a mirror for space use, the influence of gravity can be ignored during use in outer space, so there is no need to consider the self-weight deformation of the mirror, but gravity always acts during ground tests. A difference of 1G occurs in the final use state and ground test. When testing on the ground, this difference is corrected by testing or analysis, but some error is inevitable. The smaller the self-weight deformation, the smaller the difference from the space environment and the smaller the influence of errors, and the more accurate the prediction can be made in advance, so it is important to reduce the self-weight deformation even in the case of a space mirror.

このような高精度ミラーを多点(たとえば27点)で支持する方式(たとえばヒンドルマウント方式)であれば、自重変形を抑制することができるが、その反面、多点で支持することから温度変化や組立・取付時等による外部からの歪のミラー波面への影響が大きくなる。このような外部歪の影響を小さくするために、特許文献1に開示された支持構造は6点支持を採用し、さらに各支持脚に応力の伝達を抑制する軸受機構を設けている。   If such a high-precision mirror is supported at multiple points (for example, 27 points) (for example, a hinddle mount method), the self-weight deformation can be suppressed. The influence of external distortion on the mirror wavefront due to changes, assembling and mounting is increased. In order to reduce the influence of such external strain, the support structure disclosed in Patent Document 1 employs a six-point support, and each support leg is provided with a bearing mechanism that suppresses transmission of stress.

特開2014−010332号公報JP, 2014-010332, A

しかしながら、上述した6点支持のように、多点支持に比べて支持点数が少なくなると、ミラーの自重変形が大きくなり、高精度の事前予測が困難となる。   However, if the number of supporting points is reduced as compared with the multi-point support as described above, the mirror's own weight deformation becomes large, and it becomes difficult to perform highly accurate prior prediction.

そこで、本発明の目的は、ミラーの自重変形を最小化することでミラー支持を最適化できるミラー支持方法、ミラー支持構造およびミラー構造体を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a mirror support method, a mirror support structure, and a mirror structure that can optimize mirror support by minimizing deformation of the mirror by its own weight.

本発明によるミラー支持構造は、ミラーを複数支点で支持する複数の支持ロッドを有し、前記複数の支持ロッドの各々が前記ミラーの底面に対して45度の角度で設けられ、前記複数の支持ロッドの合成反力によって前記ミラーの自重変形を相殺することを特徴とする。
本発明によるミラー構造体は、上記ミラー支持構造と前記ミラーとからなり、前記ミラー支持構造が前記ミラーの底面を前記複数の支持ロッドにより支持することを特徴とする。
本発明によるミラー支持方法は、複数の支持ロッドによりミラーを支持するミラー支持方法であって、前記複数の支持ロッドの各々が前記ミラーの底面に対して45度の角度で支持し、前記複数の支持ロッドの合成反力によって前記ミラーの自重変形を相殺する、ことを特徴とする。
The mirror support structure according to the present invention includes a plurality of support rods that support the mirror at a plurality of fulcrums, and each of the plurality of support rods is provided at an angle of 45 degrees with respect to the bottom surface of the mirror, It is characterized in that the self-weight deformation of the mirror is canceled by the combined reaction force of the rod.
The mirror structure according to the present invention includes the mirror support structure and the mirror, and the mirror support structure supports the bottom surface of the mirror by the plurality of support rods.
The mirror support method according to the present invention is a mirror support method in which a mirror is supported by a plurality of support rods, each of the plurality of support rods being supported at an angle of 45 degrees with respect to the bottom surface of the mirror. The self-weight deformation of the mirror is canceled by the combined reaction force of the support rod.

本発明によれば、ミラーの自重変形を最小化することでミラー支持を最適化できる。   According to the present invention, the mirror support can be optimized by minimizing the deformation of the mirror by its own weight.

図1は本発明の実施形態によるミラー支持構造を採用するミラー構造体の一例を示す斜視図である。FIG. 1 is a perspective view showing an example of a mirror structure employing a mirror support structure according to an embodiment of the present invention. 図2は図1に示すミラー構造体の支持する側から見た平面図である。FIG. 2 is a plan view of the mirror structure shown in FIG. 図3は図1に示すミラー構造体の側面図である。FIG. 3 is a side view of the mirror structure shown in FIG. 図4は3組のバイポッドにより支持されたミラーのツェルニケ10次のTriangular変形モードを示す図である。FIG. 4 is a diagram showing a Zernike 10th-order Triangular deformation mode of a mirror supported by three sets of bipods. 図5はバイポッド角度およびオフセットを説明するためのミラー構造体の側面図である。FIG. 5 is a side view of the mirror structure for explaining the bipod angle and the offset. 図6は本発明による自重変形の低減メカニズムを説明するためのミラー構造体の側面図である。FIG. 6 is a side view of a mirror structure for explaining a self-weight deformation reduction mechanism according to the present invention. 図7はバイポッド支持されたミラー構造体におけるバイポッド角度に対する変形量の変化を示すグラフである。FIG. 7 is a graph showing changes in the deformation amount with respect to the bipod angle in the mirror structure supported by the bipod. 図8(A)はバイポッド角度90°の5〜37次と10次の変形モードにおける変形量を示すグラフであり、図8(B)は、バイポッド角度45°の5〜37次と10次の変形モードにおける変形量を示すグラフである。FIG. 8A is a graph showing the amount of deformation in the 5th to 37th order and 10th order deformation modes with a bipod angle of 90 °, and FIG. 8B shows the 5th to 37th order and the 10th order with a bipod angle of 45 °. It is a graph which shows the deformation | transformation amount in a deformation | transformation mode. 図9は本発明の一実施例によるミラー支持構造の分離可能支持ロッドの構成を示す斜視図である。FIG. 9 is a perspective view showing a configuration of a separable support rod of a mirror support structure according to an embodiment of the present invention. 図10は図9に示す分離可能支持ロッドの分離した状態を示す側面図である。FIG. 10 is a side view showing a separated state of the separable support rod shown in FIG. 図11は図10に示す分離可能支持ロッドのA−A断面図である。11 is a cross-sectional view of the separable support rod AA shown in FIG. 図12は本実施例によるミラー支持構造である逆バイポッド式支持構造を示す斜視図である。FIG. 12 is a perspective view showing an inverted bipod type support structure which is a mirror support structure according to this embodiment. 図13は上述したミラー支持構造を適用する光学式望遠鏡の一構成例を示す模式図である。FIG. 13 is a schematic diagram showing a configuration example of an optical telescope to which the above-described mirror support structure is applied.

<実施形態の概要>
本発明の実施形態によれば、ミラーを斜めに支持する支持構造と当該ミラーとの間の角度を最適化することで、少ない支持点数でミラーの自重変形を最小化することが可能となる。以下、本発明の原理的なメカニズムおよび実施例について図面を参照しながら詳細に説明する。
<Outline of Embodiment>
According to the embodiment of the present invention, by optimizing the angle between the support structure that supports the mirror obliquely and the mirror, it is possible to minimize the deformation of the mirror by a small number of support points. Hereinafter, the principle mechanism and embodiments of the present invention will be described in detail with reference to the drawings.

1.一実施形態
大型のミラーの主要な設計課題の一つは、1G下での自重変形の低減である。ミラーの厚さ及びミラー支持点配置はミラーの基本的構造諸元であるが、このミラー厚さと支持点配置は自重変形に大きくかかわるパラメータである。なかでも、支持点配置は設計の自由度が大きく、支持点配置を適切に決定することはミラー部構造設計において最も基本的な設計項目である。さらに、逆バイポッド式支持構造の場合、支持点配置だけでなく支持構造の取付角度によって自重変形が影響を受ける。以下、図1〜図3に示す逆バイポッド式支持構造を用いたミラー構造体を例示し、支持点配置と支持構造取付角度の最適組み合わせによって自重変形を最小化できることを示す。
1. One embodiment One of the major design challenges for large mirrors is the reduction of deformation under its own weight under 1G. The mirror thickness and the mirror support point arrangement are basic structural specifications of the mirror, and the mirror thickness and the support point arrangement are parameters that are greatly involved in the deformation of the own weight. Among these, the support point arrangement has a large degree of design freedom, and appropriately determining the support point arrangement is the most basic design item in the mirror structure design. Further, in the case of the reverse bipod type support structure, the deformation of the own weight is influenced not only by the support point arrangement but also by the mounting angle of the support structure. Hereinafter, a mirror structure using the reverse bipod type support structure shown in FIGS. 1 to 3 will be exemplified, and it will be shown that the deformation of its own weight can be minimized by the optimum combination of the support point arrangement and the support structure mounting angle.

1.1)ミラー構造体
図1〜図3に例示するように、本発明の一実施形態によるミラー支持構造を適用可能なミラー構造体は、ミラー10が3組の逆バイポッド式支持構造11〜13による6点で支持された構成を有する。ミラー10は、たとえば高精度の波面が要求される平面鏡、凹面鏡等であるが、そのほか、精度が要求される光学部材であってもよい。逆バイポッド式支持構造11〜13の各々の構造については後述する。
1.1) Mirror Structure As illustrated in FIGS. 1 to 3, the mirror structure to which the mirror support structure according to the embodiment of the present invention can be applied includes three reverse bipod type support structures 11 to 10 as mirrors 10. 13 is supported by 6 points. The mirror 10 is, for example, a plane mirror or a concave mirror that requires a highly accurate wavefront, but may also be an optical member that requires accuracy. Each structure of the reverse bipod type support structures 11 to 13 will be described later.

図2に典型的に示されるように、逆バイポッド式支持構造11〜13は、ミラー10の底面の中心の周り(周辺部)に互いに120°の角度で均等に配置され、各逆バイポッド式支持構造の2本の支持ロッド、計6本の支持ロッドがミラー10を6点支持する。各逆バイポッド式支持構造の2本の支持ロッドのジョイント部は、図3に示されるように、ベース構造体14上に固定される。   As typically shown in FIG. 2, the reverse bipod type support structures 11 to 13 are equally disposed around the center (peripheral part) of the bottom surface of the mirror 10 at an angle of 120 ° with respect to each other. Two support rods of the structure, a total of six support rods, support the mirror 10 at six points. The joint portions of the two support rods of each inverted bipod support structure are fixed on the base structure 14 as shown in FIG.

1.2)自重変形と支持点配置
一般に、円形ミラー10の自重変形量Wは次式(1)で近似的に表すことができる(”Analytical Predictions For Lightweight Optics In A Gravitational And Thermal Environment,” Proc. of SPIE Vol. 0748, Structural Mechanics of Optical Systems II)。
1.2) Self-weight deformation and support point arrangement In general, the self-weight deformation amount W of the circular mirror 10 can be approximately expressed by the following equation (1) ("Analytical Predictions For Light Weight Optics In A Gravitational And Thermal Environment," Proc of SPIE Vol. 0748, Structural Mechanics of Optical Systems II).

W=(CqR)/(Et) ・・・(1)
W:自重変形量(重力方向が光軸垂直の場合)
C:支持点配置で決まる定数
q:ミラー面密度(単位面積当たり質量)
R:ミラー半径
E:ミラー弾性率
t:ミラー厚さ
W = (CqR 4 ) / (Et 3 ) (1)
W: Self-weight deformation (when the direction of gravity is perpendicular to the optical axis)
C: Constant determined by support point arrangement
q: Mirror surface density (mass per unit area)
R: Mirror radius
E: Mirror elastic modulus
t: Mirror thickness

式(1)からわかるように、自重変形に影響するパラメータは、1)支持点配置、2)面密度、3)半径、4)弾性率、および5)ミラー厚さ、である。このうち構造設計として設計自由度があるパラメータは、支持点配置とミラー厚さの二つである。面密度は、衛星搭載用ミラーではほぼ軽量化加工の加工限界まで軽量化されるため、構造設計としての自由度はあまりなく、半径は光学設計からの要求で、弾性率はミラー材料で、それぞれ決まるので自由度はない。一方、自重変形に関係するパラメータで、設計自由度のある支持点配置とミラー厚さのうち、ミラー厚さは軽量化加工(削り込み)の加工技術の制約を受けるため、必ずしも設計自由度は高くない。   As can be seen from equation (1), the parameters affecting the self-weight deformation are 1) support point arrangement, 2) surface density, 3) radius, 4) elastic modulus, and 5) mirror thickness. Of these, there are two parameters that have a degree of design freedom as a structural design: support point arrangement and mirror thickness. The surface density of the mirror for satellite mounting is reduced to almost the limit of weight reduction processing, so there is not much freedom in structural design, the radius is a requirement from the optical design, and the elastic modulus is the mirror material. There is no degree of freedom because it is determined. On the other hand, of the parameters related to self-weight deformation, among the support point arrangement and mirror thickness with design freedom, the mirror thickness is limited by the processing technology of weight reduction processing (cutting). not high.

したがって、式(1)と設計自由度の検討から、自重変形低減のためには支持点配置の最適化が極めて重要であることがわかる。また、式(1)にあるように、自重変形は半径の4乗に比例するので、たとえば口径を1.4倍に拡大すれば自重変形は3.8倍に大きく増大する。したがって、口径が大きくなるほど自重変形の低減が益々大きな設計課題になることがわかる。   Therefore, from the examination of the equation (1) and the degree of design freedom, it is understood that the optimization of the support point arrangement is extremely important for reducing the self-weight deformation. Further, as shown in the equation (1), the self-weight deformation is proportional to the fourth power of the radius. Therefore, for example, if the aperture is increased by 1.4 times, the self-weight deformation greatly increases by 3.8 times. Therefore, it can be understood that the reduction of the self-weight deformation becomes an increasingly large design problem as the diameter increases.

1.3)支持点配置および支点構造の取付角度による自重変形の最小化
自重変形低減にはTriangular変形低減が重要である。重力方向が光軸垂直の場合、自重変形の主たる成分は、変形モードのうち、
1)ピストン成分(光軸方向の並進移動)、
2)パワー変形成分(曲率半径変化)、
3)その他ツェルニケ(Zernike)5次以上の高次変形成分
となる。
1.3) Minimization of self-weight deformation by supporting point arrangement and mounting angle of fulcrum structure Reduction of triangular deformation is important for reducing self-weight deformation. When the direction of gravity is perpendicular to the optical axis, the main component of self-weight deformation is
1) Piston component (translational movement in the optical axis direction),
2) Power deformation component (curvature radius change),
3) Other Zernike 5th order or higher order deformation components.

たとえば図13に示すような焦点調整機構8を有する光学センサの場合には、ピストン移動(Zernike 1次)およびパワー変化(Zernike 4次)による焦点位置移動は焦点位置調整が可能であるから、自重変形要求値(鏡面変形RMS(Root Mean Squire)値)にはピストンとパワーを含まないZernikeの5次以上の変形成分のみが対象となる。   For example, in the case of an optical sensor having a focus adjustment mechanism 8 as shown in FIG. 13, the focus position can be adjusted by moving the piston position (Zernike first order) and power change (Zernike fourth order). The deformation requirement value (mirror surface deformation RMS (Root Mean Squire) value) is intended only for the Zernike fifth-order and higher deformation components that do not include the piston and power.

一方で、図1〜図3に例示したような3組のバイポッドで支持されたミラーにおいては、5次以上の自重変形RMSの主成分は10次のTriangular変形成分となる。たとえば、5次以上の全RMS値のうち、10次Triangular変形が80%を占める場合がある。したがって、自重変形低減のためには、特にZernike10次のTriangular変形を低減することが重要になる。図4に、3組のバイポッドで支持されたミラーにおけるZernike10次のTriangular変形の一例を示す。   On the other hand, in the mirror supported by three pairs of bipods as illustrated in FIGS. 1 to 3, the main component of the fifth-order or higher self-weight deformation RMS is the tenth-order Triangular deformation component. For example, the 10th order triangular deformation may occupy 80% of all RMS values of 5th order or higher. Therefore, in order to reduce the self-weight deformation, it is particularly important to reduce the Zernike 10th order Triangular deformation. FIG. 4 shows an example of Zernike 10th-order Triangular deformation in a mirror supported by three sets of bipods.

逆バイポッド式支持構造の場合、自重変形は、支持点配置だけでなく支持構造の取付角度によっても変化する。   In the case of the reverse bipod type support structure, the self-weight deformation changes not only by the support point arrangement but also by the mounting angle of the support structure.

図5に示すように、支持構造の取付角度とは、バイポッド支持構造と光学ベンチ14(あるいはミラー10)が交差する角度θである。さらに、分厚いクローズドバックミラー10の裏面を逆バイポッド支持構造で支持した場合、支持構造のミラー取付点とミラー10の中立面Pとの間にはオフセットOfが存在する。次に説明するように、これらバイポッド取付角度θとオフセットOfとを利用することで、自重変形を効果的に低減できる。   As shown in FIG. 5, the attachment angle of the support structure is an angle θ at which the bipod support structure and the optical bench 14 (or the mirror 10) intersect. Furthermore, when the back surface of the thick closed rearview mirror 10 is supported by the reverse bipod support structure, an offset Of exists between the mirror attachment point of the support structure and the neutral plane P of the mirror 10. As will be described below, the self-weight deformation can be effectively reduced by using the bipod attachment angle θ and the offset Of.

図6(A)に示すように、ミラー10が二つの支持点で支持された場合、これらの支持点で反力F1aおよびF2aがミラー10を支持するために、ミラー10は自重によって参照符号Daで示すように凹状に変形する。   As shown in FIG. 6A, when the mirror 10 is supported at two support points, the reaction force F1a and F2a support the mirror 10 at these support points. As shown in FIG.

これに対して、図6(B)に示すように、二つのバイポッドが、互いにミラー10の中心に向けてミラー10の底面に対して角度θをなして斜めに支持する場合、上述したようにバイポッド取付点とミラー中立面Pとの間にオフセットOfが存在しているために、ミラー10に対するバイポッド反力F1bおよびF2bによりミラー10に上向きの曲げモーメントMが生じる。この曲げモーメントMにより、参照符号Dbで示すようにミラー10は、凸状に変形しようとする。   On the other hand, as shown in FIG. 6B, when two bipods support each other at an angle θ with respect to the bottom surface of the mirror 10 toward the center of the mirror 10, as described above. Since there is an offset Of between the bipod attachment point and the mirror neutral plane P, an upward bending moment M is generated in the mirror 10 by the bipod reaction forces F1b and F2b on the mirror 10. Due to this bending moment M, the mirror 10 tends to be deformed into a convex shape as indicated by reference symbol Db.

したがって、図6(A)および図6(B)から、バイポッドを適切な支持点に配置し、適切な支持構造取付角度θを与えれば、ミラー10の自重による凹変形Daとバイポッド反力による凸変形Dbとが相殺し、自重変形をゼロにすることができる。   Therefore, from FIGS. 6A and 6B, if the bipod is arranged at an appropriate support point and given an appropriate support structure mounting angle θ, the concave deformation Da due to the weight of the mirror 10 and the convex due to the bipod reaction force are provided. The deformation Db cancels out, and the self-weight deformation can be made zero.

次に、適切な支持点配置と適切な支持構造取付角度θを設定することで、自重変形の主成分であったTriangular変形をゼロにすることが可能であることを示す。   Next, it will be shown that by setting an appropriate support point arrangement and an appropriate support structure attachment angle θ, it is possible to make the Triangular deformation that was the main component of the self-weight deformation zero.

図7は、ある支持点配置における支持構造取付角度(横軸:バイポッド角度)とTriangular変形(菱形ドット)および5次以上の変形成分RMS値(Xドット)の関係を示すグラフである。図7において、Triangular変形(Triangular項のZernike係数)は、バイポッド角度θ=45°でゼロとなることがわかる。この理由は、図6において説明したように、自重による面の凹変形(図6(A))と45度傾いた支持構造反力による面の凸変形(図6(B))とがちょうど相殺して変形ゼロとなっているものである。5次以上の変形の主成分であるTriangular変形がゼロとなることによって、5次以上の変形成分のRMS値も45°において最小値となっていることがわかる。   FIG. 7 is a graph showing the relationship between the support structure mounting angle (horizontal axis: bipod angle), Triangular deformation (diamond dots), and fifth-order or higher-order deformation component RMS values (X dots) in a certain support point arrangement. In FIG. 7, it can be seen that the Triangular deformation (Zernike coefficient of the Triangular term) becomes zero at the bipod angle θ = 45 °. The reason for this is that, as explained in FIG. 6, the concave deformation of the surface due to its own weight (FIG. 6A) and the convex deformation of the surface due to the support structure reaction force inclined by 45 degrees (FIG. 6B) just cancel each other. Thus, the deformation is zero. It can be seen that the RMS value of the fifth-order or higher deformation component is also a minimum value at 45 ° when the triangular deformation which is the main component of the fifth-order or higher deformation becomes zero.

図8に示すように、5次以上の変形の主成分であるTriangular変形は、バイポッド角度θが90°と45°の間で大きく変化している。Triangular変形は、図8(A)に示すようにθ=90°では顕著であったが、図8(B)に示すようにθ=45°ではほぼ消えている。   As shown in FIG. 8, in the triangular deformation, which is the main component of the fifth or higher order deformation, the bipod angle θ varies greatly between 90 ° and 45 °. The Triangular deformation was remarkable at θ = 90 ° as shown in FIG. 8A, but almost disappeared at θ = 45 ° as shown in FIG. 8B.

なお、変形ゼロとなるバイポッド角度θが存在するか否かは支持点の配置に依存している。本実施形態では、支持構造の取付角度θ=45°で最適解(変形ゼロ)が得られるが、ミラー10の諸元により最適角度は異なる。したがって、変形ゼロとなる支持点配置およびバイポッド角度θをパラメータとした自重変形のパラメトリックな解析を行い、適切な配置および角度の組合せを求めることができる。   Note that whether or not the bipod angle θ at which deformation is zero exists depends on the arrangement of the support points. In the present embodiment, an optimal solution (zero deformation) is obtained at a mounting structure mounting angle θ = 45 °, but the optimal angle varies depending on the specifications of the mirror 10. Therefore, it is possible to perform parametric analysis of the self-weight deformation using the support point arrangement where the deformation is zero and the bipod angle θ as parameters, and an appropriate combination of arrangement and angle can be obtained.

1.4)効果
以上述べたように、本実施形態によれば、逆バイポッド式支持方式におけるバイポッドの支持点配置と各バイポーラとミラーとの角度とを最適化することで、少ない支持点数でミラーの自重変形を最小化することが可能となる。
1.4) Effect As described above, according to the present embodiment, by optimizing the bipod support point arrangement and the angle between each bipolar and the mirror in the reverse bipod type support system, the number of mirrors can be reduced. It is possible to minimize the deformation of its own weight.

2.一実施例
本発明の一実施例によるミラー支持構造は、逆バイポッド式構成を有し、上述したようにミラー10の底面の中心の周りに互いに120°の角度で配置され、各逆バイポッド式支持構造の2本の支持ロッド、計6本の支持ロッドがミラー10を支持する。以下、本実施例における分離可能支持ロッドの構成について説明する。
2. One Embodiment A mirror support structure according to one embodiment of the present invention has an inverted bipod configuration and is arranged at an angle of 120 ° to each other around the center of the bottom surface of the mirror 10 as described above, with each inverted bipod support. Two support rods of the structure, a total of six support rods, support the mirror 10. Hereinafter, the structure of the separable support rod in a present Example is demonstrated.

図9に例示するように、本実施例によるミラー支持構造における分離可能支持ロッド100は、ミラー10に接着するミラーパッド101とベース構造体14に固定する固定部107との間に、接続部102、可撓接合部103、分離可能接合部104、接続ロッド105および可撓接合部106を順に設けた構成を有する。分離可能接合部104は、可撓接合部103と接続ロッド105との間に設けられ、特にミラーパッド側に近い位置、ここでは可撓接合部103の直下に設けられる。   As illustrated in FIG. 9, the separable support rod 100 in the mirror support structure according to the present embodiment has a connection portion 102 between a mirror pad 101 bonded to the mirror 10 and a fixing portion 107 fixed to the base structure 14. The flexible joint 103, the separable joint 104, the connecting rod 105, and the flexible joint 106 are provided in this order. The separable joint portion 104 is provided between the flexible joint portion 103 and the connecting rod 105, and is particularly provided at a position near the mirror pad side, here, directly below the flexible joint portion 103.

ミラーパッド101は円形状を有し、ミラー10のガラス底面に接着強度の高い接着剤(たとえばエポキシ系接着剤)により接着される。接続部102は、ミラーパッド101に直交する平面上で接着パッド101の直径方向に伸びた形状を有し、支持ロッド100と、その長手方向と所定角度を成すミラーパッド101とを連絡する。   The mirror pad 101 has a circular shape and is adhered to the glass bottom surface of the mirror 10 with an adhesive having high adhesive strength (for example, an epoxy adhesive). The connecting portion 102 has a shape extending in the diameter direction of the adhesive pad 101 on a plane orthogonal to the mirror pad 101, and connects the support rod 100 and the mirror pad 101 having a predetermined angle with the longitudinal direction thereof.

可撓接合部103および106の各々は、直交する2つの可撓ブレードが縦続した十字ブレード構成を有し、支持ロッド100の長手方向と直交する2軸方向に弾性的に湾曲可能である。このような可撓接合部103および106をミラーバッド101と固定部107との間に2カ所配置することで、接続ロッド105の両端にかかるモーメントを最小にし、軸力のみを作用させることができる。   Each of the flexible joints 103 and 106 has a cross blade configuration in which two orthogonal flexible blades are cascaded, and can be elastically bent in two axial directions orthogonal to the longitudinal direction of the support rod 100. By disposing two such flexible joint portions 103 and 106 between the mirror pad 101 and the fixed portion 107, the moment applied to both ends of the connecting rod 105 can be minimized and only the axial force can be applied. .

ミラー側の可撓接合部103の一方の端部は接続部102に、他方の端部は分離可能接合部104の一方の接合部に接続されている。さらに分離可能接合部104の他方の接合部は接続ロッド105を通してベース側の可撓接合部106の一方の端部に接続され、可撓接合部106の他方の端部が固定部107に接続されている。   One end of the flexible joint 103 on the mirror side is connected to the connecting portion 102, and the other end is connected to one joint of the separable joint 104. Further, the other joint of the separable joint 104 is connected to one end of the base-side flexible joint 106 through the connecting rod 105, and the other end of the flexible joint 106 is connected to the fixed part 107. ing.

図10に例示するように、逆バイポッド支持ロッド100は、ベース構造体14あるいはミラー10と角度θで交差するようにミラー10を支持する。バイポッド角度θは、上述したように、Triangular変形がゼロになるように設定される。   As illustrated in FIG. 10, the reverse bipod support rod 100 supports the mirror 10 so as to intersect the base structure 14 or the mirror 10 at an angle θ. As described above, the bipod angle θ is set so that the triangular deformation becomes zero.

分離可能接合部104は、可撓接合部103に接続したフランジ201と、接続ロッド105に接続したフランジ202とが分離可能に構成されている。フランジ201の中心部には円形の突出部203が設けられ、フランジ202の中心部には突出部203を受け入れる円形の受け口204が設けられている。フランジ201および202は、突出部203と受け口204とを合わせて契合させることで印籠による組立再現性を確保している。さらに、次に述べるようにフランジ201および202をねじ止めすることで、高精度の着脱可能性を実現する。   The separable joint 104 is configured such that the flange 201 connected to the flexible joint 103 and the flange 202 connected to the connecting rod 105 are separable. A circular protrusion 203 is provided at the center of the flange 201, and a circular receiving port 204 that receives the protrusion 203 is provided at the center of the flange 202. The flanges 201 and 202 ensure assembly reproducibility by stamping by engaging the protruding portion 203 and the receiving port 204 together. Furthermore, as described below, the flanges 201 and 202 are screwed to realize high-precision detachability.

図11に例示するように、フランジ201および202には、ねじ止め手段301〜303がフランジ周辺に等角度で設けられ、そのうち直径の両端に位置する2つのねじ止め手段302および303はリーマーボルトを使用する。リーマーボルトはボルトを通す穴にリーマー穴加工を行いボルト径の公差が厳しく管理されるので、リーマーボルトを採用することで組立再現性を確保することができる。   As illustrated in FIG. 11, the flanges 201 and 202 are provided with screwing means 301 to 303 at an equal angle around the flange, and the two screwing means 302 and 303 located at both ends of the diameter include reamer bolts. use. Since the reamer bolt is processed into a hole through which the bolt passes and the tolerance of the bolt diameter is strictly controlled, assembly reproducibility can be secured by using the reamer bolt.

このように、分離可能接合部104に印籠またはリーマーボルトを採用することで、高精度の波面精度が要求されるミラーの支持構造において、支持構造の組み立て再現性を確保することが可能となる。なお、組み立て再現性の確保手段としては種々の手段を利用することができ、印籠およびリーマーボルトだけでなく、位置決めピン等を用いることもできる。   In this way, by employing a seal or a reamer bolt for the separable joint 104, it is possible to ensure assembly reproducibility of the support structure in a mirror support structure that requires high precision wavefront accuracy. Various means can be used as means for ensuring assembly reproducibility, and not only stamps and reamer bolts but also positioning pins can be used.

図12に示すように、本発明の一実施例による支持構造は、上述した分離可能支持ロッド100を2本用いて、V字に接続することで分離可能な逆バイポッド式支持構造20を構成することができる。ミラー10は、図1〜図3で例示したように、3組の逆バイポッド式支持構造20により6点支持され、3組の逆バイポッド支持構造20の各組は、図2に示すように、ミラー10の底面の周辺部に均等に配置され、バイポッド反力F1bおよびF2b(図6(B)参照)によりミラー10を凸状に変形させるように角度θの傾きを持って取り付けられる。   As shown in FIG. 12, the support structure according to an embodiment of the present invention constitutes a reverse bipod type support structure 20 that is separable by connecting to a V-shape using two separable support rods 100 described above. be able to. As illustrated in FIGS. 1 to 3, the mirror 10 is supported at six points by three sets of reverse bipod-type support structures 20, and each set of three sets of reverse bipod support structures 20 is shown in FIG. The mirror 10 is equally disposed around the bottom surface of the mirror 10, and is attached with an inclination of an angle θ so as to deform the mirror 10 into a convex shape by bipod reaction forces F1b and F2b (see FIG. 6B).

図12において、各逆バイポッド式支持構造20は一対の分離可能支持ロッド100が固定部107で共通に接続された構成を有する。一方の分離可能支持ロッドは、図4および図5で説明したように、ミラー10に接着するミラーパッド101aとベース構造体14に固定する固定部107との間に、接続部102a、可撓接合部103a、分離可能接合部104a、接続ロッド105aおよび可撓接合部106aを順に設けた構成を有する。他方の分離可能支持ロッドも同様に、ミラーパッド101bと固定部107との間に、接続部102b、可撓接合部103b、分離可能接合部104b、接続ロッド105bおよび可撓接合部106bを順に設けた構成を有する。   In FIG. 12, each reverse bipod support structure 20 has a configuration in which a pair of separable support rods 100 are commonly connected by a fixing portion 107. As shown in FIGS. 4 and 5, one separable support rod has a connecting portion 102 a and a flexible joint between the mirror pad 101 a that adheres to the mirror 10 and the fixing portion 107 that is fixed to the base structure 14. It has a configuration in which a portion 103a, a separable joint 104a, a connecting rod 105a, and a flexible joint 106a are provided in this order. Similarly, in the other separable support rod, a connecting portion 102b, a flexible joint portion 103b, a separable joint portion 104b, a connecting rod 105b, and a flexible joint portion 106b are sequentially provided between the mirror pad 101b and the fixing portion 107. Have a configuration.

3.他の実施例
本発明の他の実施例によれば、上述した分離可能支持ロッド100を2本用いて、逆V字に接続することで分離可能なバイポッド式支持構造を構成することができる。バイポッド式支持構造は、ミラー10に接着するパッドに固定された2本の分離可能支持ロッドからなり、各分離可能支持ロッドにはベース構造体14に固定される固定部が設けられている。本実施例では、3組のバイポッド式支持構造がミラー10を3点支持し、ベース構造体14に6点で固定される。各バイポッド式支持構造の各支持ロッドは、図9〜図11において説明した支持ロッド100の上下が反転した構成を有する。
3. Other Embodiments According to another embodiment of the present invention, it is possible to configure a bipod type support structure that is separable by connecting two inverted support rods 100 described above to an inverted V shape. The bipod-type support structure includes two separable support rods fixed to a pad that is bonded to the mirror 10, and each separable support rod is provided with a fixing portion that is fixed to the base structure 14. In this embodiment, three sets of bipod type support structures support the mirror 10 at three points and are fixed to the base structure 14 at six points. Each support rod of each bipod type support structure has a configuration in which the support rod 100 described with reference to FIGS.

3.適用例
上述した本実施例によるミラー支持構造は、大型光学式望遠鏡のミラーの支持構造に適用される。たとえば、図13に例示される光学式望遠鏡1において、特に大型ミラー2の支持構造に適用可能である。すでに述べたように、式(1)から、自重変形は半径の4乗に比例するので、口径が大きくなるほど自重変形の低減が益々大きな設計課題になるからである。
3. Application Example The mirror support structure according to this embodiment described above is applied to the mirror support structure of a large optical telescope. For example, the optical telescope 1 illustrated in FIG. 13 is particularly applicable to a support structure for the large mirror 2. As already described, from Equation (1), the deformation of the own weight is proportional to the fourth power of the radius, and therefore, the reduction of the deformation of the own weight becomes an increasingly large design subject as the diameter increases.

なお、本発明によるミラー支持構造は、高精度の波面が要求されるミラー(平面鏡や凹面鏡)の支持や、軽量化の要求の強い宇宙用のミラーの支持に適用可能である。また、本実施例によるミラー支持構造は、宇宙空間で使用される大型光学式望遠鏡のミラーの支持に利用するだけでなく、地上で使用する高精度のミラーの支持にも有効である。   The mirror support structure according to the present invention is applicable to support of mirrors (planar mirrors and concave mirrors) that require a highly accurate wavefront, and support of space mirrors that are strongly required to be light. The mirror support structure according to the present embodiment is not only used for supporting a mirror of a large optical telescope used in outer space but also effective for supporting a high-precision mirror used on the ground.

本発明は、高精度が要求される大型光学式望遠鏡のミラーなどの支持に利用可能である。   The present invention can be used for supporting a mirror of a large optical telescope that requires high accuracy.

10 ミラー
11〜13 逆バイポッド式支持構造
14 ミラー構造体
100 分離可能支持ロッド
101 接着パッド
102 接続部
103 可撓接合部
104 分離可能接合部
105 接続ロッド
106 可撓接合部
107 固定部
DESCRIPTION OF SYMBOLS 10 Mirror 11-13 Reverse bipod type support structure 14 Mirror structure 100 Separable support rod 101 Adhesive pad 102 Connection part 103 Flexible joint part 104 Separable joint part 105 Connection rod 106 Flexible joint part 107 Fixing part

Claims (9)

ミラーを複数支点で支持する複数の支持ロッドを有し、前記複数の支持ロッドの各々が前記ミラーの底面に対して所定の角度で設けられ、前記複数の支持ロッドの合成反力によって前記ミラーの自重変形を相殺することを特徴とするミラー支持構造。   A plurality of support rods for supporting the mirror at a plurality of fulcrums; each of the plurality of support rods is provided at a predetermined angle with respect to a bottom surface of the mirror; and by the combined reaction force of the plurality of support rods, A mirror support structure that cancels out its own weight deformation. 前記複数の支持ロッドが前記ミラーの周辺部に配置され、各支持ロッドが前記ミラーの底面の内側に傾いて設置されることを特徴とする請求項1に記載のミラー支持構造。   2. The mirror support structure according to claim 1, wherein the plurality of support rods are disposed in a peripheral portion of the mirror, and each support rod is inclined and installed inside a bottom surface of the mirror. 2本の前記支持ロッドからなるバイポッド構造を3組設け、前記3組のバイポッド構造が前記ミラーの中心の周りに均等に配置されたことを特徴とする請求項1または2に記載のミラー支持構造。   3. The mirror support structure according to claim 1, wherein three sets of bipod structures each including the two support rods are provided, and the three sets of bipod structures are evenly arranged around the center of the mirror. . 前記3組のバイポッド構造は、各バイポッド構造が前記2本の支持ロッドを逆V字状に構成し、6点で前記ミラーを支持し、3点でベースに結合されることを特徴とする請求項3に記載のミラー支持構造。   The three sets of bipod structures are characterized in that each bipod structure comprises the two support rods in an inverted V shape, supports the mirror at six points, and is coupled to a base at three points. Item 4. The mirror support structure according to Item 3. 前記3組のバイポッド構造は、各バイポッド構造が前記2本の支持ロッドをV字状に構成し、3点で前記ミラーを支持し、6点でベースに結合されることを特徴とする請求項3に記載のミラー支持構造。   The three sets of bipod structures are characterized in that each bipod structure comprises the two support rods in a V shape, supports the mirror at three points, and is coupled to the base at six points. 4. The mirror support structure according to 3. 前記複数の支持ロッドの支持点配置において前記ミラーの自重による凹状変形が、前記複数の支持ロッドの合成反力による前記ミラーの凸状変形により相殺されることを特徴とする請求項1−5のいずれか1項に記載のミラー支持構造。   6. The concave deformation due to the weight of the mirror in the support point arrangement of the plurality of support rods is offset by the convex deformation of the mirror due to a combined reaction force of the plurality of support rods. The mirror support structure according to any one of the above. 前記複数の支持ロッドの各々には可撓接合部が設けられたことを特徴とする請求項1−6のいずれか1項に記載のミラー支持構造。   The mirror support structure according to claim 1, wherein each of the plurality of support rods is provided with a flexible joint. 請求項1−7のいずれか一項に記載のミラー支持構造と前記ミラーとからなり、前記ミラー支持構造が前記ミラーの底面を前記複数の支持ロッドにより支持することを特徴とするミラー構造体。   A mirror structure comprising the mirror support structure according to any one of claims 1 to 7 and the mirror, wherein the mirror support structure supports a bottom surface of the mirror by the plurality of support rods. 複数の支持ロッドによりミラーを支持するミラー支持方法であって、
前記複数の支持ロッドの各々が前記ミラーの底面に対して所定の角度で支持し、
前記複数の支持ロッドの合成反力によって前記ミラーの自重変形を相殺する、
ことを特徴とするミラー支持方法。
A mirror support method for supporting a mirror by a plurality of support rods,
Each of the plurality of support rods is supported at a predetermined angle with respect to the bottom surface of the mirror;
Canceling the self-weight deformation of the mirror by the combined reaction force of the plurality of support rods;
A method of supporting a mirror.
JP2015152916A 2015-07-31 2015-07-31 Mirror support method, mirror support structure and mirror structure Active JP6540341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015152916A JP6540341B2 (en) 2015-07-31 2015-07-31 Mirror support method, mirror support structure and mirror structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015152916A JP6540341B2 (en) 2015-07-31 2015-07-31 Mirror support method, mirror support structure and mirror structure

Publications (2)

Publication Number Publication Date
JP2017032795A true JP2017032795A (en) 2017-02-09
JP6540341B2 JP6540341B2 (en) 2019-07-10

Family

ID=57986364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015152916A Active JP6540341B2 (en) 2015-07-31 2015-07-31 Mirror support method, mirror support structure and mirror structure

Country Status (1)

Country Link
JP (1) JP6540341B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111175928A (en) * 2020-01-08 2020-05-19 合肥瑞利光学仪器有限公司 Device structure of large-caliber inverted standard plane mirror
US11086100B2 (en) 2017-12-14 2021-08-10 Mitsubishi Electric Corporation Mirror support and mirror support mechanism

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339500A (en) * 2005-06-03 2006-12-14 Canon Inc Jogging device and optical element adjusting device
JP2008210867A (en) * 2007-02-23 2008-09-11 Canon Inc Holding apparatus
JP2012510083A (en) * 2008-11-25 2012-04-26 テールズ Space optical system having means for active control of optical system
JP2013546163A (en) * 2010-09-29 2013-12-26 カール・ツァイス・エスエムティー・ゲーエムベーハー System and method for aligning optical elements
JP2014010332A (en) * 2012-06-29 2014-01-20 Mitsubishi Electric Corp Mirror support structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339500A (en) * 2005-06-03 2006-12-14 Canon Inc Jogging device and optical element adjusting device
JP2008210867A (en) * 2007-02-23 2008-09-11 Canon Inc Holding apparatus
JP2012510083A (en) * 2008-11-25 2012-04-26 テールズ Space optical system having means for active control of optical system
JP2013546163A (en) * 2010-09-29 2013-12-26 カール・ツァイス・エスエムティー・ゲーエムベーハー System and method for aligning optical elements
JP2014010332A (en) * 2012-06-29 2014-01-20 Mitsubishi Electric Corp Mirror support structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11086100B2 (en) 2017-12-14 2021-08-10 Mitsubishi Electric Corporation Mirror support and mirror support mechanism
CN111175928A (en) * 2020-01-08 2020-05-19 合肥瑞利光学仪器有限公司 Device structure of large-caliber inverted standard plane mirror

Also Published As

Publication number Publication date
JP6540341B2 (en) 2019-07-10

Similar Documents

Publication Publication Date Title
JP6214773B2 (en) Optimal kinematic mount for large mirrors
EP3356873B1 (en) High-stiffness structure for larger aperture telescope
JP5862484B2 (en) Mirror support structure
EP3195038B1 (en) Precision optical mount for optical devices
KR20150022718A (en) Optical subassembly with a mount with connection units of directed flexibility
JP6422723B2 (en) Active space telescope with suspended reflector
EP3895886A1 (en) Honeycomb sandwich panel, optical device, and artificial satellite
CN110320636A (en) A kind of metallic mirror support construction and metallic mirror system
JP6540341B2 (en) Mirror support method, mirror support structure and mirror structure
Zhou et al. Research on neutral surface of lightweight, horizontally supported mirror
Karcı et al. Design of a high-precision, 0.5 m aperture Cassegrain collimator
JP6597032B2 (en) Mirror support method, mirror support structure and mirror structure
EP1308765A1 (en) Mount for ultra-high performance of optical components under thermal and vibrational distortion conditions
Cho et al. Performance prediction of the fast steering secondary mirror for the Giant Magellan Telescope
JP7102802B2 (en) Optical system support mechanism
Cho et al. Design of the fast steering secondary mirror assembly for the Giant Magellan Telescope
Nijenhuis et al. The optimization of the opto-mechanical performance of the mirror segments for the E-ELT
Fabricant et al. Optical specifications for the MMT conversion
JP4283311B2 (en) Reflector device
US20240160003A1 (en) Monolithic space telescopes and mounting system
JP7292541B2 (en) Mirror support mechanism and optical device
JP2017032793A (en) Mirror support structure, mirror structure, and manufacturing method therefor
Nagabhushana et al. Experimental Validation of a Novel Concept to Reduce Optical Surface Wave Front Errors by Using Deformable Bushes at Opto-Mechanical Interfaces
Cho et al. Development of the fast steering secondary mirror for the giant Magellan telescope
Haldeman et al. Design and performance characterization of the LCOGTN One-meter Telescope Optical Tube Assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180608

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180608

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190527

R150 Certificate of patent or registration of utility model

Ref document number: 6540341

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150