JP2017032406A - Structure and method for attaching thermo couple - Google Patents

Structure and method for attaching thermo couple Download PDF

Info

Publication number
JP2017032406A
JP2017032406A JP2015152624A JP2015152624A JP2017032406A JP 2017032406 A JP2017032406 A JP 2017032406A JP 2015152624 A JP2015152624 A JP 2015152624A JP 2015152624 A JP2015152624 A JP 2015152624A JP 2017032406 A JP2017032406 A JP 2017032406A
Authority
JP
Japan
Prior art keywords
thermocouple
platinum
chip
diffusion
mounting structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015152624A
Other languages
Japanese (ja)
Other versions
JP6752556B2 (en
Inventor
堯民 古屋
Takatami Furuya
堯民 古屋
登 石黒
Noboru Ishiguro
登 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuya Metal Co Ltd
Original Assignee
Furuya Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuya Metal Co Ltd filed Critical Furuya Metal Co Ltd
Priority to JP2015152624A priority Critical patent/JP6752556B2/en
Priority to PCT/JP2016/071840 priority patent/WO2017022565A1/en
Publication of JP2017032406A publication Critical patent/JP2017032406A/en
Application granted granted Critical
Publication of JP6752556B2 publication Critical patent/JP6752556B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a structure for attaching a thermo couple using a reinforced platinum based thermo couple, capable of achieving the joining of a thermocouple having a high lifetime without causing strength degradation due to melting.SOLUTION: A structure 100 for attaching a thermocouple comprises: an instrument 1 formed using platinum, platinum alloy or oxide dispersion reinforced platinum; a reinforced platinum based thermocouple 11; and an attachment part 4 in which the temperature measurement contact 10 of the reinforced platinum based thermocouple 11 is fixed to a portion to be measured of the instrument. The reinforced platinum based thermocouple 11 has a high temperature strength having a rupture time of 100 hours or more when a stress of 10 MPa is applied at a temperature of 1100°C in the atmosphere; the diameter of the single wire of the reinforced platinum based thermocouple 11 is 0.1 mm or more and 2.0 mm or less; and the temperature measurement contact 10 is diffusion-joined.SELECTED DRAWING: Figure 1

Description

本発明は、熱電対の取り付け構造に関し、特に強化白金系熱電対を用いて、白金、白金合金又は酸化物分散強化白金を用いて形成された器具の所定箇所の温度を測るときに、断線トラブルが生じにくい熱電対の取り付け構造に関する。   The present invention relates to a thermocouple mounting structure, and in particular, when using a reinforced platinum-based thermocouple to measure the temperature of a predetermined part of a tool formed using platinum, a platinum alloy or oxide dispersion-strengthened platinum, a disconnection trouble occurs. The present invention relates to a thermocouple mounting structure that is less prone to cause a problem.

白金を用いる熱電対としては、例えば、正極(プラス極)に白金ロジウム合金(ロジウム13%)からなる素線と負極に純白金からなる素線を用いたR熱電対、正極に白金ロジウム合金(ロジウム10%)からなる素線と負極に純白金からなる素線を用いたS熱電対がある。   As a thermocouple using platinum, for example, an R thermocouple using a positive electrode (plus electrode) made of a platinum rhodium alloy (rhodium 13%) and a negative electrode made of pure platinum, and a positive electrode made of a platinum rhodium alloy ( There is an S thermocouple using a strand made of 10% rhodium and a strand made of pure platinum for the negative electrode.

これらの熱電対は、白金製ガラス溶解用装置の温度測定に用いられている。そして、熱電対の先端を溶接したのち、溶接部の近傍に白金板を補強材として用い、熱電対の素線の一部を覆うように配置して、白金板の4隅を溶接して固定する熱電対の取り付け構造の開示がある(例えば特許文献1を参照)。特許文献1には、この技術によって装置の測定部位に熱電対の先端を直接溶接して取り付けたとしても、熱電対の断線が確実に防止できると記載されている。   These thermocouples are used for temperature measurement of platinum glass melting devices. Then, after welding the tip of the thermocouple, use a platinum plate as a reinforcing material in the vicinity of the welded part, and place it so as to cover part of the strands of the thermocouple, and weld and fix the four corners of the platinum plate There is a disclosure of a thermocouple mounting structure (see, for example, Patent Document 1). Patent Document 1 describes that even if the tip of the thermocouple is directly welded and attached to the measurement site of the apparatus by this technique, disconnection of the thermocouple can be reliably prevented.

特開2011−158424号公報JP 2011-158424 A

特許文献1に記載される技術では、白金製のガラス溶融炉の温度計測にPt対Pt‐Rh合金の熱電対が利用されている。しかし、この熱電対には高温で長時間使用されると劣化して断線してしまうという問題があり、これを避けることができなかった。   In the technique described in Patent Document 1, a thermocouple of Pt vs. Pt—Rh alloy is used for temperature measurement of a platinum glass melting furnace. However, this thermocouple has a problem that when it is used at a high temperature for a long time, it deteriorates and breaks, and this cannot be avoided.

そこで、熱電対そのものの強度を上げるため、強化白金系熱電対とよばれる従来よりも高強度な熱電対が開発されている。しかし、熱電対の素線に介在物を入れて強度を向上させた熱電対であるため、溶融にて接合を行うと、大きく強度劣化して使用できないという問題があった。   Therefore, in order to increase the strength of the thermocouple itself, a thermocouple having a higher strength than the conventional one called a reinforced platinum-based thermocouple has been developed. However, since it is a thermocouple in which inclusions are inserted into the thermocouple wires to improve the strength, there is a problem that when joining by melting, the strength is greatly deteriorated and cannot be used.

そこで、本発明の目的は、強化白金系熱電対を用いた熱電対の取り付け構造において、溶融による強度劣化を生じさせずに高寿命の熱電対接合を実現することである。   Accordingly, an object of the present invention is to realize a long-life thermocouple junction without causing deterioration in strength due to melting in a thermocouple mounting structure using a reinforced platinum-based thermocouple.

本発明者らは、強化白金系熱電対の接合方法として、溶融法ではなく、拡散接合、すなわち熱拡散現象を採用して測温接点を接合することで、強化白金系熱電対の強度が保たれることを見出し、本発明を完成させた。すなわち、本発明に係る熱電対の取り付け構造は、白金、白金合金又は酸化物分散強化白金を用いて形成された器具と、強化白金系熱電対と、前記強化白金系熱電対の測温接点が前記器具の測定対象部位に固定されている取り付け部と、を有する熱電対の取り付け構造において、前記強化白金系熱電対は大気中1100℃にて10MPaの応力をかけたときの破断時間が100時間以上の高温強度を有し、前記強化白金系熱電対の素線の線径が0.1mm以上2.0mm以下であり、かつ、前記測温接点が拡散接合されていることを特徴とする。   The inventors of the present invention have maintained the strength of the reinforced platinum thermocouple by bonding the temperature measuring contact by adopting diffusion bonding, that is, a thermal diffusion phenomenon, instead of the melting method as a bonding method of the reinforced platinum thermocouple. As a result, the present invention was completed. That is, the thermocouple mounting structure according to the present invention includes an instrument formed using platinum, a platinum alloy or oxide dispersion strengthened platinum, a reinforced platinum thermocouple, and a temperature measuring contact of the reinforced platinum thermocouple. A thermocouple mounting structure having a mounting portion fixed to a measurement target site of the instrument, wherein the reinforced platinum-based thermocouple has a fracture time of 100 hours when a stress of 10 MPa is applied at 1100 ° C. in the atmosphere. It has the above high-temperature strength, the wire diameter of the reinforced platinum-based thermocouple is 0.1 mm or more and 2.0 mm or less, and the temperature measuring contact is diffusion-bonded.

本発明に係る熱電対の取り付け構造では、前記取り付け部は白金系材料からなるチップを有し、前記測温接点は、
(1)前記強化白金系熱電対の正極が前記チップと拡散接合され、負極が該チップと拡散接合され、かつ、前記正極と前記負極とが拡散接合されていないか、
(2)前記強化白金系熱電対の正極と負極とが拡散接合されているか、又は、
(3)前記強化白金系熱電対の正極が前記チップと拡散接合され、負極が該チップと拡散接合され、かつ、前記正極と前記負極とが拡散接合されているか、のいずれか一つの形態をとり、かつ、前記チップに覆われた状態で前記器具に固定されていることが好ましい。取り付け部がチップ付き構造となることで、拡散接合された測温接点がより強固に器具に取り付けられる。
In the thermocouple mounting structure according to the present invention, the mounting portion has a chip made of a platinum-based material, and the temperature measuring contact is:
(1) Whether the positive electrode of the reinforced platinum-based thermocouple is diffusion bonded to the chip, the negative electrode is diffusion bonded to the chip, and the positive electrode and the negative electrode are not diffusion bonded.
(2) The positive electrode and the negative electrode of the reinforced platinum thermocouple are diffusion bonded, or
(3) The positive electrode of the reinforced platinum thermocouple is diffusion bonded to the chip, the negative electrode is diffusion bonded to the chip, and the positive electrode and the negative electrode are diffusion bonded. And it is preferable that it is fixed to the instrument in a state covered with the chip. Since the attachment portion has a structure with a chip, the temperature-measurement contact that is diffusion-bonded can be more firmly attached to the instrument.

本発明に係る熱電対の取り付け構造では、前記チップは向かい合う面を有し、該向かい合う面は、前記強化白金系熱電対の測温接点を挟み込んでおり、前記チップが前記器具に固定されていることが好ましい。チップが熱電対の測温接点を挟みこむことで、機械的に強固に熱電対がチップに取り付けられることとなる。また、チップと器具との接触面積を最大化することが可能となるため、チップはさらに強固に器具に取り付けられることとなる。   In the thermocouple mounting structure according to the present invention, the tip has a facing surface, the facing surface sandwiches a temperature measuring contact of the reinforced platinum thermocouple, and the tip is fixed to the instrument. It is preferable. Since the chip sandwiches the temperature measuring contact of the thermocouple, the thermocouple is mechanically and firmly attached to the chip. In addition, since the contact area between the tip and the instrument can be maximized, the tip can be more firmly attached to the instrument.

本発明に係る熱電対の取り付け構造では、前記チップはスリットの形状を有し、前記向かい合う面は、該スリットの内側面であることが好ましい。チップがこのような構造をとることでチップに熱電対の素線を挟み込む作業が容易になる。さらに、向かい合う面同士が1個のチップにあるため、ばらばらにならない。さらに、チップを機械的にかしめるときに、スリットがつぶれる動きが生じるため、熱電対をより強い力で挟み込むことが可能となる。   In the thermocouple mounting structure according to the present invention, it is preferable that the chip has a slit shape, and the facing surface is an inner surface of the slit. The chip having such a structure facilitates the work of sandwiching the thermocouple element wire into the chip. Furthermore, since the faces facing each other are on one chip, they do not fall apart. Furthermore, when the chip is mechanically caulked, the slits are crushed, so that the thermocouple can be sandwiched with a stronger force.

本発明に係る熱電対の取り付け構造では、前記チップは、前記器具に拡散接合されていることが好ましい。接合した部分の強度劣化を生じさせることがない。また、測温接点を拡散接合する作業と同時にチップの器具への接合作業が可能となる。   In the thermocouple mounting structure according to the present invention, it is preferable that the tip is diffusion bonded to the instrument. It does not cause strength deterioration of the joined part. In addition, it is possible to join the chip to the instrument at the same time as the work of diffusion bonding the temperature measuring contact.

本発明に係る熱電対の取り付け構造では、前記器具と前記チップとの間に0.01mm以上0.5mm以下の厚さの白金箔が挟み込まれており、かつ、当接し合う面同士が拡散接合されていることが好ましい。器具とチップとの隙間を白金箔が埋めることができるため、接合強度を高めることができる。   In the thermocouple mounting structure according to the present invention, a platinum foil having a thickness of 0.01 mm or more and 0.5 mm or less is sandwiched between the instrument and the chip, and the abutting surfaces are diffusion bonded. It is preferable that Since the platinum foil can fill the gap between the tool and the chip, the bonding strength can be increased.

本発明に係る熱電対の取り付け構造では、前記器具と前記チップとの間に、0.3mm以上2.0mm以下の厚みの白金系材料からなる板が挟み込まれており、かつ、当接し合う面同士が拡散接合されていることが好ましい。器具とチップとの間に板が入れられていることにより、取り付け部の強度を高めることができる。   In the thermocouple mounting structure according to the present invention, a plate made of a platinum-based material having a thickness of 0.3 mm or more and 2.0 mm or less is sandwiched between the instrument and the chip, and the surfaces are in contact with each other It is preferable that they are diffusion-bonded together. Since the plate is inserted between the instrument and the tip, the strength of the attachment portion can be increased.

本発明に係る熱電対の取り付け構造では、前記板は、前記器具に拡散接合されていることが好ましい。接合した部分の強度劣化を生じさせることがない。また、測温接点を拡散接合する作業と同時に板の器具への接合作業が可能となる。   In the thermocouple mounting structure according to the present invention, the plate is preferably diffusion bonded to the instrument. It does not cause strength deterioration of the joined part. In addition, it is possible to join the plate to the instrument simultaneously with the operation of diffusion bonding the temperature measuring contact.

本発明に係る熱電対の取り付け構造では、前記チップと前記板との間、又は、前記器具と前記板との間、又は、その両方の間に0.01mm以上0.5mm以下の厚さの白金箔が挟み込まれており、かつ、当接し合う面同士が拡散接合されていることが好ましい。チップと板との間、又は、器具と板との間、又は、その両方の間の隙間を白金箔が埋めることができるため、接合強度を高めることができる。   In the thermocouple mounting structure according to the present invention, a thickness of 0.01 mm or more and 0.5 mm or less is provided between the tip and the plate, or between the instrument and the plate, or both. It is preferable that the platinum foil is sandwiched and the surfaces that come into contact with each other are diffusion bonded. Since the platinum foil can fill a gap between the chip and the plate, or between the instrument and the plate, or both, the bonding strength can be increased.

本発明に係る熱電対の取り付け構造では、前記強化白金系熱電対の正極又は負極の少なくともいずれか一方は、白金箔に巻かれた状態で拡散接合されていることが好ましい。熱電対の素線の周りの隙間を白金箔が埋めることができるため、接合強度を高めることができる。   In the thermocouple mounting structure according to the present invention, it is preferable that at least one of the positive electrode and the negative electrode of the reinforced platinum thermocouple is diffusion bonded in a state of being wound around a platinum foil. Since the platinum foil can fill the gap around the strand of the thermocouple, the bonding strength can be increased.

本発明に係る強化白金系熱電対の正極又は負極の少なくともいずれか一方は、金属元素またはガス元素を含有するか、或いは、酸化物、窒化物、炭化物又は硼化物のうち少なくともいずれか一種を含有することが好ましい。溶融による強度劣化を生じさせずに強化白金系熱電対素線の強度が維持される。   At least one of the positive electrode and the negative electrode of the reinforced platinum-based thermocouple according to the present invention contains a metal element or a gas element, or contains at least one of oxide, nitride, carbide, or boride. It is preferable to do. The strength of the reinforced platinum-based thermocouple wire is maintained without causing strength deterioration due to melting.

本発明に係る熱電対の取り付け構造では、前記器具は、ガラス溶融ライン用器具、ガラス溶融炉、溶解槽、脱泡層、清澄槽、攪拌槽又は連結パイプである形態を含む。   In the thermocouple mounting structure according to the present invention, the instrument includes a glass melting line instrument, a glass melting furnace, a melting tank, a defoaming layer, a clarification tank, a stirring tank, or a connection pipe.

本発明に係る熱電対の取り付け方法は、本発明に係る熱電対の取り付け構造における該熱電対の取り付け方法であって、前記測温接点となる部分を機械的接合し、該部分を加圧した状態で、1000℃以上の温度に加熱して熱拡散させて拡散接合する工程を有することを特徴とする。拡散接合させたい部分を一度に接合させることが可能となり、作業性に優れる。   The thermocouple mounting method according to the present invention is the thermocouple mounting method in the thermocouple mounting structure according to the present invention, wherein the portion to be the temperature measuring contact is mechanically joined and the portion is pressurized. It is characterized by having a step of diffusion bonding by heating to a temperature of 1000 ° C. or higher and thermally diffusing. The parts to be diffusion bonded can be bonded at one time, and the workability is excellent.

本発明によれば、強化白金系熱電対を用いた熱電対の取り付け構造において、溶融による強度劣化を生じさせずに高寿命の熱電対接合を実現することである。   According to the present invention, in a thermocouple mounting structure using a reinforced platinum-based thermocouple, a long-life thermocouple junction is realized without causing strength deterioration due to melting.

本実施形態に係る熱電対の取り付け状態を示す概略図であり、(a)は平面図、(b)はA−A断面である。It is the schematic which shows the attachment state of the thermocouple which concerns on this embodiment, (a) is a top view, (b) is an AA cross section. チップの一例を示す概略図であり、(a)は正面図、(b)は右側面図、(c)は背面図である。It is the schematic which shows an example of a chip | tip, (a) is a front view, (b) is a right view, (c) is a rear view. 別の実施形態に係る熱電対の取り付け状態を示す概略図であり、(a)は平面図、(b)はB−B断面、(c)はC−C断面図である。It is the schematic which shows the attachment state of the thermocouple which concerns on another embodiment, (a) is a top view, (b) is a BB cross section, (c) is CC sectional drawing. B−B断面の例を示す概略図であり、(a)は熱電対の正極と負極とが拡散接合されている例、(b)は熱電対の正極がチップと拡散接合され、負極がチップと拡散接合され、かつ、正極と負極とが拡散接合されている例、(c)熱電対の正極がチップと拡散接合され、負極がチップと拡散接合され、かつ、正極と負極とが拡散接合されていない例である。It is the schematic which shows the example of a BB cross section, (a) is an example in which the positive electrode and negative electrode of a thermocouple are diffusion-bonded, (b) is the positive electrode of a thermocouple, diffusion-bonded with a chip | tip, and a negative electrode is a chip | tip. (C) The thermocouple positive electrode is diffusion bonded to the chip, the negative electrode is diffusion bonded to the chip, and the positive electrode and negative electrode are diffusion bonded. This is not an example. A−A断面の別例を示す概略図であり、チップと器具との間に白金箔を挟んだ例である。It is the schematic which shows another example of an AA cross section, and is an example which pinched platinum foil between the chip | tip and the instrument. A−A断面の別例を示す概略図であり、チップと器具との間に白金系材料からなる板を挟んだ例である。It is the schematic which shows the other example of an AA cross section, and is the example which pinched | interposed the board | plate which consists of platinum-type materials between the chip | tip and the instrument. A−A断面の別例を示す概略図であり、チップと器具との間に白金系材料からなる板を挟み、かつ、それらの間に白金箔を挟んだ例である。It is the schematic which shows the other example of an AA cross section, and is the example which pinched | interposed the board | plate which consists of platinum-type materials between the chip | tip and the instrument, and pinched platinum foil between them. A−A断面の別例を示す概略図であり、熱電対の素線に白金箔を巻いた例である。It is the schematic which shows another example of an AA cross section, and is the example which wound platinum foil around the strand of the thermocouple.

次に本発明について実施形態を示して詳細に説明するが本発明はこれらの記載に限定して解釈されない。本発明の効果を奏する限り、実施形態は種々の変形をしてもよい。   Next, although an embodiment is shown and explained in detail about the present invention, the present invention is limited to these descriptions and is not interpreted. As long as the effect of the present invention is exhibited, the embodiment may be variously modified.

図1を参照して、本実施形態に係る熱電対の取り付け構造について説明する。図1は、本実施形態に係る熱電対の取り付け状態を示す概略図であり、(a)は平面図、(b)はA−A断面である。本実施形態に係る熱電対の取り付け構造100は、白金、白金合金又は酸化物分散強化白金を用いて形成された器具1と、強化白金系熱電対11と、強化白金系熱電対11の測温接点10が器具1の測定対象部位に固定されている取り付け部9と、を有する。ここで、強化白金系熱電対11は大気中1100℃にて10MPaの応力をかけたときの破断時間が100時間以上の高温強度を有し、強化白金系熱電対の素線(正極2及び負極3の各素線)の線径が0.1mm以上2.0mm以下であり、かつ、測温接点10が拡散接合されている。なお、図において、拡散接合している部分を符号5で示した。   With reference to FIG. 1, the thermocouple mounting structure according to the present embodiment will be described. 1A and 1B are schematic views showing a mounting state of a thermocouple according to the present embodiment, where FIG. 1A is a plan view and FIG. The thermocouple mounting structure 100 according to the present embodiment includes an instrument 1 formed using platinum, a platinum alloy, or oxide dispersion strengthened platinum, a reinforced platinum thermocouple 11, and a temperature measurement of the reinforced platinum thermocouple 11. The contact point 10 has an attachment portion 9 fixed to the measurement target portion of the instrument 1. Here, the reinforced platinum-based thermocouple 11 has a high temperature strength with a breaking time of 100 hours or more when a stress of 10 MPa is applied at 1100 ° C. in the atmosphere, and the strands of the reinforced platinum-based thermocouple (positive electrode 2 and negative electrode) 3) is 0.1 mm or more and 2.0 mm or less, and the temperature measuring contact 10 is diffusion-bonded. In the figure, the diffusion bonded portion is indicated by reference numeral 5.

器具1は 例えば、ガラス溶融ライン用器具、ガラス溶融炉、溶解槽、脱泡層、清澄槽、攪拌槽又は連結パイプである。これらの器具は、白金、白金合金又は酸化物分散強化白金を用いて形成されている。白金合金は、例えば白金‐ロジウム合金、白金‐イリジウム合金、白金‐金合金、白金‐ジルコニウム合金、白金‐イットリウム合金、白金‐サマリウム合金又は白金‐カルシウム合金である。酸化物分散強化白金は、白金または白金ロジウム合金のマトリックス中にジルコニウム酸化物、イットリウム酸化物、サマリウム酸化物、カルシウム酸化物などの分散粒子が存在する材料である。   The instrument 1 is, for example, a glass melting line instrument, a glass melting furnace, a melting tank, a defoaming layer, a clarification tank, a stirring tank, or a connecting pipe. These instruments are formed using platinum, platinum alloys or oxide dispersion strengthened platinum. The platinum alloy is, for example, a platinum-rhodium alloy, a platinum-iridium alloy, a platinum-gold alloy, a platinum-zirconium alloy, a platinum-yttrium alloy, a platinum-samarium alloy or a platinum-calcium alloy. Oxide dispersion strengthened platinum is a material in which dispersed particles such as zirconium oxide, yttrium oxide, samarium oxide, and calcium oxide are present in a matrix of platinum or a platinum rhodium alloy.

強化白金系熱電対11は、正極が白金‐ロジウム合金素線、負極が純白金素線の組み合わせ、又は、正極が白金‐ロジウム合金素線、負極が正極とは組成の異なる白金‐ロジウム合金素線の組み合わせがある。例えば、(正極,負極)の組成が(PtRh13%、Pt)、(PtRh10%、Pt)、(PtRh30%、PtRh6%)、(PtRh40%、PtRh20%)である。強化白金系熱電対11は、上記組成を基本として、強度向上のための添加成分が加えられている。具体的には、強化白金系熱電対11の正極2又は負極3のいずれか一方又はその両方が、金属元素またはガス元素を含有するか、或いは、酸化物、窒化物、炭化物又は硼化物を含有する。素線中に存在する強化白金の白金に含有する金属元素としては、例えばロジウム、イリジウム、金、ジルコニウム、イットリウム、サマリウム、カルシウムである。素線中に存在する強化白金の白金に含有するガス元素としては、例えば窒素、酸素、炭素などである。また、素線中に存在する強化白金の白金に含有する酸化物としては、ジルコニウム酸化物、イットリウム酸化物、サマリウム酸化物、カルシウム酸化物などであり、分散粒子として存在する。そして、素線(正極2及び負極3の各素線)は、これらの添加成分によって強度が向上しているため、細い線径での使用が可能である。素線の線径は0.1mm以上2.0mm以下であり、好ましくは、0.3mm以上1.0mm以下である。本実施形態において、強化白金系熱電対11とは、素線の強度が大気中1100℃にて10MPaの応力をかけたときの破断時間が100時間以上の高温強度を有する熱電対をいう。   The reinforced platinum-based thermocouple 11 is a combination of a platinum-rhodium alloy wire with a positive electrode and a pure platinum wire with a negative electrode, or a platinum-rhodium alloy wire having a composition different from that of a positive electrode with a platinum-rhodium alloy wire and a negative electrode with a positive electrode. There is a combination of lines. For example, the composition of (positive electrode, negative electrode) is (PtRh13%, Pt), (PtRh10%, Pt), (PtRh30%, PtRh6%), (PtRh40%, PtRh20%). The reinforced platinum-based thermocouple 11 is based on the above composition, and an additive component for improving the strength is added. Specifically, either one or both of the positive electrode 2 and the negative electrode 3 of the reinforced platinum-based thermocouple 11 contain a metal element or a gas element, or contain an oxide, nitride, carbide or boride. To do. Examples of the metal element contained in the platinum of the strengthened platinum present in the strand are rhodium, iridium, gold, zirconium, yttrium, samarium, and calcium. Examples of the gas element contained in the platinum of the reinforced platinum present in the strand include nitrogen, oxygen, and carbon. In addition, oxides contained in platinum of reinforced platinum present in the strands are zirconium oxide, yttrium oxide, samarium oxide, calcium oxide, and the like, and exist as dispersed particles. And since the intensity | strength of the strands (each strand of the positive electrode 2 and the negative electrode 3) has improved with these additional components, it can be used by a thin wire diameter. The wire diameter of the element wire is 0.1 mm or more and 2.0 mm or less, preferably 0.3 mm or more and 1.0 mm or less. In the present embodiment, the reinforced platinum-based thermocouple 11 refers to a thermocouple having a high temperature strength with a breaking time of 100 hours or more when the strength of the strand is applied with a stress of 10 MPa at 1100 ° C. in the atmosphere.

測温接点10は拡散接合されている。拡散接合とは、相互に接合させたい部分を押し付け合い、好ましくは機械的にかしめたのち、素線の融点未満の温度、白金系熱電対の場合では1000〜1700℃の温度、好ましくは1200〜1500℃の温度に加熱し、素線を溶融させることなく、当接し合う面同士において熱拡散を起こし、熱圧着させることである。接合部分において、溶融工程を経ていないため、強度向上のための添加成分の分散性が崩れない。よって、強度劣化が防止される。測温接点10は熱電対11の最先端部分に形成される形態に限られず、先端手前の箇所に形成される形態を含む。図1において、測温接点10として囲んだ領域は、この部分全体が測温接点となることを示している。正極の素線と負極の素線とが接合されている場合、接合部分が測温接点となる。しかし、図1で示した形態では、正極の素線と負極の素線とは直接接合されず、チップ4が介在している。よって、正極の素線と負極の素線とその間のチップを含む領域が測温接点となる。   The temperature measuring contact 10 is diffusion bonded. In diffusion bonding, the parts to be bonded are pressed against each other, preferably mechanically caulked, and then at a temperature lower than the melting point of the wire, in the case of a platinum-based thermocouple, a temperature of 1000 to 1700 ° C., preferably 1200 to Heating is performed at a temperature of 1500 ° C., and heat diffusion is caused between the abutting surfaces without melting the strands and thermocompression bonding is performed. Since the joining portion has not undergone the melting step, the dispersibility of the additive component for improving the strength does not collapse. Therefore, strength deterioration is prevented. The temperature measuring contact 10 is not limited to the form formed at the most distal portion of the thermocouple 11, but includes a form formed at a position before the tip. In FIG. 1, the region enclosed as the temperature measuring contact 10 indicates that this entire portion becomes the temperature measuring contact. When the positive electrode wire and the negative electrode wire are bonded, the bonded portion becomes a temperature measuring contact. However, in the embodiment shown in FIG. 1, the positive electrode strand and the negative electrode strand are not directly joined, and the chip 4 is interposed. Therefore, the region including the positive electrode wire, the negative electrode wire, and the chip between them is a temperature measuring contact.

本実施形態において、測温接点10だけが拡散接合されている形態に限定されない。例えば、測温接点10を含む取り付け部9全体又はその一部が加圧された状態で加熱されることによって、当接し合う部分においてそれぞれ拡散接合されている形態がある。   In this embodiment, it is not limited to the form where only the temperature measuring contact 10 is diffusion bonded. For example, there is a form in which the entire attachment portion 9 including the temperature measuring contact 10 or a part thereof is heated in a pressurized state, thereby being diffusion-bonded at the abutting portions.

取り付け部9は、強化白金系熱電対11の測温接点10が器具1の測定対象部位に固定されている部分である。取り付け部9が設けられる位置は、器具の底壁、側壁の下方部分であることが好ましい。これらの場所には溶融対象物が壁内に接触しているため、溶融対象物の温度を正確に測定することができる。   The attachment portion 9 is a portion where the temperature measuring contact 10 of the reinforced platinum thermocouple 11 is fixed to the measurement target portion of the instrument 1. The position at which the attachment portion 9 is provided is preferably the bottom wall of the instrument and the lower part of the side wall. Since the object to be melted is in contact with the wall in these places, the temperature of the object to be melted can be accurately measured.

次に、取り付け部9がチップ4を有する形態について説明する。   Next, the form in which the attachment portion 9 includes the chip 4 will be described.

チップ4は白金系材料からなり、例えば白金、白金合金又は酸化物分散強化白金からなることが好ましい。白金合金又は酸化物分散強化白金の組成は、器具1で例示した組成と同様である。チップ4は器具1と同じ組成であることがより好ましい。   The chip 4 is made of a platinum-based material, and is preferably made of, for example, platinum, a platinum alloy, or oxide dispersion strengthened platinum. The composition of the platinum alloy or oxide dispersion strengthened platinum is the same as the composition exemplified in the instrument 1. More preferably, the tip 4 has the same composition as the instrument 1.

チップ4は、器具1の測定対象部位にある測温接点10を覆う小片形状を有していることが好ましい。例えば、器具1の表面上に測温接点10が配置され、チップがこれを覆う小片である形態が例示される(不図示)。   It is preferable that the chip | tip 4 has a small piece shape which covers the temperature measuring contact 10 in the measurement object site | part of the instrument 1. FIG. For example, a configuration in which the temperature measuring contact 10 is disposed on the surface of the instrument 1 and the chip is a small piece covering the tip (not shown) is exemplified.

図1(b)に示すように本実施形態では、チップ4は向かい合う面4a,4bを有し、向かい合う面4a,4bは、強化白金系熱電対11の測温接点10を挟み込んでおり、チップ4が器具1に固定されていることがより好ましい。チップ4が熱電対の測温接点10を挟みこむことで、機械的に強固に強化白金系熱電対11がチップ4に取り付けられることとなる。また、向かい合う面4bの反対面4cは平坦面にできるため、向かい合う面4bの反対面4cの全面積が器具1と接触可能となる。その結果、強化白金系熱電対11はさらに強固に器具1に取り付けられることとなる。   As shown in FIG. 1B, in this embodiment, the chip 4 has facing surfaces 4a and 4b, and the facing surfaces 4a and 4b sandwich the temperature measuring contact 10 of the reinforced platinum-based thermocouple 11, More preferably, 4 is fixed to the instrument 1. When the chip 4 sandwiches the temperature measuring contact 10 of the thermocouple, the reinforced platinum thermocouple 11 is mechanically and firmly attached to the chip 4. Further, since the opposite surface 4c of the facing surface 4b can be a flat surface, the entire area of the opposite surface 4c of the facing surface 4b can contact the instrument 1. As a result, the reinforced platinum-based thermocouple 11 is attached to the instrument 1 more firmly.

まず、図2を参照して、かしめる前のチップ4の形状について説明する。図2は、チップの一例を示す概略図であり、(a)は正面図、(b)は右側面図、(c)は背面図である。チップ4は、2本の貫通孔12を有し、さらに2本の貫通孔12を通るようにスリット13を有する。チップ4はスリットの形状を有し、向かい合う面4a,4bは、スリットの内側面であることが好ましい。向かい合う面4aを有する壁と向かい合う面4bを有する壁とはスリットの一端側の側壁を介して一体化しているため、チップ4に熱電対の素線(正極2,負極3)を挟み込む作業が容易になる。さらに、一体化によって向かい合う面4a,4b同士がばらばらにならない。スリット13の間隔は、貫通孔12の内径よりも小さいことが好ましい。貫通孔12の内径は、素線の直径よりも大きくする必要がある。スリット13の間隔は、熱電対の素線の直径よりも小さいことが好ましい。チップ4がこのような形状を有することによって、熱電対を貫通孔に通すことができ、かつ、正極と負極との接触が防止されるとともに、かしめる力を大きくしなくてもチップと素線との接触面積を高めることができる。また、スリット13を設けることで、かしめるときにスリット13の間が閉まる方向に変形シロができるので、かしめやすくなる。   First, the shape of the chip 4 before caulking will be described with reference to FIG. FIG. 2 is a schematic view showing an example of a chip, where (a) is a front view, (b) is a right side view, and (c) is a rear view. The chip 4 has two through holes 12 and further has slits 13 so as to pass through the two through holes 12. The chip 4 has a slit shape, and the facing surfaces 4a and 4b are preferably inner surfaces of the slit. Since the wall having the facing surface 4a and the wall having the facing surface 4b are integrated via the side wall on one end side of the slit, it is easy to sandwich the thermocouple element (positive electrode 2, negative electrode 3) into the chip 4. become. Further, the faces 4a and 4b facing each other by the integration are not separated. The interval between the slits 13 is preferably smaller than the inner diameter of the through hole 12. The inner diameter of the through hole 12 needs to be larger than the diameter of the strand. The interval between the slits 13 is preferably smaller than the diameter of the strand of the thermocouple. Since the chip 4 has such a shape, the thermocouple can be passed through the through-hole, and contact between the positive electrode and the negative electrode is prevented, and the chip and the strand can be formed without increasing the caulking force. The contact area with can be increased. In addition, by providing the slits 13, it is easy to caulk because deformation deformation can be made in the direction in which the space between the slits 13 is closed when caulking.

図2に示したチップ4に熱電対を固定する方法及び固定状態について説明する。貫通孔12の一方には熱電対の正極の素線の先端が通され、貫通孔12の他方には熱電対の負極の素線が通される。例えば、スリット13の背面から貫通孔12に素線を通す。素線の先端は、正面の貫通孔12から突出していても、突出していなくてもよい。貫通孔12に熱電対の素線を通したのち、チップ4の平面と底面とが近付くように押しつぶすことによって、スリット13の間隔が縮み、チップ4に素線が固定される。このとき、図1(b)に示したように、貫通孔12の内壁と正極2の素線とが接触し、貫通孔12の内壁と負極3の素線とが接触し、かつ、スリット13の内面同士が接触状態となる。接触した部分は、図1(b)の符号5で示した拡散接合する部分となる。図1(b)では、スリット13は内面同士が熱圧着されており、熱圧着した部分を符号13(5)で示した。また、この形態では、正極2と負極3は接触し合わない。測温接点10は、正極2と負極3との間にチップ4が電気的に介在する形態をもつ。   A method and a fixing state of fixing the thermocouple to the chip 4 shown in FIG. 2 will be described. One end of the through hole 12 is passed through the tip of the thermocouple positive electrode, and the other end of the through hole 12 is passed through the negative electrode of the thermocouple. For example, the strand is passed through the through hole 12 from the back surface of the slit 13. The tip of the strand may or may not protrude from the front through-hole 12. After passing the strand of the thermocouple through the through-hole 12 and crushing so that the plane and the bottom surface of the chip 4 approach each other, the interval between the slits 13 is reduced, and the strand is fixed to the chip 4. At this time, as shown in FIG. 1B, the inner wall of the through hole 12 and the strand of the positive electrode 2 are in contact, the inner wall of the through hole 12 and the strand of the negative electrode 3 are in contact, and the slit 13 The inner surfaces are in contact with each other. The contacted portion becomes a diffusion bonding portion indicated by reference numeral 5 in FIG. In FIG. 1B, the inner surfaces of the slits 13 are thermocompression-bonded, and the thermocompression-bonded portion is indicated by reference numeral 13 (5). Moreover, in this form, the positive electrode 2 and the negative electrode 3 do not contact each other. The temperature measuring contact 10 has a configuration in which the chip 4 is electrically interposed between the positive electrode 2 and the negative electrode 3.

次に別形態のチップ4を用いたときの取り付け状態について説明する。図3は、別の実施形態に係る熱電対の取り付け状態を示す概略図であり、(a)は平面図、(b)はB−B断面、(c)はC−C断面図である。図3に示したチップ4は、貫通孔を設けず、スリットだけが設けられている。図3(c)に示すようにスリットの一端はつながっている。貫通孔を設けていないため、スリットの内面と熱電対の素線との接触する面積は、図1の形態と比較すると小さい。しかし、かしめる力を大きくすればするほど、スリットがより多く変形し、接触する面積を大きくすることが可能である。   Next, an attachment state when using another type of chip 4 will be described. FIGS. 3A and 3B are schematic views showing a mounting state of a thermocouple according to another embodiment, wherein FIG. 3A is a plan view, FIG. 3B is a BB cross section, and FIG. 3C is a CC cross section. The chip 4 shown in FIG. 3 is provided with only a slit without providing a through hole. As shown in FIG. 3C, one end of the slit is connected. Since no through hole is provided, the area of contact between the inner surface of the slit and the strand of the thermocouple is small as compared with the embodiment of FIG. However, as the caulking force is increased, the slit is deformed more and the contact area can be increased.

スリットの形状は、図2又は図4に示した断面コの字状の他、断面V字状、断面U字状がある。   In addition to the U-shaped cross section shown in FIG. 2 or 4, the slit has a V-shaped cross section and a U-shaped cross section.

図3では、熱電対の素線の軸方向がスリットをつなぐ壁の法線方向を向くように配置されている形態を示したが、素線の軸方向がスリットをつなぐ壁の面方向を向くように、すなわち、素線の側面からスリットを挟む形態としてもよい。   FIG. 3 shows a form in which the axial direction of the strands of the thermocouple is arranged so as to face the normal direction of the wall connecting the slits, but the axial direction of the strands faces the surface direction of the wall connecting the slits. That is, it is good also as a form which pinches | interposes a slit from the side surface of a strand.

図4は、B−B断面の例を示す概略図であり、(a)は熱電対の正極と負極とが拡散接合されている例、(b)は熱電対の正極がチップと拡散接合され、負極がチップと拡散接合され、かつ、正極と負極とが拡散接合されている例、(c)熱電対の正極がチップと拡散接合され、負極がチップと拡散接合され、かつ、正極と負極とが拡散接合されていない例である。図4(c)で示した形態は、図1で示した形態と同じく、正極と負極とが拡散接合されていない。測温接点10は、正極2と負極3との間にチップ4が電気的に介在する形態をもつ。図4(a)で示した形態では、測温接点10は、正極2と負極3とが直接接合し合う形態をもつ。図4(b)で示した形態では、測温接点10は、正極2と負極3とが直接接合し合い、かつ、正極2と負極3との間にチップ4が電気的に介在する形態をもつ。図4(c)で示した形態では、正極2と負極3との間にチップ4が電気的に介在する形態をもつ。   4A and 4B are schematic views showing an example of a BB cross section, where FIG. 4A is an example in which a positive electrode and a negative electrode of a thermocouple are diffusion bonded, and FIG. 4B is a diffusion bond of a positive electrode of a thermocouple to a chip. (C) The positive electrode of the thermocouple is diffusion bonded to the chip, the negative electrode is diffusion bonded to the chip, and the positive electrode and negative electrode Are examples in which no diffusion bonding is performed. In the form shown in FIG. 4C, the positive electrode and the negative electrode are not diffusion bonded as in the form shown in FIG. The temperature measuring contact 10 has a configuration in which the chip 4 is electrically interposed between the positive electrode 2 and the negative electrode 3. In the form shown in FIG. 4A, the temperature measuring contact 10 has a form in which the positive electrode 2 and the negative electrode 3 are directly joined. In the form shown in FIG. 4B, the temperature measuring contact 10 has a form in which the positive electrode 2 and the negative electrode 3 are directly joined to each other, and the chip 4 is electrically interposed between the positive electrode 2 and the negative electrode 3. Have. In the form shown in FIG. 4C, the chip 4 is electrically interposed between the positive electrode 2 and the negative electrode 3.

図1では、拡散接合した後において、向かい合う面4a,4b同士が強化白金系熱電対11の正極2,負極3と接触する部分以外ではすべて接触し合う形態を示した。図4では、拡散接合した後において、向かい合う面4a,4b同士が一部接触し合う形態を示した。本実施形態は、拡散接合した後において、向かい合う面4a,4b同士が接触していない形態を包含する。例えば、図3及び図4で示した形態では、かしめが強くなるに従い、向かい合う面4a,4b同士が接触していない形態、次いで、向かい合う面4a,4b同士が一部接触し合う形態、次いで、向かい合う面4a,4b同士が熱電対と接触する部分以外ではすべて接触し合う形態となり、熱電対がより強固に固定される。   In FIG. 1, after diffusion bonding, the faces 4 a and 4 b facing each other are in contact with each other except for a portion in contact with the positive electrode 2 and the negative electrode 3 of the reinforced platinum-based thermocouple 11. FIG. 4 shows a form in which the facing surfaces 4a and 4b partially contact each other after diffusion bonding. The present embodiment includes a form in which the facing surfaces 4a and 4b are not in contact with each other after diffusion bonding. For example, in the form shown in FIG. 3 and FIG. 4, as the caulking becomes stronger, the faces 4a and 4b are not in contact with each other, then the faces 4a and 4b are partially in contact with each other, All the surfaces 4a, 4b facing each other are in contact with each other except for a portion in contact with the thermocouple, and the thermocouple is more firmly fixed.

次に拡散接合について説明する。図1及び図2に示した形態では次の通りとなる。すなわち、図1(b)に示したように、測温接点10が、強化白金系熱電対11の正極2がチップ4と拡散接合され、負極3がチップ4と拡散接合され、かつ、正極2と負極3とが拡散接合されていない形態をとる。正極2、負極3がそれぞれチップ4と接触する箇所が拡散接合している箇所5となる。また、正極2及び負極3の素線は接触していないので、拡散接合していない。このように、測温接点10は、正極2と負極3とが拡散接合されている形態は必須ではなく、正極2と負極3とが接触していなくても、チップ4を介して測温接点を形成することができる。   Next, diffusion bonding will be described. The configuration shown in FIGS. 1 and 2 is as follows. That is, as shown in FIG. 1B, the temperature measuring contact 10 is formed by diffusion bonding the positive electrode 2 of the reinforced platinum thermocouple 11 with the chip 4, diffusion bonding the negative electrode 3 with the chip 4, and positive electrode 2. And the negative electrode 3 are not diffusion bonded. A location where the positive electrode 2 and the negative electrode 3 are in contact with the chip 4 is a location 5 where diffusion bonding is performed. Moreover, since the strands of the positive electrode 2 and the negative electrode 3 are not in contact, they are not diffusion bonded. Thus, the temperature measuring contact 10 does not necessarily have a configuration in which the positive electrode 2 and the negative electrode 3 are diffusion-bonded, and even if the positive electrode 2 and the negative electrode 3 are not in contact with each other, the temperature measuring contact 10 can be connected via the chip 4. Can be formed.

図3及び図4に示した形態では次の通りとなる。まず第1に、図4(a)に示した通り、測温接点10が、強化白金系熱電対11の正極2と負極3とが拡散接合されている形態をとる。正極2及び負極3の素線が接触する箇所が拡散接合している箇所5となる。第2に、図4(b)に示した通り、測温接点10が、強化白金系熱電対11の正極2がチップ4と拡散接合され、負極3がチップ4と拡散接合され、かつ、正極2と負極3とが拡散接合されている形態をとる。正極2及び負極3の素線が接触する箇所が拡散接合している箇所5となるほか、正極2、負極3がそれぞれチップ4と接触する箇所が拡散接合している箇所5となる。第3に、図4(c)に示した通り、測温接点10が、強化白金系熱電対11の正極2がチップ4と拡散接合され、負極3がチップ4と拡散接合され、かつ、正極2と負極3とが拡散接合されていない形態をとる。この形態は、図1(b)と類似の形態であり、測温接点10は、正極2と負極3とが接触していなくても、チップ4を介して接点を形成することができる。図4(c)において、測温接点10として囲んだ領域は、この部分全体が測温接点となることを示している。図4(c)では正極の素線と負極の素線とその間のチップを含む領域が測温接点となる。   The configuration shown in FIGS. 3 and 4 is as follows. First, as shown in FIG. 4A, the temperature measuring contact 10 takes a form in which the positive electrode 2 and the negative electrode 3 of the reinforced platinum thermocouple 11 are diffusion-bonded. A portion where the strands of the positive electrode 2 and the negative electrode 3 are in contact with each other is a portion 5 where diffusion bonding is performed. Secondly, as shown in FIG. 4B, the temperature measuring contact 10 is formed by diffusion bonding the positive electrode 2 of the reinforced platinum-based thermocouple 11 with the chip 4, the diffusion electrode 3 with the chip 4, and the positive electrode. 2 and the negative electrode 3 are diffusion bonded. In addition to the location 5 where the strands of the positive electrode 2 and the negative electrode 3 are in contact with each other as a diffusion bonding, the location where the positive electrode 2 and the negative electrode 3 are in contact with the chip 4 is the location 5 where the diffusion bonding is performed. Third, as shown in FIG. 4C, the temperature measuring contact 10 is formed by diffusion bonding the positive electrode 2 of the reinforced platinum-based thermocouple 11 with the chip 4, diffusion bonding the negative electrode 3 with the chip 4, and positive electrode 2 and the negative electrode 3 are not diffusion bonded. This form is similar to FIG. 1B, and the temperature measuring contact 10 can form a contact via the chip 4 even if the positive electrode 2 and the negative electrode 3 are not in contact. In FIG.4 (c), the area | region enclosed as the temperature measuring contact 10 has shown that this whole part becomes a temperature measuring contact. In FIG. 4C, a region including the positive electrode wire, the negative electrode wire, and the chip therebetween is a temperature measuring contact.

これらのいずれの形態においても、測温接点10は、チップ4に覆われた状態で器具1に固定されている。ここで、チップ4は、器具1に拡散接合されていることが好ましい。チップ4と器具1の間においても接合した部分の強度劣化を生じさせることがない。また、測温接点を拡散接合する作業と同時にチップの器具への接合作業が可能となる。   In any of these forms, the temperature measuring contact 10 is fixed to the instrument 1 while being covered with the chip 4. Here, the chip 4 is preferably diffusion bonded to the instrument 1. Even between the tip 4 and the instrument 1, the strength of the joined portion is not deteriorated. In addition, it is possible to join the chip to the instrument at the same time as the work of diffusion bonding the temperature measuring contact.

次に図5を参照して、箔を用いた形態について説明する。図5は、A−A断面の別例を示す概略図であり、チップと器具との間に白金箔を挟んだ例である。本実施形態では、器具1とチップ4との間に0.01mm以上0.5mm以下の厚さの白金箔6が挟み込まれており、かつ、当接し合う面同士が拡散接合されていることが好ましい。ここで、当接し合う面同士とは、器具1と白金箔6との当接面、白金箔6とチップ4との当接面である。これらの面の間に隙間があったとしてもその隙間を白金箔6で埋めることができるため、接合強度を高めることができる。白金箔6の厚さは、0.05mm以上0.1mm以下であることがより好ましい。白金箔6の組成は、純白金が好ましい。   Next, with reference to FIG. 5, the form using foil is demonstrated. FIG. 5 is a schematic view showing another example of the AA cross section, in which a platinum foil is sandwiched between the chip and the instrument. In the present embodiment, a platinum foil 6 having a thickness of 0.01 mm or more and 0.5 mm or less is sandwiched between the instrument 1 and the chip 4, and the abutting surfaces are diffusion bonded. preferable. Here, the surfaces that contact each other are the contact surface between the instrument 1 and the platinum foil 6 and the contact surface between the platinum foil 6 and the chip 4. Even if there is a gap between these surfaces, the gap can be filled with the platinum foil 6, so that the bonding strength can be increased. The thickness of the platinum foil 6 is more preferably 0.05 mm or greater and 0.1 mm or less. The composition of the platinum foil 6 is preferably pure platinum.

次に図6を参照して、板を用いた形態について説明する。図6は、A−A断面の別例を示す概略図であり、チップと器具との間に白金系材料からなる板を挟んだ例である。本実施形態では、器具1とチップ4との間に、0.3mm以上2.0mm以下の厚みの白金系材料からなる板7が挟み込まれており、かつ、当接し合う面同士が拡散接合されていることが好ましい。ここで、当接し合う面同士とは、器具1と板7との当接面、板7とチップ4との当接面である。器具1とチップ4との間に板7が入れられていることにより、チップ4が接合している土台部分の剛性が高まり、チップ4のはがれが生じにくくなる。板7の厚さは、0.3mm以上1.0mm以下であることがより好ましい。板7の組成は、純白金、白金ロジウム合金、酸化物分散強化型白金であることが好ましい。白金ロジウム合金、酸化物分散強化型白金の組成は、器具1の場合と同様である。   Next, with reference to FIG. 6, the form using a board is demonstrated. FIG. 6 is a schematic view showing another example of the AA cross section, in which a plate made of a platinum-based material is sandwiched between a chip and an instrument. In this embodiment, a plate 7 made of a platinum-based material having a thickness of 0.3 mm or more and 2.0 mm or less is sandwiched between the instrument 1 and the chip 4, and the abutting surfaces are diffusion-bonded to each other. It is preferable. Here, the surfaces that contact each other are the contact surface between the instrument 1 and the plate 7 and the contact surface between the plate 7 and the chip 4. Since the plate 7 is inserted between the instrument 1 and the chip 4, the rigidity of the base part to which the chip 4 is joined is increased, and the chip 4 is hardly peeled off. The thickness of the plate 7 is more preferably 0.3 mm or greater and 1.0 mm or less. The composition of the plate 7 is preferably pure platinum, a platinum rhodium alloy, or oxide dispersion strengthened platinum. The composition of platinum rhodium alloy and oxide dispersion strengthened platinum is the same as that of the instrument 1.

板7は、器具1に拡散接合されていることが好ましい。接合した部分の強度劣化を生じさせることがない。また、測温接点10を拡散接合する作業と同時に板の器具への接合作業が可能となる。   The plate 7 is preferably diffusion bonded to the instrument 1. It does not cause strength deterioration of the joined part. Moreover, the joining operation | work to the instrument of a board is attained simultaneously with the operation | work which carries out the diffusion joining of the temperature measuring contact 10.

次に図7を参照して、板及び箔を用いた形態について説明する。図7は、A−A断面の別例を示す概略図であり、チップと器具との間に白金系材料からなる板を挟み、かつ、それらの間に白金箔を挟んだ例である。本実施形態では、チップ4と板7との間、又は、器具1と板7との間、又は、その両方の間に0.01mm以上0.5mm以下の厚さの白金箔6a,6bが挟み込まれており、かつ、当接し合う面同士が拡散接合されていることが好ましい。ここで、当接し合う面同士とは、器具1と白金箔6aとの当接面、白金箔6aと板7との当接面、板7と白金箔6bとの当接面、白金箔6bとチップ4との当接面である。チップ4と板7との間、又は、器具1と板7との間、又は、その両方の間の隙間を白金箔6a,6bが埋めることができるため、接合強度を高めることができる。板7の厚さ、白金箔6a,6bの厚さ及びそれらの組成は、図5及び図6で説明した形態と同じである。   Next, with reference to FIG. 7, the form using a board and foil is demonstrated. FIG. 7 is a schematic view showing another example of the AA cross section, in which a plate made of a platinum-based material is sandwiched between the chip and the instrument, and a platinum foil is sandwiched between them. In the present embodiment, platinum foils 6a and 6b having a thickness of 0.01 mm or more and 0.5 mm or less are provided between the chip 4 and the plate 7, or between the instrument 1 and the plate 7, or both. It is preferable that the surfaces sandwiched and in contact with each other are diffusion bonded. Here, the abutting surfaces are the abutting surface between the instrument 1 and the platinum foil 6a, the abutting surface between the platinum foil 6a and the plate 7, the abutting surface between the plate 7 and the platinum foil 6b, and the platinum foil 6b. And a contact surface between the chip 4 and the chip 4. Since the platinum foils 6a and 6b can fill a gap between the chip 4 and the plate 7, or between the instrument 1 and the plate 7, or both, the bonding strength can be increased. The thickness of the plate 7, the thicknesses of the platinum foils 6a and 6b, and the composition thereof are the same as those described with reference to FIGS.

次に図8を参照して、素線に白金箔を巻いた形態について説明する。図8は、A−A断面の別例を示す概略図であり、熱電対の素線に白金箔を巻いた例である。本実施形態では、強化白金系熱電対の正極2又は負極3の少なくともいずれか一方は、白金箔8a,8bに巻かれた状態で拡散接合されていることが好ましい。白金箔8a,8bの組成は、純白金であることが好ましい。白金箔8a,8bの厚さは、0.01mm以上0.5mm以下の厚さであることが好ましく、より好ましくは、0.05mm以上0.2mm以下である。熱電対の正極2,負極3の素線の直径が貫通孔の内径よりも小さい場合、素線の周りの隙間を白金箔8で埋めることができるため、密着性が高まり、接合強度を高めることができる。ここで、正極2と巻かれた白金箔8aとは拡散接合している。負極3と巻かれた白金箔8bとは拡散接合している。そして、白金箔8a,8b同士は拡散接合せずに、白金箔8aとチップ4とが拡散接合し、白金箔8bとチップ4とが拡散接合している。白金箔は素線に一重巻されることが好ましい。白金箔は変形しやすいため、かしめたときに隙間が埋まって密着性が高まり、拡散接合が促進されやすい。この効果は一重巻で十分に得られる。   Next, with reference to FIG. 8, the form which wound platinum foil around the strand is demonstrated. FIG. 8 is a schematic view showing another example of the AA cross section, and is an example in which a platinum foil is wound around a strand of a thermocouple. In the present embodiment, it is preferable that at least one of the positive electrode 2 and the negative electrode 3 of the reinforced platinum thermocouple is diffusion bonded in a state of being wound around the platinum foils 8a and 8b. The composition of the platinum foils 8a and 8b is preferably pure platinum. The thickness of the platinum foils 8a and 8b is preferably 0.01 mm or more and 0.5 mm or less, and more preferably 0.05 mm or more and 0.2 mm or less. When the diameter of the strands of the positive electrode 2 and the negative electrode 3 of the thermocouple is smaller than the inner diameter of the through-hole, the gap around the strands can be filled with the platinum foil 8, so that the adhesion is increased and the bonding strength is increased. Can do. Here, the positive electrode 2 and the wound platinum foil 8a are diffusion-bonded. The negative electrode 3 and the wound platinum foil 8b are diffusion bonded. The platinum foils 8a and 8b are not diffusion bonded to each other, the platinum foil 8a and the chip 4 are diffusion bonded, and the platinum foil 8b and the chip 4 are diffusion bonded. The platinum foil is preferably wound once on the strand. Since platinum foil is easily deformed, gaps are filled when it is caulked, adhesion is enhanced, and diffusion bonding is easily promoted. This effect can be sufficiently obtained with a single roll.

図4で示した形態において、素線に白金箔を巻いてもよい。この場合、白金箔8a,8b同士が拡散接合する形態がある。また、白金箔8a,8b同士が拡散接合し、白金箔8aとチップ4とが拡散接合し、白金箔8bとチップ4とが拡散接合する形態がある。さらに、白金箔8a,8b同士は拡散接合せずに、白金箔8aとチップ4とが拡散接合し、白金箔8bとチップ4とが拡散接合する形態がある。いずれの形態においても測温接点が形成される。   In the form shown in FIG. 4, a platinum foil may be wound around the wire. In this case, there is a form in which the platinum foils 8a and 8b are diffusion bonded. Further, there is a form in which the platinum foils 8a and 8b are diffusion bonded, the platinum foil 8a and the chip 4 are diffusion bonded, and the platinum foil 8b and the chip 4 are diffusion bonded. Furthermore, the platinum foils 8a and 8b are not diffusion-bonded to each other, the platinum foil 8a and the chip 4 are diffusion-bonded, and the platinum foil 8b and the chip 4 are diffusion-bonded. In any form, a temperature measuring contact is formed.

次に本実施形態に係る熱電対の取り付け構造における該熱電対の取り付け方法について説明する。図1〜図8に示したすべての形態において、まず、測温接点10となる部分を機械的接合する。具体的には、ペンチなどで、挟みつけることで、チップ4、正極2、負極3などが変形し、これに伴いそれぞれが接触し合う面積が増大する。次に、測温接点10となる部分を加圧した状態で、1000℃以上の温度に加熱して熱拡散させて拡散接合する。加熱方法はバーナーによる加熱、誘導加熱、通電加熱などがある。加熱温度は1200℃〜1500℃が好ましい。加熱方法によって、温度測定が困難な場合があるが、溶融せずに拡散接合が生じる温度であれば、特に限定されない。具体的には、チップ4、正極2、負極3、必要により白金箔6,白金箔8、白金材料からなる板7が溶融しない温度を上限として、かつ、熱拡散が生じ始める温度を下限として、作業を進めることが好ましい。   Next, a method for mounting the thermocouple in the thermocouple mounting structure according to the present embodiment will be described. In all the forms shown in FIG. 1 to FIG. 8, first, a portion that becomes the temperature measuring contact 10 is mechanically joined. Specifically, by sandwiching with pliers or the like, the chip 4, the positive electrode 2, the negative electrode 3, and the like are deformed, and accordingly, the contact area with each other increases. Next, in a state where the portion to be the temperature measuring contact 10 is pressurized, it is heated to a temperature of 1000 ° C. or more and thermally diffused to perform diffusion bonding. Heating methods include heating with a burner, induction heating, and energization heating. The heating temperature is preferably 1200 ° C to 1500 ° C. Although temperature measurement may be difficult depending on the heating method, there is no particular limitation as long as it is a temperature at which diffusion bonding occurs without melting. Specifically, the upper limit is the temperature at which the chip 4, the positive electrode 2, the negative electrode 3, if necessary, the platinum foil 6, the platinum foil 8, the plate 7 made of a platinum material does not melt, and the temperature at which thermal diffusion starts to occur, It is preferable to proceed with the work.

拡散接合する作業は、測温接点を拡散接合する作業と同時にチップの器具への接合作業を行う形態が好ましい。作業効率が高い。また、チップと熱電対を用いて測温接点を拡散接合する作業を先に行い、次にチップの器具への接合作業を行う形態を採用してもよい。作業効率が劣るものの、器具の形状によっては、この接合作業とした方がよい場合もある。   The operation of performing the diffusion bonding is preferably a mode in which the operation of bonding the chip to the instrument is performed simultaneously with the operation of diffusion bonding the temperature measuring contact. High work efficiency. Further, a mode in which the work of diffusion bonding the temperature measuring contact using the chip and the thermocouple is performed first, and then the work of bonding the chip to the instrument may be employed. Although the work efficiency is inferior, this joining work may be better depending on the shape of the instrument.

100 熱電対の取り付け構造
1 器具
2 正極
3 負極
4 チップ
4a,4b 向かい合う面
5 拡散接合している部分
6,6a,6b 白金箔
7 白金系材料からなる板
8,8a,8b 白金箔
9 取り付け部
10 測温接点
11 強化白金系熱電対
12 貫通孔
13 スリット
DESCRIPTION OF SYMBOLS 100 Thermocouple mounting structure 1 Instrument 2 Positive electrode 3 Negative electrode 4 Chips 4a and 4b Opposing surfaces 5 Diffusion-bonded portions 6, 6a and 6b Platinum foil 7 Plates 8, 8a and 8b made of a platinum-based material Platinum foil 9 Mounting portion 10 Temperature measuring contact 11 Reinforced platinum thermocouple 12 Through hole 13 Slit

Claims (13)

白金、白金合金又は酸化物分散強化白金を用いて形成された器具と、強化白金系熱電対と、前記強化白金系熱電対の測温接点が前記器具の測定対象部位に固定されている取り付け部と、を有する熱電対の取り付け構造において、
前記強化白金系熱電対は大気中1100℃にて10MPaの応力をかけたときの破断時間が100時間以上の高温強度を有し、
前記強化白金系熱電対の素線の線径が0.1mm以上2.0mm以下であり、かつ、前記測温接点が拡散接合されていることを特徴とする熱電対の取り付け構造。
A fixture formed using platinum, a platinum alloy or oxide dispersion strengthened platinum, a reinforced platinum thermocouple, and a mounting portion in which a temperature measuring contact of the reinforced platinum thermocouple is fixed to a measurement target portion of the fixture. And a thermocouple mounting structure comprising:
The reinforced platinum-based thermocouple has a high temperature strength with a breaking time of 100 hours or more when a stress of 10 MPa is applied at 1100 ° C. in the atmosphere,
The thermocouple mounting structure, wherein a wire diameter of the reinforced platinum thermocouple is 0.1 mm or more and 2.0 mm or less, and the temperature measuring contact is diffusion-bonded.
前記取り付け部は白金系材料からなるチップを有し、
前記測温接点は、
(1)前記強化白金系熱電対の正極が前記チップと拡散接合され、負極が該チップと拡散接合され、かつ、前記正極と前記負極とが拡散接合されていないか、
(2)前記強化白金系熱電対の正極と負極とが拡散接合されているか、又は、
(3)前記強化白金系熱電対の正極が前記チップと拡散接合され、負極が該チップと拡散接合され、かつ、前記正極と前記負極とが拡散接合されているか、のいずれか一つの形態をとり、かつ、前記チップに覆われた状態で前記器具に固定されていることを特徴とする請求項1に記載の熱電対の取り付け構造。
The mounting portion has a chip made of a platinum-based material,
The temperature measuring contact is
(1) Whether the positive electrode of the reinforced platinum-based thermocouple is diffusion bonded to the chip, the negative electrode is diffusion bonded to the chip, and the positive electrode and the negative electrode are not diffusion bonded.
(2) The positive electrode and the negative electrode of the reinforced platinum thermocouple are diffusion bonded, or
(3) The positive electrode of the reinforced platinum thermocouple is diffusion bonded to the chip, the negative electrode is diffusion bonded to the chip, and the positive electrode and the negative electrode are diffusion bonded. The thermocouple mounting structure according to claim 1, wherein the thermocouple mounting structure is fixed to the instrument while being covered with the chip.
前記チップは向かい合う面を有し、
該向かい合う面は、前記強化白金系熱電対の測温接点を挟み込んでおり、前記チップが前記器具に固定されていることを特徴とする請求項2に記載の熱電対の取り付け構造。
The tip has opposing faces;
The thermocouple mounting structure according to claim 2, wherein the facing surfaces sandwich a temperature measuring contact of the reinforced platinum-based thermocouple, and the tip is fixed to the instrument.
前記チップはスリットの形状を有し、
前記向かい合う面は、該スリットの内側面であることを特徴とする請求項3に記載の熱電対の取り付け構造。
The tip has a slit shape;
The thermocouple mounting structure according to claim 3, wherein the facing surface is an inner surface of the slit.
前記チップは、前記器具に拡散接合されていることを特徴とする請求項2〜4のいずれか一つに記載の熱電対の取り付け構造。   The thermocouple mounting structure according to claim 2, wherein the chip is diffusion-bonded to the instrument. 前記器具と前記チップとの間に0.01mm以上0.5mm以下の厚さの白金箔が挟み込まれており、かつ、当接し合う面同士が拡散接合されていることを特徴とする請求項2〜4のいずれか一つに記載の熱電対の取り付け構造。   3. A platinum foil having a thickness of 0.01 mm or more and 0.5 mm or less is sandwiched between the device and the chip, and the abutting surfaces are diffusion-bonded to each other. The thermocouple mounting structure according to any one of -4. 前記器具と前記チップとの間に、0.3mm以上2.0mm以下の厚みの白金系材料からなる板が挟み込まれており、かつ、当接し合う面同士が拡散接合されていることを特徴とする請求項2〜4のいずれか一つに記載の熱電対の取り付け構造。   A plate made of a platinum-based material having a thickness of 0.3 mm or more and 2.0 mm or less is sandwiched between the device and the chip, and the surfaces that come into contact with each other are diffusion bonded. The thermocouple mounting structure according to any one of claims 2 to 4. 前記板は、前記器具に拡散接合されていることを特徴とする請求項7に記載の熱電対の取り付け構造。   The thermocouple mounting structure according to claim 7, wherein the plate is diffusion-bonded to the instrument. 前記チップと前記板との間、又は、前記器具と前記板との間、又は、その両方の間に
0.01mm以上0.5mm以下の厚さの白金箔が挟み込まれており、かつ、当接し合う面同士が拡散接合されていることを特徴とする請求項7に記載の熱電対の取り付け構造。
A platinum foil having a thickness of 0.01 mm or more and 0.5 mm or less is sandwiched between the chip and the plate, or between the instrument and the plate, or both. 8. The thermocouple mounting structure according to claim 7, wherein the contacting surfaces are diffusion-bonded to each other.
前記強化白金系熱電対の正極又は負極の少なくともいずれか一方は、白金箔に巻かれた状態で拡散接合されていることを特徴とする請求項1〜9のいずれか一つに記載の熱電対の取り付け構造。   The thermocouple according to any one of claims 1 to 9, wherein at least one of the positive electrode and the negative electrode of the reinforced platinum-based thermocouple is diffusion bonded in a state of being wound around a platinum foil. Mounting structure. 前記強化白金系熱電対の正極又は負極の少なくともいずれか一方は、金属元素又はガス元素を含有するか、或いは、酸化物、窒化物、炭化物又は硼化物のうち少なくともいずれか一種を含有することを特徴とする請求項1〜10のいずれか一つに記載の熱電対の取り付け構造。   At least one of the positive electrode and the negative electrode of the reinforced platinum-based thermocouple contains a metal element or a gas element, or contains at least one of oxide, nitride, carbide, or boride. The thermocouple mounting structure according to any one of claims 1 to 10, wherein the thermocouple mounting structure is any one of the above. 前記器具は、ガラス溶融ライン用器具、ガラス溶融炉、溶解槽、脱泡層、清澄槽、攪拌槽又は連結パイプであることを特徴とする請求項1〜11のいずれか一つに記載の熱電対の取り付け構造。   The thermoelectric device according to any one of claims 1 to 11, wherein the instrument is an instrument for a glass melting line, a glass melting furnace, a melting tank, a defoaming layer, a clarification tank, a stirring tank, or a connecting pipe. Pair mounting structure. 請求項1〜12のいずれか一つに記載の熱電対の取り付け構造における該熱電対の取り付け方法であって、
前記測温接点となる部分を機械的接合し、該部分を加圧した状態で、1000℃以上の温度に加熱して熱拡散させて拡散接合する工程を有することを特徴とする熱電対の取り付け方法。


A method for attaching the thermocouple in the thermocouple attachment structure according to any one of claims 1 to 12,
Mounting a thermocouple characterized by having a step of mechanically bonding the portion to be the temperature measuring contact, heating the portion to a temperature of 1000 ° C. or higher and thermally diffusing the portion while pressurizing the portion. Method.


JP2015152624A 2015-07-31 2015-07-31 Thermocouple mounting structure and thermocouple mounting method Active JP6752556B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015152624A JP6752556B2 (en) 2015-07-31 2015-07-31 Thermocouple mounting structure and thermocouple mounting method
PCT/JP2016/071840 WO2017022565A1 (en) 2015-07-31 2016-07-26 Thermocouple mounting structure and thermocouple mounting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015152624A JP6752556B2 (en) 2015-07-31 2015-07-31 Thermocouple mounting structure and thermocouple mounting method

Publications (2)

Publication Number Publication Date
JP2017032406A true JP2017032406A (en) 2017-02-09
JP6752556B2 JP6752556B2 (en) 2020-09-09

Family

ID=57943889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015152624A Active JP6752556B2 (en) 2015-07-31 2015-07-31 Thermocouple mounting structure and thermocouple mounting method

Country Status (2)

Country Link
JP (1) JP6752556B2 (en)
WO (1) WO2017022565A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021039008A (en) * 2019-09-03 2021-03-11 東京エレクトロン株式会社 Thermocouple structure, thermal treatment device, and thermocouple structure manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008088433A1 (en) * 2006-12-21 2008-07-24 Corning Incorporated Thermocouple circuit and method and system for forming same
JP4938871B2 (en) * 2010-02-03 2012-05-23 田中貴金属工業株式会社 Thermocouple mounting structure
JP5308499B2 (en) * 2011-11-11 2013-10-09 田中貴金属工業株式会社 Platinum thermocouple
WO2014153438A1 (en) * 2013-03-22 2014-09-25 Waters Technologies Corporation Thermopile differential scanning calorimeter sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021039008A (en) * 2019-09-03 2021-03-11 東京エレクトロン株式会社 Thermocouple structure, thermal treatment device, and thermocouple structure manufacturing method
JP7308699B2 (en) 2019-09-03 2023-07-14 東京エレクトロン株式会社 Thermocouple structure, heat treatment apparatus, and method for manufacturing thermocouple structure
US11815407B2 (en) 2019-09-03 2023-11-14 Tokyo Electron Limited Thermocouple structure, heat treatment apparatus, and method of manufacturing thermocouple structure

Also Published As

Publication number Publication date
WO2017022565A1 (en) 2017-02-09
JP6752556B2 (en) 2020-09-09

Similar Documents

Publication Publication Date Title
US8092086B2 (en) Temperature sensor
US10481023B2 (en) Mechanical quantity measuring device and sensor unit
JP2015190902A (en) temperature sensor
JP2015076208A (en) Terminal joint structure for wire, electrode for resistance welding and method of joining terminal of wire
WO2017022565A1 (en) Thermocouple mounting structure and thermocouple mounting method
JP4938871B2 (en) Thermocouple mounting structure
JP6152463B1 (en) thermocouple
US20210379686A1 (en) Welding Method For Connecting A First Connector To A Second Connector, The Use Of The Welding Method, And A Welded Connection
WO2021200154A1 (en) Electronic component, lead part connection structure, and lead part connection method
CN110560825B (en) Sensor element
JP2007123647A (en) Structure and method for attaching thermocouple for heater chip
JP3089156B2 (en) Lead terminal connection device for ceramic heater
TWI493163B (en) Mounting structure of thermocouple
WO2011132670A1 (en) Wire bonding method for power semiconductor device
JP2001284781A (en) Heater chip for thermal bonding and method for manufacturing the same
WO2003097288A1 (en) Heater tip for thermocompession bonding
JPWO2018203475A1 (en) Device equipped with temperature sensor and temperature sensor
KR20130083459A (en) Structure for mounting thermocouple
WO2015045779A1 (en) Mechanical quantity measuring device and production method for same
JP6208098B2 (en) Semiconductor element connection unit and mechanical quantity measuring apparatus having the same
JPH01233332A (en) Thermocouple
JP2019107677A (en) Manufacturing method of connection body
JPH07176663A (en) Leadless diode
JPH10270508A (en) Capillary structure of bonding device
JP2007035595A (en) Cold cathode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200819

R150 Certificate of patent or registration of utility model

Ref document number: 6752556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250