JP2017031872A - Exhaust emission control system for internal combustion engine, internal combustion engine and exhaust emission control method for internal combustion engine - Google Patents

Exhaust emission control system for internal combustion engine, internal combustion engine and exhaust emission control method for internal combustion engine Download PDF

Info

Publication number
JP2017031872A
JP2017031872A JP2015152052A JP2015152052A JP2017031872A JP 2017031872 A JP2017031872 A JP 2017031872A JP 2015152052 A JP2015152052 A JP 2015152052A JP 2015152052 A JP2015152052 A JP 2015152052A JP 2017031872 A JP2017031872 A JP 2017031872A
Authority
JP
Japan
Prior art keywords
exhaust gas
internal combustion
combustion engine
exhaust
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015152052A
Other languages
Japanese (ja)
Other versions
JP6593015B2 (en
Inventor
鉄平 大堀
Teppei Ohori
鉄平 大堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2015152052A priority Critical patent/JP6593015B2/en
Publication of JP2017031872A publication Critical patent/JP2017031872A/en
Application granted granted Critical
Publication of JP6593015B2 publication Critical patent/JP6593015B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust emission control system for an internal combustion engine, the internal combustion engine and an exhaust emission control method for the internal combustion engine that enable improvement of NOx elimination performance of a selective reduction type catalyst device while maintaining supply efficiency of urea water to the selective reduction type catalyst device even in a situation where a temperature of exhaust gas is raised, such as a high-load operation of the engine and regeneration control of a particulate trapping device provided in an exhaust emission control device.SOLUTION: In an exhaust passage 11 provided upstream of a selective reduction type catalyst device 14, a bypass passage 31 having a heat exchange device 30 for cooling exhaust gas G2 is provided in parallel with the exhaust passage 11, and a three-way valve 32 for controlling a flow rate of the exhaust gas G2 passing through the bypass passage 31 is provided. An urea water supply device 20 is provided in the exhaust passage 11 between a branch point from the exhaust passage 11 to the bypass passage 31 and the selective reduction type catalyst device 14. Based on a detection value T obtained by a temperature sensor 23 provided on the inlet side of the selective reduction type catalyst device 14, the three-way valve 32 is controlled.SELECTED DRAWING: Figure 2

Description

本発明は、内燃機関の排気通路に選択還元型触媒装置を備えて構成される内燃機関の排気ガス浄化システム、内燃機関及び内燃機関の排気ガス浄化方法に関する。   The present invention relates to an exhaust gas purification system for an internal combustion engine configured to include a selective reduction catalyst device in an exhaust passage of the internal combustion engine, an internal combustion engine, and an exhaust gas purification method for the internal combustion engine.

近年、ディーゼルエンジン等の内燃機関の排気通路に備えた排気ガス浄化システムには、内燃機関の排気ガスに含まれる、一酸化窒素(NO)や二酸化窒素(NO2)等の窒素酸化物(NOx)を浄化(分解及び除去)するために、選択還元型触媒装置(SCR触媒装置)が配設されている。 In recent years, an exhaust gas purification system provided in an exhaust passage of an internal combustion engine such as a diesel engine includes a nitrogen oxide (NOx) such as nitrogen monoxide (NO) or nitrogen dioxide (NO 2 ) contained in the exhaust gas of the internal combustion engine. In order to purify (decompose and remove)), a selective reduction catalyst device (SCR catalyst device) is provided.

この選択還元型触媒装置を使用する排気ガス浄化システムでは、尿素水から生成するアンモニア(NH3)を還元剤として使用する場合が多く、この場合には、選択還元型触媒装置より上流側の排気通路に尿素水供給装置を設けて、この尿素水供給装置より噴射した尿素水が排気ガスの熱により加水分解して生成されるアンモニアを還元剤として選択還元型触媒装置に供給することで、選択還元型触媒装置の触媒作用により排気ガスに含まれるNOxを還元して浄化している。 In the exhaust gas purification system using this selective reduction catalyst device, ammonia (NH 3 ) generated from urea water is often used as a reducing agent. In this case, the exhaust gas upstream of the selective reduction catalyst device is used. A urea water supply device is provided in the passage, and the urea water injected from the urea water supply device is hydrolyzed by the heat of the exhaust gas and supplied to the selective catalytic reduction catalytic converter as ammonia. NOx contained in the exhaust gas is reduced and purified by the catalytic action of the reduction catalyst device.

選択還元型触媒装置に担持される触媒は、エンジンからの排気ガスに含まれる熱などで加熱されることで活性化し、触媒が活性化された状態のときに、NOx等の浄化対象成分を分解及び除去している。この担持される触媒としては、従来、鉄(Fe)イオンや銅(Cu)イオンをイオン交換したFeゼオライト及びCuゼオライトが実用化されているが、近年では特に、高温であるほど、NOxの分解する能力の高く、高い浄化性能を発揮する傾向があるFeゼオライト触媒よりも、低温では高いNOx浄化性能を発揮する一方、高温になるにつれて、NOx浄化性能が低下するという特徴を有する、言い換えれば、特定の温度範囲でのみ高いNOx浄化性能を発揮するCuゼオライト触媒が注目されている(図3参照)。   The catalyst carried on the selective catalytic reduction device is activated by being heated by heat contained in the exhaust gas from the engine, and decomposes components to be purified such as NOx when the catalyst is activated. And removing. As this supported catalyst, Fe zeolite and Cu zeolite obtained by ion exchange of iron (Fe) ions and copper (Cu) ions have been put to practical use in recent years. It has a feature that the NOx purification performance decreases as the temperature becomes higher, while the NOx purification performance decreases at a lower temperature than the Fe zeolite catalyst, which has a tendency to exhibit a high purification performance with a high ability, A Cu zeolite catalyst that exhibits high NOx purification performance only in a specific temperature range has attracted attention (see FIG. 3).

しかしながら、選択還元型触媒装置に担持される触媒が、Cuゼオライト触媒のように特定の温度範囲でのみ高いNOx浄化性能を発揮する触媒であるときは、高温になるにつれて、NOx浄化性能が低下していくため、エンジンの高負荷運転時や、排気ガス浄化装置に備えた、排気ガスに含まれる微粒子状物質(PM)を捕集する微粒子捕集装置の強制PM再生制御時等、高温の排気ガスが選択還元型触媒装置を通過して、選択還元型触媒装置が高温にさらされる状況では、選択還元型触媒装置でNOxを十分に浄化しきれずに、比較的高濃度のNOxが大気に排出されてしまう懸念がある。   However, when the catalyst supported on the selective catalytic reduction catalyst device is a catalyst that exhibits high NOx purification performance only in a specific temperature range, such as a Cu zeolite catalyst, the NOx purification performance decreases as the temperature rises. High-temperature exhaust during high-load operation of the engine or during forced PM regeneration control of a particulate collection device that collects particulate matter (PM) contained in the exhaust gas provided in the exhaust gas purification device In a situation where the gas passes through the selective catalytic reduction device and the selective catalytic reduction device is exposed to a high temperature, the selective catalytic reduction device cannot sufficiently purify NOx, and a relatively high concentration of NOx is discharged to the atmosphere. There is a concern that will be done.

これに関連して、排気管をSCRF(SCRをコートしたフィルタ)とSCRとの間で分岐させ、分岐管には、空冷または水冷で分岐管を通過する排気を冷却する冷却素子が備えられ、冷却不要の場合には排気制御弁によってSCRFからの排気の全てが排気管のみを通過してSCRに流入するようにする一方、冷却が必要な場合には目標触媒温度に応じて、分岐管を通過する排気の量と、必要に応じて冷却素子を流れる水または空気の流量を増加し、SCRに流入する排気の温度を制御する内燃機関の排気ガス浄化システムが提案されている(例えば、特許文献1参照)。   In this connection, the exhaust pipe is branched between the SCRF (SCR-coated filter) and the SCR, and the branch pipe is provided with a cooling element for cooling the exhaust gas passing through the branch pipe by air cooling or water cooling, When cooling is not required, the exhaust control valve allows all of the exhaust from the SCRF to pass only through the exhaust pipe and flow into the SCR. When cooling is required, the branch pipe is set according to the target catalyst temperature. An exhaust gas purification system for an internal combustion engine that controls the temperature of the exhaust gas flowing into the SCR by increasing the amount of exhaust gas passing through and the flow rate of water or air flowing through the cooling element as necessary has been proposed (for example, patents) Reference 1).

しかしながら、この内燃機関の排気ガス浄化システムでは、還元剤噴射弁の下流側に排気制御弁及び冷却素子を設けているので、還元剤噴射弁より噴射した還元剤としての尿素水溶液や尿素水溶液の分解生成物(ビウレット、イソシアン酸、シアヌル酸、アンモニア等)が冷却素子に流入してしまうため、冷却素子の詰まりや腐食といった不具合が発生したり、SCRへの還元剤の供給効率が低下したりする虞があるという問題がある。   However, in this exhaust gas purification system for an internal combustion engine, an exhaust control valve and a cooling element are provided on the downstream side of the reducing agent injection valve. Therefore, urea aqueous solution or urea aqueous solution as a reducing agent injected from the reducing agent injection valve is decomposed. Since products (biuret, isocyanic acid, cyanuric acid, ammonia, etc.) flow into the cooling element, problems such as clogging and corrosion of the cooling element occur, and the supply efficiency of the reducing agent to the SCR decreases. There is a problem of fear.

特開2015−86848号公報Japanese Unexamined Patent Publication No. 2015-86848

本発明は、上記のことを鑑みてなされたものであり、その目的は、内燃機関の排気通路に選択還元型触媒装置を備えて構成される内燃機関の排気ガス浄化システムに関し、特に、エンジンの高負荷運転時や、排気ガス浄化装置に備えた微粒子捕集装置の再生制御時等、排気ガスが高温化する状況においても、選択還元型触媒装置への尿素水の供給効率を維持しつつ、選択還元型触媒装置の温度を高いNOx浄化性能を発揮する温度範囲内に留めて、選択還元型触媒装置のNOx浄化性能を向上させることができる内燃機関の排気ガス浄化システム、内燃機関及び内燃機関の排気ガス浄化方法を提供することにある。   The present invention has been made in view of the above, and an object thereof is related to an exhaust gas purification system for an internal combustion engine configured to include a selective reduction catalyst device in an exhaust passage of the internal combustion engine. While maintaining high urea water supply efficiency to the selective catalytic reduction catalyst device even in situations where the exhaust gas is at a high temperature, such as during high-load operation or regeneration control of the particulate collection device provided in the exhaust gas purification device, Exhaust gas purification system for internal combustion engine, internal combustion engine, and internal combustion engine capable of improving NOx purification performance of selective reduction catalyst device by keeping temperature of selective reduction catalyst device within temperature range exhibiting high NOx purification performance It is in providing the exhaust-gas purification method of this.

上記の目的を達成するための本発明の内燃機関の排気ガス浄化システムは、内燃機関の排気通路に選択還元型触媒装置を備えて構成される内燃機関の排気ガス浄化システムにおいて、前記選択還元型触媒装置の入口側に、前記選択還元型触媒装置に流入する排気ガスの温度を検出する温度検出装置を設けるとともに、前記選択還元型触媒装置より上流側の前記排気通路に、排気ガスを冷却する熱交換装置を設けたバイパス通路を前記排気通路に並行して設け、さらに、前記バイパス通路を通過する排気ガスの流量を調整する流量調整機構を設けるとともに、前記排気通路から前記バイパス通路への分岐点と前記選択還元型触媒装置の間の前記排気通路に、尿素水供給装置を設けて構成され、当該排気ガス浄化システムを制御する制御装置が、前記温度検出装置の検出値に基づいて、前記流量調整機構を制御するように構成される。   In order to achieve the above object, an exhaust gas purification system for an internal combustion engine according to the present invention is an exhaust gas purification system for an internal combustion engine comprising a selective reduction catalyst device in an exhaust passage of the internal combustion engine. A temperature detection device for detecting the temperature of the exhaust gas flowing into the selective reduction catalyst device is provided on the inlet side of the catalyst device, and the exhaust gas is cooled in the exhaust passage upstream of the selective reduction catalyst device. A bypass passage provided with a heat exchange device is provided in parallel with the exhaust passage, and further, a flow rate adjusting mechanism for adjusting a flow rate of exhaust gas passing through the bypass passage is provided, and a branch from the exhaust passage to the bypass passage is provided. A control device configured to provide a urea water supply device in the exhaust passage between the point and the selective reduction catalyst device, and to control the exhaust gas purification system, Based on the detected value of the serial temperature sensing device adapted to control the flow rate adjusting mechanism.

すなわち、選択還元型触媒装置の入口側に温度検出装置(温度センサ等)を設け、この温度検出装置で検出される排気ガスの温度が、エンジン運転状態に基づいて設定される選択還元型触媒装置の目標温度に対応する排気ガスの目標温度になるように、流量調整機構(開閉弁、三方弁等)をフィードバック制御して、選択還元型触媒装置に流入する排気ガスの温度を調整制御する。なお、排気ガスの目標温度は、選択還元型触媒装置に担持する触媒の特性(活性化温度範囲)を考慮して予め実験結果などにより設定される。   That is, the selective reduction type catalytic device is provided with a temperature detection device (temperature sensor or the like) on the inlet side of the selective reduction type catalytic device, and the temperature of the exhaust gas detected by this temperature detection device is set based on the engine operating state The flow rate adjusting mechanism (open / close valve, three-way valve, etc.) is feedback-controlled so that the exhaust gas temperature corresponding to the target temperature of the exhaust gas is adjusted to control the temperature of the exhaust gas flowing into the selective catalytic reduction catalyst device. Note that the target temperature of the exhaust gas is set in advance based on experimental results and the like in consideration of the characteristics (activation temperature range) of the catalyst carried on the selective catalytic reduction device.

より具体的には、温度検出装置の検出値が排気ガスの目標温度よりも高いときには、バイパス通路を通過して冷却される排気ガスの流量(熱交換装置により冷却される排気ガスの流量)が多くなるように、流量調整機構を制御して、バイパス通路を通過しない排気ガスと通過する排気ガスの合流後の排気ガスの温度を低温化させる。一方、温度検出装置の検出値が排気ガスの目標温度よりも低いときには、バイパス通路を通過して冷却される排気ガスの流量が少なくなるように、流量調整機構を制御して、バイパス通路を通過しない排気ガスと通過する排気ガスの合流後の排気ガスの温度を高温化させる。なお、熱交換装置の冷却媒体としては、エンジン冷却水等の水、油、空気等のいずれでもよい。   More specifically, when the detected value of the temperature detection device is higher than the target temperature of the exhaust gas, the flow rate of the exhaust gas cooled through the bypass passage (the flow rate of the exhaust gas cooled by the heat exchange device) is The flow rate adjusting mechanism is controlled so as to increase the temperature of the exhaust gas after joining the exhaust gas that does not pass through the bypass passage and the exhaust gas that passes through it. On the other hand, when the detected value of the temperature detection device is lower than the target temperature of the exhaust gas, the flow rate adjustment mechanism is controlled so that the flow rate of the exhaust gas cooled by passing through the bypass passage is reduced, and passes through the bypass passage. The temperature of the exhaust gas after joining the exhaust gas not passing through and the exhaust gas passing through is raised. The cooling medium for the heat exchange device may be water such as engine cooling water, oil, air, or the like.

したがって、この構成によれば、エンジンの高負荷運転時や、排気ガス浄化装置に備えた微粒子捕集装置の再生制御時等、排気ガスが高温化する状況においても、選択還元型触媒装置に流入する排気ガスの温度を調整制御することで、選択還元型触媒装置に担持した触媒の温度を高いNOx浄化性能を発揮する温度範囲に調整することができるので、選択還元型触媒装置のNOx浄化性能を向上させることができる。特に、選択還元型触媒装置に担持した触媒が、Cuゼオライト触媒等、特定の温度範囲のみで高いNOx浄化性能を有する触媒であるときに、本発明は極めて有効となる。   Therefore, according to this configuration, the exhaust gas flows into the selective catalytic reduction catalyst device even when the exhaust gas is at a high temperature, such as during high-load operation of the engine or during regeneration control of the particulate collection device provided in the exhaust gas purification device. By adjusting and controlling the temperature of the exhaust gas to be adjusted, the temperature of the catalyst supported on the selective reduction catalyst device can be adjusted to a temperature range that exhibits high NOx purification performance. Therefore, the NOx purification performance of the selective reduction catalyst device Can be improved. In particular, the present invention is extremely effective when the catalyst supported on the selective catalytic reduction apparatus is a catalyst having high NOx purification performance only in a specific temperature range such as a Cu zeolite catalyst.

また、排気通路からバイパス通路への分岐点と選択還元型触媒装置の間の排気通路に、尿素水供給装置を設けているので、尿素水や尿素水の分解生成物(ビウレット、イソシアン酸、シアヌル酸、アンモニア等)が熱交換装置に入ることが無く、熱交換装置の詰まりや腐食といった不具合を防止できると共に、選択還元型触媒装置への尿素水の供給効率を維持することができる。   In addition, since a urea water supply device is provided in the exhaust passage between the branch point from the exhaust passage to the bypass passage and the selective catalytic reduction device, urea water and urea water decomposition products (biuret, isocyanate, cyanuric) Acid, ammonia, etc.) does not enter the heat exchange device, so that troubles such as clogging and corrosion of the heat exchange device can be prevented, and the supply efficiency of urea water to the selective catalytic reduction catalyst device can be maintained.

また、上記の内燃機関の排気ガス浄化システムにおいて、前記制御装置が、前記温度検出装置の検出値が、予め設定した設定値未満のときは、前記バイパス通路を通過する排気ガスの流量がゼロとなるように、前記流量調整機構を制御し、前記設定値以上のときは、前記検出値が前記設定値未満になるように、前記流量調整機構を制御するように構成される。この設定値は、250℃〜500℃の温度範囲内の値、好ましくは、300℃〜400℃の温度範囲内の値に設定される。   In the exhaust gas purification system for an internal combustion engine, when the detection value of the temperature detection device is less than a preset value, the flow rate of the exhaust gas passing through the bypass passage is zero. As described above, the flow rate adjustment mechanism is controlled, and when the value is equal to or greater than the set value, the flow rate adjustment mechanism is controlled so that the detected value is less than the set value. This set value is set to a value within a temperature range of 250 ° C. to 500 ° C., preferably a value within a temperature range of 300 ° C. to 400 ° C.

この構成によれば、選択還元型触媒装置に担持した触媒の温度を高いNOx浄化性能を発揮する温度範囲に確実に調整することができる。   According to this configuration, the temperature of the catalyst supported on the selective reduction catalyst device can be reliably adjusted to a temperature range that exhibits high NOx purification performance.

また、上記の目的を達成するための本発明の内燃機関は、上記の内燃機関の排気ガス浄化システムを備えて構成され、上記の内燃機関の排気ガス浄化システムと同様の作用効果を奏することができる。   In order to achieve the above object, an internal combustion engine of the present invention is configured to include the exhaust gas purification system of the internal combustion engine, and has the same effects as the exhaust gas purification system of the internal combustion engine. it can.

そして、上記の目的を達成するための本発明の内燃機関の排気ガス浄化方法は、内燃機関の排気通路に選択還元型触媒装置を備えるとともに、該選択還元型触媒装置より上流側の前記排気通路に、排気ガスを冷却する熱交換装置を設けたバイパス通路を前記排気通路に並行して設け、さらに、前記バイパス通路を通過する排気ガスの流量を調整する流量調整機構を設けるとともに、前記排気通路から前記バイパス通路への分岐点と前記選択還元型触媒装置の間の前記排気通路に、尿素水供給装置を設けて構成される内燃機関の排気ガス浄化方法において、前記選択還元型触媒装置の入口側に温度検出装置を設けて、該温度検出装置により前記選択還元型触媒装置に流入する排気ガスの温度を検出するとともに、前記温度検出装置の検出値に基づいて、前記流量調整機構を制御することを特徴とする方法である。   An exhaust gas purification method for an internal combustion engine of the present invention for achieving the above object includes a selective reduction catalyst device in an exhaust passage of the internal combustion engine, and the exhaust passage upstream of the selective reduction catalyst device. In addition, a bypass passage provided with a heat exchange device for cooling the exhaust gas is provided in parallel with the exhaust passage, a flow rate adjusting mechanism for adjusting the flow rate of the exhaust gas passing through the bypass passage is provided, and the exhaust passage In the exhaust gas purification method for an internal combustion engine, in which an urea water supply device is provided in the exhaust passage between the branch point from the bypass passage to the bypass passage and the selective reduction catalyst device, the inlet of the selective reduction catalyst device A temperature detection device is provided on the side, the temperature detection device detects the temperature of the exhaust gas flowing into the selective catalytic reduction catalyst device, and based on the detection value of the temperature detection device. There are a method and controlling the flow rate adjustment mechanism.

また、上記の内燃機関の排気ガス浄化方法において、前記温度検出装置の検出値が、予め設定した設定値未満のときは、前記バイパス通路を通過する排気ガスの流量がゼロとなるように、前記流量調整機構を制御し、前記設定値以上のときは、前記検出値が前記設定値未満になるように、前記流量調整機構を制御することを特徴とする方法である。   Further, in the exhaust gas purification method for an internal combustion engine, when the detected value of the temperature detection device is less than a preset set value, the flow rate of the exhaust gas passing through the bypass passage becomes zero. The flow rate adjusting mechanism is controlled, and when it is equal to or higher than the set value, the flow rate adjusting mechanism is controlled so that the detected value is less than the set value.

これらの方法によれば、上記の内燃機関の排気ガス浄化システムと同様の作用効果を奏することができる。   According to these methods, the same operational effects as the exhaust gas purification system of the internal combustion engine can be obtained.

本発明の内燃機関の排気ガス浄化システム、内燃機関及び内燃機関の排気ガス浄化方法によれば、エンジンの高負荷運転時や、排気ガス浄化装置に備えた微粒子捕集装置の再生制御時等、排気ガスが高温化する状況においても、選択還元型触媒装置に流入する排気ガスの温度を調整制御することで、選択還元型触媒装置に担持した触媒の温度を高いNOx浄化性能を発揮する温度範囲に調整することができるので、選択還元型触媒装置のNOx浄化性能を向上させることができる。特に、選択還元型触媒装置に担持した触媒が、Cuゼオライト触媒等、特定の温度範囲のみで高いNOx浄化性能を有する触媒であるときに、本発明は極めて有効となる。   According to the exhaust gas purification system for an internal combustion engine, the internal combustion engine, and the exhaust gas purification method for the internal combustion engine of the present invention, during high-load operation of the engine, during regeneration control of the particulate collection device provided in the exhaust gas purification device, etc. The temperature range in which the temperature of the catalyst carried on the selective catalytic reduction catalyst device exhibits a high NOx purification performance by adjusting and controlling the temperature of the exhaust gas flowing into the selective catalytic reduction catalyst device even in a situation where the exhaust gas temperature rises Therefore, the NOx purification performance of the selective catalytic reduction catalyst device can be improved. In particular, the present invention is extremely effective when the catalyst supported on the selective catalytic reduction apparatus is a catalyst having high NOx purification performance only in a specific temperature range such as a Cu zeolite catalyst.

また、排気通路からバイパス通路への分岐点と選択還元型触媒装置の間の排気通路に、尿素水供給装置を設けているので、尿素水や尿素水の分解生成物(ビウレット、イソシアン酸、シアヌル酸、アンモニア等)が熱交換装置に入ることが無く、熱交換装置の詰まりや腐食といった不具合を防止できると共に、選択還元型触媒装置への尿素水の供給効率を維持することができる。   In addition, since a urea water supply device is provided in the exhaust passage between the branch point from the exhaust passage to the bypass passage and the selective catalytic reduction device, urea water and urea water decomposition products (biuret, isocyanate, cyanuric) Acid, ammonia, etc.) does not enter the heat exchange device, so that troubles such as clogging and corrosion of the heat exchange device can be prevented, and the supply efficiency of urea water to the selective catalytic reduction catalyst device can be maintained.

本発明に係る実施の形態の内燃機関の排気ガス浄化システムの構成を模式的に示す図である。It is a figure showing typically composition of an exhaust-gas purification system of an internal-combustion engine of an embodiment concerning the present invention. 本発明に係る実施の形態の内燃機関の排気ガス浄化方法の制御フローの一例を示す図である。It is a figure which shows an example of the control flow of the exhaust gas purification method of the internal combustion engine of embodiment which concerns on this invention. Feゼオライト触媒とCuゼオライト触媒の各触媒を担持した選択還元型触媒装置の温度とNOx浄化率の関係を示す図である。It is a figure which shows the relationship between the temperature of the selective reduction type | mold catalyst apparatus which supported each catalyst of the Fe zeolite catalyst and the Cu zeolite catalyst, and the NOx purification rate. 従来技術に係る内燃機関の排気ガス浄化システムの構成を模式的に示す図である。It is a figure which shows typically the structure of the exhaust-gas purification system of the internal combustion engine which concerns on a prior art.

以下、本発明に係る実施の形態の内燃機関の排気ガス浄化システム、内燃機関及び内燃機関の排気ガス浄化方法について、図面を参照しながら説明する。なお、本発明に係る実施の形態の内燃機関は、後述する本発明に係る実施の形態の内燃機関の排気ガス浄化システム1を備えて構成され、後述する内燃機関の排気ガス浄化システム1が奏する作用効果と同様の作用効果を奏することができる。   Hereinafter, an exhaust gas purification system for an internal combustion engine, an internal combustion engine, and an exhaust gas purification method for the internal combustion engine according to embodiments of the present invention will be described with reference to the drawings. Note that an internal combustion engine according to an embodiment of the present invention includes an exhaust gas purification system 1 for an internal combustion engine according to an embodiment of the present invention, which will be described later, and is provided by an exhaust gas purification system 1 for the internal combustion engine described later. The same operational effects as the operational effects can be achieved.

また、本実施形態では、選択還元型触媒装置(SCR触媒装置)として、尿素水から発生するアンモニアを還元剤とする尿素(又はアンモニア)選択還元型触媒装置を例にして説明するが、その他の還元剤でもよく、その場合は、選択還元型触媒装置もその還元剤に対応する選択還元型触媒装置であればよい。   In the present embodiment, a selective reduction catalyst device (SCR catalyst device) is described by taking a urea (or ammonia) selective reduction catalyst device using ammonia generated from urea water as a reducing agent as an example. A reducing agent may be used, and in that case, the selective catalytic reduction apparatus may be a selective catalytic reduction apparatus corresponding to the reducing agent.

図1に示すように、本発明に係る実施の形態の内燃機関の排気ガス浄化システム1は、エンジン(内燃機関)(図示しない)の排気通路11に、上流側(エンジン側)より順に、酸化触媒装置12、微粒子捕集装置13、Cuゼオライト触媒を担持した選択還元型触媒装置14、アンモニアスリップ触媒装置15等の排気ガス浄化装置を備えて構成されるシステムである。   As shown in FIG. 1, an exhaust gas purification system 1 for an internal combustion engine according to an embodiment of the present invention oxidizes an exhaust passage 11 of an engine (internal combustion engine) (not shown) in order from the upstream side (engine side). This is a system comprising an exhaust gas purification device such as a catalyst device 12, a fine particle collecting device 13, a selective reduction catalyst device 14 carrying a Cu zeolite catalyst, an ammonia slip catalyst device 15, and the like.

また、選択還元型触媒装置14より上流側の排気通路11には、エンジンの運転状態に基づいて、選択還元型触媒装置14に向けて尿素水Uを噴射する尿素水供給装置20が設けられる。この尿素水供給装置20には、尿素水供給ポンプ21により尿素水タンク22に貯留した尿素水Uが供給され、尿素水Uの噴射量は、後述する尿素水供給制御装置(DCU:ドージングコントロールユニット)40により尿素水供給ポンプ21の出力を調整制御することにより、制御される。なお、尿素水Uの噴射量を、尿素水供給装置20の弁開度を調整制御することにより、制御してもよい。   Further, a urea water supply device 20 that injects urea water U toward the selective reduction catalyst device 14 is provided in the exhaust passage 11 upstream of the selective reduction catalyst device 14 based on the operating state of the engine. The urea water supply device 20 is supplied with the urea water U stored in the urea water tank 22 by the urea water supply pump 21, and the injection amount of the urea water U is a urea water supply control device (DCU: dosing control unit) to be described later. ) 40 is controlled by adjusting and controlling the output of the urea water supply pump 21. Note that the injection amount of the urea water U may be controlled by adjusting and controlling the valve opening of the urea water supply device 20.

また、選択還元型触媒装置14の入口に温度センサ(温度検出装置)23が設けられるとともに、アンモニアスリップ触媒装置15より下流側の排気通路11には、NOx濃度センサ24及びアンモニア濃度センサ25が設けられる。   A temperature sensor (temperature detection device) 23 is provided at the inlet of the selective catalytic reduction catalyst device 14, and a NOx concentration sensor 24 and an ammonia concentration sensor 25 are provided in the exhaust passage 11 downstream of the ammonia slip catalyst device 15. It is done.

また、本発明の内燃機関の排気ガス浄化システム1を制御する尿素水供給制御装置(DCU)40が設けられる。この尿素水供給制御装置40は、エンジンの運転状態を制御するエンジン制御装置(ECU:エンジンコントロールユニット)41より、エンジンへの吸気流量に関するデータ等の必要なデータを受信するとともに、温度センサ23、NOx濃度センサ24及びアンモニア濃度センサ25の各検出値のデータを受信して、これらの受信したデータを基に、尿素水供給ポンプ21の出力を調整制御して、尿素水供給装置20からの尿素水Uの噴射量を制御する装置である。   Further, a urea water supply control unit (DCU) 40 for controlling the exhaust gas purification system 1 for an internal combustion engine of the present invention is provided. The urea water supply control device 40 receives necessary data such as data related to the intake air flow rate to the engine from an engine control device (ECU: engine control unit) 41 that controls the operating state of the engine, and the temperature sensor 23, The data of the detected values of the NOx concentration sensor 24 and the ammonia concentration sensor 25 are received, and based on these received data, the output of the urea water supply pump 21 is adjusted and controlled, and urea from the urea water supply device 20 is controlled. It is a device that controls the injection amount of water U.

なお、本発明の内燃機関の排気ガス浄化システム1に関し、上記で説明した構成及び制御については、図4に示す従来技術の内燃機関の排気ガス浄化システム1Xと同様である。   Regarding the exhaust gas purification system 1 for an internal combustion engine of the present invention, the configuration and control described above are the same as those of the exhaust gas purification system 1X for an internal combustion engine of the prior art shown in FIG.

本発明に係る内燃機関の排気ガス浄化システム1では、従来技術に係る内燃機関の排気ガス浄化システム1Xとは異なり、選択還元型触媒装置14より上流側の排気通路11に、排気ガスG2を冷却する熱交換装置30を設けたバイパス通路31を排気通路11に並行して設け、さらに、バイパス通路31を通過する排気ガスG2の流量を調整する三方弁(流量調整機構)32を設ける。   In the exhaust gas purification system 1 for an internal combustion engine according to the present invention, unlike the exhaust gas purification system 1X for an internal combustion engine according to the prior art, the exhaust gas G2 is cooled in the exhaust passage 11 upstream of the selective catalytic reduction device 14. A bypass passage 31 provided with the heat exchange device 30 is provided in parallel with the exhaust passage 11, and a three-way valve (flow rate adjusting mechanism) 32 that adjusts the flow rate of the exhaust gas G <b> 2 passing through the bypass passage 31 is provided.

なお、流量調整機構32は、バイパス通路31を通過する排気ガスG2の流量を調整できる機構であればよいので、三方弁32の代わりに、バイパス通路31に開閉弁を設けてもよいし、排気通路11からバイパス通路31への分岐点及び合流点の間の排気通路11とバイパス通路31の両方に開閉弁を設けてもよい。   The flow rate adjusting mechanism 32 may be any mechanism that can adjust the flow rate of the exhaust gas G2 that passes through the bypass passage 31, so that an on-off valve may be provided in the bypass passage 31 instead of the three-way valve 32, Open / close valves may be provided in both the exhaust passage 11 and the bypass passage 31 between the branch point from the passage 11 to the bypass passage 31 and the junction.

また、この熱交換装置30は、より詳細には、エンジン冷却水を冷却媒体として、微粒子捕集装置13を通過後の排気ガスGより三方弁32を介して分流される排気ガスG2を冷却する装置である。なお、熱交換装置30の冷却媒体としては、エンジン冷却水以外の水冷の冷却媒体でもよいし、油や空気等の冷却媒体でもよい。   More specifically, the heat exchanger 30 cools the exhaust gas G2 that is diverted through the three-way valve 32 from the exhaust gas G that has passed through the particulate collection device 13 using engine cooling water as a cooling medium. Device. The cooling medium of the heat exchange device 30 may be a water-cooled cooling medium other than engine cooling water, or a cooling medium such as oil or air.

また、従来技術では、選択還元型触媒装置14より上流側の排気通路11に尿素水供給装置20を設けていたが、本発明では、排気通路11からバイパス通路31への分岐点と選択還元型触媒装置14の間の排気通路11に尿素水供給装置20を設ける。   In the prior art, the urea water supply device 20 is provided in the exhaust passage 11 upstream of the selective reduction catalyst device 14. However, in the present invention, the branch point from the exhaust passage 11 to the bypass passage 31 and the selective reduction type are provided. A urea water supply device 20 is provided in the exhaust passage 11 between the catalyst devices 14.

そして、本発明に係る内燃機関の排気ガス浄化システム1では、尿素水供給制御装置40が、温度センサ23の検出値Tに基づいて、三方弁32を制御するように構成する。   In the exhaust gas purification system 1 for an internal combustion engine according to the present invention, the urea water supply control device 40 is configured to control the three-way valve 32 based on the detection value T of the temperature sensor 23.

すなわち、選択還元型触媒装置14の入口側に温度センサ23を設け、この温度センサ23で検出される排気ガスG(=G1+G2)の温度Tが、エンジン運転状態に基づいて設定される選択還元型触媒装置14の目標温度に対応する排気ガスGの目標温度Ttになるように、三方弁32をフィードバック制御して、選択還元型触媒装置14に流入する排気ガスGの温度を調整制御する。なお、排気ガスGの目標温度Ttは、選択還元型触媒装置14に担持する触媒の特性を考慮して設定される。   That is, a temperature sensor 23 is provided on the inlet side of the selective catalytic reduction device 14, and the temperature T of the exhaust gas G (= G1 + G2) detected by the temperature sensor 23 is set based on the engine operating state. The three-way valve 32 is feedback-controlled so that the target temperature Tt of the exhaust gas G corresponding to the target temperature of the catalyst device 14 is adjusted, and the temperature of the exhaust gas G flowing into the selective catalytic reduction device 14 is adjusted and controlled. The target temperature Tt of the exhaust gas G is set in consideration of the characteristics of the catalyst carried on the selective reduction catalyst device 14.

より具体的には、温度センサ23の検出値Tが排気ガスGの目標温度Ttよりも高いときには、バイパス通路31を通過する排気ガスG2の流量(熱交換装置30により冷却される排気ガスG2の流量)が多くなるように、三方弁32を制御して、バイパス通路31を通過しない排気ガスG1と通過する排気ガスG2の合流後の排気ガスGの温度を、言い換えれば、選択還元型触媒装置14に流入する排気ガスGの温度を低温化させる。一方、温度センサ23の検出値Tが排気ガスGの目標温度Ttよりも低いときには、バイパス通路31を通過する排気ガスG2の流量が少なくなるように、三方弁32を制御して、バイパス通路31を通過しない排気ガスG1と通過する排気ガスG2の合流後の排気ガスGの温度を高温化させる。   More specifically, when the detected value T of the temperature sensor 23 is higher than the target temperature Tt of the exhaust gas G, the flow rate of the exhaust gas G2 passing through the bypass passage 31 (the exhaust gas G2 cooled by the heat exchange device 30). The flow rate of the exhaust gas G after the exhaust gas G1 that does not pass through the bypass passage 31 and the exhaust gas G2 that passes through it is controlled by controlling the three-way valve 32 so that the flow rate) increases. The temperature of the exhaust gas G flowing into the engine 14 is lowered. On the other hand, when the detected value T of the temperature sensor 23 is lower than the target temperature Tt of the exhaust gas G, the bypass passage 31 is controlled by controlling the three-way valve 32 so that the flow rate of the exhaust gas G2 passing through the bypass passage 31 decreases. The temperature of the exhaust gas G after joining the exhaust gas G1 that does not pass through and the exhaust gas G2 that passes through is raised.

なお、選択還元型触媒装置14に流入する排気ガスGの温度を調整制御できればよいので、三方弁32の制御の代わりに、あるいは、三方弁32の制御とともに、熱交換装置30に流入する冷却媒体の流量を調整制御することで、熱交換装置30の冷却能力を制御して、排気ガスGの温度を調整制御してもよい。ただし、三方弁32の制御のみで排気ガスGの温度を調整制御する方が、制御が単純化するので、応答性が良化する。   Note that it is sufficient that the temperature of the exhaust gas G flowing into the selective catalytic reduction device 14 can be adjusted and controlled. Therefore, instead of controlling the three-way valve 32 or together with the control of the three-way valve 32, the cooling medium flowing into the heat exchange device 30 The temperature of the exhaust gas G may be adjusted and controlled by controlling the cooling capacity of the heat exchange device 30 by adjusting and controlling the flow rate. However, if the temperature of the exhaust gas G is adjusted and controlled only by controlling the three-way valve 32, the control is simplified, and the responsiveness is improved.

また、バイパス通路31を設けることなく、排気通路11に熱交換装置30を設けて、この熱交換装置30への冷却媒体の流通を制御する構成も考えられるが、この場合は、熱交換装置30を尿素水供給装置20より上流側の排気通路11に設ける必要がある。熱交換装置30を尿素水供給装置20より下流側の排気通路11に設けると、尿素水Uや尿素水Uの分解生成物(ビウレット、イソシアン酸、シアヌル酸、アンモニア等)が熱交換装置30に流入して、熱交換装置30の詰まりや不具合を発生させる虞があるからである。   Further, a configuration in which the heat exchange device 30 is provided in the exhaust passage 11 without providing the bypass passage 31 to control the flow of the cooling medium to the heat exchange device 30 is conceivable. In this case, the heat exchange device 30 is also possible. Must be provided in the exhaust passage 11 upstream of the urea water supply device 20. When the heat exchange device 30 is provided in the exhaust passage 11 downstream from the urea water supply device 20, urea water U and decomposition products of the urea water U (biuret, isocyanic acid, cyanuric acid, ammonia, etc.) are transferred to the heat exchange device 30. This is because it may flow in and cause clogging or malfunction of the heat exchange device 30.

ただし、熱交換装置30を尿素水供給装置20より上流側の排気通路11に設けた場合であっても、熱交換装置30による排気ガスGの温度低下により尿素水Uのアンモニアへの分解効率が低下する虞があることや、暖機過程において熱交換装置30による排気ガスGの温度低下の影響で下流側の選択還元型触媒装置14の昇温速度が低下することや、熱交換装置30による排気ガスGの圧力損失が増加して燃費に悪影響を及ぼす可能性があること等を考慮すると、本発明のように、バイパス通路31を設けて、このバイパス通路31に熱交換装置30を設ける方がより好ましい。   However, even when the heat exchange device 30 is provided in the exhaust passage 11 upstream of the urea water supply device 20, the decomposition efficiency of the urea water U into ammonia is reduced by the temperature drop of the exhaust gas G by the heat exchange device 30. There is a possibility that the temperature decreases, the temperature increase rate of the selective catalytic reduction catalyst 14 on the downstream side decreases due to the temperature decrease of the exhaust gas G by the heat exchange device 30 in the warm-up process, and the heat exchange device 30 In consideration of the possibility that the pressure loss of the exhaust gas G increases to adversely affect the fuel consumption, etc., the bypass passage 31 is provided as in the present invention, and the heat exchange device 30 is provided in the bypass passage 31. Is more preferable.

また、尿素水供給制御装置40が、温度センサ23の検出値Tが、予め設定した設定値T1未満のときは、バイパス通路31を通過する排気ガスG2の流量がゼロとなるように、三方弁32を制御し、設定値T1以上のときは、検出値Tが設定値T1未満になるように、三方弁32を制御するように構成してもよい。この設定値は、250℃〜500℃の温度範囲内の値、好ましくは、300℃〜400℃の温度範囲内の値に設定される。   In addition, when the detected value T of the temperature sensor 23 is less than the preset set value T1, the urea water supply control device 40 is configured so that the flow rate of the exhaust gas G2 passing through the bypass passage 31 becomes zero. 32 may be controlled so that when the set value is equal to or greater than the set value T1, the three-way valve 32 may be controlled so that the detected value T is less than the set value T1. This set value is set to a value within a temperature range of 250 ° C. to 500 ° C., preferably a value within a temperature range of 300 ° C. to 400 ° C.

この三方弁32の制御に関する制御フローを図2に示す。図2の制御フローは、予め設定した制御時間毎に上級の制御フローから呼ばれて実施され、実施後に、上級の制御フローに戻る制御フローであり、エンジンが運転状態にある限り、繰り返し呼ばれる制御フローとして示している。なお、この図2の制御フローに基づく制御の途中で、エンジンが運転停止するとき等では、割り込みが生じて、リターンに行って上級の制御フローに戻り、この上級の制御フローの終了と共に終了する。   A control flow relating to the control of the three-way valve 32 is shown in FIG. The control flow of FIG. 2 is called and executed from the advanced control flow at every preset control time, and returns to the advanced control flow after being executed. The control is repeatedly called as long as the engine is in the operating state. Shown as a flow. In the middle of the control based on the control flow of FIG. 2, when the engine is stopped, an interrupt is generated, the return is made and the control flow returns to the advanced control flow, and the process ends with the end of the advanced control flow. .

図2の制御フローについて説明する。図2の制御フローがスタートすると、ステップS11にて、温度センサ23の検出値Tが、予め設定した設定値T1未満であるか否かを判定する。温度センサ23の検出値Tが設定値T1未満であるとき(YES:T<T1)は、選択還元型触媒装置14の温度がCuゼオライト触媒のNOx浄化性能の高効率範囲を超えた温度まで上昇する虞がなく、熱交換装置30による排気ガスG2の冷却が不要であると判定して、ステップS12に進み、ステップS12にて、バイパス通路31を通過する排気ガスG2の流量がゼロとなるように、三方弁32を制御する。三方弁32の制御後、リターンして、上級の制御フローに戻る。   The control flow of FIG. 2 will be described. When the control flow of FIG. 2 starts, it is determined in step S11 whether or not the detected value T of the temperature sensor 23 is less than a preset set value T1. When the detected value T of the temperature sensor 23 is less than the set value T1 (YES: T <T1), the temperature of the selective catalytic reduction device 14 rises to a temperature exceeding the high efficiency range of the NOx purification performance of the Cu zeolite catalyst. In step S12, the flow rate of the exhaust gas G2 passing through the bypass passage 31 is set to zero in step S12. In addition, the three-way valve 32 is controlled. After the control of the three-way valve 32, the process returns to the advanced control flow.

一方、温度センサ23の検出値Tが設定値T1以上であるとき(NO:T≧T1)は、選択還元型触媒装置14の温度がCuゼオライト触媒のNOx浄化性能の高効率範囲を超えた温度まで上昇する虞があり、熱交換装置30による排気ガスG2の冷却が必要であると判定して、ステップS13に進み、ステップS13にて、検出値Tが設定値T1未満になるように、三方弁32を制御する。三方弁32の制御後、リターンして、上級の制御フローに戻る。   On the other hand, when the detected value T of the temperature sensor 23 is equal to or greater than the set value T1 (NO: T ≧ T1), the temperature at which the selective catalytic reduction catalyst device 14 exceeds the high efficiency range of the NOx purification performance of the Cu zeolite catalyst. It is determined that the exhaust gas G2 needs to be cooled by the heat exchange device 30, and the process proceeds to step S13. In step S13, the detected value T is less than the set value T1. The valve 32 is controlled. After the control of the three-way valve 32, the process returns to the advanced control flow.

以上より、本発明の内燃機関の排気ガス浄化システム1を基にした、本発明の内燃機関の排気ガス浄化方法は、内燃機関の排気通路11に選択還元型触媒装置14を備えるとともに、この選択還元型触媒装置14より上流側の排気通路11に、排気ガスGを冷却する熱交換装置30を設けたバイパス通路31を排気通路11に並行して設け、さらに、バイパス通路31を通過する排気ガスGの流量を調整する三方弁32を設けるとともに、排気通路11からバイパス通路31への分岐点と選択還元型触媒装置14の間の排気通路11に、尿素水供給装置20を設けて構成される内燃機関の排気ガス浄化方法において、選択還元型触媒装置14の入口側に温度センサ23を設けて、この温度センサ23により選択還元型触媒装置14に流入する排気ガスGの温度Tを検出するとともに、温度センサ23の検出値Tに基づいて、三方弁32を制御することを特徴とする方法である。   As described above, the exhaust gas purification method for an internal combustion engine according to the present invention based on the exhaust gas purification system 1 for the internal combustion engine according to the present invention includes the selective reduction catalyst device 14 in the exhaust passage 11 of the internal combustion engine, and this selection. A bypass passage 31 provided with a heat exchange device 30 for cooling the exhaust gas G is provided in parallel to the exhaust passage 11 in the exhaust passage 11 upstream of the reduction catalyst device 14, and the exhaust gas passing through the bypass passage 31 is further provided. A three-way valve 32 for adjusting the flow rate of G is provided, and a urea water supply device 20 is provided in the exhaust passage 11 between the branch point from the exhaust passage 11 to the bypass passage 31 and the selective reduction catalyst device 14. In the exhaust gas purification method for an internal combustion engine, a temperature sensor 23 is provided on the inlet side of the selective catalytic reduction device 14, and the temperature sensor 23 flows into the selective catalytic reduction device 14. It detects the temperature T of the air gas G, on the basis of the detected value T of the temperature sensor 23, a method characterized by controlling the three-way valve 32.

また、上記の内燃機関の排気ガス浄化方法において、温度センサ23の検出値Tが、予め設定した設定値T1未満のときは、バイパス通路31を通過する排気ガスG2の流量がゼロとなるように、三方弁32を制御し、設定値T1以上のときは、検出値Tが設定値T1未満になるように、三方弁32を制御することを特徴とする方法である。   Further, in the above exhaust gas purification method for an internal combustion engine, when the detected value T of the temperature sensor 23 is less than the preset set value T1, the flow rate of the exhaust gas G2 passing through the bypass passage 31 becomes zero. The three-way valve 32 is controlled, and when the set value is equal to or greater than the set value T1, the three-way valve 32 is controlled so that the detected value T is less than the set value T1.

本発明の内燃機関の排気ガス浄化システム1、内燃機関及び内燃機関の排気ガス浄化方法によれば、エンジンの高負荷運転時や、排気ガス浄化装置に備えた微粒子捕集装置の再生制御時等、排気ガスGが高温化する状況においても、選択還元型触媒装置14に流入する排気ガスGの温度Tを調整制御することで、選択還元型触媒装置14に担持した触媒の温度を高いNOx浄化性能を発揮する温度範囲に調整することができるので、選択還元型触媒装置14のNOx浄化性能を向上させることができる。特に、選択還元型触媒装置14に担持した触媒が、Cuゼオライト触媒等、特定の温度範囲のみで高いNOx浄化性能を有する触媒であるときに、本発明は極めて有効となる。   According to the exhaust gas purification system 1 for an internal combustion engine, the internal combustion engine, and the exhaust gas purification method for an internal combustion engine of the present invention, during high-load operation of the engine, regeneration control of the particulate collection device provided in the exhaust gas purification device, etc. Even in a situation where the exhaust gas G is heated, the temperature of the catalyst carried on the selective reduction catalyst device 14 is increased by NOx purification by adjusting and controlling the temperature T of the exhaust gas G flowing into the selective reduction catalyst device 14. Since it can be adjusted to a temperature range that exhibits performance, the NOx purification performance of the selective catalytic reduction device 14 can be improved. In particular, the present invention is extremely effective when the catalyst supported on the selective catalytic reduction device 14 is a catalyst having high NOx purification performance only in a specific temperature range such as a Cu zeolite catalyst.

また、排気通路11からバイパス通路31への分岐点と選択還元型触媒装置14の間の排気通路11に、尿素水供給装置20を設けているので、尿素水Uや尿素水Uの分解生成物(ビウレット、イソシアン酸、シアヌル酸、アンモニア等)が熱交換装置30に入ることが無く、熱交換装置30の詰まりや腐食といった不具合を防止できると共に、選択還元型触媒装置14への尿素水Uの供給効率を維持することができる。   Further, since the urea water supply device 20 is provided in the exhaust passage 11 between the branch point from the exhaust passage 11 to the bypass passage 31 and the selective catalytic reduction catalyst device 14, the urea water U and the decomposition products of the urea water U are provided. (Biuret, isocyanic acid, cyanuric acid, ammonia, etc.) does not enter the heat exchange device 30 and can prevent problems such as clogging and corrosion of the heat exchange device 30 and the urea water U to the selective catalytic reduction device 14. Supply efficiency can be maintained.

さらに、尿素水Uが供給される前の排気ガスGを熱交換装置30で冷却するので、尿素水Uが供給されて温度が低下した排気ガスGを熱交換装置30で冷却する場合に比べて、熱交換装置30における排気ガスGの冷却効率を高くすることができる。   Furthermore, since the exhaust gas G before the urea water U is supplied is cooled by the heat exchange device 30, compared to the case where the exhaust gas G whose temperature has decreased due to the supply of the urea water U is cooled by the heat exchange device 30. In addition, the cooling efficiency of the exhaust gas G in the heat exchange device 30 can be increased.

また、熱交換装置30をバイパス通路31では無く、バイパス通路31を設けずに尿素水供給装置20より上流側の排気通路11に熱交換装置30を設けた場合には、排気ガスGの温度低下により尿素水Uの分解効率が低下する恐れや、熱交換装置30があることで、エンジンの暖機過程において選択還元型触媒装置14が温まり難くなる恐れや、熱交換装置30の分だけ、常時、排気通路11の圧力損失が増加して気筒内の燃焼及び燃費に悪影響を及ぼす恐れがある。   Further, when the heat exchange device 30 is provided not in the bypass passage 31 but in the exhaust passage 11 upstream of the urea water supply device 20 without providing the bypass passage 31, the temperature of the exhaust gas G decreases. There is a risk that the decomposition efficiency of the urea water U may decrease due to the heat exchange device 30, the selective reduction catalyst device 14 may not be easily warmed during the engine warm-up process, and the heat exchange device 30 is always constant. The pressure loss in the exhaust passage 11 may increase and adversely affect the combustion and fuel consumption in the cylinder.

1、1X 内燃機関の排気ガス浄化システム
11 排気通路
12 酸化触媒装置(DOC)
13 微粒子捕集装置
14 選択還元型触媒装置(SCR)
15 アンモニアスリップ触媒装置(ASC)
20 尿素水供給装置
21 尿素水供給ポンプ
22 尿素水タンク
23 温度センサ(温度検出装置)
24 NOx濃度センサ
25 アンモニア濃度センサ
30 熱交換装置
31 バイパス通路
32 三方弁(流量調整機構)
40 尿素水供給制御装置(制御装置)
41 エンジン制御装置
T 温度センサの検出値
T1 設定値
G 発生した排気ガス
G1 バイパス通路を通過しない排気ガス
G2 バイパス通路を通過する排気ガス
Gc 浄化処理された排気ガス
1, 1X Exhaust gas purification system 11 of internal combustion engine 11 Exhaust passage 12 Oxidation catalyst device (DOC)
13 Fine Particle Collection Device 14 Selective Reduction Catalyst Device (SCR)
15 Ammonia slip catalyst device (ASC)
20 Urea water supply device 21 Urea water supply pump 22 Urea water tank 23 Temperature sensor (temperature detection device)
24 NOx concentration sensor 25 Ammonia concentration sensor 30 Heat exchange device 31 Bypass passage 32 Three-way valve (flow rate adjusting mechanism)
40 Urea water supply control device (control device)
41 Engine control device T Temperature sensor detection value T1 Set value G Generated exhaust gas G1 Exhaust gas G2 not passing through the bypass passage Exhaust gas Gc passing through the bypass passage Purified exhaust gas

Claims (5)

内燃機関の排気通路に選択還元型触媒装置を備えて構成される内燃機関の排気ガス浄化システムにおいて、
前記選択還元型触媒装置の入口側に、前記選択還元型触媒装置に流入する排気ガスの温度を検出する温度検出装置を設けるとともに、
前記選択還元型触媒装置より上流側の前記排気通路に、排気ガスを冷却する熱交換装置を設けたバイパス通路を前記排気通路に並行して設け、
さらに、前記バイパス通路を通過する排気ガスの流量を調整する流量調整機構を設けるとともに、
前記排気通路から前記バイパス通路への分岐点と前記選択還元型触媒装置の間の前記排気通路に、尿素水供給装置を設けて構成され、
当該排気ガス浄化システムを制御する制御装置が、
前記温度検出装置の検出値に基づいて、前記流量調整機構を制御するように構成される内燃機関の排気ガス浄化システム。
In an exhaust gas purification system of an internal combustion engine configured to include a selective reduction catalyst device in an exhaust passage of the internal combustion engine,
Provided on the inlet side of the selective catalytic reduction device is a temperature detection device for detecting the temperature of the exhaust gas flowing into the selective catalytic reduction device,
In the exhaust passage upstream of the selective catalytic reduction device, a bypass passage provided with a heat exchange device for cooling exhaust gas is provided in parallel with the exhaust passage,
Furthermore, while providing a flow rate adjusting mechanism for adjusting the flow rate of the exhaust gas passing through the bypass passage,
A urea water supply device is provided in the exhaust passage between the branch point from the exhaust passage to the bypass passage and the selective catalytic reduction device,
A control device for controlling the exhaust gas purification system,
An exhaust gas purification system for an internal combustion engine configured to control the flow rate adjustment mechanism based on a detection value of the temperature detection device.
前記制御装置が、
前記温度検出装置の検出値が、予め設定した設定値未満のときは、前記バイパス通路を通過する排気ガスの流量がゼロとなるように、前記流量調整機構を制御し、
前記設定値以上のときは、前記検出値が前記設定値未満になるように、前記流量調整機構を制御するように構成される請求項1に記載の内燃機関の排気ガス浄化システム。
The control device is
When the detected value of the temperature detection device is less than a preset value, the flow rate adjusting mechanism is controlled so that the flow rate of the exhaust gas passing through the bypass passage becomes zero,
2. The exhaust gas purification system for an internal combustion engine according to claim 1, wherein the flow rate adjustment mechanism is controlled so that the detected value is less than the set value when the set value is equal to or greater than the set value.
請求項1または2に記載の内燃機関の排気ガス浄化システムを備えて構成される内燃機関。   An internal combustion engine comprising the exhaust gas purification system for an internal combustion engine according to claim 1 or 2. 内燃機関の排気通路に選択還元型触媒装置を備えるとともに、該選択還元型触媒装置より上流側の前記排気通路に、排気ガスを冷却する熱交換装置を設けたバイパス通路を前記排気通路に並行して設け、さらに、前記バイパス通路を通過する排気ガスの流量を調整する流量調整機構を設けるとともに、前記排気通路から前記バイパス通路への分岐点と前記選択還元型触媒装置の間の前記排気通路に、尿素水供給装置を設けて構成される内燃機関の排気ガス浄化方法において、
前記選択還元型触媒装置の入口側に温度検出装置を設けて、該温度検出装置により前記選択還元型触媒装置に流入する排気ガスの温度を検出するとともに、
前記温度検出装置の検出値に基づいて、前記流量調整機構を制御することを特徴とする内燃機関の排気ガス浄化方法。
The exhaust passage of the internal combustion engine is provided with a selective reduction catalyst device, and a bypass passage provided with a heat exchange device for cooling the exhaust gas in the exhaust passage upstream of the selective reduction catalyst device is provided in parallel with the exhaust passage. And a flow rate adjusting mechanism for adjusting the flow rate of the exhaust gas passing through the bypass passage, and the exhaust passage between the branch point from the exhaust passage to the bypass passage and the selective catalytic reduction device. In the exhaust gas purification method for an internal combustion engine configured by providing a urea water supply device,
A temperature detection device is provided on the inlet side of the selective reduction catalyst device, the temperature detection device detects the temperature of the exhaust gas flowing into the selective reduction catalyst device, and
An exhaust gas purification method for an internal combustion engine, wherein the flow rate adjusting mechanism is controlled based on a detection value of the temperature detection device.
前記温度検出装置の検出値が、予め設定した設定値未満のときは、前記バイパス通路を通過する排気ガスの流量がゼロとなるように、前記流量調整機構を制御し、
前記設定値以上のときは、前記検出値が前記設定値未満になるように、前記流量調整機構を制御することを特徴とする請求項4に記載の内燃機関の排気ガス浄化方法。
When the detected value of the temperature detection device is less than a preset value, the flow rate adjusting mechanism is controlled so that the flow rate of the exhaust gas passing through the bypass passage becomes zero,
5. The exhaust gas purification method for an internal combustion engine according to claim 4, wherein the flow rate adjusting mechanism is controlled so that the detected value is less than the set value when the set value is exceeded.
JP2015152052A 2015-07-31 2015-07-31 Exhaust gas purification system for internal combustion engine and internal combustion engine Active JP6593015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015152052A JP6593015B2 (en) 2015-07-31 2015-07-31 Exhaust gas purification system for internal combustion engine and internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015152052A JP6593015B2 (en) 2015-07-31 2015-07-31 Exhaust gas purification system for internal combustion engine and internal combustion engine

Publications (2)

Publication Number Publication Date
JP2017031872A true JP2017031872A (en) 2017-02-09
JP6593015B2 JP6593015B2 (en) 2019-10-23

Family

ID=57988226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015152052A Active JP6593015B2 (en) 2015-07-31 2015-07-31 Exhaust gas purification system for internal combustion engine and internal combustion engine

Country Status (1)

Country Link
JP (1) JP6593015B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109668762A (en) * 2017-10-13 2019-04-23 株式会社堀场制作所 Exhaust gas analyzer, exhaust gas analysis system, program storage medium and bearing calibration

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109668762A (en) * 2017-10-13 2019-04-23 株式会社堀场制作所 Exhaust gas analyzer, exhaust gas analysis system, program storage medium and bearing calibration
US11592364B2 (en) 2017-10-13 2023-02-28 Horiba, Ltd. Exhaust gas analysis apparatus, exhaust gas analysis system, exhaust gas measurement method, program recording medium recorded with program for exhaust gas analysis apparatus, and calibration method for exhaust gas analysis
CN109668762B (en) * 2017-10-13 2023-07-04 株式会社堀场制作所 Exhaust gas analysis device, exhaust gas analysis system, and program storage medium

Also Published As

Publication number Publication date
JP6593015B2 (en) 2019-10-23

Similar Documents

Publication Publication Date Title
US9677439B2 (en) Systems and methods to mitigate NOx and HC emissions
KR20150096328A (en) Combustion engine
JP2007162578A (en) Control method for exhaust emission control system, and exhaust gas emission control system
JP2014173465A (en) Control method of exhaust gas post-treatment device
JP5804544B2 (en) Exhaust treatment device for internal combustion engine
EP1550796A1 (en) Method for controlling the temperature of the exhaust gases in an engine and the relative engine apparatus
EP2940265A1 (en) Exhaust purification system for internal combustion engine
JP2010270624A (en) Exhaust device for internal combustion engine
EP2927445B1 (en) Exhaust gas purification system for internal combustion engine
JP5854323B2 (en) Exhaust gas purification device for internal combustion engine
JP6593015B2 (en) Exhaust gas purification system for internal combustion engine and internal combustion engine
JP2014025398A (en) Reducing agent addition system
JP2016121547A (en) System and method of purifying exhaust gas of internal combustion engine
JP2017031942A (en) Exhaust emission control system for internal combustion engine, internal combustion engine and exhaust emission control method for internal combustion engine
WO2015046506A1 (en) Exhaust gas purification system and exhaust gas purification method
JP2017115707A (en) Exhaust emission control device and exhaust emission control method
JP6398401B2 (en) Exhaust purification system
JP2021076047A (en) Exhaust emission control device
JP7354976B2 (en) Internal combustion engine exhaust purification system
JP2020045884A (en) Exhaust gas treatment system and vehicle
CN114704356B (en) Reducing N in tail gas 2 O method, device, electronic equipment and storage medium
KR20190013125A (en) Exhaust gas treatment system of diesel engine
JP6398402B2 (en) Exhaust purification system
JP2019112950A (en) engine
GB2566350A (en) An after treatment system, engine assembly and associated methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190730

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20190731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190909

R150 Certificate of patent or registration of utility model

Ref document number: 6593015

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150