JP2017027928A - Method for manufacturing lithium ion secondary battery - Google Patents

Method for manufacturing lithium ion secondary battery Download PDF

Info

Publication number
JP2017027928A
JP2017027928A JP2016055918A JP2016055918A JP2017027928A JP 2017027928 A JP2017027928 A JP 2017027928A JP 2016055918 A JP2016055918 A JP 2016055918A JP 2016055918 A JP2016055918 A JP 2016055918A JP 2017027928 A JP2017027928 A JP 2017027928A
Authority
JP
Japan
Prior art keywords
battery
voltage
positive electrode
lithium ion
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016055918A
Other languages
Japanese (ja)
Other versions
JP6365573B2 (en
Inventor
崇資 三浦
Takashi Miura
崇資 三浦
北吉 雅則
Masanori Kitayoshi
雅則 北吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to US15/208,196 priority Critical patent/US10770759B2/en
Priority to KR1020160088660A priority patent/KR101900146B1/en
Priority to DE102016112942.9A priority patent/DE102016112942A1/en
Priority to CN201610559624.6A priority patent/CN106356564B/en
Publication of JP2017027928A publication Critical patent/JP2017027928A/en
Application granted granted Critical
Publication of JP6365573B2 publication Critical patent/JP6365573B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0445Forming after manufacture of the electrode, e.g. first charge, cycling
    • H01M4/0447Forming after manufacture of the electrode, e.g. first charge, cycling of complete cells or cells stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a lithium ion secondary battery, configured to reduce battery resistance even if a coating film including fluorine and phosphorus is formed on a surface of each positive electrode active material particle in an initial charging step.SOLUTION: A lithium ion secondary battery comprises: a positive electrode having a positive electrode active material layer including positive electrode active material particles; a negative electrode; and a nonaqueous electrolyte solution containing a fluorine-containing compound, provided that each positive electrode active material particle has a coating film including fluorine and phosphorus on its particle surface. In the lithium secondary battery, the positive electrode active material layer includes particles of one or both of metal phosphate and metal pyrophosphate. A method for manufacturing the lithium ion secondary battery, in initially charging the battery 1, includes: a first step SA1 of charging the battery to raise a voltage Vt of the battery to a first voltage in a lower decomposition area Ad; a second step SA2, SA2a of retaining the voltage Vt of the battery at the first voltage Vh; and a third step SA3 of charging the battery to a second voltage Ve higher than the first voltage Vh after the second step SA2, SA2a with a charging current larger than 1 C.SELECTED DRAWING: Figure 12

Description

本発明は、正極活物質粒子を含む正極活物質層を有する正極板と、負極板と、フッ素を含む化合物を有する非水電解液とを備えるリチウムイオン二次電池に関する。   The present invention relates to a lithium ion secondary battery including a positive electrode plate having a positive electrode active material layer containing positive electrode active material particles, a negative electrode plate, and a non-aqueous electrolyte containing a compound containing fluorine.

従来から、リチウムイオン二次電池(以下、単に電池ともいう)では、正極電位が高電位となるため、正極活物質粒子の粒子表面で非水電解液の非水溶媒が酸化分解され易いことが知られている。非水溶媒が酸化分解されて水素イオンが発生すると、非水電解液がフッ素を含む化合物を有する場合には、水素イオンがフッ素と反応してフッ酸(HF)を生成する場合がある。すると、このフッ酸の作用により、正極活物質粒子中の遷移金属などの金属元素が溶出して、電池容量が少なくなる。このため、このような電池では、充放電サイクル試験を行ったときに、電池容量が大きく低下するという問題がある。   Conventionally, in a lithium ion secondary battery (hereinafter also simply referred to as a battery), the positive electrode potential is high, and therefore, the nonaqueous solvent of the nonaqueous electrolyte solution is likely to be oxidatively decomposed on the particle surface of the positive electrode active material particles. Are known. When hydrogen ions are generated by oxidative decomposition of the non-aqueous solvent, hydrogen ions may react with fluorine to generate hydrofluoric acid (HF) when the non-aqueous electrolyte has a compound containing fluorine. Then, due to the action of hydrofluoric acid, metal elements such as transition metals in the positive electrode active material particles are eluted, and the battery capacity is reduced. For this reason, in such a battery, there is a problem that the battery capacity is greatly reduced when a charge / discharge cycle test is performed.

この問題に対し、正極活物質層にリン酸リチウムなどの金属リン酸塩粒子や金属ピロリン酸塩粒子を含ませておく技術が知られている。正極活物質層に金属リン酸塩粒子を含ませておくと、電池を初充電する際に、上述のフッ酸が金属リン酸塩と反応して、正極活物質粒子の粒子表面にフッ素及びリンを含む被膜が形成される。この被膜は、非水電解液が正極活物質に直接接触するのを抑制するので、被膜が形成された後には、正極電位が非水溶媒の酸化分解電位を越えても、非水溶媒が酸化分解されるのを抑制できる。従って、電池に充放電サイクル試験を行った後に、電池容量が低下するのを抑制できる。
例えば、特許文献1には、正極合剤層(正極活物質層)に、リン酸リチウムやリン酸ナトリウムなどの金属リン酸塩粒子を含有させる技術が開示されている。
To solve this problem, a technique is known in which metal phosphate particles such as lithium phosphate and metal pyrophosphate particles are included in the positive electrode active material layer. When the metal phosphate particles are included in the positive electrode active material layer, when the battery is charged for the first time, the above-described hydrofluoric acid reacts with the metal phosphate, so that fluorine and phosphorus are present on the surface of the positive electrode active material particles. Is formed. This coating prevents the non-aqueous electrolyte from coming into direct contact with the positive electrode active material. Therefore, after the coating is formed, the non-aqueous solvent is oxidized even if the positive electrode potential exceeds the oxidative decomposition potential of the non-aqueous solvent. It can suppress being decomposed. Therefore, it is possible to suppress a decrease in battery capacity after performing a charge / discharge cycle test on the battery.
For example, Patent Document 1 discloses a technique in which a positive electrode mixture layer (positive electrode active material layer) contains metal phosphate particles such as lithium phosphate and sodium phosphate.

特開2014−103098号公報JP 2014-103098 A

しかしながら、電池の初充電に当たって充電電流を大きくすると、電池抵抗が高くなる傾向があることが判ってきた。フッ素及びリンを含む被膜は抵抗体である。しかるにこの被膜が形成される際に、充電電流が大きいと、非水電解液の酸化分解が過剰に起こり、被膜が厚く形成されるためであると推測される。   However, it has been found that when the charging current is increased in the initial charging of the battery, the battery resistance tends to increase. The film containing fluorine and phosphorus is a resistor. However, when this coating film is formed, if the charging current is large, it is presumed that the oxidative decomposition of the nonaqueous electrolytic solution occurs excessively and the coating film is formed thick.

本発明は、かかる現状に鑑みてなされたものであって、電池に初めて充電を行う工程(初充電工程)において、正極活物質粒子の粒子表面にフッ素及びリンを含む被膜を形成しながらも、電池抵抗を低くできるリチウムイオン二次電池の製造方法を提供するものである。   The present invention has been made in view of the current situation, and in the step of charging the battery for the first time (initial charging step), while forming a film containing fluorine and phosphorus on the particle surface of the positive electrode active material particles, The present invention provides a method for producing a lithium ion secondary battery capable of reducing battery resistance.

上記課題を解決するための本発明の一態様は、正極活物質粒子を含む正極活物質層を有する正極と、負極と、フッ素を含有する化合物を含む非水電解液と、を備え、上記正極活物質粒子は、その粒子表面にフッ素及びリンを含む被膜を有するリチウムイオン二次電池の製造方法であって、上記正極活物質層は、金属リン酸塩及び金属ピロリン酸塩の少なくともいずれかの粒子を含み、上記リチウムイオン二次電池に初めて充電する工程は、上記リチウムイオン二次電池を充電して、上記リチウムイオン二次電池の電圧を下部分解域内の第1電圧まで上昇させる第1工程と、上記リチウムイオン二次電池の電圧を上記第1電圧に保持する第2工程と、上記第2工程の後に、上記第1電圧よりも高い第2電圧まで、1Cよりも大きい充電電流で充電を行う第3工程と、を備えるリチウムイオン二次電池の製造方法である。   One embodiment of the present invention for solving the above problems includes a positive electrode having a positive electrode active material layer containing positive electrode active material particles, a negative electrode, and a non-aqueous electrolyte solution containing a fluorine-containing compound. The active material particle is a method of manufacturing a lithium ion secondary battery having a coating film containing fluorine and phosphorus on the particle surface, wherein the positive electrode active material layer is at least one of a metal phosphate and a metal pyrophosphate The step of charging the lithium ion secondary battery for the first time including particles includes charging the lithium ion secondary battery to increase the voltage of the lithium ion secondary battery to the first voltage in the lower decomposition zone. And a second step of maintaining the voltage of the lithium ion secondary battery at the first voltage, and after the second step, charging to a second voltage higher than the first voltage with a charging current greater than 1C. A third step of performing a method for producing a lithium ion secondary battery comprising a.

このリチウムイオン二次電池の製造方法では、初充電工程において、第1工程の後、第2工程で一旦、電池電圧(端子間電圧)を下部分解域内の第1電圧に保持し、即ち、第1電圧の定電圧充電(以下、CV充電とも言う)を行い、その後、第3工程で第2電圧まで充電を行う。
このため、この第2工程においては、電池電圧を第1電圧に保持している間に非水電解液の酸化分解が生じる。しかし、第1電圧を、非水電解液が酸化分解を起こす範囲のうちでも、下部分解域という低い電圧範囲内の電圧としている。このため、非水電解液の酸化分解が徐々にしか起こらず、正極活物質粒子の粒子表面に、フッ素及びリンを含む被膜を薄く形成でき、電池抵抗を低く抑えることができる。
In this method of manufacturing a lithium ion secondary battery, in the initial charging step, after the first step, the battery voltage (inter-terminal voltage) is temporarily held at the first voltage in the lower decomposition region after the first step. One voltage constant voltage charging (hereinafter also referred to as CV charging) is performed, and then charging is performed to the second voltage in the third step.
For this reason, in the second step, oxidative decomposition of the non-aqueous electrolyte occurs while the battery voltage is maintained at the first voltage. However, the first voltage is set to a voltage within a low voltage range called a lower decomposition region even in a range where the nonaqueous electrolytic solution undergoes oxidative decomposition. For this reason, the oxidative decomposition of the non-aqueous electrolyte occurs only gradually, and a coating film containing fluorine and phosphorus can be formed thinly on the particle surface of the positive electrode active material particles, and the battery resistance can be kept low.

なお、この被膜が各正極活物質粒子の表面上に適切に形成された以降は、電池の電圧が、非水電解液が酸化分解を起こす範囲の大きさであっても、非水電解液の酸化分解が抑制される。生成された被膜が、正極活物質粒子に非水電解液が接触するのを妨げるためと考えられる。   In addition, after this coating is appropriately formed on the surface of each positive electrode active material particle, even if the voltage of the battery is within a range where the nonaqueous electrolyte undergoes oxidative decomposition, the nonaqueous electrolyte solution Oxidative decomposition is suppressed. This is thought to be because the generated coating prevents the non-aqueous electrolyte from coming into contact with the positive electrode active material particles.

非水電解液の「下部分解域」とは、電池において、非水電解液が酸化分解される下限の電圧である分解下限電圧から、これより0.4V高い電圧までの電圧範囲をいう。例えば、分解下限電圧が4.0Vであった場合、「下部分解域」は、4.0〜4.4Vである。
この範囲内の電圧に保持した場合には、非水電解液の酸化分解が過剰にならないからである。
また、非水電解液の「分解下限電圧」は、非水電解液の「分解下限電位(vs.Li/Li+)」から負極の電位(例えば、黒鉛粒子を用いた負極では、0.2V(vs.Li/Li+))を差し引いた値を指す。
さらに、非水電解液の「分解下限電位(vs.Li/Li+)」は、以下の手法で検知した値である。Pt板からなる作用極,金属リチウムからなる対極及び参照極を有し、電解液として電池に使用する非水電解液を用いた測定用セルを用意する。電気化学測定システム(例えば、ソーラトロン社製)を用いて、この測定用セルについて、作用極の電位を3.0〜5.4V(vs.Li/Li+)の範囲に亘り、1mV/secの割合で上昇及び下降させるCV測定を、2サイクル行う。さらに3サイクル目に作用極の電位を上昇させる際の、正極電位Ep(V(vs.Li/Li+))とそのときに流れる電流I(μA/cm2)との関係を取得する。この関係から、正極電位Ep(V(vs.Li/Li+))と微分値dI/dEpとの関係(グラフ)を得る。微分値dI/dEpが直線的に上昇する部分に重なる近似直線を引き、この近似直線が微分値dI/dEp=0となる、正極電位Epの値を、当該非水電解液の「分解下限電位(vs.Li/Li+)」Epdとする(図6,図7参照)。
The “lower decomposition zone” of the nonaqueous electrolytic solution refers to a voltage range from the lower limit of decomposition, which is the lower limit voltage at which the nonaqueous electrolytic solution is oxidatively decomposed, to a voltage 0.4 V higher than this. For example, when the decomposition lower limit voltage is 4.0V, the “lower decomposition zone” is 4.0 to 4.4V.
This is because when the voltage is kept within this range, the oxidative decomposition of the non-aqueous electrolyte does not become excessive.
Further, the “decomposition lower limit voltage” of the non-aqueous electrolyte is from the “decomposition lower limit potential (vs. Li / Li +)” of the non-aqueous electrolyte to the potential of the negative electrode (for example, 0.2 V (for a negative electrode using graphite particles). vs. Li / Li +)).
Further, the “lower decomposition potential (vs. Li / Li +)” of the non-aqueous electrolyte is a value detected by the following method. A measuring cell having a working electrode made of a Pt plate, a counter electrode made of metallic lithium, and a reference electrode, and using a nonaqueous electrolytic solution used for a battery as an electrolytic solution is prepared. Using an electrochemical measurement system (for example, manufactured by Solartron), the potential of the working electrode is in the range of 3.0 to 5.4 V (vs. Li / Li +) and the rate is 1 mV / sec. The CV measurement for raising and lowering is performed for two cycles. Further, the relationship between the positive electrode potential Ep (V (vs. Li / Li +)) and the current I (μA / cm 2 ) flowing at that time when the potential of the working electrode is increased in the third cycle is acquired. From this relationship, the relationship (graph) between the positive electrode potential Ep (V (vs.Li/Li+)) and the differential value dI / dEp is obtained. An approximate straight line that overlaps a portion where the differential value dI / dEp rises linearly is drawn, and the value of the positive electrode potential Ep at which the approximate line becomes the differential value dI / dEp = 0 is set as the “decomposition lower limit potential of the non-aqueous electrolyte”. (vs.Li/Li+)"Epd (see FIGS. 6 and 7).

また、正極活物質層に含まれる金属リン酸塩の粒子の組成としては、例えば、M3PO4(M:アルカリ金属)で表されるアルカリ金属のリン酸塩や、M3(PO42(M:第2族元素)で表される第2族元素のリン酸塩、或いは、アルカリ金属及び第2族金属の両方の金属を含むリン酸塩が挙げられる。更に、アルカリ金属のリン酸塩としては、例えば、リン酸リチウム(Li3PO4)、リン酸ナトリウム(Na3PO4)、リン酸カリウム(K3PO4)、リン酸ジリチウムナトリウム(Li2NaPO4)などが挙げられる。また、第2族元素のリン酸塩としては、例えば、リン酸マグネシウム(Mg3(PO42)、リン酸カルシウム(Ca3(PO42)などが挙げられる。また、アルカリ金属及び第2族金属の両方の金属を含むリン酸塩としては、例えば、リン酸ナトリウムマグネシウム(MgNaPO4)が挙げられる。またその他に、金属リン酸塩として、例えば、リチウムアルミニウムゲルマニウムリン酸塩(LAGP:Li1.5Al0.5Ge1.5(PO43)のように、アルカリ金属及び第2族元素以外の元素を含む金属リン酸塩も挙げられる。 The composition of the metal phosphate particles contained in the positive electrode active material layer is, for example, an alkali metal phosphate represented by M 3 PO 4 (M: alkali metal) or M 3 (PO 4 ). 2 A phosphate of a group 2 element represented by (M: a group 2 element) or a phosphate containing both alkali metal and group 2 metal. Furthermore, as the alkali metal phosphate, for example, lithium phosphate (Li 3 PO 4 ), sodium phosphate (Na 3 PO 4 ), potassium phosphate (K 3 PO 4 ), sodium dilithium phosphate (Li 2 NaPO 4 ). Examples of Group 2 element phosphates include magnesium phosphate (Mg 3 (PO 4 ) 2 ) and calcium phosphate (Ca 3 (PO 4 ) 2 ). Examples of the phosphate containing both alkali metal and Group 2 metal include sodium magnesium phosphate (MgNaPO 4 ). In addition, as a metal phosphate, for example, a metal containing an element other than an alkali metal and a Group 2 element such as lithium aluminum germanium phosphate (LAGP: Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 ) Also included are phosphates.

金属ピロリン酸塩の粒子の組成としては、例えば、M427(M:アルカリ金属)で表されるアルカリ金属のピロリン酸塩や、M227(M:第2族元素)で表される第2族元素のピロリン酸塩が挙げられる。更に、アルカリ金属のピロリン酸塩として、例えば、ピロリン酸リチウム(Li427)、ピロリン酸ナトリウム(Na427)、ピロリン酸カリウム(K427)が挙げられる。また、第2族元素のピロリン酸塩としては、例えば、ピロリン酸マグネシウム(Mg227)、ピロリン酸カルシウム(Ca227)が挙げられる。 Examples of the composition of the metal pyrophosphate particles include alkali metal pyrophosphate represented by M 4 P 2 O 7 (M: alkali metal) and M 2 P 2 O 7 (M: Group 2 element). And pyrophosphates of Group 2 elements represented by Further, examples of the alkali metal pyrophosphate include lithium pyrophosphate (Li 4 P 2 O 7 ), sodium pyrophosphate (Na 4 P 2 O 7 ), and potassium pyrophosphate (K 4 P 2 O 7 ). . Examples of Group 2 element pyrophosphates include magnesium pyrophosphate (Mg 2 P 2 O 7 ) and calcium pyrophosphate (Ca 2 P 2 O 7 ).

「正極活物質粒子」をなす正極活物質としては、例えば、リチウム遷移金属複合酸化物が挙げられる。リチウム遷移金属複合酸化物としては、例えば、遷移金属としてニッケル(Ni)とコバルト(Co)とマンガン(Mn)とを含むリチウムニッケルコバルトマンガン系複合酸化物や、遷移金属としてニッケルとマンガンとを含むリチウムニッケルマンガン系複合酸化物、ニッケル酸リチウム(LiNiO2)、コバルト酸リチウム(LiCoO2)、マンガン酸リチウム(LiMn24)が挙げられる。 Examples of the positive electrode active material forming the “positive electrode active material particles” include lithium transition metal composite oxides. Examples of the lithium transition metal composite oxide include lithium nickel cobalt manganese based composite oxide containing nickel (Ni), cobalt (Co) and manganese (Mn) as transition metals, and nickel and manganese as transition metals. Examples thereof include lithium nickel manganese composite oxide, lithium nickelate (LiNiO 2 ), lithium cobaltate (LiCoO 2 ), and lithium manganate (LiMn 2 O 4 ).

更に具体的には、正極活物質として、以下の一般式(1)で表される、スピネル型の結晶構造を有するリチウムニッケルマンガン系複合酸化物を用いることができる。
Li(NixyMn2-x-y)O4 ・・・(1)
但し、xは、x>0、好ましくは、0.2≦x≦1.0である。
また、yは、y≧0、好ましくは、0≦y<1.0である。
また、x+y<2.0である。
また、「M」は、Ni,Mn以外の任意の遷移金属元素(例えば、Fe、Co、Cu、Crから選択される1種または2種以上)、または典型金属元素(例えば、Zn、Alから選択される1種または2種以上)である。
なお、正極活物質の結晶構造がスピネル構造を有しているか否かについては、例えばX線構造解析(好ましくは単結晶X線構造解析)によって判別できる。具体的には、CuKα線を使用したX線回折測定によって判別できる。
More specifically, a lithium nickel manganese composite oxide having a spinel crystal structure represented by the following general formula (1) can be used as the positive electrode active material.
Li (Ni x M y Mn 2 -xy) O 4 ··· (1)
However, x is x> 0, preferably 0.2 ≦ x ≦ 1.0.
Further, y is y ≧ 0, preferably 0 ≦ y <1.0.
Further, x + y <2.0.
“M” is any transition metal element other than Ni and Mn (eg, one or more selected from Fe, Co, Cu, Cr), or a typical metal element (eg, Zn, Al). 1 type or 2 types or more selected).
Note that whether or not the crystal structure of the positive electrode active material has a spinel structure can be determined by, for example, X-ray structure analysis (preferably single crystal X-ray structure analysis). Specifically, it can be determined by X-ray diffraction measurement using CuKα rays.

「フッ素及びリンを含む被膜」には、フッ素及びリンのほか、非水電解液の成分(電解質や非水溶媒、添加剤など)の分解物などが含まれていてもよい。
「正極活物質層」には、正極活物質粒子及び金属リン酸塩及び金属ピロリン酸塩の少なくともいずれか粒子のほか、例えば、黒鉛、カーボンブラック、アセチレンブラックなどの導電材や、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)などの結着剤を含めることができる。
「負極板」には、負極活物質粒子を含む負極活物質層を負極集電箔上に設けた形態のものが挙げられる。負極活物質粒子としては、例えば、黒鉛などリチウムを挿入・脱離可能な炭素材料からなる粒子が挙げられる。
The “coating containing fluorine and phosphorus” may contain decomposition products of non-aqueous electrolyte components (electrolytes, non-aqueous solvents, additives, etc.) in addition to fluorine and phosphorus.
In the “positive electrode active material layer”, in addition to the positive electrode active material particles and at least one of metal phosphate and metal pyrophosphate, conductive materials such as graphite, carbon black, and acetylene black, polyvinylidene fluoride ( PVDF), polytetrafluoroethylene (PTFE), styrene butadiene rubber (SBR) and the like can be included.
Examples of the “negative electrode plate” include a negative electrode active material layer including negative electrode active material particles provided on a negative electrode current collector foil. Examples of the negative electrode active material particles include particles made of a carbon material capable of inserting and removing lithium such as graphite.

「非水電解液」の非水溶媒としては、例えば、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの有機溶媒が挙げられ、これらを単独で或いは2種以上を混合して用いることができる。フッ素を含む非水溶媒である、フルオロエチレンカーボネート、2,2,2-トリフルオロエチルメチルカーボネートなどを用いることもできる。
また、「非水電解液」に添加する電解質(支持電解質)としては、例えば、フッ素を含む支持電解質であるLiPF6、LiBF4、LiAsF6、LiSbF6、LiCF3SO3 などが挙げられ、これらを単独で或いは2種以上を組み合わせて用いることができる。
Examples of the non-aqueous solvent for the “non-aqueous electrolyte solution” include organic solvents such as dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, and the like. It can be used alone or in admixture of two or more. Fluorine-containing nonaqueous solvents such as fluoroethylene carbonate and 2,2,2-trifluoroethyl methyl carbonate can also be used.
As the electrolyte to be added to the "non-aqueous electrolyte" (supporting electrolyte), such as LiPF 6, LiBF 4, LiAsF 6 , LiSbF 6, LiCF 3 SO 3 as a supporting electrolyte containing fluorine. These Can be used alone or in combination of two or more.

また、「非水電解液」には、上記の電解質以外の添加物を含ませることもできる。添加物としては、例えば、フッ化物やリチウムビスオキサレートボレート(LiBOB)が挙げられる。フッ化物としては、例えば、AgF、CoF2、CoF3、CuF、CuF2、FeF2、FeF3、LiF、MnF2、MnF3、SnF2、SnF4、TiF3、TiF4、ZrF4などが挙げられ、これらを単独で或いは2種以上を組み合わせて用いることができる。
なお、非水電解液に含まれる「フッ素を含む化合物」は、LiPF6などのフッ素を含む電解質でもよいし、LiFなどのフッ素を含む添加物でもよいし、フルオロエチレンカーボネートなどのフッ素を含む非水溶媒でも良い。また、非水電解液に含まれるフッ素を含む化合物は、1種のみでもよいし、2種以上含まれていてもよい。
また、1Cの充電電流とは、電池の定格容量を1時間で充電できる充電電流の大きさを指す。
In addition, the “nonaqueous electrolytic solution” may contain an additive other than the above electrolyte. Examples of the additive include fluoride and lithium bisoxalate borate (LiBOB). The fluoride, for example, AgF, CoF 2, CoF 3 , CuF, CuF 2, FeF 2, FeF 3, LiF, etc. MnF 2, MnF 3, SnF 2 , SnF 4, TiF 3, TiF 4, ZrF 4 is These may be used alone or in combination of two or more.
The “compound containing fluorine” contained in the nonaqueous electrolytic solution may be an electrolyte containing fluorine such as LiPF 6 , an additive containing fluorine such as LiF, or a non-containing material containing fluorine such as fluoroethylene carbonate. An aqueous solvent may be used. Moreover, the compound containing the fluorine contained in a non-aqueous electrolyte may be only 1 type, and 2 or more types may be contained.
The charging current of 1C indicates the magnitude of the charging current that can charge the rated capacity of the battery in one hour.

第1工程における電池の充電としては、定電流充電(以下、CC充電ともいう)や定電力充電による充電を採用することができる。あるいは、設定電圧を第1電圧以上とした定電圧充電(CV充電)により、電池電圧が第1電圧になるまで充電することもできる。
第2工程における電池の充電は、第1電圧を保持しながら充電を行う、定電圧充電である。
また、第3工程における電池の充電としては、充電電流を1Cよりも大きい値に設定した定電流充電や、充電電流を1Cよりも大きい値に限定した定電力充電による充電を採用することができる。あるいは、設定電圧を第2電圧よりも高い値とした定電圧充電により、電池電圧が第2電圧になるまで充電することもできる。
As charging of the battery in the first step, charging by constant current charging (hereinafter also referred to as CC charging) or constant power charging can be employed. Alternatively, charging can be performed until the battery voltage reaches the first voltage by constant voltage charging (CV charging) in which the set voltage is equal to or higher than the first voltage.
The charging of the battery in the second step is constant voltage charging in which charging is performed while maintaining the first voltage.
Further, as charging of the battery in the third step, constant current charging in which the charging current is set to a value larger than 1C or charging by constant power charging in which the charging current is limited to a value larger than 1C can be adopted. . Alternatively, the battery voltage can be charged until the battery voltage becomes the second voltage by constant voltage charging in which the set voltage is higher than the second voltage.

上述のリチウムイオン二次電池の製造方法であって、前記第2工程は、予め定めた保持期間に亘り、前記リチウムイオン二次電池の電圧を前記第1電圧に保持するリチウムイオン二次電池の製造方法とすると良い。   In the above-described method for manufacturing a lithium ion secondary battery, the second step is a process for producing a lithium ion secondary battery that maintains the voltage of the lithium ion secondary battery at the first voltage over a predetermined holding period. A manufacturing method is preferable.

この製造方法では、第2工程で、予め定めた保持期間に亘り、電池の電圧を第1電圧に保持する。このため、正極活物質粒子表面に、保持期間に応じた被膜を確実に形成できる。   In this manufacturing method, the voltage of the battery is held at the first voltage over a predetermined holding period in the second step. For this reason, the coating film according to a holding | maintenance period can be reliably formed on the positive electrode active material particle surface.

さらに上述のリチウムイオン二次電池の製造方法であって、前記保持期間は、上記保持期間を延ばすことなく前記第2工程を行い、その後、前記第3工程を行って製造した電池の電池抵抗Rnと、上記保持期間に代えて、上記保持期間を1.5倍に延長した延長保持期間に亘り前記第1電圧を保持し、その後、前記第3工程を行って製造した延長保持電池の電池抵抗Reとを比較したとき、Rn=0.98Re〜1.02Reとなる期間であるリチウムイオン二次電池の製造方法とすると良い。   Furthermore, in the above-described method for manufacturing a lithium ion secondary battery, the holding period includes the battery resistance Rn of the battery manufactured by performing the second step without extending the holding period and then performing the third step. And instead of the holding period, the battery voltage of the extended holding battery manufactured by holding the first voltage over an extended holding period obtained by extending the holding period by a factor of 1.5 and then performing the third step. It is preferable to use a method for manufacturing a lithium ion secondary battery in which Rn = 0.98Re to 1.02Re when compared with Re.

初充電後の電池抵抗は、保持期間が長い程、つまり正極活物質粒子の粒子表面への、フッ素及びリンを含む被膜の形成が進行するにつれて低下するが、やがて抵抗の低下は停止し、保持期間を長くしても電池抵抗は変化しない状態となる。この場合において、電池抵抗RnがRn=0.98Re〜1.02Reになるということは、保持期間(例えば40分)に亘って第1電圧を保持したことにより、正極活物質粒子の粒子表面に、概ねフッ素及びリンを含む被膜が形成されたために、さらに保持期間を1.5倍(例えば60分)に延長しても、さらに形成される被膜がほとんど無いことを示している。つまり、保持期間に亘って第1電圧を保持すれば、延長保持電池の電池抵抗Reに比して、電池抵抗Rnが高々2%以内しか異ならない程に、被膜が十分に形成される。
従って、このような保持期間に亘り第1電圧を保持すれば、フッ素及びリンを含む被膜の形成は概ね完了した状態で、速やかに続く第3工程に移行することができる。即ち、正極活物質粒子の粒子表面に、非水溶媒の酸化分解を防止できる薄い被膜が適切に形成され、かつ電池抵抗の低い電池を製造することができる。
The battery resistance after the initial charge decreases as the holding period is longer, that is, as the formation of a film containing fluorine and phosphorus on the surface of the positive electrode active material particles progresses. Even if the period is extended, the battery resistance does not change. In this case, the battery resistance Rn becomes Rn = 0.98Re to 1.02Re because the first voltage is held for the holding period (for example, 40 minutes), so that the positive electrode active material particle surface This shows that since a film containing fluorine and phosphorus is formed, even when the holding period is further extended by 1.5 times (for example, 60 minutes), there is almost no film formed. That is, if the first voltage is held for the holding period, the coating film is sufficiently formed so that the battery resistance Rn differs by no more than 2% as compared with the battery resistance Re of the extended holding battery.
Therefore, if the first voltage is held for such a holding period, the formation of the coating film containing fluorine and phosphorus can be immediately completed and the process can proceed to the third step that continues quickly. That is, a battery having a low battery resistance can be manufactured by appropriately forming a thin film capable of preventing oxidative decomposition of the nonaqueous solvent on the surface of the positive electrode active material particles.

あるいは上述のリチウムイオン二次電池の製造方法であって、前記保持期間は、上記保持期間を延ばすことなく前記第2工程を行い、その後、前記第3工程を行って製造した電池の電池抵抗Rnと、上記保持期間に代えて、上記保持期間を1.5倍に延長した延長保持期間に亘り前記第1電圧を保持し、その後、前記第3工程を行って製造した延長保持電池の電池抵抗Reとを比較したとき、Rn=0.99Re〜1.01Reとなる期間であるリチウムイオン二次電池の製造方法とすると良い。   Or it is a manufacturing method of the above-mentioned lithium ion secondary battery, Comprising: The said holding period performs the said 2nd process, without extending the said holding period, Then, the battery resistance Rn of the battery manufactured by performing the said 3rd process And instead of the holding period, the battery voltage of the extended holding battery manufactured by holding the first voltage over an extended holding period obtained by extending the holding period by a factor of 1.5 and then performing the third step. A lithium ion secondary battery manufacturing method in which Rn = 0.99Re to 1.01Re when comparing with Re is preferable.

この製造方法では、保持期間に亘って第1電圧を保持すれば、延長保持電池の電池抵抗Reに比して、電池抵抗Rnが高々1%以内しか異ならない程に、被膜が十分に形成される。従って、このような保持期間に亘り第1電圧を保持すれば、フッ素及びリンを含む被膜の形成は概ね完了した状態で、速やかに続く第3工程に移行することができる。即ち、正極活物質粒子の粒子表面に、被膜がさらに適切に形成された電池を製造することができる。   In this manufacturing method, if the first voltage is held for the holding period, the coating film is sufficiently formed so that the battery resistance Rn differs by no more than 1% compared to the battery resistance Re of the extended holding battery. The Therefore, if the first voltage is held for such a holding period, the formation of the coating film containing fluorine and phosphorus can be immediately completed and the process can proceed to the third step that continues quickly. That is, it is possible to manufacture a battery in which a coating is further appropriately formed on the surface of the positive electrode active material particles.

上述のリチウムイオン二次電池の製造方法であって、前記第2工程は、前記リチウムイオン二次電池の充電電流の大きさが、予め定めたカットオフ電流値以下となるまで、前記第1電圧に保持するリチウムイオン二次電池の製造方法とすると良い。   In the above-described method for manufacturing a lithium ion secondary battery, the second step includes the first voltage until the charge current of the lithium ion secondary battery is equal to or lower than a predetermined cutoff current value. The method of manufacturing a lithium ion secondary battery held in

第2工程では、電池の電圧を第1電圧に保持する。しかるに、電池のバラツキにより、正極活物質粒子表面に形成される被膜生成の速度に違いが生じるため、第1電圧に保持する期間を同じにした場合には、正極活物質粒子表面に形成される被膜の厚みなどの状態が異なるものとなり、電池抵抗の大きさにバラツキが生じるなどの差異が生じる。このため、いずれの電池でも適切な厚みの被膜が得られるようにするには、速度の遅い電池に合わせて、保持期間を長めに定める必要があり、個々の電池についてみれば、保持期間が長すぎる場合も生じる。
これに対し、上述の製造方法では、第2工程において、所定の保持期間でなく、充電電流がカットオフ電流値以下となるまで第1電圧を保持するので、電池のバラツキが存在しても、各々の電池について、最短の時間で、正極活物質粒子表面に同様の厚みの被膜を形成することができる。
In the second step, the battery voltage is maintained at the first voltage. However, due to variations in the battery, a difference occurs in the rate of film formation formed on the surface of the positive electrode active material particles. Therefore, when the period for maintaining the first voltage is the same, the film is formed on the surface of the positive electrode active material particles. The state such as the thickness of the coating is different, and a difference such as variation in battery resistance occurs. For this reason, in order to obtain a film with an appropriate thickness for any battery, it is necessary to set a longer holding period in accordance with a battery having a slower speed. For each battery, the holding period is longer. It may occur too much.
In contrast, in the above-described manufacturing method, in the second step, the first voltage is held until the charging current is equal to or lower than the cutoff current value, not the predetermined holding period. About each battery, the film of the same thickness can be formed in the positive electrode active material particle surface in the shortest time.

また、上述のリチウムイオン二次電池の製造方法であって、前記カットオフ電流値は、前記第1工程の終期における終期電流値の2/5の大きさであるリチウムイオン二次電池の製造方法とすると良い。   Further, in the above-described method for manufacturing a lithium ion secondary battery, the cutoff current value is 2/5 the final current value at the end of the first step. And good.

第1工程において(所定電流で充電するCC充電などにより)電池の電圧を第1電圧とした後、第2工程でこの第1電圧に保持すると、すなわちCV充電すると、電池に流れる充電電流は、当初、第1工程の終期における終期電流値から急激に減少し、その後、徐々に減少するようになり、さらにその後、0に漸近する(y=1−exのグラフに似た形状の)カーブを描く。第2工程の当初は、電池電圧を第1電圧としたことにより、電解液の酸化分解が次々と起こり、その分解電流として大きな電流が流れる。しかし時間の経過と共に、正極活物質層に含まれる金属リン酸塩等が消費され、被膜が形成されると共に、電解液の酸化分解が抑制されることで充電電流が徐々に減少すると考えられる。   When the voltage of the battery is set to the first voltage in the first step (for example, by CC charging that is charged with a predetermined current) and then held at the first voltage in the second step, that is, when CV charging is performed, Initially, the curve rapidly decreases from the final current value at the end of the first step, then gradually decreases, and then gradually approaches 0 (a shape similar to the graph of y = 1−ex). Draw. At the beginning of the second step, since the battery voltage is set to the first voltage, the electrolytic solution undergoes oxidative decomposition one after another, and a large current flows as the decomposition current. However, with the passage of time, the metal phosphate contained in the positive electrode active material layer is consumed, a film is formed, and the oxidative decomposition of the electrolytic solution is suppressed, so that the charging current is gradually reduced.

これを踏まえ、前述のように、第2工程におけるカットオフ電流値を、終期電流値の2/5の大きさとすると、正極活物質粒子の粒子表面に形成するフッ素及びリンを含む被膜の大半を第2工程で形成することができ、第2工程をごく短い時間としながら、正極活物質粒子の粒子表面に良好な被膜を形成できる。また、第2工程を設けない場合に比して、電池抵抗を低く(具体的には、例えば、7%程度小さく)することができる。   Based on this, as described above, if the cutoff current value in the second step is 2/5 of the final current value, most of the coating film containing fluorine and phosphorus formed on the particle surface of the positive electrode active material particles It can be formed in the second step, and a good film can be formed on the particle surface of the positive electrode active material particles while making the second step a very short time. Further, the battery resistance can be lowered (specifically, for example, about 7% smaller) than when the second step is not provided.

また、上述のリチウムイオン二次電池の製造方法であって、前記カットオフ電流値は、前記第1工程の終期における終期電流値の1/5の大きさであるリチウムイオン二次電池の製造方法とすると良い。   In addition, in the above-described method for manufacturing a lithium ion secondary battery, the cutoff current value is 1/5 the final current value at the end of the first step. And good.

上述のように第2工程におけるカットオフ電流値を、終期電流値の1/5の大きさとすると、正極活物質粒子の粒子表面に形成するフッ素及びリンを含む被膜の大半を第2工程で形成することができ、第2工程を短い時間としながら、正極活物質粒子の粒子表面に良好な被膜を形成できる。また、第2工程を設けない場合に比して、電池抵抗を低く(具体的には、例えば、10%程度小さく)することができる。   As described above, when the cutoff current value in the second step is 1/5 of the final current value, most of the coating film containing fluorine and phosphorus formed on the surface of the positive electrode active material particles is formed in the second step. Thus, a good film can be formed on the surface of the positive electrode active material particles while making the second step a short time. Further, the battery resistance can be lowered (specifically, for example, about 10% smaller) than when the second step is not provided.

あるいは、前述のリチウムイオン二次電池の製造方法であって、前記第1工程の終期における終期電流値が1C以上であり、前記カットオフ電流値は、0.05Cであるリチウムイオン二次電池の製造方法とすると良い。   Alternatively, in the method for manufacturing a lithium ion secondary battery described above, the final current value at the end of the first step is 1 C or more, and the cutoff current value is 0.05 C. A manufacturing method is preferable.

上述の製造方法では、第1工程の終期電流値が1C以上であるのに対し、カットオフ電流値が、終期電流値に比して十分小さい0.05Cとなるまで第2工程を行う。このように、カットオフ電流値が0.05Cとなるまで第2工程を行えば、これよりもさらにカットオフ電流値を小さくした場合(例えば、カットオフ電流値を0.02Cした場合)と、電池抵抗はほぼ同じとなる。つまり、カットオフ電流値を0.05Cより小さくしても、第2工程の時間が延びる一方、電池抵抗の低下を見込めない。被膜の形成については、充電電流が0.05Cとなった段階で、正極活物質層に含まれるほとんど全量の金属リン酸塩(あるいは金属ピロリン酸塩)が消費されているためであると考えられる。
このように、カットオフ電流値を0.05Cとすると、最も短い時間で、正極活物質粒子の粒子表面に形成するフッ素及びリンを含む被膜のほぼ全量を、第2工程で形成することができる。しかも、良好な被膜を形成でき、第2工程を設けない場合に比して、電池抵抗を低く(具体的には、15%程度小さく)することができる。
In the manufacturing method described above, the final current value in the first step is 1C or more, while the second step is performed until the cut-off current value is 0.05 C, which is sufficiently smaller than the final current value. Thus, if the second step is performed until the cut-off current value becomes 0.05 C, the cut-off current value is further reduced (for example, the cut-off current value is 0.02 C), The battery resistance is almost the same. That is, even if the cut-off current value is smaller than 0.05C, the time of the second step is extended, but the battery resistance cannot be expected to decrease. The formation of the coating is considered to be because almost the entire amount of metal phosphate (or metal pyrophosphate) contained in the positive electrode active material layer is consumed when the charging current reaches 0.05C. .
Thus, when the cut-off current value is 0.05 C, almost the entire amount of the film containing fluorine and phosphorus formed on the particle surface of the positive electrode active material particles can be formed in the second step in the shortest time. . Moreover, a good film can be formed, and the battery resistance can be lowered (specifically, about 15% smaller) than when the second step is not provided.

さらに、上記のいずれかに記載のリチウムイオン二次電池の製造方法であって、前記正極活物質層に含まれる前記金属リン酸塩及び金属ピロリン酸塩の少なくともいずれかの粒子は、平均粒径が1.5μm以下の粒子であるリチウムイオン二次電池の製造方法とすると良い。   Furthermore, in the method for producing a lithium ion secondary battery according to any one of the above, at least one of the metal phosphate and the metal pyrophosphate contained in the positive electrode active material layer has an average particle diameter Is a method for manufacturing a lithium ion secondary battery having particles of 1.5 μm or less.

この製造方法では、正極活物質層に含まれる、例えばリン酸リチウムなど金属リン酸塩等の粒子の粒径を、平均粒径で1.5μm以下としている。このため、添加量が同じなら粒子数や表面積の総量が増大するため、発生したフッ化水素(フッ酸)との反応が生じやすくなり、短時間で被膜を形成でき、第2工程に掛かる時間、ひいては初充電工程に掛かる時間の短縮に寄与できる。   In this manufacturing method, the particle diameter of particles such as metal phosphate such as lithium phosphate contained in the positive electrode active material layer is 1.5 μm or less in average particle diameter. For this reason, if the addition amount is the same, the number of particles and the total amount of surface area increase, so that the reaction with the generated hydrogen fluoride (hydrofluoric acid) is likely to occur, the coating can be formed in a short time, and the time required for the second step As a result, it can contribute to shortening the time required for the initial charging process.

更に、上記のいずれかに記載のリチウムイオン二次電池の製造方法であって、上記リチウムイオン二次電池の作動範囲(SOC=0〜100%)内の少なくとも一部で、前記正極の電位が4.5V(vs.Li/Li+)以上となるリチウムイオン二次電池の製造方法とするのが好ましい。   Furthermore, in the method for producing a lithium ion secondary battery according to any one of the above, the potential of the positive electrode is at least partly within an operating range (SOC = 0 to 100%) of the lithium ion secondary battery. A method for producing a lithium ion secondary battery having a voltage of 4.5 V (vs. Li / Li +) or higher is preferable.

この製造方法に係るリチウムイオン二次電池は、SOC=0〜100%の範囲内の少なくとも一部で、正極の電位が4.5V(vs.Li/Li+)以上の電位となる。このため、非水電解液(非水溶媒)は正極活物質粒子の粒子表面で酸化分解されて水素イオンを生じ易い。しかも非水電解液は前述したようにフッ素を含有する化合物を含む。このため、水素イオンとフッ素とから、フッ酸を生じ易い。しかるに、この電池の製造方法では、前述のように、初充電工程(第2工程)において、正極活物質粒子の粒子表面にフッ素及びリンを含む被膜を形成しているので、初充電工程を経た後には、非水電解液(非水溶媒)が酸化分解されるのを抑制することができる。   In the lithium ion secondary battery according to this manufacturing method, the potential of the positive electrode is at least 4.5 V (vs. Li / Li +) in at least a part of the range of SOC = 0 to 100%. For this reason, the non-aqueous electrolyte solution (non-aqueous solvent) is easily oxidized and decomposed on the surface of the positive electrode active material particles to generate hydrogen ions. Moreover, the non-aqueous electrolyte contains a compound containing fluorine as described above. For this reason, hydrofluoric acid is easily generated from hydrogen ions and fluorine. However, in this battery manufacturing method, as described above, in the initial charging step (second step), since the coating film containing fluorine and phosphorus is formed on the particle surface of the positive electrode active material particles, the initial charging step is performed. Later, oxidative decomposition of the nonaqueous electrolytic solution (nonaqueous solvent) can be suppressed.

さらに、前述のいずれか1項に記載のリチウムイオン二次電池の製造方法であって、前記第1工程及び第3工程は、3C以上の予め定めた電流値で定電流充電するリチウムイオン二次電池の製造方法とすると良い。   Furthermore, in the method for manufacturing a lithium ion secondary battery according to any one of the foregoing, the first step and the third step are lithium ion secondary batteries that are charged with a constant current at a predetermined current value of 3C or more. A battery manufacturing method is preferable.

この製造方法では、第1工程及び第3工程を3C以上の電流値でCC充電する。これにより、第1工程に掛かる時間も短くでき、電池に初めて充電する工程(初充電工程)をさらに短時間にできる。   In this manufacturing method, the first step and the third step are CC charged with a current value of 3C or more. Thereby, the time required for the first step can be shortened, and the step of charging the battery for the first time (initial charging step) can be further shortened.

実施形態1,2及び変形形態に係るリチウムイオン二次電池の斜視図である。It is a perspective view of the lithium ion secondary battery which concerns on Embodiment 1, 2 and a modification. 実施形態1,2及び変形形態に係るリチウムイオン二次電池を電池横方向及び電池縦方向に沿う平面で切断した縦断面図である。It is the longitudinal cross-sectional view which cut | disconnected the lithium ion secondary battery which concerns on Embodiment 1, 2 and a modification with the plane in alignment with a battery horizontal direction and a battery vertical direction. 実施形態1,2及び変形形態に係り、正極板及び負極板をセパレータを介して互いに重ねた状態を示す、電極体の展開図である。It is an expanded view of the electrode body which concerns on Embodiment 1, 2 and a modification, and shows the state which piled up the positive electrode plate and the negative electrode plate through the separator. 実施形態1,2及び変形形態に係り、正極活物質粒子の断面のうち粒子表面近傍の様子を模式的に示す説明図である。It is explanatory drawing which concerns on Embodiment 1, 2 and a modification, and shows typically the mode of the particle | grain surface vicinity among the cross sections of a positive electrode active material particle. 実施形態1に係り、初充電工程に含まれる各工程の手順を示すフローチャートである。4 is a flowchart illustrating a procedure of each process included in the initial charging process according to the first embodiment. 実施形態1,2及び変形形態に係る電池に用いる非水電解液について、測定用セルを用いて測定した、正極電位Epとそのときに流れる電流Iとの関係を示すグラフである。It is a graph which shows the relationship between the positive electrode electric potential Ep measured using the measurement cell about the non-aqueous electrolyte used for the battery which concerns on Embodiment 1, 2 and a modification, and the electric current I flowing at that time. 正極電位Epと、図6に示すグラフから得た微分値dI/dEpとの関係を示すグラフである。It is a graph which shows the relationship between the positive electrode electric potential Ep and the differential value dI / dEp obtained from the graph shown in FIG. 実施例1,2及び比較例1,2に係る各電池おける第1電圧と電池抵抗比との関係を示すグラフである。It is a graph which shows the relationship between the 1st voltage and battery resistance ratio in each battery which concerns on Example 1, 2 and Comparative example 1,2. 実施例1,2及び比較例1〜3に係る各電池の正極活物質粒子に生成された被膜の厚さを示すグラフである。It is a graph which shows the thickness of the film produced | generated by the positive electrode active material particle of each battery which concerns on Examples 1, 2 and Comparative Examples 1-3. 実施例4〜13及び比較例4〜7に係る各電池について、保持期間と電池抵抗比との関係を示すグラフである。It is a graph which shows the relationship between a holding | maintenance period and battery resistance ratio about each battery which concerns on Examples 4-13 and Comparative Examples 4-7. 金属リン酸塩の平均粒径と、電池抵抗比が1.00となる保持期間との関係を示すグラフである。It is a graph which shows the relationship between the average particle diameter of a metal phosphate, and the holding | maintenance period from which battery resistance ratio will be 1.00. 実施形態2及び変形形態に係り、初充電工程に含まれる各工程の手順を示すフローチャートである。It is a flowchart which shows the procedure of each process which concerns on Embodiment 2 and a modification, and is included in an initial charge process. 実施形態2に係り、初充電工程のうち、第2工程の手順を示すフローチャートである。10 is a flowchart illustrating a procedure of a second step in the initial charging step according to the second embodiment. 実施形態2及び変形形態に係り、初充電工程における充電時間tと電池の端子間電圧Vt及び充電電流Ibとの関係を示すグラフである。FIG. 10 is a graph showing a relationship between a charging time t, a battery terminal voltage Vt, and a charging current Ib in the initial charging step according to the second embodiment and a modified embodiment. 実施形態2及び変形形態に係り、初充電工程のうち第2工程のカットオフ電流値Ibcと電池抵抗比との関係を示すグラフである。It is a graph which shows the relationship between the cut-off electric current value Ibc and battery resistance ratio of a 2nd process among initial charge processes according to Embodiment 2 and a modification. 変形形態に係り、初充電工程のうち、第2工程の手順を示すフローチャートである。It is a flowchart which shows the procedure of a 2nd process among initial stage charge processes in connection with a deformation | transformation form.

以下、本発明の第1の実施形態を、図面を参照しつつ説明する。図1及び図2に、本実施形態に係るリチウムイオン二次電池(以下、単に「電池」ともいう)1を示す。また、図3に、この電池1を構成する電極体20の展開図を示す。なお、以下では、電池1の電池厚み方向BH、電池横方向CH及び電池縦方向DHを、図1及び図2に示す方向と定めて説明する。
この電池1は、ハイブリッド自動車や電気自動車等の車両などに搭載される角型で密閉型のリチウムイオン二次電池である。電池1は、電池ケース10と、この内部に収容された電極体20及び非水電解液40と、電池ケース10に支持された正極端子50及び負極端子51等から構成される。この電池1は、正極端子50と負極端子51との端子間電圧Vt=3.5〜4.9V(SOC=0〜100%)の間で作動させる電池である。また、SOC=0〜100%の範囲では、正極電位Epは、Ep=3.7〜5.0V(vs.Li/Li+)の範囲内を変動し、負極電位Enは、En=0.2〜0.1V(vs.Li/Li+)である。
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. 1 and 2 show a lithium ion secondary battery (hereinafter also simply referred to as “battery”) 1 according to the present embodiment. FIG. 3 shows a development view of the electrode body 20 constituting the battery 1. In the following description, the battery thickness direction BH, the battery lateral direction CH, and the battery vertical direction DH of the battery 1 are defined as the directions shown in FIGS. 1 and 2.
The battery 1 is a rectangular and sealed lithium ion secondary battery mounted on a vehicle such as a hybrid vehicle or an electric vehicle. The battery 1 includes a battery case 10, an electrode body 20 and a nonaqueous electrolyte solution 40 accommodated therein, a positive terminal 50 and a negative terminal 51 supported by the battery case 10, and the like. The battery 1 is a battery that operates between terminal voltages Vt = 3.5 to 4.9 V (SOC = 0 to 100%) between the positive electrode terminal 50 and the negative electrode terminal 51. Further, in the range of SOC = 0 to 100%, the positive electrode potential Ep fluctuates within a range of Ep = 3.7 to 5.0 V (vs. Li / Li +), and the negative electrode potential En is En = 0.2. ~ 0.1V (vs. Li / Li +).

このうち電池ケース10は、直方体状で金属(本実施形態ではアルミニウム)からなる。この電池ケース10は、上側のみが開口した直方体箱状のケース本体部材11と、このケース本体部材11の開口11hを閉塞する形態で溶接された矩形板状のケース蓋部材13とから構成される。ケース蓋部材13には、電池ケース10の内圧が所定圧力に達した際に破断開弁する安全弁14が設けられている。また、このケース蓋部材13には、電池ケース10の内外を連通する注液孔13hが形成され、封止部材15で気密に封止されている。   Among these, the battery case 10 has a rectangular parallelepiped shape and is made of metal (in this embodiment, aluminum). This battery case 10 includes a rectangular parallelepiped box-shaped case main body member 11 whose upper side is opened, and a rectangular plate-shaped case lid member 13 welded in a form to close the opening 11h of the case main body member 11. . The case lid member 13 is provided with a safety valve 14 that opens when the internal pressure of the battery case 10 reaches a predetermined pressure. The case lid member 13 is formed with a liquid injection hole 13 h that communicates the inside and outside of the battery case 10 and is hermetically sealed with a sealing member 15.

また、ケース蓋部材13には、それぞれ内部端子部材53、外部端子部材54及びボルト55により構成される正極端子50及び負極端子51が、樹脂からなる内部絶縁部材57及び外部絶縁部材58を介して固設されている。なお、正極端子50はアルミニウムからなり、負極端子51は銅からなる。電池ケース10内において、正極端子50は、後述する電極体20のうち正極板21の正極集電部21mに接続し導通している。また、負極端子51は、電極体20のうち負極板31の負極集電部31mに接続し導通している。   Further, the case lid member 13 has a positive terminal 50 and a negative terminal 51 formed of an internal terminal member 53, an external terminal member 54, and a bolt 55, respectively, via an internal insulating member 57 and an external insulating member 58 made of resin. It is fixed. The positive terminal 50 is made of aluminum, and the negative terminal 51 is made of copper. In the battery case 10, the positive electrode terminal 50 is connected and connected to the positive electrode current collector 21 m of the positive electrode plate 21 in the electrode body 20 described later. Further, the negative electrode terminal 51 is connected to the negative electrode current collector 31 m of the negative electrode plate 31 in the electrode body 20 and is conductive.

次に、電極体20について説明する(図2及び図3参照)。この電極体20は、扁平状をなし、電池ケース10内に収容されている。電極体20は、帯状の正極板21と帯状の負極板31とを、帯状の一対のセパレータ39を介して互いに重ねて捲回し、扁平状に圧縮したものである。   Next, the electrode body 20 will be described (see FIGS. 2 and 3). The electrode body 20 has a flat shape and is accommodated in the battery case 10. The electrode body 20 is obtained by winding a belt-like positive electrode plate 21 and a belt-like negative electrode plate 31 on each other via a pair of belt-like separators 39 and compressing them in a flat shape.

正極板21は、帯状のアルミニウム箔からなる正極集電箔22の両主面のうち、幅方向の一部でかつ長手方向に延びる領域上に、正極活物質層23を帯状に設けてなる。正極活物質層23には、後述する正極活物質粒子24、導電材(導電助剤)26、結着剤27及びリン酸リチウム粒子(金属リン酸塩粒子)28が含まれる。本実施形態では、導電材26としてアセチレンブラック(AB)を、結着剤27としてポリフッ化ビニリデン(PVDF)を、金属リン酸塩粒子28としてリン酸リチウム(Li3PO4 )粒子(粉末)を用いている。 The positive electrode plate 21 is formed by providing a positive electrode active material layer 23 in a band shape on a region extending in a part of the width direction and extending in the longitudinal direction among both main surfaces of a positive electrode current collector foil 22 made of a band-shaped aluminum foil. The positive electrode active material layer 23 includes positive electrode active material particles 24, a conductive material (conductive aid) 26, a binder 27, and lithium phosphate particles (metal phosphate particles) 28, which will be described later. In the present embodiment, acetylene black (AB) is used as the conductive material 26, polyvinylidene fluoride (PVDF) is used as the binder 27, and lithium phosphate (Li 3 PO 4 ) particles (powder) are used as the metal phosphate particles 28. Used.

なお、正極活物質粒子24と導電材26と結着剤27との配合比は、重量比で89:8:3である。金属リン酸塩粒子28の配合比は、正極活物質粒子24を基準(100重量部)としたとき、3重量部である。また、正極集電箔22のうち、幅方向の片方の端部は、自身の厚み方向に正極活物質層23が存在せず、正極集電箔22が露出した正極集電部21mとなっている。前述の正極端子50は、この正極集電部21mに溶接されている。   The mixing ratio of the positive electrode active material particles 24, the conductive material 26, and the binder 27 is 89: 8: 3 by weight. The compounding ratio of the metal phosphate particles 28 is 3 parts by weight, based on the positive electrode active material particles 24 (100 parts by weight). Also, one end of the positive electrode current collector foil 22 in the width direction is a positive electrode current collector part 21 m where the positive electrode current collector foil 22 is exposed without the positive electrode active material layer 23 in the thickness direction of the positive electrode current collector foil 22. Yes. The positive electrode terminal 50 described above is welded to the positive electrode current collector 21m.

正極活物質粒子24は、本実施形態では、リチウム遷移金属複合酸化物、具体的には、スピネル型の結晶構造を有するリチウムニッケルマンガン系複合酸化物の1つであるLiNi0.5Mn1.54からなる粒子である。また、この正極活物質粒子24の粒子表面24nには、フッ素及びリンを含む被膜25が形成されている(図4参照)。また、この被膜25には、フッ素及びリンのほか、非水電解液40の他の成分(電解質及び非水溶媒)の分解物も含まれている。 In the present embodiment, the positive electrode active material particles 24 are made of lithium transition metal composite oxide, specifically, LiNi 0.5 Mn 1.5 O 4 which is one of lithium nickel manganese composite oxide having a spinel crystal structure. Particles. A coating 25 containing fluorine and phosphorus is formed on the particle surface 24n of the positive electrode active material particles 24 (see FIG. 4). In addition to fluorine and phosphorus, the coating 25 includes decomposition products of other components (electrolyte and nonaqueous solvent) of the nonaqueous electrolytic solution 40.

次に、負極板31について説明する。この負極板31は、帯状の銅箔からなる負極集電箔32の両主面のうち、幅方向の一部でかつ長手方向に延びる領域上に、負極活物質層33を帯状に設けてなる。この負極活物質層33には、負極活物質粒子、結着剤及び増粘剤が含まれる。本実施形態では、負極活物質粒子として 黒鉛粒子を、結着剤として スチレンブタジエンゴム(SBR)を、増粘剤として カルボシキメチルセルロース(CMC)を用いている。また、負極集電箔32のうち、幅方向の片方の端部は、自身の厚み方向に負極活物質層33が存在せず、負極集電箔32が露出した負極集電部31mとなっている。前述の負極端子51は、この負極集電部31mに溶接されている。また、セパレータ39は、樹脂からなる多孔質膜であり、帯状をなす。   Next, the negative electrode plate 31 will be described. This negative electrode plate 31 is provided with a negative electrode active material layer 33 in a band shape on a region extending in a part of the width direction and extending in the longitudinal direction out of both main surfaces of a negative electrode current collector foil 32 made of a strip-shaped copper foil. . The negative electrode active material layer 33 includes negative electrode active material particles, a binder, and a thickener. In this embodiment, graphite particles are used as negative electrode active material particles, styrene butadiene rubber (SBR) is used as a binder, and carboxymethyl cellulose (CMC) is used as a thickener. Also, one end in the width direction of the negative electrode current collector foil 32 is the negative electrode current collector part 31m where the negative electrode active material layer 33 is not present in the thickness direction of the negative electrode current collector foil 32 and the negative electrode current collector foil 32 is exposed. Yes. The negative electrode terminal 51 described above is welded to the negative electrode current collector 31m. The separator 39 is a porous film made of resin and has a strip shape.

次に、非水電解液40について説明する。この非水電解液40は、電池ケース10内に収容されており、非水電解液40の一部は電極体20内に含浸され、残りは余剰液として電池ケース10の底部に溜まっている。この非水電解液40の電解質は、ヘキサフルオロリン酸リチウム(LiPF6 )であり、その濃度は1.0Mである。また、非水電解液40の非水溶媒は、フルオロエチレンカーボネート(FEC)と2,2,2−トリフルオロエチルメチルカーボネートとを、1:1の体積比で混合した混合有機溶媒である。上述 のように、この非水電解液40は、フッ素を含む化合物41として、支持電解質であるLiPF6のほか、非水溶媒であるフルオロエチレンカーボネート(FEC)及び2,2,2−トリフルオロエチルメチルカーボネートを有している。 Next, the nonaqueous electrolytic solution 40 will be described. The non-aqueous electrolyte 40 is accommodated in the battery case 10, a part of the non-aqueous electrolyte 40 is impregnated in the electrode body 20, and the rest is accumulated at the bottom of the battery case 10 as an excess liquid. The electrolyte of this nonaqueous electrolytic solution 40 is lithium hexafluorophosphate (LiPF 6 ), and its concentration is 1.0M. The nonaqueous solvent of the nonaqueous electrolytic solution 40 is a mixed organic solvent in which fluoroethylene carbonate (FEC) and 2,2,2-trifluoroethyl methyl carbonate are mixed at a volume ratio of 1: 1. As described above, this nonaqueous electrolytic solution 40 includes, as the compound 41 containing fluorine, LiPF 6 that is a supporting electrolyte, fluoroethylene carbonate (FEC) that is a nonaqueous solvent, and 2,2,2-trifluoroethyl. Has methyl carbonate.

次いで、上記電池1の製造方法について説明する。まず、正極板21を形成する。具体的には、スピネル構造を有するリチウムニッケルマンガン系複合酸化物であるLiNi0.5Mn1.54からなる正極活物質粒子24を用意する。そして、この正極活物質粒子24と、導電材26(アセチレンブラック)と、結着剤27(ポリフッ化ビニリデン)と、金属リン酸塩粒子28(リン酸リチウム粒子,平均粒径D50=3.0μm)とを、溶媒(本実施形態では、NMP)と共に混練して、正極ペーストを作製する。なお、正極活物質粒子24と導電材26と結着剤27との配合比は、前述のように、重量比で89:8:3であり、さらに、正極活物質粒子24を100重量部としたとき金属リン酸塩粒子28を重量部の割合で添加する。なお、後述するように金属リン酸塩粒子28に平均粒径D50=1.5μmあるいは0.8μmのものを用いる場合には、湿式ビーズミルを用いて、粒径を所望の大きさに整えて用いる。 Next, a method for manufacturing the battery 1 will be described. First, the positive electrode plate 21 is formed. Specifically, positive electrode active material particles 24 made of LiNi 0.5 Mn 1.5 O 4 which is a lithium nickel manganese composite oxide having a spinel structure are prepared. The positive electrode active material particles 24, the conductive material 26 (acetylene black), the binder 27 (polyvinylidene fluoride), and the metal phosphate particles 28 (lithium phosphate particles, average particle diameter D50 = 3.0 μm). ) With a solvent (NMP in this embodiment) to produce a positive electrode paste. The mixing ratio of the positive electrode active material particles 24, the conductive material 26, and the binder 27 is 89: 8: 3 by weight as described above, and the positive electrode active material particles 24 are 100 parts by weight. When this is done, the metal phosphate particles 28 are added in a proportion of parts by weight. As will be described later, when the metal phosphate particles 28 having an average particle diameter D50 = 1.5 μm or 0.8 μm are used, the particle diameter is adjusted to a desired size using a wet bead mill. .

その後、この正極ペーストを、帯状のアルミニウム箔からなる正極集電箔22の一方の主面に塗布し乾燥させて、正極活物質層23を形成する。更に、正極集電箔22の他方の主面にも正極ペーストを塗布し乾燥させて、正極活物質層23を形成する。その後、これをプレスして、正極板21を得る。
また別途、公知の手法によって負極板31を形成しておく。
Thereafter, the positive electrode paste is applied to one main surface of the positive electrode current collector foil 22 made of a strip-shaped aluminum foil and dried to form the positive electrode active material layer 23. Further, the positive electrode paste is applied to the other main surface of the positive electrode current collector foil 22 and dried to form the positive electrode active material layer 23. Then, this is pressed and the positive electrode plate 21 is obtained.
Separately, the negative electrode plate 31 is formed by a known method.

次に、正極板21及び負極板31を一対のセパレータ39を介して互いに重ね、巻き芯を用いて捲回する。更に、これを扁平状に圧縮して電極体20を形成する。
また別途、ケース蓋部材13、内部端子部材53、外部端子部材54、ボルト55、内部絶縁部材57及び外部絶縁部材58を用意する。そして、ケース蓋部材13に、内部絶縁部材57及び外部絶縁部材58を介して、それぞれ内部端子部材53、外部端子部材54及びボルト55からなる正極端子50及び負極端子51を固設する。その後、電極体20の正極集電部21m及び負極集電部31mに、ケース蓋部材13と一体化された正極端子50及び負極端子51をそれぞれ溶接する。
次に、ケース本体部材11内に電極体20を収容した後、ケース本体部材11の開口部分にケース蓋部材13を溶接して電池ケース10を形成する。
Next, the positive electrode plate 21 and the negative electrode plate 31 are overlapped with each other via a pair of separators 39 and wound using a winding core. Further, the electrode body 20 is formed by compressing it into a flat shape.
Separately, a case lid member 13, an internal terminal member 53, an external terminal member 54, a bolt 55, an internal insulating member 57 and an external insulating member 58 are prepared. Then, the positive terminal 50 and the negative terminal 51 including the internal terminal member 53, the external terminal member 54, and the bolt 55 are fixed to the case lid member 13 via the internal insulating member 57 and the external insulating member 58, respectively. Thereafter, the positive electrode terminal 50 and the negative electrode terminal 51 integrated with the case lid member 13 are welded to the positive electrode current collector 21m and the negative electrode current collector 31m of the electrode body 20, respectively.
Next, after housing the electrode body 20 in the case body member 11, the case cover member 13 is welded to the opening portion of the case body member 11 to form the battery case 10.

また別途、非水電解液40を用意する。具体的には、フルオロエチレンカーボネートと2,2,2−トリフルオロエチルメチルカーボネートとを1:1の体積比で混合した混合有機溶媒に、LiPF6を濃度1.0Mとなるように溶解させる。そして、この非水電解液40を、注液孔13hから電池ケース10内に注液し、非水電解液40を電極体20内に含浸させる。その後、注液孔13hを仮封止して、電池1とする。 Separately, a non-aqueous electrolyte 40 is prepared. Specifically, LiPF 6 is dissolved in a mixed organic solvent in which fluoroethylene carbonate and 2,2,2-trifluoroethyl methyl carbonate are mixed at a volume ratio of 1: 1 so as to have a concentration of 1.0M. Then, the nonaqueous electrolytic solution 40 is injected into the battery case 10 through the injection hole 13h, and the electrode body 20 is impregnated with the nonaqueous electrolytic solution 40. Thereafter, the liquid injection hole 13 h is temporarily sealed to obtain a battery 1.

次に、この電池1に初充電を行う(初充電工程)。この初充電工程では、初充電と共に、正極活物質粒子24の粒子表面24nにフッ素及びリンを含む被膜25を形成する。
具体的には、初充電工程としてまず、図示しないCC−CV充放電装置に電池1を接続し、図5に示すように、この電池1を3.0Cの電流でCC充電して、端子間電圧VtをVt=4.1V(第1電圧Vh)まで上昇させる(第1工程S1)。次いで、端子間電圧Vt=4.1VのCV充電に切り替える。即ち、保持期間Tk=60分に亘り、端子間電圧Vtを第1電圧Vh=4.1Vに保持する(第2工程S2)。さらにその後、3.0Cの定電流で端子間電圧Vtが第2電圧Veに達するまで、具体的には、Vt=Ve=4.9Vに達するまで定電流充電(CC充電)を行う(第3工程S3)。
Next, the battery 1 is initially charged (initial charging step). In this initial charging step, a coating 25 containing fluorine and phosphorus is formed on the particle surface 24n of the positive electrode active material particles 24 together with the initial charging.
Specifically, as the first charging step, first, the battery 1 is connected to a CC-CV charging / discharging device (not shown), and as shown in FIG. The voltage Vt is increased to Vt = 4.1V (first voltage Vh) (first step S1). Next, switching to CV charging with a terminal voltage Vt = 4.1V is performed. That is, the inter-terminal voltage Vt is held at the first voltage Vh = 4.1 V over the holding period Tk = 60 minutes (second step S2). After that, constant current charging (CC charging) is performed until the inter-terminal voltage Vt reaches the second voltage Ve at a constant current of 3.0 C, specifically, until Vt = Ve = 4.9 V (third charging). Step S3).

前述の初充電の際に、具体的には、主として第2工程において端子間電圧Vtを第1電圧Vh=4.1V(正極板21の正極電位Ep=4.3V(vs.Li/Li+)、負極板31の負極電位En=0.2V(vs.Li/Li+))に保持している間に、正極活物質粒子24の粒子表面24nに、フッ素及びリンを含む被膜25が形成される。なお、この時点での正極電位Ep=4.3V(vs.Li/Li+)は、後述するように、分解下限電位Epd=4.2V(vs.Li/Li+)よりも0.1V分だけ高い値となっている。また、保持される端子間電圧である第1電圧Vh=Vt=4.1Vは、分解下限電圧Vtd=4.0Vよりも0.1V高い値となっている。   Specifically, at the time of the above-described initial charging, the inter-terminal voltage Vt is set to the first voltage Vh = 4.1 V (positive electrode potential Ep of the positive electrode plate 21 = 4.3 V (vs. Li / Li +)) mainly in the second step. While the negative electrode potential En of the negative electrode plate 31 is maintained at 0.2 V (vs. Li / Li +), a coating 25 containing fluorine and phosphorus is formed on the particle surface 24 n of the positive electrode active material particles 24. . At this time, the positive electrode potential Ep = 4.3V (vs. Li / Li +) is higher by 0.1 V than the decomposition lower limit potential Epd = 4.2 V (vs. Li / Li +), as will be described later. It is a value. In addition, the first voltage Vh = Vt = 4.1V, which is the inter-terminal voltage held, is 0.1V higher than the decomposition lower limit voltage Vtd = 4.0V.

被膜25が形成されるメカニズムは明確ではないが、以下が考えられる。即ち、正極板21(正極活物質粒子24)の正極電位(酸化還元電位)Epが、後述する分解下限電位Epd以上となった場合、正極活物質粒子24の粒子表面24nでは、表面24nに接触する非水電解液40の非水溶媒(本実施形態では、フルオロエチレンカーボネート(FEC)及び2,2,2−トリフルオロエチルメチルカーボネート)が酸化分解されて水素イオンが発生する。この水素イオンは、非水電解液40中のフッ素を含む化合物41(本実施形態では、支持電解質のLiPF6 、溶媒のフルオロエチレンカーボネート(FEC)、2,2,2−トリフルオロエチルメチルカーボネート)内のフッ酸と反応して、フッ酸(HF)を生成する。このフッ酸は、正極活物質層23に含まれる金属リン酸塩(リン酸リチウム)粒子28と反応して、正極活物質粒子24の粒子表面24nに、フッ素及びリンを含む被膜25が形成されると考えられる。
その後は、この電池について、仮封止を解除し、さらに減圧下で本封止を行う。さらに各種検査を行う。かくして、電池1が完成する。
Although the mechanism by which the film 25 is formed is not clear, the following is conceivable. That is, when the positive electrode potential (oxidation-reduction potential) Ep of the positive electrode plate 21 (positive electrode active material particles 24) is equal to or higher than the decomposition lower limit potential Epd described later, the particle surface 24n of the positive electrode active material particles 24 is in contact with the surface 24n. The nonaqueous solvent of the nonaqueous electrolyte solution 40 (in this embodiment, fluoroethylene carbonate (FEC) and 2,2,2-trifluoroethylmethyl carbonate) is oxidized and decomposed to generate hydrogen ions. This hydrogen ion is a compound 41 containing fluorine in the nonaqueous electrolytic solution 40 (in this embodiment, LiPF 6 as a supporting electrolyte, fluoroethylene carbonate (FEC) as a solvent, 2,2,2-trifluoroethyl methyl carbonate). Reacts with hydrofluoric acid in the interior to produce hydrofluoric acid (HF). This hydrofluoric acid reacts with the metal phosphate (lithium phosphate) particles 28 contained in the positive electrode active material layer 23 to form a film 25 containing fluorine and phosphorus on the particle surface 24 n of the positive electrode active material particles 24. It is thought.
Thereafter, the temporary sealing of the battery is released, and the main sealing is performed under reduced pressure. Furthermore, various inspections are performed. Thus, the battery 1 is completed.

(分解下限電圧、分解下限電位の測定)
次いで、上述の構成を有する電池1において、正極板21(正極活物質粒子24)の正極電位Epのうち、非水電解液(非水溶媒)40の酸化分解が生ずる最も低い正極電位Epである分解下限電位Epdを、以下のようにして検知する。まず、Pt板からなる作用極、金属リチウムからなる対極及び参照極を有し、電池1に用いた非水電解液40を用いた測定用セルを用意する。ソーラトロン社製の電気化学測定システムを用いて、この測定用セルについて、作用極の電位を3.0〜5.4V(vs.Li/Li+)の範囲に亘り、1mV/secの割合で上昇及び下降させるCV測定を、2サイクル行う。さらに、3サイクル目に作用極の電位を上昇させる際の、正極電位Ep(V(vs.Li/Li+))とそのときに流れる電流I(μA/cm2)との関係を取得する(図6参照)。なお、充電側の電流を+の値とする。この関係から、さらに正極電位Ep(V(vs.Li/Li+))と微分値dI/dEpとの関係を得る(図7)。正極電位Epの上昇と共に微分値dI/dEpが直線的に上昇する部分において、この変化に重なる近似直線Lを引き、この近似直線Lが微分値dI/dEp=0となる正極電位Epの値を、当該非水電解液40の「分解下限電位(vs.Li/Li+)」Epdとする。
(Measurement of decomposition lower limit voltage and decomposition lower limit potential)
Next, in the battery 1 having the above-described configuration, among the positive electrode potential Ep of the positive electrode plate 21 (positive electrode active material particles 24), the lowest positive electrode potential Ep at which oxidative decomposition of the nonaqueous electrolyte solution (nonaqueous solvent) 40 occurs. The decomposition lower limit potential Epd is detected as follows. First, a measurement cell using a nonaqueous electrolytic solution 40 used for the battery 1 is prepared, which has a working electrode made of a Pt plate, a counter electrode made of metallic lithium, and a reference electrode. Using the electrochemical measurement system manufactured by Solartron, the potential of the working electrode was increased at a rate of 1 mV / sec over the range of 3.0 to 5.4 V (vs. Li / Li +) for this measurement cell. The descending CV measurement is performed for two cycles. Further, the relationship between the positive electrode potential Ep (V (vs.Li/Li+)) and the current I (μA / cm 2 ) flowing at that time when the potential of the working electrode is increased in the third cycle is obtained (FIG. 6). Note that the current on the charging side is a positive value. From this relationship, a relationship between the positive electrode potential Ep (V (vs.Li/Li+)) and the differential value dI / dEp is obtained (FIG. 7). In a portion where the differential value dI / dEp rises linearly with the rise of the positive electrode potential Ep, an approximate straight line L overlapping this change is drawn, and this approximate straight line L shows the value of the positive electrode potential Ep at which the differential value dI / dEp = 0. The “lower decomposition potential (vs. Li / Li +)” Epd of the non-aqueous electrolyte 40 is used.

上述のようにして電池1に用いる非水電解液40(フルオロエチレンカーボネート(FEC)+2,2,2−トリフルオロエチルメチルカーボネート(1:1)、及び、LiPF6:1.0M)について測定した、正極電位Ep(V(vs.Li/Li+))とそのときに流れる電流I(μA/cm2)との関係を図6に、正極電位Ep(V(vs.Li/Li+))と微分値dI/dEpとの関係を、図7に示す。 Measurement was performed on the non-aqueous electrolyte 40 (fluoroethylene carbonate (FEC) + 2,2,2-trifluoroethylmethyl carbonate (1: 1) and LiPF 6 : 1.0M) used in the battery 1 as described above. FIG. 6 shows the relationship between the positive electrode potential Ep (V (vs.Li/Li+)) and the current I (μA / cm 2 ) flowing at that time, and the positive electrode potential Ep (V (vs.Li/Li+)) and the differential The relationship with the value dI / dEp is shown in FIG.

図6に示す正極電位Ep対電流Iのグラフによれば、正極電位Ep=3.3〜4.1V(vs.Li/Li+)の範囲では、正極電位Epの増加と共に、直線的に電流Iが増加しているように見える。しかし、正極電位Ep=4.2V(vs.Li/Li+)以上の範囲では、正極電位Epの増加と共に、加速度的に電流Iが増加しているように見える。   According to the graph of the positive electrode potential Ep versus the current I shown in FIG. 6, in the range of the positive electrode potential Ep = 3.3 to 4.1 V (vs. Li / Li +), the current I linearly increases as the positive electrode potential Ep increases. Seems to increase. However, in the range of the positive electrode potential Ep = 4.2 V (vs. Li / Li +) or more, it seems that the current I increases at an accelerated rate as the positive electrode potential Ep increases.

そこで、微分値dI/dEpを算出して、正極電位Ep対微分値dI/dEpのグラフを得た(図7参照)。すると、正極電位Ep=4.4〜5.0V(vs.Li/Li+)の範囲で、正極電位Epの増加と共に、微分値dI/dEpが直線的に増加している(即ち、加速度的に(二次関数的に、電位の二乗に比例して)電流Iが増加している)ことが判る。そこで、この微分値dI/dEpが直線的に増加している範囲にフィットする近似直線Lを引く。この近似直線Lが微分値dI/dEp=0となる正極電位Ep(即ち、図7のグラフにおけるX切片)の値は、Ep=4.2V(vs.Li/Li+)である。そこでこの正極電位Ep=4.2V(vs.Li/Li+)を、本実施形態に係る非水電解液40の分解下限電位Epdとする。非水溶媒の酸化分解は、正極電位Epが分解下限電位Epdを超えると、正極電位Epの増加に連れて加速度的(2次関数的)に増加すると考えられるからである。   Therefore, a differential value dI / dEp was calculated to obtain a graph of positive electrode potential Ep versus differential value dI / dEp (see FIG. 7). Then, in the range of the positive electrode potential Ep = 4.4 to 5.0 V (vs. Li / Li +), the differential value dI / dEp increases linearly with the increase of the positive electrode potential Ep (that is, in an accelerated manner). (In a quadratic function, the current I increases in proportion to the square of the potential). Therefore, an approximate straight line L that fits the range in which the differential value dI / dEp increases linearly is drawn. The value of the positive electrode potential Ep (that is, the X intercept in the graph of FIG. 7) at which the approximate line L becomes the differential value dI / dEp = 0 is Ep = 4.2 V (vs. Li / Li +). Therefore, the positive electrode potential Ep = 4.2 V (vs. Li / Li +) is set as the decomposition lower limit potential Epd of the nonaqueous electrolytic solution 40 according to the present embodiment. This is because the oxidative decomposition of the non-aqueous solvent is considered to increase in an accelerated manner (second-order function) as the positive electrode potential Ep increases when the positive electrode potential Ep exceeds the decomposition lower limit potential Epd.

電池1では、前述したように負極活物質に黒鉛を用いており、負極電位Enは、En=0.2V(vs.Li/Li+)一定である。従って、正極板21が分解下限電位Epd(=4.2V(vs.Li/Li+))となっている状態での、電池1の端子間電圧Vtは、Vt=Ep−En=4.2−0.2=4.0Vとなる。そこでこの値を、電池1における「分解下限電圧」Vtd(=4.0V)とする。   As described above, the battery 1 uses graphite as the negative electrode active material, and the negative electrode potential En is constant at En = 0.2 V (vs. Li / Li +). Therefore, the voltage Vt between the terminals of the battery 1 when the positive electrode plate 21 is at the decomposition lower limit potential Epd (= 4.2 V (vs. Li / Li +)) is Vt = Ep−En = 4.2−. 0.2 = 4.0V. Therefore, this value is set as the “decomposition lower limit voltage” Vtd (= 4.0 V) in the battery 1.

さらに、電池1においては、分解下限電圧Vtdを用いて、非水電解液の「下部分解域」Adを、Ad=Vtd〜Vtd+0.4の範囲と定める。具体的には、下部分解域Ad=4.0〜4.4Vの範囲である(図8参照)。   Further, in the battery 1, the “lower decomposition zone” Ad of the non-aqueous electrolyte is defined as a range of Ad = Vtd to Vtd + 0.4 using the decomposition lower limit voltage Vtd. Specifically, the lower decomposition zone Ad is in the range of 4.0 to 4.4 V (see FIG. 8).

(実施例1,2及び比較例1〜3)
次いで、本発明の効果を検証するために行った試験およびその結果について説明する。下記の表1に示すように、電池1と同じ正極板21、負極板31、セパレータ39及び非水電解液40を用いた電池を用意し、実施例1,2及び比較例1〜3の5種類の試験条件で試験を行った。従って、各例の電池の正極活物質層23には、この正極活物質層23に含まれる正極活物質粒子24を100重量部としたとき、平均粒径D50=3.0μmのリン酸リチウム粒子(LPO)が3重量部含まれている(表1参照)。
(Examples 1 and 2 and Comparative Examples 1 to 3)
Next, tests performed to verify the effects of the present invention and the results thereof will be described. As shown in Table 1 below, batteries using the same positive electrode plate 21, negative electrode plate 31, separator 39 and non-aqueous electrolyte solution 40 as those of the battery 1 were prepared. The test was conducted under various test conditions. Therefore, in the positive electrode active material layer 23 of the battery of each example, when the positive electrode active material particles 24 included in the positive electrode active material layer 23 are 100 parts by weight, lithium phosphate particles having an average particle diameter D50 = 3.0 μm. 3 parts by weight of (LPO) is contained (see Table 1).

そして、比較例1の電池では、初充電において、下部分解域Ad=4.0〜4.4Vを下回る、端子間電圧Vt=3.8Vまで端子間電圧Vtを上昇させた(第1工程)後、この端子間電圧Vt(第1電圧Vh)=3.8Vを保持期間Tk=60分に亘り保持した(第2工程)。その後、CC充電レート3.0Cの定電流充電を、端子間電圧Vtが第2電圧Ve=4.9Vに達するまで行い(第3工程)、初充電を終えた。比較例1の電池について初充電に掛かった総充電時間は、80分である。   In the battery of Comparative Example 1, the inter-terminal voltage Vt was increased to the inter-terminal voltage Vt = 3.8 V, which is lower than the lower decomposition area Ad = 4.0 to 4.4 V in the initial charging (first step). Thereafter, this inter-terminal voltage Vt (first voltage Vh) = 3.8 V was held for the holding period Tk = 60 minutes (second step). Thereafter, constant current charging at a CC charging rate of 3.0 C was performed until the inter-terminal voltage Vt reached the second voltage Ve = 4.9 V (third step), and the initial charging was completed. The total charging time required for the initial charging of the battery of Comparative Example 1 is 80 minutes.

また、実施例1の電池では、初充電において、下部分解域Ad内の、端子間電圧Vt=4.1Vまで端子間電圧Vtを上昇させた(第1工程)後、この端子間電圧Vt(第1電圧Vh)=4.1Vを保持期間Tk=60分に亘り保持した(第2工程)。その後、CC充電レート3.0Cの定電流充電を、端子間電圧Vtが第2電圧Ve=4.9Vに達するまで行い(第3工程)、初充電を終えた。初充電に掛かった総充電時間は、80分である。   In the battery of Example 1, in the initial charge, the inter-terminal voltage Vt in the lower decomposition zone Ad is increased to the inter-terminal voltage Vt = 4.1 V (first step), and then the inter-terminal voltage Vt ( The first voltage Vh) = 4.1 V was held for the holding period Tk = 60 minutes (second step). Thereafter, constant current charging at a CC charging rate of 3.0 C was performed until the inter-terminal voltage Vt reached the second voltage Ve = 4.9 V (third step), and the initial charging was completed. The total charging time required for the initial charging is 80 minutes.

実施例2では、実施例1とは、保持する端子間電圧Vtのみ異ならせた。即ち、端子間電圧Vtを、下部分解域Ad内のVt=4.4Vに上昇させ、この端子間電圧Vt(第1電圧Vh)=4.4Vを保持期間Tk=60分に亘り保持し、その後、CC充電レート3.0CでCC充電した。初充電に掛かった総充電時間は、80分である。   The second embodiment is different from the first embodiment only in the inter-terminal voltage Vt to be held. That is, the inter-terminal voltage Vt is increased to Vt = 4.4 V in the lower decomposition zone Ad, and this inter-terminal voltage Vt (first voltage Vh) = 4.4 V is held for the holding period Tk = 60 minutes, Thereafter, CC charging was performed at a CC charging rate of 3.0C. The total charging time required for the initial charging is 80 minutes.

比較例2でも、実施例1とは、保持する端子間電圧Vtのみ異ならせた。但し、端子間電圧Vtを、下部分解域Adを上回るVt=4.7Vに上昇させ、この端子間電圧Vt(第1電圧Vh)=4.7Vを保持期間Tk=60分に亘り保持し、その後、CC充電レート3.0CでCC充電した。初充電に掛かった総充電時間は、80分である。   Also in Comparative Example 2, only the inter-terminal voltage Vt to be held was different from that in Example 1. However, the inter-terminal voltage Vt is increased to Vt = 4.7 V, which exceeds the lower decomposition zone Ad, and this inter-terminal voltage Vt (first voltage Vh) = 4.7 V is held for the holding period Tk = 60 minutes, Thereafter, CC charging was performed at a CC charging rate of 3.0C. The total charging time required for the initial charging is 80 minutes.

比較例3では、比較例1,2及び実施例1,2と異なり、電圧を保持する第2工程を設けない。即ち、初充電の当初から、CC充電レート3.0Cの定電流充電を、端子間電圧Vtが第2電圧Ve=4.9Vに達するまで行い、初充電を終えた。初充電に掛かった総充電時間は、他よりも短い20分である。   Unlike the comparative examples 1 and 2 and the examples 1 and 2, the comparative example 3 does not include the second step of holding the voltage. That is, from the beginning of the initial charging, constant current charging at a CC charging rate of 3.0 C was performed until the inter-terminal voltage Vt reached the second voltage Ve = 4.9 V, and the initial charging was completed. The total charging time for the initial charging is 20 minutes shorter than the others.

これら比較例1〜3及び実施例1,2の電池について、初充電の完了後、電池抵抗(IV抵抗)を測定した。具体的には、25℃の温度環境下において、各電池をSOC60%に調整し、0.3Cの定電流で10秒間放電を行い、放電前後の電圧変化を測定した。更に、放電電流値のみを1C,3C,5Cの順に増加させる一方、それ以外は上記と同様の条件で放電を行って、10秒間放電前後の電圧変化をそれぞれ測定した。その後、これらのデータを、横軸を放電電流値、縦軸を放電前後の電圧変化とした座標平面にプロットし、最小二乗法により近似直線(一次式)を算出して、その傾きをIV抵抗値として得た。そして、実施例2の電池の電池抵抗(IV抵抗)を基準(=1.00)として、その他の電池の「電池抵抗比」をそれぞれ算出した。その結果を表1及び図8に示す。図8は、各電池おける第1電圧Vhと電池抵抗比との関係を示すグラフである。但し、図8に比較例3の結果は記載していない。   For the batteries of Comparative Examples 1 to 3 and Examples 1 and 2, the battery resistance (IV resistance) was measured after the completion of the initial charge. Specifically, in a temperature environment of 25 ° C., each battery was adjusted to 60% SOC, discharged at a constant current of 0.3 C for 10 seconds, and voltage change before and after the discharge was measured. Furthermore, only the discharge current value was increased in the order of 1C, 3C, and 5C, while other than that, discharging was performed under the same conditions as described above, and voltage changes before and after discharging for 10 seconds were measured. After that, these data are plotted on a coordinate plane with the horizontal axis representing the discharge current value and the vertical axis representing the voltage change before and after the discharge, and an approximate straight line (primary expression) is calculated by the least square method, and the slope is expressed as IV resistance. Obtained as value. Then, the “battery resistance ratio” of other batteries was calculated using the battery resistance (IV resistance) of the battery of Example 2 as a reference (= 1.00). The results are shown in Table 1 and FIG. FIG. 8 is a graph showing the relationship between the first voltage Vh and the battery resistance ratio in each battery. However, the results of Comparative Example 3 are not shown in FIG.

さらに、比較例1〜3及び実施例1,2の電池を分解して正極活物質粒子24を取りだし、TEM(透過型電子顕微鏡)を用いて、正極活物質粒子24の粒子表面24nに形成されている、フッ素及びリンを含む被膜25の厚みを計測した(n=3ヶ)。その結果を表1及び図9に示す。図9は、各電池の正極活物質粒子に生成された被膜の厚さを示すグラフである。   Further, the batteries of Comparative Examples 1 to 3 and Examples 1 and 2 were disassembled to take out the positive electrode active material particles 24, and formed on the particle surface 24n of the positive electrode active material particles 24 using a TEM (transmission electron microscope). The thickness of the coating film 25 containing fluorine and phosphorus was measured (n = 3). The results are shown in Table 1 and FIG. FIG. 9 is a graph showing the thickness of the coating formed on the positive electrode active material particles of each battery.

Figure 2017027928
Figure 2017027928

表1及び図8から、保持期間Tkを何れもTk=60分とした場合、第1電圧VhをVh=4.1Vとする(実施例1)と、電池抵抗比が最も低くなることが判る。また、第1電圧VhをVh=4.4V(実施例2)とした場合でも、電池抵抗比は1.05であり、抵抗が5%程度上昇するのみであることが判る。これら実施例1,2では、第2工程での第1電圧Vhを、前述した分解下限電圧Vtd=4.0Vよりも僅かに大きいVh=4.1V、あるいは若干大きいVh=4.4Vとしているため、この第2工程の間に非水電解液40の酸化分解は生じる。しかし、第1電圧Vhを、非水電解液が酸化分解を起こす範囲のうちでも、下部分解域Ad(=4.0〜4.4V)という低い電圧範囲内の電圧としている。このため、非水電解液40の酸化分解が徐々にしか起こらず、正極活物質粒子24の粒子表面24nに、厚すぎるフッ素及びリンを含む被膜25が形成されるのを防止し、電池抵抗を低く抑えることができたと考えられる。この点は、表1及び図9に示す被膜25の厚さttが、実施例1ではtt=10nm、実施例2ではtt=13nmであり、比較例1〜3に比して小さいことからも裏付けられる。   From Table 1 and FIG. 8, it can be seen that when the holding period Tk is Tk = 60 minutes, the battery resistance ratio is the lowest when the first voltage Vh is Vh = 4.1 V (Example 1). . Further, even when the first voltage Vh is Vh = 4.4 V (Example 2), it can be seen that the battery resistance ratio is 1.05, and the resistance only increases by about 5%. In Examples 1 and 2, the first voltage Vh in the second step is set to Vh = 4.1V, which is slightly larger than the above-described decomposition lower limit voltage Vtd = 4.0V, or Vh = 4.4V, which is slightly larger. Therefore, oxidative decomposition of the nonaqueous electrolytic solution 40 occurs during the second step. However, the first voltage Vh is set to a voltage within a low voltage range of the lower decomposition zone Ad (= 4.0 to 4.4 V) even in a range where the nonaqueous electrolytic solution undergoes oxidative decomposition. For this reason, the oxidative decomposition of the non-aqueous electrolyte 40 occurs only gradually, preventing the formation of the coating 25 containing too thick fluorine and phosphorus on the particle surface 24n of the positive electrode active material particles 24, thereby reducing the battery resistance. It is thought that it was possible to keep it low. This is because the thickness tt of the coating 25 shown in Table 1 and FIG. 9 is tt = 10 nm in Example 1 and tt = 13 nm in Example 2, which is smaller than those in Comparative Examples 1 to 3. It is supported.

一方、比較例2では、第2工程での第1電圧Vhを、分解下限電圧Vtd=4.0Vよりも遙かに大きい(下部分解域Adを上回る)、Vh=4.7Vとした。このため第2工程の間に、大きな電流が流れ非水電解液40の酸化分解が一時に多量に生じ、正極活物質粒子24の粒子表面24nに、厚すぎるフッ素及びリンを含む被膜25が形成されたことにより、実施例1,2に比して、電池抵抗が高くなったと考えられる。この点は、表1及び図9に示す被膜25の厚さttが、比較例2ではtt=18nmであり、実施例1,2に比して厚くなっていることからも裏付けられる。   On the other hand, in Comparative Example 2, the first voltage Vh in the second step was set to Vh = 4.7V, which is much higher than the decomposition lower limit voltage Vtd = 4.0V (exceeding the lower decomposition area Ad). Therefore, during the second step, a large current flows and a large amount of oxidative decomposition of the non-aqueous electrolyte solution 40 occurs at a time, and a coating 25 containing too thick fluorine and phosphorus is formed on the particle surface 24n of the positive electrode active material particles 24. As a result, the battery resistance is considered to be higher than in Examples 1 and 2. This point is supported by the fact that the thickness tt of the coating film 25 shown in Table 1 and FIG. 9 is tt = 18 nm in Comparative Example 2, which is thicker than those in Examples 1 and 2.

なお、比較例3では、第2工程を設けず、当初から充電レート3.0Cの大電流でのCC充電を行ったため、非水電解液40の酸化分解が一時に多量に発生したため、厚い被膜25が形成されたと考えられる。この点は、表1及び図9に示す被膜25の厚さttが、比較例3ではtt=20nmと最も厚くなっていることからも裏付けられる。   In Comparative Example 3, the second step was not provided, and CC charging was performed with a large current at a charge rate of 3.0 C from the beginning, so that a large amount of oxidative decomposition of the nonaqueous electrolytic solution 40 occurred at a time. 25 is formed. This point is supported by the fact that the thickness tt of the coating film 25 shown in Table 1 and FIG. 9 is the thickest at tt = 20 nm in Comparative Example 3.

また、比較例1では、第2工程での第1電圧Vhを、分解下限電圧Vtd=4.0Vよりも低い(下部分解域Adを下回る)Vh=3.8Vとした。このため第2工程の間に、非水電解液40の酸化分解はほとんど生じず、第2工程では被膜はほとんど生成しなかったと考えられる。但し、その後の第3工程での、充電レート3.0Cという大電流でのCC充電で厚い被膜25が形成されたと考えられる。従って、比較例1は、被膜の生成について見ると、比較例3に似た生成パターンとなっている。この点は、表1及び図9に示す被膜25の厚さttが、比較例1ではtt=18nmであり、実施例1,2に比して厚くなっていることからも裏付けられる。また、電池抵抗が実施例1,2に比して高くなっていることも裏付けられる。   In Comparative Example 1, the first voltage Vh in the second step was set to Vh = 3.8 V lower than the decomposition lower limit voltage Vtd = 4.0 V (below the lower decomposition area Ad). For this reason, it is considered that almost no oxidative decomposition of the nonaqueous electrolytic solution 40 occurred during the second step, and almost no film was formed in the second step. However, it is considered that the thick film 25 was formed by CC charging at a large current of a charging rate of 3.0 C in the third process thereafter. Therefore, the comparative example 1 has a generation pattern similar to that of the comparative example 3 in view of the generation of the film. This point is supported by the fact that the thickness tt of the coating 25 shown in Table 1 and FIG. 9 is tt = 18 nm in Comparative Example 1 and is thicker than those in Examples 1 and 2. Further, it is confirmed that the battery resistance is higher than those in Examples 1 and 2.

以上から、第2工程での第1電圧Vhを、下は分解下限電圧Vtd=4.0V、上は分解下限電圧Vtd+0.4V(=4.4V)の範囲内、即ち、前述の下部分解域Ad(Vt=4.0〜4.4V)内の電圧とすることで、厚みの薄い被膜25を形成でき、電池抵抗も低くできることが理解できる。   From the above, the first voltage Vh in the second step is set to the lower decomposition lower limit voltage Vtd = 4.0V, and the upper decomposition lower limit voltage Vtd + 0.4V (= 4.4V), that is, the lower decomposition region described above. It can be understood that by setting the voltage within Ad (Vt = 4.0 to 4.4 V), the thin film 25 can be formed and the battery resistance can be lowered.

(比較例3〜6,実施例1,3〜13)
次に、正極活物質層に添加した金属リン酸塩(LPO)の平均粒径を異ならせた比較例3〜6,実施例1,3〜13の各電池について、保持期間Tkを異ならせた試験を行って、電池抵抗比を求めた(表2参照)。具体的には、上述した実施例1と同じ、正極活物質層23に平均粒径D50=3.0μmのリン酸リチウム粒子(LPO)を3.00質量%添加した電池を用意し、初充電において、電池の端子間電圧Vtを4.1Vになるまで充電する(第1工程)。その後、第1電圧Vh=4.1Vとして、保持期間Tkを0分,20分,40分,60分,90分とした(第2工程)後、CC充電レート3.0Cの定電流充電を、端子間電圧Vtが第2電圧Ve=4.9Vに達するまで行った(第3工程)。これらを、比較例3,実施例1,3〜5とする。なお、保持期間Tk=0分の例は、前述した比較例3に対応し、保持期間Tk=60分の例は、前述した実施例1に対応している。
(Comparative Examples 3-6, Examples 1, 3-13)
Next, the holding periods Tk were varied for the batteries of Comparative Examples 3-6 and Examples 1, 3-13, in which the average particle diameter of the metal phosphate (LPO) added to the positive electrode active material layer was varied. A test was conducted to determine the battery resistance ratio (see Table 2). Specifically, a battery in which 3.00% by mass of lithium phosphate particles (LPO) having an average particle diameter D50 = 3.0 μm is added to the positive electrode active material layer 23 as in Example 1 described above is prepared, and the initial charge is performed. The battery is charged until the inter-terminal voltage Vt of the battery reaches 4.1 V (first step). Thereafter, the first voltage Vh is set to 4.1 V, and the holding period Tk is set to 0 minutes, 20 minutes, 40 minutes, 60 minutes, and 90 minutes (second step), and then the constant current charging at the CC charge rate of 3.0 C is performed. This was performed until the inter-terminal voltage Vt reached the second voltage Ve = 4.9 V (third step). These are referred to as Comparative Example 3 and Examples 1, 3 to 5. The example of the holding period Tk = 0 minutes corresponds to the above-described comparative example 3, and the example of the holding period Tk = 60 minutes corresponds to the above-described first embodiment.

また、実施例1等とは異なり、正極活物質層23に平均粒径D50=1.5μmのリン酸リチウム粒子(LPO)を、正極活物質粒子24を基準(100重量部)として、3重量部添加した電池を用意し、初充電において、電池の端子間電圧VtがVt=4.1Vになるまで充電する(第1工程)。その後、端子間電圧Vtを第1電圧Vh=4.1Vとして、保持期間Tkを0分,10分,20分,30分,60分とした(第2工程)後、CC充電レート3.0Cの定電流充電を、端子間電圧Vtが第2電圧Ve=4.9Vに達するまで行った(第3工程)。これらを、比較例4,実施例6〜9とする。   Further, unlike Example 1 and the like, lithium phosphate particles (LPO) having an average particle diameter D50 = 1.5 μm are formed on the positive electrode active material layer 23, and 3 wt% based on the positive electrode active material particles 24 (100 parts by weight). A part-added battery is prepared, and charged in the initial charge until the terminal voltage Vt of the battery reaches Vt = 4.1 V (first step). Thereafter, the inter-terminal voltage Vt is set to the first voltage Vh = 4.1 V, and the holding period Tk is set to 0 minutes, 10 minutes, 20 minutes, 30 minutes, and 60 minutes (second step), and then the CC charge rate is 3.0 C. The constant current charging was performed until the inter-terminal voltage Vt reached the second voltage Ve = 4.9 V (third step). These are referred to as Comparative Example 4 and Examples 6 to 9.

さらに、実施例1等とは異なり、正極活物質層23に平均粒径D50=0.8μmのリン酸リチウム粒子(LPO)を、正極活物質粒子24を基準(100重量部)として、3重量部添加した電池を用意し、初充電において、電池の端子間電圧VtがVt=4.1Vになるまで充電する(第1工程)。その後、端子間電圧Vtを第1電圧Vh=4.1Vとして、保持期間Tkを0分,10分,20分,30分,60分とした(第2工程)後、CC充電レート3.0Cの定電流充電を、端子間電圧Vtが第2電圧Ve=4.9Vに達するまで行った(第3工程)。これらを、比較例5,実施例10〜13とする。   Further, unlike Example 1 and the like, the cathode active material layer 23 is made of lithium phosphate particles (LPO) having an average particle diameter D50 = 0.8 μm, and 3 wt.% Based on the cathode active material particles 24 (100 parts by weight). A part-added battery is prepared, and charged in the initial charge until the terminal voltage Vt of the battery reaches Vt = 4.1 V (first step). Thereafter, the inter-terminal voltage Vt is set to the first voltage Vh = 4.1 V, and the holding period Tk is set to 0 minutes, 10 minutes, 20 minutes, 30 minutes, and 60 minutes (second step), and then the CC charge rate is 3.0 C. The constant current charging was performed until the inter-terminal voltage Vt reached the second voltage Ve = 4.9 V (third step). These are referred to as Comparative Example 5 and Examples 10 to 13.

なお、比較例6として、実施例1と同じ電池について、初充電として、当初からCC充電レート0.33Cで、端子間電圧Vtが第2電圧Ve=4.9Vに達するまで、180分に亘り定電流充電を行った。この比較例6の電池は、0.33Cの低い充電レート(充電電流)で充電を行っているので、初充電の途中で、非水電解液40(非水溶媒)の酸化分解が生じても、一時に多量に分解が生じることがない。従って、正極活物質粒子24の粒子表面24nにフッ素及びリンを含む被膜25が徐々に形成されており、厚みの薄い被膜25となっていると考えられ、電池抵抗(IV抵抗)も低い。   As Comparative Example 6, the same battery as in Example 1 was subjected to 180 minutes until the voltage Vt between the terminals reached the second voltage Ve = 4.9 V at the CC charge rate of 0.33 C from the beginning as the initial charge. Constant current charging was performed. Since the battery of Comparative Example 6 is charged at a low charge rate (charge current) of 0.33 C, even if oxidative decomposition of the non-aqueous electrolyte 40 (non-aqueous solvent) occurs during the initial charge. A large amount of decomposition does not occur at one time. Therefore, it is considered that the coating 25 containing fluorine and phosphorus is gradually formed on the particle surface 24n of the positive electrode active material particles 24, and it is considered that the coating 25 is thin, and the battery resistance (IV resistance) is low.

これら比較例3〜6,実施例1,3〜13の電池について、初充電の完了後、前述した実施例1等の電池と同様の手法で、電池抵抗(IV抵抗)を測定した。そして、比較例6の電池の電池抵抗(IV抵抗)を基準(=1.00)として、その他の電池の「電池抵抗比」をそれぞれ算出した。その結果を表2及び図10に示す。図10は、各電池における保持期間Tkと電池抵抗比との関係を示すグラフである。但し、図10に比較例6の結果は記載していない。   For the batteries of Comparative Examples 3-6 and Examples 1, 3-13, the battery resistance (IV resistance) was measured by the same method as the battery of Example 1 and the like after the completion of the initial charge. Then, the “battery resistance ratio” of other batteries was calculated using the battery resistance (IV resistance) of the battery of Comparative Example 6 as a reference (= 1.00). The results are shown in Table 2 and FIG. FIG. 10 is a graph showing the relationship between the holding period Tk and the battery resistance ratio in each battery. However, the results of Comparative Example 6 are not shown in FIG.

Figure 2017027928
Figure 2017027928

表2及び図10において、まず、平均粒径D50=3.0μmのリン酸リチウム粒子(LPO)を用いている比較例3,実施例1,3〜5の電池について検討する。表2及び図10から理解できるように、保持期間Tk=0分に相当する比較例3では、電池抵抗比=1.18であり、電池抵抗が高かった。しかし、実施例3,4,1(保持期間Tk=20,40,60分)の電池はいずれも、比較例3に比して、電池抵抗比(電池抵抗)が低くなった。しかも、実施例3,4,1(保持期間Tk=20,40,60分)の電池について比較すると、保持期間Tkが長い電池ほど、電池抵抗比(電池抵抗)が低くなった。その理由は,以下であると考えられる。保持期間Tkが短いと被膜25は生成されるが、その厚みが不十分であり、その後も非水電解液40(非水溶媒)が酸化分解され得る状態で被膜の生成が止まる。このため、第2工程の後、第3工程に移行して、充電レート3.0CのCC充電に切り替えられると、大きな電流により一時に多量に非水溶媒の酸化分解が生じるので、保持期間に生成されていた被膜に加えて、厚く被膜が形成される。このため、保持期間Tkを十分確保した電池(実施例1の電池)に比して抵抗が高くなる。但し、第2工程に予め被膜25を形成した分だけは、第2工程のない比較例3の電池に比して、CC充電時に非水溶媒の酸化分解が抑制される。このため、保持期間Tkの無い電池(比較例3)や短い電池(実施例4に対する実施例3)に比べると電池抵抗が小さくなると考えられる。そして、保持期間Tkを適切に確保できた実施例1(保持期間Tk=60分)の電池では、比較例6と同じ水準まで電池抵抗比(電池抵抗)を低くできた。   In Table 2 and FIG. 10, first, the batteries of Comparative Example 3 and Examples 1, 3 to 5 using lithium phosphate particles (LPO) having an average particle diameter D50 = 3.0 μm are examined. As can be understood from Table 2 and FIG. 10, in Comparative Example 3 corresponding to the holding period Tk = 0 minutes, the battery resistance ratio was 1.18, and the battery resistance was high. However, the batteries of Examples 3, 4, 1 (holding period Tk = 20, 40, 60 minutes) all had a lower battery resistance ratio (battery resistance) than Comparative Example 3. Moreover, when comparing the batteries of Examples 3, 4, and 1 (holding period Tk = 20, 40, 60 minutes), the battery resistance ratio (battery resistance) was lower as the battery had a longer holding period Tk. The reason is considered as follows. When the holding period Tk is short, the film 25 is generated, but its thickness is insufficient, and thereafter the film generation stops in a state where the nonaqueous electrolytic solution 40 (nonaqueous solvent) can be oxidatively decomposed. For this reason, after the second step, when the process proceeds to the third step and is switched to CC charging at a charge rate of 3.0 C, a large amount of oxidative decomposition of the nonaqueous solvent occurs at a time due to a large current. In addition to the film that has been generated, a thick film is formed. For this reason, resistance becomes high compared with the battery (battery of Example 1) which fully ensured holding | maintenance period Tk. However, oxidative decomposition of the non-aqueous solvent is suppressed during CC charging as compared with the battery of Comparative Example 3 that does not have the second step, as long as the coating film 25 is formed in the second step. For this reason, it is thought that battery resistance becomes small compared with a battery without the holding period Tk (Comparative Example 3) or a short battery (Example 3 with respect to Example 4). And in the battery of Example 1 (holding period Tk = 60 minutes) in which the holding period Tk was appropriately secured, the battery resistance ratio (battery resistance) could be lowered to the same level as in Comparative Example 6.

一方、実施例5の電池(保持期間Tk=90分)と実施例1の電池(保持期間Tk=60分)に二者を比較すると、保持期間Tkを長くしても、電池抵抗比は変化しない(低下しない)。被膜25が形成されると、それと共に非水溶媒の酸化分解が生じ難くなり、ついには酸化分解しなくなる。すると被膜25が生成されなくなるため、被膜25の厚みの増加が止まり、電池抵抗の増加も無くなるためであると考えられる。従って、保持期間Tkを不必要に長くしても、電池抵抗を低下させる効果は無く、適度の保持期間Tkで第2工程を終了し、第3工程に移行するのが好ましいことが判る。   On the other hand, when comparing the battery of Example 5 (holding period Tk = 90 minutes) and the battery of Example 1 (holding period Tk = 60 minutes), the battery resistance ratio changes even if the holding period Tk is increased. Do not (do not decline). When the coating film 25 is formed, it is difficult to cause oxidative decomposition of the non-aqueous solvent, and finally, no oxidative decomposition occurs. Then, since the coating film 25 is not generated, it is considered that the increase in the thickness of the coating film 25 is stopped and the increase in battery resistance is also eliminated. Therefore, it can be seen that even if the holding period Tk is unnecessarily increased, there is no effect of lowering the battery resistance, and it is preferable to end the second step in an appropriate holding period Tk and shift to the third step.

次いで、平均粒径D50=1.5μmのリン酸リチウム粒子(LPO)を用いている比較例4,実施例6〜9の電池について検討する。これらの電池についても、上述した比較例3,実施例1,3〜5の電池と同様に考えることができる。即ち、保持期間Tk=0分に相当する比較例4では、電池抵抗比=1.12であり、電池抵抗が高かった。しかし、実施例6〜8(保持期間Tk=10,20,30分)の電池はいずれも、比較例4に比して、電池抵抗比(電池抵抗)が低くなった。しかも、実施例6〜8(保持期間Tk=10,20,30分)の電池について比較すると、保持期間Tkが長い電池ほど、電池抵抗比(電池抵抗)が低くなった。そして、実施例8(保持期間Tk=30分)の電池では、比較例6と同じ水準まで電池抵抗比(電池抵抗)を低くできた。一方、実施例9(保持期間Tk=60分)の電池では、実施例8(保持期間Tk=30分)と比較すると、保持期間Tkを長くしても、電池抵抗比は変化しない(低下しない)。   Next, the batteries of Comparative Example 4 and Examples 6 to 9 using lithium phosphate particles (LPO) having an average particle diameter D50 = 1.5 μm are examined. These batteries can also be considered similarly to the batteries of Comparative Example 3 and Examples 1, 3 to 5 described above. That is, in Comparative Example 4 corresponding to the holding period Tk = 0 minutes, the battery resistance ratio = 1.12 and the battery resistance was high. However, the batteries of Examples 6 to 8 (holding period Tk = 10, 20, 30 minutes) all had a battery resistance ratio (battery resistance) lower than that of Comparative Example 4. Moreover, when the batteries of Examples 6 to 8 (holding period Tk = 10, 20, 30 minutes) are compared, the battery resistance ratio (battery resistance) decreases as the holding period Tk increases. In the battery of Example 8 (holding period Tk = 30 minutes), the battery resistance ratio (battery resistance) could be lowered to the same level as in Comparative Example 6. On the other hand, in the battery of Example 9 (holding period Tk = 60 minutes), compared with Example 8 (holding period Tk = 30 minutes), the battery resistance ratio does not change (does not decrease) even if the holding period Tk is increased. ).

さらに、平均粒径D50=0.8μmのリン酸リチウム粒子(LPO)を用いている比較例5,実施例10〜13の電池について検討する。これらの電池についても、上述した比較例3,実施例1,3〜5及び比較例4,実施例6〜9の電池と同様に考えることができる。即ち、保持期間Tk=0分に相当する比較例5では、電池抵抗比=1.09であり、電池抵抗が高かった。しかし、実施例10〜12(保持期間Tk=10,20,30分)の電池はいずれも、比較例5に比して、電池抵抗比(電池抵抗)が低くなった。しかも、実施例10〜13(保持期間Tk=10,20,30分)の電池を比較すると、保持期間Tkが長い電池ほど、電池抵抗比(電池抵抗)が低くなった。そして、実施例11(保持期間Tk=20分)の電池で、比較例6と同じ水準まで電池抵抗比(電池抵抗)を低くできた。さらに、実施例12(保持期間Tk=30分)の電池では、比較例6よりも電池抵抗比(電池抵抗)を低くできた(電池抵抗比=0.99)。但し、実施例13(保持期間Tk=60分)の電池では、実施例12(保持期間Tk=30分)と比較すると、保持期間Tkを長くしても、電池抵抗比は変化しない(低下しない)。   Furthermore, the batteries of Comparative Example 5 and Examples 10 to 13 using lithium phosphate particles (LPO) having an average particle diameter D50 = 0.8 μm are examined. These batteries can also be considered similarly to the batteries of Comparative Example 3, Examples 1, 3 to 5 and Comparative Examples 4 and 6 to 9 described above. That is, in Comparative Example 5 corresponding to the holding period Tk = 0 minutes, the battery resistance ratio = 1.09, and the battery resistance was high. However, the batteries of Examples 10 to 12 (holding period Tk = 10, 20, 30 minutes) all had a battery resistance ratio (battery resistance) lower than that of Comparative Example 5. Moreover, when the batteries of Examples 10 to 13 (holding period Tk = 10, 20, 30 minutes) are compared, the battery resistance ratio (battery resistance) decreases as the holding period Tk increases. And with the battery of Example 11 (holding period Tk = 20 minutes), the battery resistance ratio (battery resistance) could be lowered to the same level as in Comparative Example 6. Further, in the battery of Example 12 (holding period Tk = 30 minutes), the battery resistance ratio (battery resistance) was lower than that of Comparative Example 6 (battery resistance ratio = 0.99). However, in the battery of Example 13 (holding period Tk = 60 minutes), compared with Example 12 (holding period Tk = 30 minutes), the battery resistance ratio does not change (does not decrease) even if the holding period Tk is increased. ).

これらの結果から、第1電圧Vhを保持期間Tkに亘り保持する第2工程を設けることで、第2工程を設けない場合に比して、電池抵抗を低くできることが理解できる。しかも、保持期間Tkを長くすると、電池抵抗を低くできる。但し、保持期間Tkには適切な長さがあり、保持期間Tkを不必要に長くしても、電池抵抗は低下しないので、適切な長さの保持期間Tkで第2工程を終了し、第3工程に移行するのが好ましいことが判る。   From these results, it can be understood that the battery resistance can be lowered by providing the second step of holding the first voltage Vh for the holding period Tk compared to the case where the second step is not provided. In addition, the battery resistance can be lowered by increasing the holding period Tk. However, the holding period Tk has an appropriate length, and even if the holding period Tk is unnecessarily increased, the battery resistance does not decrease. Therefore, the second step is completed with the holding period Tk having an appropriate length, It can be seen that it is preferable to shift to three steps.

以上から、この保持期間Tkとしては、保持期間Tkを延ばすことなく第2工程を行い、その後、第3工程を行って製造した電池の電池抵抗Rnと、保持期間Tkに代えて、保持期間を1.5倍に延長した延長保持期間に亘り第1電圧Vhを保持し、その後、第3工程を行って製造した延長保持電池の電池抵抗Reとを比較したとき、Rn=0.98Re〜1.02Reとなる期間を選択するとよい。このようにして選択した保持期間Tkに亘って第1電圧Vhを保持すれば、保持期間を1.5倍に延ばした延長保持電池の電池抵抗Reと比較して、違いが高々2%以内の電池抵抗Rnとなる被膜25が形成できることになる。従って、このような保持期間Tkに亘り第1電圧Vhを保持すれば、被膜25の形成は概ね完了した状態で、速やかに続く第3工程に移行することができる。即ち、正極活物質粒子24の粒子表面24nに、非水溶媒の酸化分解を防止できる薄い被膜25が適切に形成され、かつ電池抵抗の低い電池を短時間で製造することができる。   From the above, as the holding period Tk, the second process is performed without extending the holding period Tk, and then the battery resistance Rn of the battery manufactured by performing the third process is replaced with the holding period Tk. When the first voltage Vh is held for the extended holding period extended by 1.5 times, and then compared with the battery resistance Re of the extended holding battery manufactured by performing the third step, Rn = 0.98Re˜1 It is recommended to select a period of .02Re. If the first voltage Vh is held for the holding period Tk selected in this way, the difference is no more than 2% compared to the battery resistance Re of the extended holding battery in which the holding period is extended by 1.5 times. The coating film 25 that becomes the battery resistance Rn can be formed. Therefore, if the first voltage Vh is held for such a holding period Tk, the formation of the coating film 25 is almost completed, and the process can proceed to the third step that immediately follows. That is, a thin coating 25 capable of preventing oxidative decomposition of the nonaqueous solvent is appropriately formed on the particle surface 24n of the positive electrode active material particles 24, and a battery with low battery resistance can be manufactured in a short time.

具体的には、表2及び図10に倣って、製造しようとする特定形態の電池について、予め保持期間と電池抵抗との関係を取得し、保持期間Tkを或る値とした場合の電池抵抗Rnと、1.5倍に延長した場合の電池抵抗Reとを比較し、電池抵抗Rnが、Rn=0.98Re〜1.02Reとなる保持期間Tkの範囲を探せば良い。例えば、平均粒径D50=3.0μmのリン酸リチウム粒子(LPO)を用いている比較例3,実施例1,3〜5の電池(図10において、■で示す電池)について例示する。保持期間Tk=40分とした電池(実施例4)の電池抵抗Rnは、電池抵抗比で1.02である。一方、保持期間を1.5倍に延長した保持期間Tk=60分の電池(実施例1)の電池抵抗Reは、電池抵抗比で1.00である。従って、実施例4の電池の電池抵抗Rnは、Rn=0.98Re〜1.02Reに含まれる。このことから、平均粒径D50=3.0μmのリン酸リチウム粒子(LPO)を用いている電池(比較例3,実施例1,3〜5)について言えば、保持期間Tk=40分以上とすれば良いことが判る。   Specifically, according to Table 2 and FIG. 10, the battery resistance in the case where the relationship between the holding period and the battery resistance is acquired in advance for the battery of the specific form to be manufactured and the holding period Tk is set to a certain value. Rn and the battery resistance Re when it is extended 1.5 times may be compared to find a range of the holding period Tk in which the battery resistance Rn is Rn = 0.98Re to 1.02Re. For example, the batteries of Comparative Example 3, Examples 1 and 3 to 5 (batteries indicated by ▪ in FIG. 10) using lithium phosphate particles (LPO) having an average particle diameter D50 = 3.0 μm are illustrated. The battery resistance Rn of the battery (Example 4) with the holding period Tk = 40 minutes is 1.02 in terms of the battery resistance ratio. On the other hand, the battery resistance Re of the battery (Example 1) having a holding period Tk = 60 minutes in which the holding period is extended by 1.5 times is 1.00 in terms of battery resistance. Therefore, the battery resistance Rn of the battery of Example 4 is included in Rn = 0.98Re to 1.02Re. From this, regarding the battery (Comparative Example 3, Examples 1, 3 to 5) using lithium phosphate particles (LPO) having an average particle diameter D50 = 3.0 μm, the retention period Tk = 40 minutes or more. I know what to do.

さらに保持期間Tkとしては、保持期間Tkを延ばすことなく第2工程を行い、その後、第3工程を行って製造した電池の電池抵抗Rnと、保持期間Tkに代えて、保持期間を1.5倍に延長した延長保持期間に亘り第1電圧Vhを保持し、その後、第3工程を行って製造した延長保持電池の電池抵抗Reとを比較したとき、Rn=0.99Re〜1.01Reとなる期間を選択すると更に好ましい。このようにして選択した保持期間Tkに亘って第1電圧Vhを保持すれば、保持期間を1.5倍に延ばした延長保持電池の電池抵抗Reと比較して、高々1%以内しか異ならない電池抵抗Rnとなる被膜25が形成できることになる。従って、このような保持期間Tkに亘り第1電圧Vhを保持すれば、被膜25の形成は概ね完了した状態で、続く第3工程に移行することができる。即ち、正極活物質粒子24の粒子表面24nに、非水溶媒の酸化分解を防止できる薄い被膜25がさらに適切に形成され、かつ電池抵抗の低い電池を短時間で製造することができる。   Further, as the holding period Tk, the second process is performed without extending the holding period Tk, and then the battery resistance Rn of the battery manufactured by performing the third process and the holding period Tk are set to 1.5. When the first voltage Vh is held for the extended holding period extended twice, and then the battery resistance Re of the extended holding battery manufactured by performing the third step is compared, Rn = 0.99Re to 1.01Re More preferably, the period is selected. If the first voltage Vh is held for the holding period Tk selected in this way, the battery resistance Re of the extended holding battery whose holding period is extended by 1.5 times differs by no more than 1%. The coating film 25 that becomes the battery resistance Rn can be formed. Therefore, if the first voltage Vh is held for such a holding period Tk, the formation of the film 25 is almost completed and the process can proceed to the subsequent third step. That is, a thin coating 25 that can prevent oxidative decomposition of the nonaqueous solvent is further appropriately formed on the particle surface 24n of the positive electrode active material particles 24, and a battery with low battery resistance can be manufactured in a short time.

この場合には、例えば平均粒径D50=3.0μmのリン酸リチウム粒子(LPO)を用いている電池(比較例3,実施例1,3〜5)について言えば、保持期間Tk=50分以上とすれば良いことが判る。   In this case, for example, regarding batteries (Comparative Example 3, Examples 1, 3 to 5) using lithium phosphate particles (LPO) having an average particle diameter D50 = 3.0 μm, the retention period Tk = 50 minutes. It can be seen that the above is sufficient.

次いで、正極活物質層23に添加したリン酸リチウム粒子28の平均粒径D50の大きさと、保持期間Tkとの関係について検討する(表2,図11参照)。まず、平均粒径D50=3.0μmのリン酸リチウム粒子28を用いた電池(比較例3,実施例1,3〜5)のうちで、電池抵抗比が1.00(比較例6の電池と同等の電池抵抗)となる電池の保持期間Tkは、実施例1の保持期間Tk=60分である。また、平均粒径D50=1.5μmの粒子28を用いた電池(比較例4,実施例6〜9)では、実施例8の保持期間Tk=30分である。さらに、平均粒径D50=0.8μmの粒子28を用いた電池(比較例5,実施例10〜13)では、実施例11の保持期間Tk=20分である。これらの電池における、粒子28の平均粒径D50と、電池抵抗比が1.00となる保持期間Tkとの関係をグラフ化すると、図11に示すようになる。即ち、初充電を小さな充電レート0.33CでCC充電を行った比較例6の電池と、同等の電池抵抗(電池抵抗比1.00)となるのに要する保持期間Tkの大きさは、リン酸リチウム粒子28の平均粒径D50と高い相関、具体的には線形関係を有しており、粒子28の平均粒径D50が小さいほど、保持期間Tkを短くできる。特に、リン酸リチウム粒子28の平均粒径D50を、D50=1.5μm以下とした場合には、保持期間TkをTk=30分以下とすることができるなど、初充電に掛かる時間の短縮に寄与できる。添加量が同じであるならば、平均粒径D50が小さいほど、リン酸リチウム粒子28の粒子数及び表面積が増大するので、発生したフッ化水素(HF)との反応が生じやすくなり、相対的に短時間で被膜25を形成できたためであると考えられる。   Next, the relationship between the average particle diameter D50 of the lithium phosphate particles 28 added to the positive electrode active material layer 23 and the retention period Tk is examined (see Table 2 and FIG. 11). First, among batteries (Comparative Example 3, Examples 1 and 3 to 5) using lithium phosphate particles 28 having an average particle diameter D50 = 3.0 μm, the battery resistance ratio was 1.00 (battery of Comparative Example 6). The battery holding period Tk of the battery resistance equivalent to that of Example 1 is the holding period Tk = 60 minutes in the first embodiment. Further, in the battery using the particles 28 having the average particle diameter D50 = 1.5 μm (Comparative Example 4, Examples 6 to 9), the retention period Tk of Example 8 is 30 minutes. Further, in the battery using the particles 28 having the average particle diameter D50 = 0.8 μm (Comparative Example 5 and Examples 10 to 13), the holding period Tk of Example 11 is 20 minutes. FIG. 11 shows a graph of the relationship between the average particle diameter D50 of the particles 28 and the retention period Tk when the battery resistance ratio is 1.00 in these batteries. That is, the size of the holding period Tk required to achieve the same battery resistance (battery resistance ratio 1.00) as that of the battery of Comparative Example 6 in which the initial charge was CC charged at a small charge rate of 0.33 C is It has a high correlation with the average particle diameter D50 of the lithium acid particles 28, specifically, a linear relationship. The smaller the average particle diameter D50 of the particles 28, the shorter the retention period Tk. In particular, when the average particle diameter D50 of the lithium phosphate particles 28 is set to D50 = 1.5 μm or less, the holding period Tk can be set to Tk = 30 minutes or less. Can contribute. If the addition amount is the same, the smaller the average particle diameter D50, the more the number and surface area of the lithium phosphate particles 28 increase. Therefore, the reaction with the generated hydrogen fluoride (HF) is likely to occur. This is probably because the coating film 25 was formed in a short time.

このように、電池1の製造方法では、初充電工程において、第1工程の後、第2工程で一旦、予め定めた保持期間Tkに亘り,端子間電圧Vtを下部分解域Ad内の第1電圧Vhに保持し、その後、第3工程で第2電圧Veに達するまで充電を行う。
このため、この第2工程においては、端子間電圧Vtを第1電圧Vhに保持している間(Vt=Vh)に非水電解液40の酸化分解が生じる。しかし、第1電圧Vhを、非水電解液40が酸化分解を起こす範囲のうちでも、下部分解域Adという低い電圧範囲内の電圧としている。このため、非水電解液40の酸化分解が徐々にしか起こらず、正極活物質粒子24の粒子表面24nに、フッ素及びリンを含む被膜25を薄く形成でき、電池抵抗を低く抑えることができる。
As described above, in the method for manufacturing the battery 1, in the initial charging step, after the first step, the terminal voltage Vt is changed to the first in the lower decomposition area Ad over the predetermined holding period Tk once in the second step. The voltage Vh is maintained, and then charging is performed until the second voltage Ve is reached in the third step.
For this reason, in the second step, oxidative decomposition of the nonaqueous electrolytic solution 40 occurs while the inter-terminal voltage Vt is maintained at the first voltage Vh (Vt = Vh). However, the first voltage Vh is set to a voltage within a low voltage range called the lower decomposition region Ad even in a range where the nonaqueous electrolytic solution 40 undergoes oxidative decomposition. For this reason, the oxidative decomposition of the nonaqueous electrolytic solution 40 occurs only gradually, and the coating film 25 containing fluorine and phosphorus can be formed thinly on the particle surface 24n of the positive electrode active material particles 24, and the battery resistance can be kept low.

(実施形態2)
次いで、本発明の第2の実施形態について説明する。上述の実施形態1では、電池1の初充電工程のうち、第1工程S1において充電レート3.0CのCC充電を端子間電圧Vtが第1電圧Vhに達するまで(Vt=Vh=4.1V)行った。その後、第2工程S2において、予め定めた保持期間Tkに亘り、CV充電を行い、その後、第3工程S3で充電レート3.0CのCC充電を端子間電圧Vtが第2電圧Veに達するまで(Vt=Ve=4.9V)まで行った。
(Embodiment 2)
Next, a second embodiment of the present invention will be described. In the first embodiment described above, in the first charging step of the battery 1, CC charging at the charging rate of 3.0 C is performed in the first step S1 until the terminal voltage Vt reaches the first voltage Vh (Vt = Vh = 4.1V). )went. Thereafter, in the second step S2, CV charging is performed over a predetermined holding period Tk, and then CC charging at a charging rate of 3.0C is performed in the third step S3 until the inter-terminal voltage Vt reaches the second voltage Ve. (Vt = Ve = 4.9V).

これに対し、本実施形態2(変形形態も同様)では、電池1の初充電工程の第1工程SA1において、実施形態1と同様に、CC充電を端子間電圧Vtが第1電圧Vhに達するまで(Vt=Vh=4.1V)行った(図12参照)。但し、充電レートを5.0C(充電電流Ib=5.0C)とした点で異なる。また、第3工程SA3も実施形態1と同様に、CC充電を端子間電圧Vtが第2電圧Veに達するまで(Vt=Ve=4.9V)まで行った。但し、充電レートを5.0C(充電電流Ib=5.0C)とした点で異なる。また、第2電圧Ve=4.75Vとした、即ち、端子間電圧VtがVe=4.75Vに達するまでCC充電を行った点で異なる。
さらに、第2工程SA2において、保持期間Tkを定めるのではなく、端子間電圧Vtを第1電圧Vh(=4.1V)に保つCV充電を、電池1を流れる充電電流Ibが、予め定めたカットオフ電流値Ibcになるまで行った点で異なる。なお、本実施形態2では、カットオフ電流値Ibc=0.05Cとした。
そこで以下では、実施形態1と異なる部分を中心に説明し、同様の部分は省略あるいは簡略化する。
On the other hand, in the second embodiment (the same applies to the modified embodiment), in the first step SA1 of the initial charging step of the battery 1, as in the first embodiment, the inter-terminal voltage Vt reaches the first voltage Vh as in the first embodiment. (Vt = Vh = 4.1V) (see FIG. 12). However, the difference is that the charge rate is 5.0 C (charge current Ib = 5.0 C). Also, in the third step SA3, as in the first embodiment, CC charging was performed until the inter-terminal voltage Vt reached the second voltage Ve (Vt = Ve = 4.9V). However, the difference is that the charge rate is 5.0 C (charge current Ib = 5.0 C). Further, the second voltage Ve = 4.75V, that is, the CC charging is performed until the inter-terminal voltage Vt reaches Ve = 4.75V.
Further, in the second step SA2, the holding period Tk is not determined, but the CV charging for maintaining the inter-terminal voltage Vt at the first voltage Vh (= 4.1V) is determined in advance by the charging current Ib flowing through the battery 1. The difference is that the process is performed until the cut-off current value Ibc is reached. In the second embodiment, the cutoff current value Ibc = 0.05C.
Therefore, the following description will focus on the parts different from the first embodiment, and the same parts will be omitted or simplified.

本実施形態2においても、実施形態1と同様の電池1を用いた。また、電池1の製造不法についても、次述する初充電工程を除き、実施形態1と同様である。但し、正極活物質層23に添加したリン酸リチウム粒子28として、実施形態1では平均粒径D50がD50=3.0μm(あるいは1.5μmまたは0.8μm)の粒子を用いたが、本実施形態2では、平均粒径D50がD50=1.0μmの粒子を用いた点で異なる。   In the second embodiment, the same battery 1 as in the first embodiment was used. Further, the manufacturing illegality of the battery 1 is the same as that of the first embodiment except for the initial charging step described below. However, as the lithium phosphate particles 28 added to the positive electrode active material layer 23, particles having an average particle diameter D50 of D50 = 3.0 μm (or 1.5 μm or 0.8 μm) were used in the first embodiment. Form 2 is different in that particles having an average particle diameter D50 of D50 = 1.0 μm are used.

次いで、本実施形態2に掛かる電池1の製造方法のうち、初充電工程について、図12,〜図15を参照して説明する。初充電工程では、まず、図示しないCC−CV充放電装置に電池1を接続し、図12,図14に示すように、開始時刻t0以降、この電池1を充電レート5.0C(充電電流Ib1=5.0C)の電流でCC充電して、端子間電圧VtをVt=4.1V(第1電圧Vh)まで上昇させる(第1工程SA1)。なお、第1工程の終期(端子間電圧Vt=Vh(=4.1V)となったタイミングである1−2切換時刻t12)における充電電流Ib1(=5.0C)を終期電流値とする。但し、実施形態2における第1工程は、定電流充電であるので、上述のように、終期電流値は、第1工程における充電電流Ib1に等しい。図14に示すように、本実施形態2では、第1工程SA1の期間(t0〜t12)は約1分の長さであり、第1工程SA1におけるCC充電の開始時刻t0の直後に急激に端子間電圧Vtが3V程度まで上昇し、その後、約1分で端子間電圧Vtが第1電圧Vh(=4.1V)に到達する。   Next, in the manufacturing method of the battery 1 according to the second embodiment, the initial charging step will be described with reference to FIGS. In the initial charging step, first, the battery 1 is connected to a CC-CV charging / discharging device (not shown). As shown in FIGS. 12 and 14, after the start time t0, the battery 1 is charged at a charging rate of 5.0 C (charging current Ib1 CC charge with a current of = 5.0 C), and the inter-terminal voltage Vt is increased to Vt = 4.1 V (first voltage Vh) (first step SA1). The charging current Ib1 (= 5.0 C) at the end of the first step (1-2 switching time t12, which is the timing when the inter-terminal voltage Vt = Vh (= 4.1 V)) is set as the final current value. However, since the first step in the second embodiment is constant current charging, as described above, the final current value is equal to the charging current Ib1 in the first step. As shown in FIG. 14, in the second embodiment, the period of the first step SA1 (t0 to t12) is about 1 minute long, and immediately after the CC charging start time t0 in the first step SA1. The inter-terminal voltage Vt rises to about 3V, and then the inter-terminal voltage Vt reaches the first voltage Vh (= 4.1V) in about 1 minute.

次いで、第2工程(SA2)では、端子間電圧Vt=Vh(=4.1V)を維持したまま、充電するCV充電を行う。具体的には、図13に示すように、1−2切換時刻t12以降、ステップSA21において充電電流Ib2を検知し、ステップSA22で、充電電流Ib2がカットオフ電流値Ibc=0.05C以下となったか否かを判定する。ここでNo、即ち、充電電流Ib2が0.05Cよりも大きい(Ib2>0.05C)場合には、ステップSA21に戻る。一方、ステップSA22でYes、即ち、充電電流Ib2が0.05C以下(Ib2≦0.05C)となった場合(このタイミングを2−3切換時刻t23とする)には、図12の第3工程SA3に進む。   Next, in the second step (SA2), CV charging is performed while the inter-terminal voltage Vt = Vh (= 4.1V) is maintained. Specifically, as shown in FIG. 13, after 1-2 switching time t12, the charging current Ib2 is detected in step SA21, and in step SA22, the charging current Ib2 becomes the cut-off current value Ibc = 0.05C or less. It is determined whether or not. If No, that is, if the charging current Ib2 is larger than 0.05C (Ib2> 0.05C), the process returns to step SA21. On the other hand, if Yes in step SA22, that is, if the charging current Ib2 becomes 0.05C or less (Ib2 ≦ 0.05C) (this timing is set to 2-3 switching time t23), the third step of FIG. Proceed to SA3.

本実施形態2では、第2工程SA2の期間(t12〜t23)は、約21分の長さである。第2工程SA2におけるCV充電の開始直後に、充電電流Ib2は、終期電流値Ib1から急激に減少し、その後、徐々に減少するようになり、さらにその後、Ib2=0に漸近する。このカーブの形状は、図14に示すように、y=1−exのグラフに似た形状である。このようになるのは、以下の理由によると考えられる。第2工程SA2の当初は、端子間電圧Vtを下部分解域Ad(4.0〜4.4V)内の第1電圧Vh(=4.1V)としたことにより、非水電解液40の酸化分解が次々と起こり、その分解電流として大きな電流が流れる。しかし時間の経過と共に、正極活物質層23に含まれるリン酸リチウム粒子28が消費され、被膜25が形成されると共に、非水電解液40の酸化分解が抑制されることで、充電電流Ib2が徐々に減少すると考えられる。 In the second embodiment, the period (t12 to t23) of the second step SA2 is about 21 minutes long. Immediately after the start of CV charging in the second step SA2, the charging current Ib2 rapidly decreases from the final current value Ib1, then gradually decreases, and then gradually approaches Ib2 = 0. The shape of the curve, as shown in FIG. 14, a shape similar to the graph of y = 1-e x. This is considered due to the following reasons. At the beginning of the second step SA2, the voltage Vt between the terminals is set to the first voltage Vh (= 4.1 V) in the lower decomposition zone Ad (4.0 to 4.4 V), so that the oxidation of the nonaqueous electrolytic solution 40 is performed. Decomposition occurs one after another, and a large current flows as the decomposition current. However, with the passage of time, the lithium phosphate particles 28 contained in the positive electrode active material layer 23 are consumed, the coating 25 is formed, and the oxidative decomposition of the nonaqueous electrolytic solution 40 is suppressed, so that the charging current Ib2 is reduced. It is thought that it will gradually decrease.

続く第3工程SA3では、図12に示すように、この電池1を充電レート5.0C(充電電流Ib3=5.0C)の電流でCC充電して、端子間電圧VtがVt=4.75V(第2電圧Ve)まで上昇したら、初充電工程を終了する(このタイミングを終了時刻t3eとする)。本実施形態2では、第3工程SA3の期間(t23〜t3e)は、約10分の長さである。従って、本実施形態2における初充電工程は、第1工程〜第3工程までの合計約32分(=1+21+10)で終えることができる。   In the subsequent third step SA3, as shown in FIG. 12, the battery 1 is CC-charged at a charge rate of 5.0C (charge current Ib3 = 5.0C), and the inter-terminal voltage Vt becomes Vt = 4.75V. When the voltage rises to (second voltage Ve), the initial charging process ends (this timing is set as end time t3e). In the second embodiment, the period (t23 to t3e) of the third step SA3 is about 10 minutes long. Therefore, the initial charging step in the second embodiment can be completed in a total of about 32 minutes (= 1 + 21 + 10) from the first step to the third step.

本実施形態2の第2工程SA2では、電池1の端子間電圧Vtを第1電圧Vh(=4.1V)に保持した。しかるに、個々の電池1のバラツキにより、正極活物質粒子24の表面24nに形成される被膜生成の速度に違いが生じる(図4参照)。従って、第1電圧Vhに保持する期間(t12〜t23)を同じにした場合には、即ち、実施形態1のように保持期間Tkを定めた場合には、正極活物質粒子24の表面24nに形成される被膜25の厚みなどの状態が異なるものとなり、電池抵抗の大きさにバラツキが生じるなどの差異が生じる。このため、いずれの電池1でも適切な厚みの被膜25が得られるようにするには、被膜生成速度の遅い電池に合わせて、保持期間Tkを長めに定める必要があり、個々の電池1についてみれば、保持期間Tkが長すぎる場合も生じる。
これに対し、本実施形態2の製造方法では、第2工程SA2において、充電電流Ib2がカットオフ電流値Ibc以下となる(Ib2≦Ibc)まで第1電圧Vhを保持するので、電池1のバラツキが存在しても、各々の電池1について見れば、最短の時間で、正極活物質粒子24の表面24nに同様の厚みの被膜25を形成することができる。このため、多数の電池1について、順に初充電工程を行う場合には、全体として工程の短縮を図りながら、各電池における被膜25の厚みのバラツキ、ひいては電池抵抗のバラツキを抑えることができる。
In the second step SA2 of the second embodiment, the inter-terminal voltage Vt of the battery 1 is held at the first voltage Vh (= 4.1 V). However, variations in the individual batteries 1 cause differences in the rate of film formation formed on the surface 24n of the positive electrode active material particles 24 (see FIG. 4). Therefore, when the period (t12 to t23) for holding the first voltage Vh is the same, that is, when the holding period Tk is set as in the first embodiment, the surface 24n of the positive electrode active material particles 24 is formed. A state such as a thickness of the formed film 25 is different, and a difference such as a variation in battery resistance occurs. For this reason, in order to obtain a coating film 25 having an appropriate thickness in any of the batteries 1, it is necessary to set a longer holding period Tk in accordance with a battery having a slow coating generation rate. For example, the holding period Tk may be too long.
On the other hand, in the manufacturing method of the second embodiment, in the second step SA2, the first voltage Vh is held until the charging current Ib2 becomes equal to or lower than the cutoff current value Ibc (Ib2 ≦ Ibc). Even in the case where each of the batteries 1 is present, the coating 25 having the same thickness can be formed on the surface 24n of the positive electrode active material particle 24 in the shortest time. For this reason, when the initial charging process is performed in order for a large number of batteries 1, it is possible to suppress variations in the thickness of the coating film 25 in each battery, and consequently variations in battery resistance, while reducing the overall process.

次いで、各電池1について、初充電工程におけるカットオフ電流値Ibcを、Ibc=2.0C,0.5C,0.1C,0.05C,0.02Cの5水準に変化させて、初充電工程を終えた電池1について、実施形態1と同様にして、電池抵抗(IV抵抗)を測定した。さらに、第2工程SA2を設けなかった場合(要するに、充電レート5.0CのCC充電で電池1を充電した場合)の電池における電池抵抗を基準(=1.00)として、各電池について電池抵抗比Rrを得た(図15参照)。   Next, for each battery 1, the cut-off current value Ibc in the initial charging process is changed to five levels of Ibc = 2.0C, 0.5C, 0.1C, 0.05C, 0.02C, and the initial charging process. The battery resistance (IV resistance) was measured in the same manner as in the first embodiment for the battery 1 that finished the process. Furthermore, the battery resistance of each battery is determined with reference to the battery resistance of the battery when the second step SA2 is not provided (in short, when the battery 1 is charged by CC charging at a charge rate of 5.0 C). A ratio Rr was obtained (see FIG. 15).

この図15のグラフによれば、充電レート5.0CのCC充電で初充電工程を行った基準の電池(Rr=1.00)に比して、第2工程を設け、カットオフ電流値Ibcを小さくするほど、電池抵抗比Rrが小さくなることが判る。例えば、Ibc=2.0Cとすると、電池抵抗比Rr=93%であり、電池抵抗を7%程度低くすることができることが判る。また、Ibc=1.0Cとすると、電池抵抗比Rr=90%であり、電池抵抗を10%程度を低くすることができることが判る。また、Ibc=0.5Cとすると、電池抵抗比Rr=88%であり、電池抵抗を12%程度低くすることができることが判る。さらに、また、Ibc=0.05Cとすると、電池抵抗比Rr=84.5%であり、電池抵抗を15%程度低くすることができることが判る。   According to the graph of FIG. 15, the second step is provided as compared with the reference battery (Rr = 1.00) in which the initial charging step is performed by CC charging at the charging rate of 5.0 C, and the cutoff current value Ibc is set. It can be seen that the battery resistance ratio Rr decreases with decreasing. For example, when Ibc = 2.0C, the battery resistance ratio Rr = 93%, and it can be seen that the battery resistance can be lowered by about 7%. Further, when Ibc = 1.0 C, the battery resistance ratio Rr = 90%, and it can be seen that the battery resistance can be lowered by about 10%. Further, when Ibc = 0.5C, the battery resistance ratio Rr = 88%, and it can be seen that the battery resistance can be reduced by about 12%. Furthermore, when Ibc = 0.05C, the battery resistance ratio Rr = 84.5%, which indicates that the battery resistance can be reduced by about 15%.

但し、カットオフ電流値Ibcを0.05Cよりも小さくしても(例えばIbc=0.02Cとしても)、Ibc=0.05Cとした場合に比して、電池抵抗比Rrは低下しない。即ち、カットオフ電流値Ibcを0.05Cよりも小さくしても、電池抵抗をさらに小さくできないことが判る。これは、被膜25の形成については、充電電流IbがIb=0.05Cとなった段階で、正極活物質層23に含まれるほとんど全量のリン酸リチウム粒子28が消費されているためであると考えられる。   However, even if the cut-off current value Ibc is smaller than 0.05C (for example, Ibc = 0.02C), the battery resistance ratio Rr does not decrease as compared with the case where Ibc = 0.05C. That is, it can be seen that even if the cut-off current value Ibc is smaller than 0.05C, the battery resistance cannot be further reduced. This is because the formation of the coating 25 is because almost all of the lithium phosphate particles 28 contained in the positive electrode active material layer 23 are consumed when the charging current Ib reaches Ib = 0.05C. Conceivable.

このように,本実施形態2の製造方法では、第1工程SA1の終期電流値Ib1が1C以上のIb1=5.0Cであるのに対し、カットオフ電流値Ibcが、この終期電流値Ib1に比して十分小さい(1/100の)Ibc=0.05Cとなるまで第2工程SA2を行う。カットオフ電流値が0.05Cとなるまで第2工程を行えば、これよりもカットオフ電流値を小さくした場合(例えば、カットオフ電流値を0.02Cした場合)と、電池抵抗はほぼ同じとなる。従って、カットオフ電流値IbcをIbc=0.05Cとすると、最も短い時間で、正極活物質粒子24の粒子表面24nに形成するフッ素及びリンを含む被膜25のほぼ全量を、第2工程SA2で形成することができる。しかも、良好な被膜25を形成でき、第2工程SA2を設けない場合に比して、電池抵抗を低く(具体的には、15%程度小さく)することができる。   Thus, in the manufacturing method of the second embodiment, the final current value Ib1 in the first step SA1 is Ib1 = 5.0C which is 1C or more, whereas the cut-off current value Ibc is equal to the final current value Ib1. The second step SA2 is performed until Ibc = 0.05C, which is sufficiently small (1/100). If the second step is performed until the cut-off current value becomes 0.05 C, the battery resistance is almost the same as when the cut-off current value is made smaller than this (for example, when the cut-off current value is 0.02 C). It becomes. Therefore, when the cut-off current value Ibc is Ibc = 0.05C, almost the entire amount of the coating film 25 containing fluorine and phosphorus formed on the particle surface 24n of the positive electrode active material particles 24 in the shortest time is obtained in the second step SA2. Can be formed. In addition, a good coating film 25 can be formed, and the battery resistance can be lowered (specifically, about 15% smaller) than when the second step SA2 is not provided.

(変形形態)
上述の実施形態2では、第2工程SA2(ステップSA22)におけるカットオフ電流値IbcをIbc=0.05Cとした。しかし、電池抵抗低下の効果は抑制されるものの、第2工程SA2の期間を短縮するべく、カットオフ電流値Ibcの値を0.05Cよりも大きくすることもできる。即ち、本変形形態は、カットオフ電流値IbcをIbc=2.0Cとする点でのみ、実施形態2と異なり、他は同様である。
(Deformation)
In the second embodiment, the cutoff current value Ibc in the second process SA2 (step SA22) is set to Ibc = 0.05C. However, although the effect of lowering the battery resistance is suppressed, the cut-off current value Ibc can be made larger than 0.05C in order to shorten the period of the second step SA2. That is, the present modification is different from the second embodiment only in that the cut-off current value Ibc is set to Ibc = 2.0C, and the others are the same.

本変形形態に係る電池1の製造方法のうち、初充電工程について、図12,図14〜図16を参照して説明する。まず第1工程(SA1)は、実施形態1と同じく、開始時刻t0以降、1−2切換時刻t12まで、この電池1を充電レート5.0C(充電電流Ib1=5.0C)の電流でCC充電して、端子間電圧VtをVt=4.1V(第1電圧Vh)まで上昇させる。終期電流値は充電電流Ib1=5.0Cに等しい。   Of the method for manufacturing the battery 1 according to this modification, the initial charging step will be described with reference to FIGS. 12 and 14 to 16. First, in the first step (SA1), in the same manner as in the first embodiment, from the start time t0 to the 1-2 switching time t12, the battery 1 is charged with a current having a charge rate of 5.0C (charge current Ib1 = 5.0C). Charging is performed to increase the inter-terminal voltage Vt to Vt = 4.1 V (first voltage Vh). The final current value is equal to the charging current Ib1 = 5.0C.

続く第2工程(SA2a)では、実施形態1,2と同じく、端子間電圧Vt=Vh(=4.1V)を維持したまま、充電するCV充電を行う。具体的には、図16に示すように、1−2切換時刻t12以降、ステップSA21において充電電流Ib2を検知する。次いで、ステップSA22aでは、実施形態2(Ibc=0.05C)よりも大きいカットオフ電流値Ibc=2.0Cを用い、充電電流Ib2がIbc=2.0C以下となったか否かを判定する。ここでNo、即ち、充電電流Ib2が2.0Cよりも大きい(Ib2>2.0C)場合には、ステップSA21に戻る。一方、ステップSA22aでYes、即ち、充電電流Ib2が2.0C以下(Ib2≦2.0C)となった場合(このタイミングを2−3切換時刻t23aとする。図14参照)には、図12の第3工程SA3に進む。
本変形形態における第2工程SA2aの期間(t12〜t23a)は、約1分の長さである。なお、本変形形態の場合には、図14において、t23a〜t23の期間は存在しない。
In the subsequent second step (SA2a), as in the first and second embodiments, CV charging is performed while maintaining the inter-terminal voltage Vt = Vh (= 4.1 V). Specifically, as shown in FIG. 16, the charging current Ib2 is detected in step SA21 after the 1-2 switching time t12. Next, in step SA22a, a cutoff current value Ibc = 2.0C larger than that of the second embodiment (Ibc = 0.05C) is used, and it is determined whether or not the charging current Ib2 is equal to or less than Ibc = 2.0C. If No, that is, if the charging current Ib2 is larger than 2.0C (Ib2> 2.0C), the process returns to step SA21. On the other hand, if Yes in step SA22a, that is, if the charging current Ib2 becomes 2.0C or less (Ib2 ≦ 2.0C) (this timing is defined as 2-3 switching time t23a, see FIG. 14), FIG. Proceed to the third step SA3.
The period (t12 to t23a) of the second step SA2a in this variation is about 1 minute long. In the case of this modification, the period from t23a to t23 does not exist in FIG.

その後の第3工程SA3では、実施形態2と同じく、図12に示すように、この電池1を充電レート5.0Cの電流でCC充電して、端子間電圧VtがVt=Ve=4.75Vまで上昇したら、初充電工程を終了する。本実施形態2では、第3工程SA3の期間(t23a〜t3e)も、約10分の長さである。 In the subsequent third step SA3, as in the second embodiment, as shown in FIG. 12, the battery 1 is CC-charged with a current having a charge rate of 5.0 C, and the inter-terminal voltage Vt is Vt = Ve = 4.75V. When it rises to the end, the initial charging process is terminated. In the second embodiment, the period of the third step SA3 (t23a to t3e) is also about 10 minutes long.

結局、本変形形態の初充電工程は、実施形態2よりも大幅に短い、第1工程〜第3工程までの合計約12分(=1+1+10)で終えることができる。また図15に示したように、カットオフ電流値Ibc=2.0Cとした本変形形態の電池1では、第2工程を設けなかった場合に比して、7%程度、電池抵抗を低くすることができる。   Eventually, the initial charging process of this modification can be completed in about 12 minutes (= 1 + 1 + 10) in total from the first process to the third process, which is significantly shorter than that of the second embodiment. Further, as shown in FIG. 15, in the battery 1 of the present modification in which the cut-off current value Ibc = 2.0C, the battery resistance is lowered by about 7% compared to the case where the second step is not provided. be able to.

なお、本変形形態では、ステップSA22aで、カットオフ電流値としてIbc=2.0Cを用いたが、例えば、カットオフ電流値としてIbc=1.0Cを用いて、第2工程を行うこともできる。この場合には、第2工程の期間(t12〜t23b)は、約2分の長さである。なお、2−3切換時刻t23bは、充電電流Ib2が1.0C以下(Ib2≦1.0C)となったタイミングである(図14参照)。この場合も、図14におけるt23b〜t23の期間は存在しない。このようにカットオフ電流値Ibc=1.0Cとした場合には、初充電工程(第1工程〜第3工程)を、約13分(=1+2+10)で終えることができる。一方、カットオフ電流値Ibc=1.0Cとしたことで、第2工程を設けなかった場合に比して、10%程度、電池抵抗を低くすることができる。   In this modification, Ibc = 2.0C is used as the cut-off current value in step SA22a. However, for example, the second step can be performed using Ibc = 1.0C as the cut-off current value. . In this case, the period of the second step (t12 to t23b) is about 2 minutes. The 2-3 switching time t23b is a timing when the charging current Ib2 becomes 1.0C or less (Ib2 ≦ 1.0C) (see FIG. 14). Also in this case, the period from t23b to t23 in FIG. 14 does not exist. Thus, when the cut-off current value Ibc = 1.0 C, the initial charging step (first step to third step) can be completed in about 13 minutes (= 1 + 2 + 10). On the other hand, by setting the cut-off current value Ibc = 1.0 C, the battery resistance can be reduced by about 10% compared to the case where the second step is not provided.

上述の実施形態2及び変形形態に記載した電池1の製造方法でも、正極活物質層23に含まれるリン酸リチウム粒子28は、平均粒径D50がD50≦1.5μmの粒子を用いた。このため、添加量が同じなら粒子数や表面積の総量が増大するため、発生したフッ酸との反応が生じやすくなり、短時間で被膜25を形成でき、第2工程SA2,SA2aに掛かる時間、ひいては初充電工程に掛かる時間の短縮に寄与できる。   Also in the manufacturing method of the battery 1 described in the above-described Embodiment 2 and the modification, the lithium phosphate particles 28 included in the positive electrode active material layer 23 are particles having an average particle diameter D50 of D50 ≦ 1.5 μm. For this reason, if the addition amount is the same, the total number of particles and the surface area increases, so that the reaction with the generated hydrofluoric acid is likely to occur, the coating 25 can be formed in a short time, and the time required for the second step SA2, SA2a, As a result, the time required for the initial charging process can be shortened.

上述の実施形態1,2及び変形形態に記載した製造方法に係る電池1は、いずれもSOC=0〜100%の範囲内の少なくとも一部で、正極電位Epが4.5V(vs.Li/Li+)以上の電位となる。このため、電池1のSOCが高い場合には、非水電解液40は正極活物質粒子24の粒子表面24nで酸化分解されて水素イオンを生じ易い。しかも非水電解液40はフッ素を含有する化合物41を含むため、水素イオンとフッ素とから、フッ酸を生じ易い。しかるに、実施形態1,2及び変形形態に係る電池1の製造方法では、初充電工程のうち第2工程S2,SA2,SA2aにおいて、正極活物質粒子24の粒子表面24nにフッ素及びリンを含む被膜25を形成しているので、初充電工程を経た後には、適切に非水電解液40が酸化分解されるのを抑制することができる。   The batteries 1 according to the manufacturing methods described in the first and second embodiments and the modifications are all at least partly within the range of SOC = 0 to 100%, and the positive electrode potential Ep is 4.5 V (vs. Li / Li +) or higher potential. For this reason, when the SOC of the battery 1 is high, the nonaqueous electrolytic solution 40 is oxidatively decomposed on the particle surface 24n of the positive electrode active material particles 24 and easily generates hydrogen ions. Moreover, since the nonaqueous electrolytic solution 40 includes the compound 41 containing fluorine, hydrofluoric acid is easily generated from hydrogen ions and fluorine. However, in the manufacturing method of the battery 1 according to the first and second embodiments and the modified embodiment, the coating containing fluorine and phosphorus on the particle surface 24n of the positive electrode active material particles 24 in the second step S2, SA2, SA2a in the initial charging step. 25, the non-aqueous electrolyte 40 can be appropriately prevented from being oxidatively decomposed after the initial charging step.

さらに、実施形態1,2および変形形態に係る製造方法では、第1工程S1,SA1及び第3工程S3,SA3を、3.0Cあるいは5.0Cの電流値Ib1,Ib3でCC充電した。これにより、第1工程及び第3工程に掛かる時間も短くでき、初充電工程をさらに短時間にできる。
なお、実施形態1,2および変形形態のいずれにおいても、第1工程における充電電流Ib1と第3工程における充電電流Ib3とを同じ大きさとした。しかし、例えば、Ib1=3.0C及びIb3=5.0Cとするなど、充電電流Ib1とIb3とを異なる大きさとしても良い。特に、Ib1≦Ib3とするのが好ましい。図14を参照すれば容易に理解できるように、充電電流を大きくすることによる充電時間tの短縮への寄与は、Ib1よりもIb3の方が大きいからである。また、Ib1を小さくすると、第1工程の時間が増加するが、第2工程に移行する前に第1工程で形成される被膜25の量を抑制できる利点もある。
Furthermore, in the manufacturing method according to the first and second embodiments and the modified embodiment, the first process S1, SA1 and the third process S3, SA3 are CC charged with the current values Ib1, Ib3 of 3.0C or 5.0C. Thereby, the time concerning a 1st process and a 3rd process can also be shortened, and an initial charge process can be further shortened.
In any of the first and second embodiments and the modified embodiments, the charging current Ib1 in the first step and the charging current Ib3 in the third step are the same. However, the charging currents Ib1 and Ib3 may have different sizes, for example, Ib1 = 3.0C and Ib3 = 5.0C. In particular, Ib1 ≦ Ib3 is preferable. As can be easily understood with reference to FIG. 14, the contribution to shortening the charging time t by increasing the charging current is greater for Ib3 than for Ib1. Further, when Ib1 is reduced, the time of the first step increases, but there is also an advantage that the amount of the coating film 25 formed in the first step can be suppressed before shifting to the second step.

以上において、本発明を実施形態1,2及び変形形態に即して説明したが、本発明は上述の実施形態等に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、前述の電池1等では、金属リン酸塩粒子としてリン酸リチウム粒子28を用いたが、これに限られない。例えば、リン酸ナトリウム、リン酸カリウム、リン酸マグネシウム、リン酸カルシウム等の他の金属リン酸塩粒子を正極活物質層に添加してもよい。また、リン酸リチウム粒子28などの金属リン酸塩粒子に代えて、または金属リン酸塩粒子と共に、ピロリン酸リチウム粒子、ピロリン酸ナトリウム粒子、ピロリン酸マグネシウム粒子、ピロリン酸カルシウム粒子等の金属ピロリン酸塩粒子を正極活物質層に添加してもよい。
In the above, the present invention has been described according to the first and second embodiments and the modified embodiments. However, the present invention is not limited to the above-described embodiments and the like, and may be appropriately changed without departing from the gist thereof. Needless to say, it can be applied.
For example, in the battery 1 and the like described above, the lithium phosphate particles 28 are used as the metal phosphate particles, but the present invention is not limited to this. For example, other metal phosphate particles such as sodium phosphate, potassium phosphate, magnesium phosphate, and calcium phosphate may be added to the positive electrode active material layer. Further, metal pyrophosphates such as lithium pyrophosphate particles, sodium pyrophosphate particles, magnesium pyrophosphate particles, calcium pyrophosphate particles instead of or together with metal phosphate particles such as lithium phosphate particles 28 You may add particle | grains to a positive electrode active material layer.

1 リチウムイオン二次電池(電池)
20 電極体
21 正極板(正極)
22 正極集電箔
23 正極活物質層
24 正極活物質粒子
24n 粒子表面
25 被膜
28 リン酸リチウム粒子(金属リン酸塩の粒子)
31 負極板(負極)
40 非水電解液
41 フッ素を含む化合物
42 金属リン酸塩粒子
Ep 正極電位
En 負極電位
Tk 保持期間
Vt 端子間電圧
Vh 第1電圧
Ad 下部分解域
Epd 分解下限電位
Vtd 分解下限電圧
Ve 第2電圧
S1,SA1 第1工程
S2,SA2 第2工程
S3,SA3 第3工程
Ib,Ib1,Ib2,Ib3 充電電流
Ib1 (第1工程の)終期電流値
Ibc カットオフ電流値
1 Lithium ion secondary battery (battery)
20 Electrode body 21 Positive electrode plate (positive electrode)
22 Positive electrode current collector foil 23 Positive electrode active material layer 24 Positive electrode active material particle 24n Particle surface 25 Coating 28 Lithium phosphate particle (metal phosphate particle)
31 Negative electrode plate (negative electrode)
40 Non-aqueous electrolyte 41 Compound containing fluorine 42 Metal phosphate particle Ep Positive electrode potential En Negative electrode potential Tk Holding period Vt Terminal voltage Vh First voltage Ad Lower decomposition zone Epd Decomposition lower limit potential Vtd Decomposition lower limit voltage Ve Second voltage S1 , SA1 First step S2, SA2 Second step S3, SA3 Third step Ib, Ib1, Ib2, Ib3 Charging current Ib1 (first step) final current value Ibc Cut-off current value

Claims (9)

正極活物質粒子を含む正極活物質層を有する正極と、
負極と、
フッ素を含有する化合物を含む非水電解液と、を備え、
上記正極活物質粒子は、その粒子表面にフッ素及びリンを含む被膜を有する
リチウムイオン二次電池の製造方法であって、
上記正極活物質層は、金属リン酸塩及び金属ピロリン酸塩の少なくともいずれかの粒子を含み、
上記リチウムイオン二次電池に初めて充電する工程は、
上記リチウムイオン二次電池を充電して、上記リチウムイオン二次電池の電圧を下部分解域内の第1電圧まで上昇させる第1工程と、
上記リチウムイオン二次電池の電圧を上記第1電圧に保持する第2工程と、
上記第2工程aの後に、上記第1電圧よりも高い第2電圧まで、1Cよりも大きい充電電流で充電を行う第3工程と、を備える
リチウムイオン二次電池の製造方法。
A positive electrode having a positive electrode active material layer containing positive electrode active material particles;
A negative electrode,
A non-aqueous electrolyte solution containing a fluorine-containing compound,
The positive electrode active material particle is a method for producing a lithium ion secondary battery having a film containing fluorine and phosphorus on the particle surface,
The positive electrode active material layer includes particles of at least one of metal phosphate and metal pyrophosphate,
The process of charging the lithium ion secondary battery for the first time is as follows:
A first step of charging the lithium ion secondary battery to raise the voltage of the lithium ion secondary battery to a first voltage in a lower decomposition region;
A second step of maintaining the voltage of the lithium ion secondary battery at the first voltage;
After the second step a, a third step of charging with a charging current larger than 1C up to a second voltage higher than the first voltage, a method for manufacturing a lithium ion secondary battery.
請求項1に記載のリチウムイオン二次電池の製造方法であって、
前記第2工程は、
予め定めた保持期間に亘り、前記リチウムイオン二次電池の電圧を前記第1電圧に保持する
リチウムイオン二次電池の製造方法。
It is a manufacturing method of the lithium ion secondary battery according to claim 1,
The second step includes
A method for manufacturing a lithium ion secondary battery, wherein the voltage of the lithium ion secondary battery is maintained at the first voltage over a predetermined holding period.
請求項2に記載のリチウムイオン二次電池の製造方法であって、
前記保持期間は、
上記保持期間を延ばすことなく前記第2工程を行い、その後、前記第3工程を行って製造した電池の電池抵抗Rnと、
上記保持期間に代えて、上記保持期間を1.5倍に延長した延長保持期間に亘り前記第1電圧を保持し、その後、前記第3工程を行って製造した延長保持電池の電池抵抗Reとを比較したとき、
Rn=0.98Re〜1.02Reとなる期間である
リチウムイオン二次電池の製造方法。
It is a manufacturing method of the lithium ion secondary battery according to claim 2,
The retention period is
The battery resistance Rn of the battery manufactured by performing the second step without extending the holding period and then performing the third step;
Instead of the holding period, the first voltage is held for an extended holding period obtained by extending the holding period by a factor of 1.5, and then the battery resistance Re of the extended holding battery manufactured by performing the third step is as follows. When comparing
A method for manufacturing a lithium ion secondary battery in a period in which Rn = 0.98 Re to 1.02 Re.
請求項2に記載のリチウムイオン二次電池の製造方法であって、
前記保持期間は、
上記保持期間を延ばすことなく前記第2工程を行い、その後、前記第3工程を行って製造した電池の電池抵抗Rnと、
上記保持期間に代えて、上記保持期間を1.5倍に延長した延長保持期間に亘り前記第1電圧を保持し、その後、前記第3工程を行って製造した延長保持電池の電池抵抗Reとを比較したとき、
Rn=0.99Re〜1.01Reとなる期間である
リチウムイオン二次電池の製造方法。
It is a manufacturing method of the lithium ion secondary battery according to claim 2,
The retention period is
The battery resistance Rn of the battery manufactured by performing the second step without extending the holding period and then performing the third step;
Instead of the holding period, the first voltage is held for an extended holding period obtained by extending the holding period by a factor of 1.5, and then the battery resistance Re of the extended holding battery manufactured by performing the third step is as follows. When comparing
A method for manufacturing a lithium ion secondary battery in a period in which Rn = 0.99Re to 1.01Re.
請求項1に記載のリチウムイオン二次電池の製造方法であって、
前記第2工程は、
前記リチウムイオン二次電池の充電電流の大きさが、予め定めたカットオフ電流値以下となるまで、前記第1電圧に保持する
リチウムイオン二次電池の製造方法。
It is a manufacturing method of the lithium ion secondary battery according to claim 1,
The second step includes
The manufacturing method of the lithium ion secondary battery hold | maintained at a said 1st voltage until the magnitude | size of the charging current of the said lithium ion secondary battery becomes below a predetermined cut-off current value.
請求項5に記載のリチウムイオン二次電池の製造方法であって、
前記カットオフ電流値は、前記第1工程の終期における終期電流値の2/5の大きさである
リチウムイオン二次電池の製造方法。
It is a manufacturing method of the lithium ion secondary battery according to claim 5,
The method of manufacturing a lithium ion secondary battery, wherein the cutoff current value is 2/5 of the final current value at the end of the first step.
請求項5に記載のリチウムイオン二次電池の製造方法であって、
前記第1工程の終期における終期電流値が1C以上であり、
前記カットオフ電流値は、0.05Cである
リチウムイオン二次電池の製造方法。
It is a manufacturing method of the lithium ion secondary battery according to claim 5,
The final current value at the end of the first step is 1C or more,
The method of manufacturing a lithium ion secondary battery, wherein the cutoff current value is 0.05C.
請求項1〜請求項7のいずれか1項に記載のリチウムイオン二次電池の製造方法であって、
前記正極活物質層に含まれる前記金属リン酸塩及び金属ピロリン酸塩の少なくともいずれかの粒子は、
平均粒径が1.5μm以下の粒子である
リチウムイオン二次電池の製造方法。
It is a manufacturing method of the lithium ion secondary battery of any one of Claims 1-7,
At least one of the metal phosphate and metal pyrophosphate contained in the positive electrode active material layer,
A method for producing a lithium ion secondary battery having an average particle diameter of 1.5 μm or less.
請求項1〜請求項8のいずれか1項に記載のリチウムイオン二次電池の製造方法であって、
前記第1工程及び第3工程は、
3C以上の予め定めた電流値で定電流充電する
リチウムイオン二次電池の製造方法。
It is a manufacturing method of the lithium ion secondary battery according to any one of claims 1 to 8,
The first step and the third step are:
A method of manufacturing a lithium ion secondary battery that is charged with a constant current at a predetermined current value of 3C or more.
JP2016055918A 2015-07-17 2016-03-18 Method for producing lithium ion secondary battery Active JP6365573B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/208,196 US10770759B2 (en) 2015-07-17 2016-07-12 Method of manufacturing lithium ion secondary battery
KR1020160088660A KR101900146B1 (en) 2015-07-17 2016-07-13 Method of manufacturing lithium ion secondary battery
DE102016112942.9A DE102016112942A1 (en) 2015-07-17 2016-07-14 A method of manufacturing a lithium-ion secondary battery
CN201610559624.6A CN106356564B (en) 2015-07-17 2016-07-15 The method for producing lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015142906 2015-07-17
JP2015142906 2015-07-17

Publications (2)

Publication Number Publication Date
JP2017027928A true JP2017027928A (en) 2017-02-02
JP6365573B2 JP6365573B2 (en) 2018-08-01

Family

ID=57946794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016055918A Active JP6365573B2 (en) 2015-07-17 2016-03-18 Method for producing lithium ion secondary battery

Country Status (2)

Country Link
JP (1) JP6365573B2 (en)
KR (1) KR101900146B1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018181577A (en) * 2017-04-12 2018-11-15 トヨタ自動車株式会社 Method for fabricating nonaqueous electrolyte secondary battery
JP2018185937A (en) * 2017-04-25 2018-11-22 トヨタ自動車株式会社 Nonaqueous secondary battery
JP2019121556A (en) * 2018-01-10 2019-07-22 トヨタ自動車株式会社 Initial charge method of lithium ion secondary battery
JP2020061301A (en) * 2018-10-11 2020-04-16 トヨタ自動車株式会社 Manufacturing method of battery
CN112744872A (en) * 2019-10-30 2021-05-04 北京大学 Liquid-phase phosphorus element doping modification preparation method of high-nickel anode material
US11056721B2 (en) 2017-02-17 2021-07-06 Toyota Jidosha Kabushiki Kaisha Method and device for producing electrode body
CN113247969A (en) * 2021-06-08 2021-08-13 浙江帕瓦新能源股份有限公司 Preparation method of metal pyrophosphate coated modified nickel-cobalt-manganese ternary precursor
CN114784246A (en) * 2022-04-25 2022-07-22 北京卫蓝新能源科技有限公司 Cathode material, preparation method and application thereof
JP2022162876A (en) * 2021-04-13 2022-10-25 プライムプラネットエナジー&ソリューションズ株式会社 Non-aqueous electrolyte solution secondary battery and manufacturing method therefor
JP2022162877A (en) * 2021-04-13 2022-10-25 プライムプラネットエナジー&ソリューションズ株式会社 Non-aqueous electrolyte solution secondary battery and manufacturing method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE061233T2 (en) * 2018-08-09 2023-05-28 Lg Energy Solution Ltd Method for precisely analyzing degree of impregnation of electrolyte of electrode in cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001325988A (en) * 2000-05-16 2001-11-22 Sony Corp Charging method of non-aqueous electrolyte secondary battery
JP2012038534A (en) * 2010-08-06 2012-02-23 Hitachi Ltd Positive electrode material for lithium secondary battery, lithium secondary battery and secondary battery module using the same
JP2012227035A (en) * 2011-04-21 2012-11-15 Toyota Motor Corp Method of manufacturing nonaqueous electrolyte secondary battery
JP2015046350A (en) * 2013-08-29 2015-03-12 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP2015122264A (en) * 2013-12-25 2015-07-02 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001325988A (en) * 2000-05-16 2001-11-22 Sony Corp Charging method of non-aqueous electrolyte secondary battery
JP2012038534A (en) * 2010-08-06 2012-02-23 Hitachi Ltd Positive electrode material for lithium secondary battery, lithium secondary battery and secondary battery module using the same
JP2012227035A (en) * 2011-04-21 2012-11-15 Toyota Motor Corp Method of manufacturing nonaqueous electrolyte secondary battery
JP2015046350A (en) * 2013-08-29 2015-03-12 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP2015122264A (en) * 2013-12-25 2015-07-02 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11056721B2 (en) 2017-02-17 2021-07-06 Toyota Jidosha Kabushiki Kaisha Method and device for producing electrode body
US11171363B2 (en) 2017-02-17 2021-11-09 Toyota Jidosha Kabushiki Kaisha Method and device for producing electrode body
JP2018181577A (en) * 2017-04-12 2018-11-15 トヨタ自動車株式会社 Method for fabricating nonaqueous electrolyte secondary battery
JP2018185937A (en) * 2017-04-25 2018-11-22 トヨタ自動車株式会社 Nonaqueous secondary battery
JP2019121556A (en) * 2018-01-10 2019-07-22 トヨタ自動車株式会社 Initial charge method of lithium ion secondary battery
JP2020061301A (en) * 2018-10-11 2020-04-16 トヨタ自動車株式会社 Manufacturing method of battery
JP6996470B2 (en) 2018-10-11 2022-01-17 トヨタ自動車株式会社 Battery manufacturing method
CN112744872A (en) * 2019-10-30 2021-05-04 北京大学 Liquid-phase phosphorus element doping modification preparation method of high-nickel anode material
JP7320020B2 (en) 2021-04-13 2023-08-02 プライムプラネットエナジー&ソリューションズ株式会社 Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP7320019B2 (en) 2021-04-13 2023-08-02 プライムプラネットエナジー&ソリューションズ株式会社 Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2022162876A (en) * 2021-04-13 2022-10-25 プライムプラネットエナジー&ソリューションズ株式会社 Non-aqueous electrolyte solution secondary battery and manufacturing method therefor
JP2022162877A (en) * 2021-04-13 2022-10-25 プライムプラネットエナジー&ソリューションズ株式会社 Non-aqueous electrolyte solution secondary battery and manufacturing method therefor
CN113247969A (en) * 2021-06-08 2021-08-13 浙江帕瓦新能源股份有限公司 Preparation method of metal pyrophosphate coated modified nickel-cobalt-manganese ternary precursor
CN114784246A (en) * 2022-04-25 2022-07-22 北京卫蓝新能源科技有限公司 Cathode material, preparation method and application thereof

Also Published As

Publication number Publication date
JP6365573B2 (en) 2018-08-01
KR20170009767A (en) 2017-01-25
KR101900146B1 (en) 2018-09-18

Similar Documents

Publication Publication Date Title
JP6365573B2 (en) Method for producing lithium ion secondary battery
JP5429631B2 (en) Non-aqueous electrolyte battery
US9966638B2 (en) Manufacturing method for non-aqueous secondary battery
JP6382641B2 (en) Nonaqueous electrolyte battery and method for producing nonaqueous electrolyte battery
KR20160072220A (en) Non-aqueous electrolyte secondary battery
JP6380269B2 (en) Method for producing lithium ion secondary battery
CN105322218A (en) Nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolytic solution
JP7151714B2 (en) Nonaqueous electrolyte storage element and method for manufacturing nonaqueous electrolyte storage element
KR101786890B1 (en) Lithium ion secondary battery, and method of manufacturing lithium ion secondary battery
US10770759B2 (en) Method of manufacturing lithium ion secondary battery
WO2016121350A1 (en) Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery
WO2013018181A1 (en) Lithium ion secondary battery
JP6250941B2 (en) Nonaqueous electrolyte secondary battery
JP5159268B2 (en) Non-aqueous electrolyte battery
JP7137757B2 (en) Non-aqueous electrolyte storage element
JP5311123B2 (en) Non-aqueous electrolyte battery
CN114631214A (en) Nonaqueous electrolyte electricity storage element, method for producing same, and electricity storage device
JP6323723B2 (en) Non-aqueous electrolyte secondary battery manufacturing method and battery assembly
JP5985272B2 (en) Nonaqueous electrolyte secondary battery
JP6881141B2 (en) Non-aqueous electrolyte secondary battery
WO2015079546A1 (en) Positive electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2016009261A9 (en) Method of manufacturing nonaqueous secondary battery
JP6110287B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2013069698A (en) Nonaqueous electrolyte secondary battery
JP2016039030A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180618

R151 Written notification of patent or utility model registration

Ref document number: 6365573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151