JP2017027719A5 - - Google Patents

Download PDF

Info

Publication number
JP2017027719A5
JP2017027719A5 JP2015143776A JP2015143776A JP2017027719A5 JP 2017027719 A5 JP2017027719 A5 JP 2017027719A5 JP 2015143776 A JP2015143776 A JP 2015143776A JP 2015143776 A JP2015143776 A JP 2015143776A JP 2017027719 A5 JP2017027719 A5 JP 2017027719A5
Authority
JP
Japan
Prior art keywords
fuel cell
working fluid
outlet
compressor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015143776A
Other languages
Japanese (ja)
Other versions
JP6770696B2 (en
JP2017027719A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2015143776A priority Critical patent/JP6770696B2/en
Priority claimed from JP2015143776A external-priority patent/JP6770696B2/en
Publication of JP2017027719A publication Critical patent/JP2017027719A/en
Publication of JP2017027719A5 publication Critical patent/JP2017027719A5/ja
Application granted granted Critical
Publication of JP6770696B2 publication Critical patent/JP6770696B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

ファン27は、内周側の領域であって、高圧圧縮機28に気体を送り込むファンハブ36と、外周側の領域であって、バイパスノズル37に気体を送り込むファンチップ38とを有する。 The fan 27 has a fan hub 36 that sends gas to the high-pressure compressor 28 on the inner peripheral side, and a fan chip 38 that sends gas to the bypass nozzle 37 on the outer peripheral side.

図4は燃料電池42の構成を示す概略図である。図4に示すように、燃料電池42では、容器46内に室内を二分する電解質47が配置され、電解質47の両側にアノード48及び空気極(カソード)49がそれぞれ配置されている。容器46のアノード48側には、燃料の導入口50と導出口51が設けられ、容器46の空気極49側には、作動流体の導入口52と導出口53が設けられている。圧縮機41からの作動流体は、燃料電池42の空気極49側の導入口52に供給され、室内において水素等と反応し、電気を発電する。化学反応過程で発生する熱により作動流体は更に温度が上がるので、その導出口53よりタービン43側に導出し、タービン43により膨張し、後述するようにジェットエンジン21側に戻すか、外部に放出する。
タービン43は、燃料電池42の空気極49側の導出口53より排出された作動流体により回転駆動される。
FIG. 4 is a schematic diagram showing the configuration of the fuel cell 42. As shown in FIG. 4, in the fuel cell 42, an electrolyte 47 that bisects the room is disposed in a container 46, and an anode 48 and an air electrode (cathode) 49 are disposed on both sides of the electrolyte 47. A fuel inlet 50 and outlet 51 are provided on the anode 48 side of the container 46, and a working fluid inlet 52 and outlet 53 are provided on the air electrode 49 side of the container 46. The working fluid from the compressor 41 is supplied to the inlet 52 on the air electrode 49 side of the fuel cell 42, reacts with hydrogen or the like in the room, and generates electricity. Since the temperature of the working fluid rises further due to the heat generated in the chemical reaction process, the working fluid is led out to the turbine 43 side through the outlet 53, expanded by the turbine 43, returned to the jet engine 21 side as described later, or released to the outside. To do.
The turbine 43 is rotationally driven by the working fluid discharged from the outlet 53 on the air electrode 49 side of the fuel cell 42.

図5に示したシステムでは、高圧圧縮機28の出口の温度が急激に変動すると、高圧圧縮機28より送り込まれた気体の一部が流路23を介して作動流体としてそのまま燃料電池42に供給されるので、その作動流体の温度も急激に変動する。この結果、図8に示すように、燃料電池42のセル電圧は、温度の急激な変動に対して電圧が変動し、電圧が回復するためにはその性能が変動抑制に時間のかかる温度に依存するため緩慢な応答となるので、その後徐々に電圧がもとに戻っていく。これに対して、図6に示す本発明に係るシステムでは、高圧圧縮機28の出口の温度が急激に変動しても、燃料電池42の導入口に介挿された圧縮機41によりその急激な変動が抑制されて、その変動が抑制された作動流体が燃料電池42に供給されるので、燃料電池42のセル電圧がほとんど変動することはない。 In the system shown in FIG. 5, when the temperature at the outlet of the high pressure compressor 28 fluctuates rapidly, a part of the gas sent from the high pressure compressor 28 is supplied to the fuel cell 42 as a working fluid through the flow path 23. Therefore, the temperature of the working fluid also fluctuates rapidly. As a result, as shown in FIG. 8, the cell voltage of the fuel cell 42 varies depending on the temperature that takes time to suppress the fluctuation in order for the voltage to fluctuate due to a rapid fluctuation in temperature and to recover the voltage. Therefore, since the response becomes slow, the voltage gradually returns to the original value. On the other hand, in the system according to the present invention shown in FIG. 6, even if the temperature of the outlet of the high pressure compressor 28 fluctuates rapidly, the abrupt change is caused by the compressor 41 inserted in the inlet of the fuel cell 42. variation is suppressed, since the working fluid in which the changes is suppressed is supplied to the fuel cell 42, there is no possibility that the cell voltage of the fuel cell 42 is almost varied.

燃料電池42は、典型的には、図4に示した構成で、固体酸化物形燃料電池(SOFC)が用いられる。圧縮機41からの作動流体は、燃料電池42の空気極49側の導入口52に供給され、室内において水素等と反応し、電気を発電する。化学反応過程で発生する熱により作動流体は更に温度が上がる。空気極49側の導出口53より排出された作動流体及びアノード側の導出口51より排出された燃焼ガスを燃焼器61に導入して燃焼させて膨張させ、さらにタービン43側に導出し、タービン43によりさらに膨張し、それを流路54を介してジェットエンジン21のダクト30に戻す。なお、タービン43により膨張された作動流体を外部に放出しても構わない。また、アノード側の導出口51より排出された燃焼ガスを燃焼器61に導入せずに、排出しても構わない。 Typically, the fuel cell 42 is configured as shown in FIG. 4 and a solid oxide fuel cell (SOFC) is used. The working fluid from the compressor 41 is supplied to the inlet 52 on the air electrode 49 side of the fuel cell 42, reacts with hydrogen or the like in the room, and generates electricity. The temperature of the working fluid further rises due to the heat generated in the chemical reaction process. By introducing a combustion gas discharged from the working fluid and the anode side of the outlet port 51 which is discharged from the outlet 53 of the air electrode 49 side to the combustor 61 by burning inflated, further diverted to the turbine 43 side, the turbine It is further expanded by 43 and returned to the duct 30 of the jet engine 21 through the flow path 54. The working fluid expanded by the turbine 43 may be discharged to the outside. Further, the combustion gas discharged from the anode outlet 51 may be discharged without being introduced into the combustor 61.

図10に示した本発明に係る航空機に搭載されるAPU120では、圧縮機128に導入される空気の温度や圧力が急激に変化し、圧縮機128の出口の温度や圧力が急激に変動しても、燃料電池142の導入口に介挿された圧縮機141によりその急激な変動が抑制されて、その変動が抑制された作動流体が燃料電池142に供給されるので、燃料電池142のセル電圧が変動することはなく、発電性能が低下することはない。また、その変動が抑制された作動流体が燃料電池142に供給されるので、急激な圧力変動に耐えられるシステムを構築できる。また更に、本発明の一実施形態に係る航空機に搭載されるAPU120では、このような圧縮機141は、熱交換器などと比べて容積が十分に小さくできるので、容積の増大を抑えつつ発電性能の低下を抑えることができる。

In the APU 120 mounted on the aircraft according to the present invention shown in FIG. 10, the temperature and pressure of the air introduced into the compressor 128 change rapidly, and the temperature and pressure at the outlet of the compressor 128 change rapidly. also, the sudden change is suppressed by the compressor 141 interposed inlet of the fuel cell 142, since the working fluid in which the changes is suppressed is supplied to the fuel cell 142, the cell voltage of the fuel cell 142 Will not fluctuate and power generation performance will not be reduced. Further, since the working fluid in which the fluctuation is suppressed is supplied to the fuel cell 142, a system that can withstand a sudden pressure fluctuation can be constructed. Furthermore, in the APU 120 mounted on an aircraft according to an embodiment of the present invention, such a compressor 141 can have a sufficiently small volume compared to a heat exchanger or the like, so that power generation performance can be suppressed while suppressing an increase in volume. Can be suppressed.

JP2015143776A 2015-07-21 2015-07-21 Fuel cell systems, hybrid systems, aircraft and auxiliary power units onboard aircraft Active JP6770696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015143776A JP6770696B2 (en) 2015-07-21 2015-07-21 Fuel cell systems, hybrid systems, aircraft and auxiliary power units onboard aircraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015143776A JP6770696B2 (en) 2015-07-21 2015-07-21 Fuel cell systems, hybrid systems, aircraft and auxiliary power units onboard aircraft

Publications (3)

Publication Number Publication Date
JP2017027719A JP2017027719A (en) 2017-02-02
JP2017027719A5 true JP2017027719A5 (en) 2018-09-13
JP6770696B2 JP6770696B2 (en) 2020-10-21

Family

ID=57946753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015143776A Active JP6770696B2 (en) 2015-07-21 2015-07-21 Fuel cell systems, hybrid systems, aircraft and auxiliary power units onboard aircraft

Country Status (1)

Country Link
JP (1) JP6770696B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI619644B (en) * 2017-04-05 2018-04-01 國立勤益科技大學 Unmanned aerial vehicle
NO346132B1 (en) * 2020-08-28 2022-03-14 Univ I Tromsoe Norges Arktiske Univ Fuel cell powered turbine-less jet engine.

Similar Documents

Publication Publication Date Title
JP2014530453A5 (en)
CN103899419B (en) The method of operation of axial flow compressor and axial flow compressor
JP7482890B2 (en) Evaporatively cooled fuel cell system with cathode exhaust turbine boost
JP2011094615A (en) Clearance control of turbine rotor blade tip and shroud
JP2016176469A (en) Power generation system having compressor creating excess air flow
JP2015214973A (en) Enhanced turbine cooling system using blend of compressor bleed air and ambient air
WO2018180781A1 (en) Gas turbine
JP2015214978A (en) Enhanced turbine cooling system using blend of compressor bleed air and turbine compartment air
RU2013103766A (en) POWER GENERATION SYSTEM AND METHOD OF ITS OPERATION
JP2016176470A (en) Power generation system having compressor creating excess air flow and heat exchanger
US20150082767A1 (en) Passive Cooling System for Control Valve Actuators
JP2017027719A5 (en)
JP2017532739A (en) Safe fuel cell system
JP2008269844A (en) Fuel cell system
JP2019036469A (en) Fuel cell system
WO2014073547A1 (en) Power generation system and method for cooling fuel cell exhaust in power generation system
JP6770696B2 (en) Fuel cell systems, hybrid systems, aircraft and auxiliary power units onboard aircraft
US11962052B2 (en) Fuel cell module and power generation system
JP2007092721A (en) Multiple-axle combined cycle power generation facility
Tsujikawa et al. Proposal of the atmospheric pressure turbine (apt) and high temperature fuel cell hybrid system
Takahashi et al. Analysis and evaluation about Advanced humid air turbine system
JP2012031727A (en) Gas turbine and method for cooling gas turbine
EP3159497B1 (en) System and method for wheel space temperature management
US20100024388A1 (en) Flow-Restricting Filter, Solid Propellant Gas Generator and Propulsion System Comprising the Same
CN105121812B (en) The method and gas turbine of negative control power are provided by gas turbine