JP2017027653A - Nonaqueous electrolyte secondary battery and manufacturing method thereof - Google Patents

Nonaqueous electrolyte secondary battery and manufacturing method thereof Download PDF

Info

Publication number
JP2017027653A
JP2017027653A JP2013254034A JP2013254034A JP2017027653A JP 2017027653 A JP2017027653 A JP 2017027653A JP 2013254034 A JP2013254034 A JP 2013254034A JP 2013254034 A JP2013254034 A JP 2013254034A JP 2017027653 A JP2017027653 A JP 2017027653A
Authority
JP
Japan
Prior art keywords
secondary battery
libob
negative electrode
electrolytic solution
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013254034A
Other languages
Japanese (ja)
Inventor
佳世 水野
Kayo Mizuno
佳世 水野
英明 篠田
Hideaki Shinoda
英明 篠田
阿部 徹
Toru Abe
徹 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2013254034A priority Critical patent/JP2017027653A/en
Priority to PCT/JP2014/006116 priority patent/WO2015087535A1/en
Publication of JP2017027653A publication Critical patent/JP2017027653A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the cycle characteristic of a nonaqueous electrolyte secondary battery.SOLUTION: A nonaqueous electrolyte secondary battery comprises: a positive electrode; a negative electrode; and an electrolytic solution. The negative electrode includes boron (B). In the electrolytic solution, the content of lithium bis(oxalate)borate (LiBOB) per electrode area is 0.1 mg/cmor less. The electrolytic solution is prepared so that the LiBOB content in the electrolytic solution becomes 0.1 mg/cmor less per electrode area, thereby suppressing the excess formation of a coating. Thus, the cycle characteristic of the nonaqueous electrolyte secondary battery can be enhanced.SELECTED DRAWING: None

Description

本発明は、リチウムイオン二次電池等の非水電解液二次電池とその製造方法に関する。   The present invention relates to a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery and a method for producing the same.

EV(Electric Vehicle)やPHV(Plug in Hybrid Vehicle)などの車両には、走行用モータへの供給電力を備える蓄電装置としてリチウムイオン二次電池が搭載されている。リチウムイオン二次電池は、主として、正極と、負極と、電解液と、を備える。各電極は、活物質と、活物質で被覆された集電体と、を有する。   Vehicles such as EV (Electric Vehicle) and PHV (Plug in Hybrid Vehicle) are equipped with a lithium ion secondary battery as a power storage device having power supplied to a traveling motor. A lithium ion secondary battery mainly includes a positive electrode, a negative electrode, and an electrolytic solution. Each electrode has an active material and a current collector coated with the active material.

負極活物質の表面には、充放電時に被膜が形成される。被膜は、電解液が負極活物質と直接接触するのを防止して電解液の劣化を抑えている。しかし、この被膜には、負極活物質の体積変化で亀裂が発生する場合がある。被膜に亀裂が生じると、電解液が負極活物質と直接接触して、電解液が劣化し、充放電サイクル特性(以下、単に「サイクル特性」と記載)が低下するおそれがある。   A film is formed on the surface of the negative electrode active material during charge and discharge. The coating prevents the electrolytic solution from coming into direct contact with the negative electrode active material and suppresses the deterioration of the electrolytic solution. However, in this film, cracks may occur due to a volume change of the negative electrode active material. When a crack occurs in the coating, the electrolytic solution directly contacts the negative electrode active material, the electrolytic solution deteriorates, and charge / discharge cycle characteristics (hereinafter simply referred to as “cycle characteristics”) may be deteriorated.

サイクル特性を改善するために、特許文献1には、電解液にリチウムビス(オキサレート)ボレート(LiBOB)を添加することで、負極活物質表面に形成される被膜を安定化させることが示されている。また、特許文献2には、リチウムビスボレート系添加剤を電解液総量に対して0.1〜5wt%を含む電解液が開示されている。   In order to improve the cycle characteristics, Patent Document 1 shows that the film formed on the surface of the negative electrode active material is stabilized by adding lithium bis (oxalate) borate (LiBOB) to the electrolytic solution. Yes. Patent Document 2 discloses an electrolytic solution containing 0.1 to 5 wt% of a lithium bisborate-based additive with respect to the total amount of the electrolytic solution.

特開2010―010095号公報JP 2010-010095 A 特開2010―192430号公報JP 2010-192430 A

標準的な非水系溶媒として、環状カーボネートであるエチレンカーボネート(EC)ならびに鎖状カーボネートであるエチルメチルカーボネート(EMC)およびジメチルカーボネート(DMC)を混合して調製した混合溶媒に、電解質としてLiPF を溶解させた標準電解液がある。 As a standard non-aqueous solvent, a mixed solvent prepared by mixing ethylene carbonate (EC), which is a cyclic carbonate, and ethyl methyl carbonate (EMC) and dimethyl carbonate (DMC), which are chain carbonates, and LiPF 6 as an electrolyte. There is a standard electrolyte dissolved.

上記の標準的な非水系溶媒にLiPF を溶解させた標準電解液に、リチウムビス(オキサレート)ボレート(LiBOB)を添加することで、それを用いたリチウムイオン二次電池のサイクル特性が改善されることが予測される。しかし、本発明者等の検討によれば、標準電解液に対してLiBOBを添加したものでも、添加量によってリチウムイオン二次電池のサイクル特性が大きく改善されない場合があることがわかった。特に、添加量が多量に過ぎれば、被膜が過剰に形成され電極の抵抗上昇につながる。つまり、LiBOBを使用しても、使用量や充放電条件によっては、必ずしもサイクル特性を向上させることができないことがわかった。 By adding lithium bis (oxalate) borate (LiBOB) to a standard electrolyte solution in which LiPF 6 is dissolved in the above standard non-aqueous solvent, the cycle characteristics of a lithium ion secondary battery using the lithium bis (oxalate) borate are improved. It is predicted that However, according to the study by the present inventors, it has been found that even when LiBOB is added to the standard electrolyte, the cycle characteristics of the lithium ion secondary battery may not be greatly improved depending on the addition amount. In particular, if the amount added is too large, an excessive coating is formed, leading to an increase in electrode resistance. That is, it was found that even if LiBOB was used, the cycle characteristics could not always be improved depending on the amount used and the charge / discharge conditions.

上記課題に鑑み本発明の目的は、被膜形成による効果を確実に発現することができる非
水電解液二次電池及び非水電解液二次電池の製造方法を提供することである。
In view of the above-described problems, an object of the present invention is to provide a non-aqueous electrolyte secondary battery and a method for manufacturing a non-aqueous electrolyte secondary battery that can reliably exhibit the effect of film formation.

上記課題を解決する非水電解液二次電池は、正極と、負極と、電解液とを備える非水電解液二次電池であって、前記負極はホウ素(B)を有し、前記電解液のリチウムビス(オキサレート)ボレート(LiBOB)の含有量が電極面積に対し0.1mg/cm以下である。 A non-aqueous electrolyte secondary battery that solves the above problems is a non-aqueous electrolyte secondary battery that includes a positive electrode, a negative electrode, and an electrolytic solution, wherein the negative electrode has boron (B), and the electrolytic solution The lithium bis (oxalate) borate (LiBOB) content is 0.1 mg / cm 2 or less with respect to the electrode area.

本発明にかかる前記非水電解液二次電池は、前記非水電解液のLiBOBの含有量が電極面積に対し0.05mg/cm以下であると良い。 In the non-aqueous electrolyte secondary battery according to the present invention, the LiBOB content of the non-aqueous electrolyte may be 0.05 mg / cm 2 or less with respect to the electrode area.

本発明にかかる前記非水電解液二次電池は、前記電解液がLiBOBを添加されたものである。   In the non-aqueous electrolyte secondary battery according to the present invention, the electrolyte is added with LiBOB.

本発明にかかる前記非水電解液二次電池は、前記電解液がLiBOBを含有している。   In the non-aqueous electrolyte secondary battery according to the present invention, the electrolyte contains LiBOB.

本発明にかかる非水電解液二次電池の製造方法は、正極と、負極と、電解液とを備える非水電解液二次電池の製造方法であって、前記電解液にLiBOBを添加し、前記非水電解液二次電池にコンディショニング処理及びエージング処理を実施することで、前記非水電解液におけるLiBOBの含有量が電極面積に対し0.1mg/cm以下となるように調製する。 A method for producing a non-aqueous electrolyte secondary battery according to the present invention is a method for producing a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and an electrolytic solution, wherein LiBOB is added to the electrolytic solution, A conditioning treatment and an aging treatment are performed on the non-aqueous electrolyte secondary battery so that the LiBOB content in the non-aqueous electrolyte is 0.1 mg / cm 2 or less with respect to the electrode area.

上記によれば、LiBOBを添加した電解液を備える二次電池は、使用初期に負極活物質の表面にLiBOB由来の安定な被膜を形成しやすい。本発明では、LiBOBを添加した非水電解液二次電池にコンディショニング処理及びエージング処理を実施することで、負極活物質の表面にLiBOB由来の被膜を形成する。そして、電解液中のLiBOBの含有量が電極面積に対し0.1mg/cm以下となるよう調製することで、被膜が過剰に形成されることを抑制する。結果、非水電解液二次電池のサイクル特性を向上させることができる。 According to the above, the secondary battery including the electrolytic solution to which LiBOB is added easily forms a stable coating derived from LiBOB on the surface of the negative electrode active material in the initial stage of use. In the present invention, a non-aqueous electrolyte secondary battery to which LiBOB is added is subjected to conditioning treatment and aging treatment to form a LiBOB-derived film on the surface of the negative electrode active material. And it suppresses that a coating film is formed excessively by preparing so that content of LiBOB in electrolyte solution may be 0.1 mg / cm < 2 > or less with respect to an electrode area. As a result, the cycle characteristics of the nonaqueous electrolyte secondary battery can be improved.

本発明によれば、非水電解液二次電池のサイクル特性を向上させることができる。   According to the present invention, the cycle characteristics of the nonaqueous electrolyte secondary battery can be improved.

以下に、本発明の非水電解液二次電池を実施するための形態を説明する。なお、特に断らない限り、本明細書に記載された数値範囲「a〜b」は、下限a及び上限bをその範囲に含む。そして、これらの上限値および下限値、ならびに実施例中に列記した数値も含めてそれらを任意に組み合わせることで数値範囲を構成し得る。   Below, the form for implementing the non-aqueous-electrolyte secondary battery of this invention is demonstrated. Unless otherwise specified, the numerical range “ab” described herein includes the lower limit “a” and the upper limit “b”. The numerical range can be configured by arbitrarily combining these upper limit value and lower limit value and the numerical values listed in the examples.

本発明の非水電解液二次電池としては、リチウムイオン二次電池が好ましい。リチウムイオン二次電池は、リチウムイオンを吸蔵・放出し得る正極活物質を有する正極と、リチウムイオンを吸蔵・放出し得る負極活物質を有する負極と、電解液と、を備える。   As the nonaqueous electrolyte secondary battery of the present invention, a lithium ion secondary battery is preferable. A lithium ion secondary battery includes a positive electrode having a positive electrode active material capable of occluding and releasing lithium ions, a negative electrode having a negative electrode active material capable of occluding and releasing lithium ions, and an electrolytic solution.

<正極>
リチウムイオン二次電池に用いられる正極は、リチウムイオンを吸蔵・放出し得る正極
活物質を有する。正極は、集電体と、正極活物質を有し集電体の表面を被覆する正極活物
質層とからなるとよい。正極活物質は、結着剤および/または導電助剤とともに正極材を
構成するとよい。導電助剤および結着剤は、特に限定はなく、リチウムイオン二次電池で
使用可能なものであればよい。
<Positive electrode>
A positive electrode used for a lithium ion secondary battery has a positive electrode active material capable of occluding and releasing lithium ions. The positive electrode is preferably composed of a current collector and a positive electrode active material layer that has a positive electrode active material and covers the surface of the current collector. The positive electrode active material may constitute a positive electrode material together with a binder and / or a conductive aid. The conductive auxiliary agent and the binder are not particularly limited as long as they can be used in the lithium ion secondary battery.

正極活物質としては、LiCoO 、LiNi Co Mn (0<p<1、0+p<q<1−p、0+(p+q)<r<1−(p+q))、Li MnO 、Li MnO 、LiNi Mn (0<s<1、0+s<t<1−s)、LiFePO 、LiFeSO 、を基本組成とするリチウム含有金属酸化物あるいはそれぞれを1種または2種以上含む固溶体材料などが挙げられる。いずれの金属酸化物も上記を基本組成とすればよく、基本組成に含まれる金属元素を他の金属元素で置換した化合物も使用可能である。 As the positive electrode active material, LiCoO 2 , LiNi p Co q Mn r O 2 (0 <p <1, 0 + p <q <1-p, 0+ (p + q) <r <1- (p + q)), Li 2 MnO 2 , Li 2 MnO 3 , LiNi s Mn t O 2 (0 <s <1, 0 + s <t <1-s), LiFePO 4 , Li 2 FeSO 4 , or a lithium-containing metal oxide having a basic composition or 1 each. Examples thereof include solid solution materials containing two or more species. Any metal oxide may have the above basic composition, and a compound in which a metal element contained in the basic composition is substituted with another metal element can also be used.

正極集電体は、金属製のメッシュや多孔質体、金属箔などを採用することができるが、目的に応じた形状であれば特に限定されない。集電体は、アルミニウム、ニッケル、ステンレス鋼など、リチウムイオン二次電池の正極で一般的に使用されるものであればよい。   The positive electrode current collector can employ a metal mesh, a porous body, a metal foil, or the like, but is not particularly limited as long as it has a shape according to the purpose. The current collector is not particularly limited as long as it is generally used for a positive electrode of a lithium ion secondary battery, such as aluminum, nickel, and stainless steel.

正極活物質層には、前記正極活物質の他に、結着剤、導電助剤等を含むのが望ましい。
結着剤は、特に限定されるものではなく、既に公知のものを用いればよい。たとえば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等の含フッ素樹脂など高電位においても分解しない樹脂を用いることができる。
In addition to the positive electrode active material, the positive electrode active material layer preferably contains a binder, a conductive additive, and the like.
The binder is not particularly limited, and a known one may be used. For example, a resin that does not decompose even at a high potential, such as a fluorine-containing resin such as polytetrafluoroethylene or polyvinylidene fluoride, can be used.

導電助剤としては、リチウムイオン二次電池の電極で一般的に用いられている材料を用いればよい。たとえば、アセチレンブラック、ケッチェンブラック等のカーボンブラック(炭素質微粒子)、炭素繊維などの導電性炭素材料を用いるのが好ましく、導電性炭素材料の他にも、導電性有機化合物などの既知の導電助剤を用いてもよい。これらのうちの1種を単独でまたは2種以上を混合して用いるとよい。   As the conductive auxiliary agent, a material generally used for an electrode of a lithium ion secondary battery may be used. For example, it is preferable to use conductive carbon materials such as carbon black (carbonaceous fine particles) such as acetylene black and ketjen black, and carbon fibers. Besides conductive carbon materials, known conductive materials such as conductive organic compounds are also used. An auxiliary agent may be used. One of these may be used alone or in combination of two or more.

<負極>
リチウムイオン二次電池に用いられる負極は、リチウムイオンを吸蔵・放出し得る負極
活物質を有する。負極は、集電体と、負極活物質を有し集電体の表面を被覆する負極活物
質層とからなるとよい。負極活物質は、結着剤および/または導電助剤とともに負極材を
構成するとよい。導電助剤および結着剤は、特に限定はなく、リチウムイオン二次電池で
使用可能なものであればよい。
<Negative electrode>
A negative electrode used for a lithium ion secondary battery has a negative electrode active material capable of occluding and releasing lithium ions. The negative electrode may include a current collector and a negative electrode active material layer that has a negative electrode active material and covers the surface of the current collector. The negative electrode active material may constitute a negative electrode material together with a binder and / or a conductive aid. The conductive auxiliary agent and the binder are not particularly limited as long as they can be used in the lithium ion secondary battery.

負極活物質としては、リチウムイオンを吸蔵・放出し得る材料を、使用可能である。し
たがって、リチウムイオンを吸蔵および放出可能である単体、合金または化合物であれば
特に限定はない。たとえば、Na、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、B
a、Ra、Ti、Ag、Zn、Cd、Al、Ga、In、Ge、Sn、Pb、Sbおよび
Biのうちの少なくとも一種を含む負極活物質材料が挙げられる。具体的には、Cu−S
n合金、Co−Sn合金等の錫系材料、各種黒鉛などの炭素系材料、単体珪素、SiO
(0.5≦x≦1.5)などの珪素系材料が挙げられ、これらのうちの一種以上を使用可
能である。
As the negative electrode active material, a material capable of inserting and extracting lithium ions can be used. Therefore, there is no particular limitation as long as it is a simple substance, alloy, or compound that can occlude and release lithium ions. For example, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, B
Examples include a negative electrode active material containing at least one of a, Ra, Ti, Ag, Zn, Cd, Al, Ga, In, Ge, Sn, Pb, Sb, and Bi. Specifically, Cu-S
Tin-based materials such as n-alloy and Co-Sn alloy, carbon-based materials such as various graphites, elemental silicon, SiO x
Examples thereof include silicon-based materials such as (0.5 ≦ x ≦ 1.5), and one or more of these materials can be used.

上記の負極活物質は、集電体の少なくとも表面を被覆する負極活物質層を構成する。一般的に、負極は、負極活物質層で集電体を被覆することで形成される。集電体は、たとえば、銅や銅合金などの金属製のメッシュや多孔質体、金属箔などを用いるとよい。   The negative electrode active material constitutes a negative electrode active material layer that covers at least the surface of the current collector. Generally, a negative electrode is formed by covering a current collector with a negative electrode active material layer. As the current collector, for example, a metal mesh such as copper or copper alloy, a porous body, or a metal foil may be used.

バインダー樹脂および導電助剤は上記の正極で記載したものと同様のものが使用できる。   As the binder resin and the conductive auxiliary agent, the same ones as described for the positive electrode can be used.

通常、活物質およびバインダー樹脂に、必要に応じて導電助剤および適量の有機溶剤を加えて混合し、スラリーにしたものを、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの方法で集電体上に塗布し、バインダー樹脂を硬化させることによって電極を作製することができる。   Usually, the active material and binder resin are mixed with a conductive aid and an appropriate amount of an organic solvent as necessary, and the resulting slurry is rolled, dip-coated, doctor blade, spray-coated, curtained. An electrode can be produced by coating on a current collector by a method such as a coating method and curing the binder resin.

<電解液>
電解液は、非水溶媒に電解質塩が含有された組成物である。非水溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等からなる群から選択された一種または二種以上の材料を用いることができる。電解質塩としては、非水系溶媒に可溶なアルカリ金属フッ化物が好ましい。特に好ましくは、リチウムフッ化物のようなリチウムを含む塩である。具体的には、LiPF 、LiBF 、LiAsF 、NaPF 、NaBF 、およびNaAsF 等が好ましく、これらのうちから選ばれる少なくとも1種を用いるとよい。電解質塩の含有量は、電解質1Lに対して、0.5〜1.7mol/L程度であればよい。また、電解液にはシクロヘキシルベンゼン(CHB)やビフェニル(BP)などの過充電時対応添加剤が入っていても良い。
<Electrolyte>
The electrolytic solution is a composition in which an electrolyte salt is contained in a non-aqueous solvent. As the non-aqueous solvent, one or more selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC) and the like. Materials can be used. The electrolyte salt is preferably an alkali metal fluoride that is soluble in a non-aqueous solvent. Particularly preferred is a salt containing lithium such as lithium fluoride. Specifically, LiPF 6 , LiBF 4 , LiAsF 6 , NaPF 6 , NaBF 4 , NaAsF 6 and the like are preferable, and at least one selected from these may be used. The content of the electrolyte salt may be about 0.5 to 1.7 mol / L with respect to 1 L of the electrolyte. In addition, the electrolyte may contain an additive for overcharge such as cyclohexylbenzene (CHB) or biphenyl (BP).

本実施の形態にかかるリチウム二次電池では、電解液にリチウムビス(オキサレート)ボレート(LiBOB)を添加する。LiBOBは、還元分解されやすい化合物であり、その還元分解物は、負極活物質および正極活物質の表面全体に形成される被膜成分となる。このため、このようなLiBOBが電解液に過剰に含まれると、被膜が厚膜化して、活物質の電気抵抗増加を招くことになる。そのため、サイクル特性を維持するために、コンディショニング処理及びエージング処理後の電解液のLiBOBの含有量が電極面積に対し0.1mg/cm以下さらには0.05mg/cm以下に抑えるとよい。 In the lithium secondary battery according to the present embodiment, lithium bis (oxalate) borate (LiBOB) is added to the electrolytic solution. LiBOB is a compound that is easily reduced and decomposed, and the reduced decomposition product becomes a coating component formed on the entire surface of the negative electrode active material and the positive electrode active material. For this reason, when such LiBOB is excessively contained in the electrolytic solution, the coating becomes thicker, leading to an increase in the electric resistance of the active material. Therefore, in order to maintain cycle characteristics, the content of LiBOB in the electrolytic solution after the conditioning process and the aging process is preferably suppressed to 0.1 mg / cm 2 or less, further 0.05 mg / cm 2 or less with respect to the electrode area.

セパレータは、必要に応じて用いられる。セパレータは、正極と負極とを分離し電解液を保持するものであり、ポリエチレン、ポリプロピレン等の薄い微多孔膜を用いることが
できる。
A separator is used as needed. The separator separates the positive electrode and the negative electrode and holds the electrolytic solution, and a thin microporous film such as polyethylene or polypropylene can be used.

正極および負極に必要に応じてセパレータを挟装させ電極組立体とする。正極集電体および負極集電体から外部に通ずる正極端子および負極端子までの間を、集電用リード等を用いて接続した後に電極体に非水電解液を含浸させてリチウムイオン二次電池とするとよい。   A separator is sandwiched between the positive electrode and the negative electrode as necessary to form an electrode assembly. Lithium ion secondary battery in which a non-aqueous electrolyte is impregnated in the electrode body after connecting between the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal leading to the outside using a current collecting lead or the like It is good to do.

リチウムイオン二次電池の形状は、特に限定なく、円筒型、積層型、コイン型、ラミネート型等、種々の形状を採用することができる。   The shape of the lithium ion secondary battery is not particularly limited, and various shapes such as a cylindrical shape, a stacked shape, a coin shape, and a laminated shape can be adopted.

このようなリチウムイオン二次電池は、電極に含まれる活物質の種類に適した電圧範囲
で充放電を行えばよい。ただし、本発明の電解液に含まれるLiBOBは、1.6〜1.8V付近で被膜が生成される。そのため、Liの酸化還元電位を基準電位としたときに、リチウムイオン二次電池の充放電の電圧範囲を、2〜4.5Vさらには2.25〜4.25Vで行うとよい。負極活物質がLiBOB由来の被膜を形成していることは、エネルギー分散型X線分光法(EDX)により負極活物質の表面からB(ホウ素)が検出されることで判断する。また、電解液からBが検出される場合、ガスクロマトグラフ質量分析(GC−MS)によってLiBOBの含有量を測定することができる。
Such a lithium ion secondary battery may be charged and discharged within a voltage range suitable for the type of active material contained in the electrode. However, LiBOB contained in the electrolytic solution of the present invention produces a film at around 1.6 to 1.8V. Therefore, when the oxidation-reduction potential of Li is used as a reference potential, the charge / discharge voltage range of the lithium ion secondary battery is preferably 2 to 4.5 V, more preferably 2.25 to 4.25 V. Whether the negative electrode active material forms a LiBOB-derived film is determined by detecting B (boron) from the surface of the negative electrode active material by energy dispersive X-ray spectroscopy (EDX). Moreover, when B is detected from the electrolytic solution, the content of LiBOB can be measured by gas chromatography mass spectrometry (GC-MS).

以上、本発明の電解液およびリチウムイオン二次電池の実施形態を説明したが、本発明
は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。
As mentioned above, although embodiment of the electrolyte solution and lithium ion secondary battery of this invention was described, this invention is not limited to the said embodiment. The present invention can be implemented in various forms without departing from the gist of the present invention, with modifications and improvements that can be made by those skilled in the art.

以下に、本発明のリチウムイオン二次電池の実施例を挙げて、本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to examples of the lithium ion secondary battery of the present invention.

リチウムイオン二次電池の特性を評価するために、電解液の種類が異なる4種類のリチウムイオン二次電池を作製し、電池のサイクル特性を測定した。   In order to evaluate the characteristics of the lithium ion secondary battery, four types of lithium ion secondary batteries with different types of electrolytic solutions were prepared, and the cycle characteristics of the batteries were measured.

(電池1)
LiNi0.5Co0.2Mn0.3:94質量%、アセチレンブラック(導電剤):2質量%、鱗片状黒鉛:1質量%、ポリフッ化ビニリデン(結着剤):3質量%をN‐メチル‐2‐ピロリドンと混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、正極シートを作製した。正極の集電体を除く部分の密度は3.3g/cmであり、アルミニウム箔上の目付け量は18.4mg/cmであった。
(Battery 1)
LiNi 0.5 Co 0.2 Mn 0.3 O 2 : 94% by mass, acetylene black (conductive agent): 2% by mass, flake graphite: 1% by mass, polyvinylidene fluoride (binder): 3% by mass Was mixed with N-methyl-2-pyrrolidone to prepare a positive electrode mixture paste. This positive electrode mixture paste was applied onto an aluminum foil (current collector), dried and pressurized, punched out to a predetermined size, and a positive electrode sheet was produced. The density of the portion excluding the current collector of the positive electrode was 3.3 g / cm 3 , and the basis weight on the aluminum foil was 18.4 mg / cm 2 .

また、人造黒鉛(負極活物質)98.6質量%を、SBR(結着剤)0.7質量%とCMC(増粘剤)0.7質量%とを混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き負極シートを作製した。負極の集電体を除く部分の密度は1.4g/cmであり、銅箔上の目付け量は10.4mg/cmであった。 Further, 98.6% by mass of artificial graphite (negative electrode active material) is mixed with 0.7% by mass of SBR (binder) and 0.7% by mass of CMC (thickener) to prepare a negative electrode mixture paste. did. This negative electrode mixture paste was applied onto a copper foil (current collector), dried and pressurized, and punched into a predetermined size to produce a negative electrode sheet. The density of the portion excluding the current collector of the negative electrode was 1.4 g / cm 3 , and the basis weight on the copper foil was 10.4 mg / cm 2 .

非水系溶媒として、環状カーボネートであるエチレンカーボネート(EC)、鎖状カーボネートであるエチルメチルカーボネート(EMC)およびジメチルカーボネート(DMC)、を準備した。過充電時対応添加剤として、シクロヘキシルベンゼン(CHB)、ビフェニル(BP)を準備した。添加剤として、リチウムビス(オキサレート)ボレート(LiBOB)を準備した。また、電解質としてLiPF を準備した。ECとEMCとDMCとを所定の体積割合で混合した非水系溶媒に、LiPF 、CHB、BP、さらにLiBOBを添加して電解液1を得た。LiPF は、電解液1Lに対して1mol/Lとなるように調製した。CHBは電解液に対して2.5wt%、BPは電解液に対して2.5wt%となるように添加した。LiBOBは、電極面積に対し0.095mg/cm添加した。 As the non-aqueous solvent, ethylene carbonate (EC) which is a cyclic carbonate, ethyl methyl carbonate (EMC) and dimethyl carbonate (DMC) which are chain carbonates were prepared. Cyclohexylbenzene (CHB) and biphenyl (BP) were prepared as additives for overcharge. Lithium bis (oxalate) borate (LiBOB) was prepared as an additive. Moreover, LiPF 6 was prepared as an electrolyte. LiPF 6 , CHB, BP, and further LiBOB were added to a non-aqueous solvent in which EC, EMC, and DMC were mixed at a predetermined volume ratio to obtain an electrolytic solution 1. LiPF 6 was prepared to be 1 mol / L with respect to 1 L of the electrolytic solution. CHB was added to 2.5 wt% with respect to the electrolytic solution, and BP was added to 2.5 wt% with respect to the electrolytic solution. LiBOB was added at 0.095 mg / cm 2 with respect to the electrode area.

正極と負極との間に、微多孔性セパレータを挟み込んだ。この正極、セパレータおよび負極を複数積層して電極組立体とした。2枚のアルミニウムフィルムの周囲を、一部を除いて熱溶着することにより封止して、袋状とした。袋状のアルミニウムフィルムの中に、電極組立体を入れ、さらに、電解液1を入れた。その後、真空引きしながら、アルミニウムフィルムの開口部分を完全に気密に封止した。このとき、正極側および負極側の集電体の先端を、フィルムの端縁部から突出させ、外部端子に接続可能とし、リチウムイオン二次電池(電池1)を得た。   A microporous separator was sandwiched between the positive electrode and the negative electrode. A plurality of these positive electrodes, separators and negative electrodes were laminated to form an electrode assembly. The periphery of the two aluminum films was sealed by heat-welding except for a part to make a bag shape. The electrode assembly was placed in a bag-like aluminum film, and the electrolyte 1 was further placed. Then, the opening part of the aluminum film was completely airtightly sealed while evacuating. At this time, the tips of the current collector on the positive electrode side and the negative electrode side were protruded from the edge portion of the film to be connectable to an external terminal to obtain a lithium ion secondary battery (battery 1).

(電池2)
電池2は、LiBOBを電極面積に対し0.122mg/cm添加した電解液2を使用したことを除いて、電池1と同様の構成とした。
(Battery 2)
The battery 2 had the same configuration as the battery 1 except that the electrolytic solution 2 in which 0.122 mg / cm 2 of LiBOB was added to the electrode area was used.

(電池3)
電池2は、LiBOBを電極面積に対し0.244mg/cm添加した電解液3を使用したことを除いて、電池1と同様の構成とした。
(Battery 3)
The battery 2 had the same configuration as the battery 1 except that the electrolytic solution 3 in which 0.244 mg / cm 2 of LiBOB was added to the electrode area was used.

(電池4)
電池2は、LiBOBを電極面積に対し0.488mg/cm添加した電解液4を使用したことを除いて、電池1と同様の構成とした。
電池1〜4に使用した電解液1〜4を表1に示す。
(Battery 4)
The battery 2 has the same configuration as the battery 1 except that the electrolytic solution 4 in which 0.488 mg / cm 2 of LiBOB was added to the electrode area was used.
The electrolytic solutions 1 to 4 used for the batteries 1 to 4 are shown in Table 1.

Figure 2017027653
Figure 2017027653

電池1〜4に25℃で初期充放電を行うコンディショニング処理を行った。コンディショニング処理実施後、電池に60℃で20時間保持するエージング処理を行った。コンディショニング処理及びエージング処理により、負極活物質の表面には電解液中のLiBOBに由来する被膜が形成される。   The batteries 1 to 4 were subjected to conditioning treatment for initial charge / discharge at 25 ° C. After the conditioning treatment, the battery was subjected to an aging treatment that was held at 60 ° C. for 20 hours. By the conditioning treatment and the aging treatment, a film derived from LiBOB in the electrolytic solution is formed on the surface of the negative electrode active material.

(エネルギー分散型X線分光法)
コンディショニング処理及びエージング処理を施した電池1〜4を用いて、負極活物質表面をエネルギー分散型X線分光法(EDX)によって分析した。結果、電池1〜4では、B(ホウ素)が検出され、被膜が形成されていると判断できた。
(Energy dispersive X-ray spectroscopy)
Using the batteries 1 to 4 subjected to conditioning treatment and aging treatment, the surface of the negative electrode active material was analyzed by energy dispersive X-ray spectroscopy (EDX). As a result, in batteries 1 to 4, B (boron) was detected, and it was determined that a film was formed.

(ガスクロマトグラフ質量分析)
次に、コンディショニング処理及びエージング処理を施した電池1〜4を用いて、電解液中に残存したLiBOBの含有量をガスクロマトグラフ質量分析(GC−MS)によって測定した。測定結果を表2に示す。
(Gas chromatograph mass spectrometry)
Next, the content of LiBOB remaining in the electrolytic solution was measured by gas chromatograph mass spectrometry (GC-MS) using the batteries 1 to 4 subjected to conditioning treatment and aging treatment. The measurement results are shown in Table 2.

(サイクル試験)
次に、コンディショニング処理及びエージング処理を施した電池1〜4を用いて充放電サイクル試験を行った。サイクル試験に用いる電池1〜4はガスクロマトグラフ質量分析使用した電池とは別途用意したものである。サイクル試験は、60℃で行った。サイクル試験の充電条件を0.5Cで3.987VまでのCC(定電流)充電とし、放電条件を0.5Cで3.455VまでのCC放電とした。コンディショニング処理後の最初の充放電を1サイクル目とし、300サイクル目まで同様の充放電を繰り返し行った。そして、1サイクル目の放電容量に対する、300サイクル目の放電容量を「放電容量維持率(%)」として計算した。
放電容量維持率(%)=(300サイクル目の放電容量/1サイクル目の放電容量)×100の式で算出した。その結果を、表2に示す。
(Cycle test)
Next, a charge / discharge cycle test was performed using the batteries 1 to 4 subjected to the conditioning process and the aging process. The batteries 1 to 4 used for the cycle test are prepared separately from the batteries used for gas chromatograph mass spectrometry. The cycle test was performed at 60 ° C. The charge condition of the cycle test was CC (constant current) charge up to 3.987V at 0.5C, and the discharge condition was CC discharge up to 3.455V at 0.5C. The first charge / discharge after the conditioning treatment was regarded as the first cycle, and the same charge / discharge was repeated until the 300th cycle. Then, the discharge capacity at the 300th cycle relative to the discharge capacity at the first cycle was calculated as “discharge capacity retention rate (%)”.
Discharge capacity retention ratio (%) = (discharge capacity at the 300th cycle / discharge capacity at the first cycle) × 100. The results are shown in Table 2.

Figure 2017027653
Figure 2017027653

表2からわかるように、残存するLiBOBの含有量が電極面積に対し0.1mg/cm以下とすることにより、非水電解液二次電池の放電容量維持率の低下を抑制することができることがわかった。 As can be seen from Table 2, when the content of the remaining LiBOB is 0.1 mg / cm 2 or less with respect to the electrode area, the reduction in the discharge capacity maintenance rate of the nonaqueous electrolyte secondary battery can be suppressed. I understood.

また表2より、特に残存するLiBOBの含有量が電極面積に対し0.05mg/cm以下とすることにより、優れたサイクル特性を示すことがわかった。これは、LiBOBに由来する被膜が過剰に形成されることなく放電容量維持率の低下を抑制することができたと判断できる。 Further, from Table 2, it was found that excellent cycle characteristics were exhibited particularly when the remaining LiBOB content was 0.05 mg / cm 2 or less with respect to the electrode area. This can be determined that the decrease in the discharge capacity maintenance rate could be suppressed without excessive formation of the coating derived from LiBOB.

電池4のサイクル特性は、電解液中に残存するLiBOBの含有量が多いにもかかわらず、4種類のうち最も劣っていた。これは、残存するLiBOBの含有量が多量であることから、被膜が過剰に形成されており、電極の抵抗上昇につながったと推察される。
すなわち、電解液中に残存するLiBOBの含有量を適切な値に調製することで、被膜形成による効果を確実に発現することができることがわかった。
The cycle characteristics of the battery 4 were the most inferior among the four types although the content of LiBOB remaining in the electrolytic solution was large. This is presumed that since the content of the remaining LiBOB is large, the coating is formed excessively, leading to an increase in the resistance of the electrode.
That is, it has been found that the effect of film formation can be surely exhibited by adjusting the content of LiBOB remaining in the electrolytic solution to an appropriate value.

Claims (5)

正極と、負極と、電解液と
を備える非水電解液二次電池であって、
前記負極はホウ素(B)を有し、
前記電解液のリチウムビス(オキサレート)ボレート(LiBOB)の含有量が電極面積に対し0.1mg/cm以下であることを特徴とする非水電解液二次電池。
A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and an electrolyte solution,
The negative electrode has boron (B),
A non-aqueous electrolyte secondary battery, wherein the content of lithium bis (oxalate) borate (LiBOB) in the electrolyte is 0.1 mg / cm 2 or less with respect to the electrode area.
前記電解液のLiBOBの含有量が電極面積に対し0.05mg/cm以下であることを特徴とする請求項1に記載の非水電解液二次電池。 2. The nonaqueous electrolyte secondary battery according to claim 1, wherein the content of LiBOB in the electrolyte is 0.05 mg / cm 2 or less with respect to the electrode area. 前記電解液はLiBOBを添加されたものであることを特徴とする請求項1または2に記載の非水電解液二次電池。   The non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the electrolytic solution is added with LiBOB. 前記電解液はLiBOBを含有していることを特徴とする請求項1〜3のいずれか一項に記載の非水電解液二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the electrolytic solution contains LiBOB. 正極と、負極と、電解液と
を備える非水電解液二次電池の製造方法であって、
前記電解液にLiBOBを添加し、
前記非水電解液二次電池にコンディショニング処理及びエージング処理を実施することで、
前記電解液におけるLiBOBの含有量が電極面積に対し0.1mg/cm以下となるように調製することを特徴とする非水電解液二次電池の製造方法。






















A method for producing a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and an electrolyte solution,
LiBOB is added to the electrolyte,
By performing a conditioning process and an aging process on the non-aqueous electrolyte secondary battery,
A method for producing a non-aqueous electrolyte secondary battery, wherein the content of LiBOB in the electrolyte is 0.1 mg / cm 2 or less with respect to the electrode area.






















JP2013254034A 2013-12-09 2013-12-09 Nonaqueous electrolyte secondary battery and manufacturing method thereof Pending JP2017027653A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013254034A JP2017027653A (en) 2013-12-09 2013-12-09 Nonaqueous electrolyte secondary battery and manufacturing method thereof
PCT/JP2014/006116 WO2015087535A1 (en) 2013-12-09 2014-12-08 Non-aqueous electrolyte secondary cell and method for producing a non-aqueous electrolyte secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013254034A JP2017027653A (en) 2013-12-09 2013-12-09 Nonaqueous electrolyte secondary battery and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2017027653A true JP2017027653A (en) 2017-02-02

Family

ID=53370863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013254034A Pending JP2017027653A (en) 2013-12-09 2013-12-09 Nonaqueous electrolyte secondary battery and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP2017027653A (en)
WO (1) WO2015087535A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11916204B2 (en) 2020-10-15 2024-02-27 Prime Planet Energy & Solutions, Inc. Method of producing lithium-ion battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5720325B2 (en) * 2011-03-11 2015-05-20 三菱化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
JP5713191B2 (en) * 2011-05-17 2015-05-07 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP5691860B2 (en) * 2011-06-07 2015-04-01 トヨタ自動車株式会社 Method for producing lithium ion secondary battery
JP2013182712A (en) * 2012-02-29 2013-09-12 Toyota Motor Corp Nonaqueous electrolyte secondary battery and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11916204B2 (en) 2020-10-15 2024-02-27 Prime Planet Energy & Solutions, Inc. Method of producing lithium-ion battery

Also Published As

Publication number Publication date
WO2015087535A1 (en) 2015-06-18

Similar Documents

Publication Publication Date Title
JP5874430B2 (en) Non-aqueous electrolyte secondary battery and method for producing the same, and method for producing lithium transition metal composite oxide for non-aqueous electrolyte secondary battery
JP6056703B2 (en) Lithium ion secondary battery
JP5854279B2 (en) Method for producing non-aqueous electrolyte secondary battery
US9755238B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP6908966B2 (en) Non-aqueous electrolyte secondary battery
JP5541417B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP5813336B2 (en) Nonaqueous electrolyte secondary battery
JP2019079710A (en) Method for manufacturing positive electrode
JP4880936B2 (en) Lithium ion secondary battery
KR101941796B1 (en) Nonaqueous electrolyte secondary battery
JP6902206B2 (en) Lithium ion secondary battery
KR20150079078A (en) Non-aqueous electrolyte for lithium ion battery containing silyl ether and lithium ion battery including the same
JP2009004357A (en) Nonaqueous electrolyte lithium-ion secondary battery
WO2018061815A1 (en) Positive electrode for nonaqueous electrolyte secondary batteries
JP2019040796A (en) Nonaqueous electrolyte secondary battery
JP6119641B2 (en) Cylindrical non-aqueous electrolyte secondary battery
JP2014130729A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP5962467B2 (en) Lithium ion secondary battery
JPWO2012086507A1 (en) Non-aqueous electrolyte secondary battery
JP2020161428A (en) Nonaqueous electrolyte secondary battery
JP2017027653A (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP6812928B2 (en) Non-aqueous electrolyte secondary battery
JP2014146517A (en) Nonaqueous electrolyte for nonaqueous electrolyte secondary battery
JP5985272B2 (en) Nonaqueous electrolyte secondary battery
JP5857943B2 (en) Nonaqueous electrolyte secondary battery