JP2014146517A - Nonaqueous electrolyte for nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte for nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2014146517A
JP2014146517A JP2013014848A JP2013014848A JP2014146517A JP 2014146517 A JP2014146517 A JP 2014146517A JP 2013014848 A JP2013014848 A JP 2013014848A JP 2013014848 A JP2013014848 A JP 2013014848A JP 2014146517 A JP2014146517 A JP 2014146517A
Authority
JP
Japan
Prior art keywords
fluorine
nonaqueous electrolyte
aqueous electrolyte
secondary battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013014848A
Other languages
Japanese (ja)
Inventor
Takanobu Chiga
貴信 千賀
Miyuki Nakai
美有紀 中井
Takashi Takeuchi
崇 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2013014848A priority Critical patent/JP2014146517A/en
Publication of JP2014146517A publication Critical patent/JP2014146517A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte for a nonaqueous electrolyte secondary battery having excellent high temperature durability and rate characteristics.SOLUTION: Disclosed is a nonaqueous electrolyte used for a nonaqueous secondary battery. The nonaqueous electrolyte contains a fluorine-containing phosphorous acid diester. The fluorine-containing phosphorous acid diester is represented by general formula (1) and Rf1 and Rf2 are independently a C1-C3 alkyl group, and at least one of Rf1 and Rf2 contains fluorine.

Description

本発明は、非水電解質二次電池用非水電解質及びこれを用いた非水電解質二次電池に関する。   The present invention relates to a nonaqueous electrolyte for a nonaqueous electrolyte secondary battery and a nonaqueous electrolyte secondary battery using the same.

非水電解質二次電池において、液状の非水電解質である非水電解液が負極との界面で還元分解されることが知られている。この非水電解液の還元分解により発生する気化成分や負極表面上の被膜は、電池性能を低下させる原因となる。そこで、非水電解液に添加剤を入れることで、非水電解液が還元分解される前に添加剤の還元分解に伴う被膜を負極表面上に形成させ、これにより非水電解液の還元分解を抑制することが検討されている。この還元分解により負極表面上に形成される添加剤由来の被膜は、イオン透過性に優れる被膜であるため、負極活物質の効率的利用により電気化学特性を向上させる。例えば、特許文献1には、非水電解液に添加剤として亜リン酸ジエステルを含有させることが開示されており、これによりリチウム負極、またはリチウム合金負極の充放電効率が改善することが記載されている。   In a non-aqueous electrolyte secondary battery, it is known that a non-aqueous electrolyte that is a liquid non-aqueous electrolyte is reduced and decomposed at the interface with the negative electrode. The vaporized component generated by the reductive decomposition of the non-aqueous electrolyte and the coating on the negative electrode surface cause a decrease in battery performance. Therefore, by adding an additive to the non-aqueous electrolyte, a film accompanying the reductive decomposition of the additive is formed on the negative electrode surface before the non-aqueous electrolyte is reductively decomposed, thereby reducing and decomposing the non-aqueous electrolyte. Suppression is being studied. Since the film derived from the additive formed on the negative electrode surface by this reductive decomposition is a film excellent in ion permeability, the electrochemical characteristics are improved by the efficient use of the negative electrode active material. For example, Patent Document 1 discloses that a non-aqueous electrolyte contains phosphite diester as an additive, which describes that the charge / discharge efficiency of a lithium negative electrode or a lithium alloy negative electrode is improved. ing.

特開平5−190205号公報Japanese Patent Laid-Open No. 5-190205

しかしながら、特許文献1に記載の添加剤は、高温耐久性およびレート特性に対して効果的なものではない。   However, the additive described in Patent Document 1 is not effective for high temperature durability and rate characteristics.

本発明の目的は、高温耐久性とレート特性に優れた非水電解質二次電池用非水電解液、及びこれを用いた非水電解質二次電池を提供することである。   The objective of this invention is providing the nonaqueous electrolyte for nonaqueous electrolyte secondary batteries excellent in high temperature durability and a rate characteristic, and a nonaqueous electrolyte secondary battery using the same.

本発明に係る非水電解質二次電池用非水電解質は、含フッ素亜リン酸ジエステルを含有し、含フッ素亜リン酸ジエステルは、一般式(1)で表され、Rf1とRf2は、独立して炭素数1〜3のアルキル基であり、Rf1とRf2のうち少なくとも1つがフッ素を含有する。   The nonaqueous electrolyte for a nonaqueous electrolyte secondary battery according to the present invention contains a fluorine-containing phosphite diester, the fluorine-containing phosphite diester is represented by the general formula (1), and Rf1 and Rf2 are independent of each other. An alkyl group having 1 to 3 carbon atoms, and at least one of Rf1 and Rf2 contains fluorine.

Figure 2014146517
Figure 2014146517

また、本発明に係る非水電解質二次電池は、正極と、負極と、非水電解質と、を備え、非水電解質は、含フッ素亜リン酸ジエステルを含有し、含フッ素亜リン酸ジエステルは、上記式(1)で表され、Rf1とRf2は、独立して炭素数1〜3のアルキル基であり、Rf1とRf2のうち少なくとも1つがフッ素を含有する。   The non-aqueous electrolyte secondary battery according to the present invention includes a positive electrode, a negative electrode, and a non-aqueous electrolyte. The non-aqueous electrolyte contains a fluorine-containing phosphite diester, and the fluorine-containing phosphite diester is In the formula (1), Rf1 and Rf2 are each independently an alkyl group having 1 to 3 carbon atoms, and at least one of Rf1 and Rf2 contains fluorine.

本発明に係る非水電解質二次電池用非水電解質及びこれを用いた非水電解質二次電池は、高温耐久性とレート特性に優れる。   The nonaqueous electrolyte for a nonaqueous electrolyte secondary battery according to the present invention and the nonaqueous electrolyte secondary battery using the same are excellent in high temperature durability and rate characteristics.

実施例1〜4と比較例1について、添加剤の添加量と放電容量維持率との関係性を示す図である。It is a figure which shows the relationship between the addition amount of an additive, and a discharge capacity maintenance factor about Examples 1-4 and the comparative example 1. FIG. 実施例5〜8と比較例2について、添加剤の添加量と放電容量維持率との関係性を示す図である。It is a figure which shows the relationship between the addition amount of an additive, and a discharge capacity maintenance factor about Examples 5-8 and the comparative example 2. FIG.

以下、本発明に係る実施の形態につき、詳細に説明する。本発明の実施形態の非水電解質二次電池は、例えば、正極及び負極がセパレータを介して積層された電極体と、非水電解質とが外装体に収容された構成を有する。以下に、非水電解質二次電池の各構成部材について詳述する。   Hereinafter, embodiments according to the present invention will be described in detail. The nonaqueous electrolyte secondary battery according to the embodiment of the present invention has a configuration in which, for example, an electrode body in which a positive electrode and a negative electrode are stacked via a separator, and a nonaqueous electrolyte are housed in an exterior body. Below, each structural member of a nonaqueous electrolyte secondary battery is explained in full detail.

〔正極〕
正極は、例えば、金属箔等の正極集電体と、正極集電体上に形成された正極活物質層とで構成される。正極集電体には、正極の電位範囲で安定な金属の箔、または正極の電位範囲で安定な金属を表層に配置したフィルム等が用いられる。正極の電位範囲で安定な金属としては、アルミニウム(Al)を用いることが好適である。正極活物質層は、例えば、正極活物質の他に、導電剤、結着剤等を含み、これらを適当な溶媒で混合し、正極集電体上に塗布した後、乾燥及び圧延して得られる層である。
[Positive electrode]
The positive electrode includes, for example, a positive electrode current collector such as a metal foil and a positive electrode active material layer formed on the positive electrode current collector. As the positive electrode current collector, a metal foil that is stable in the potential range of the positive electrode or a film in which a metal that is stable in the potential range of the positive electrode is arranged on the surface layer is used. As the metal stable in the potential range of the positive electrode, it is preferable to use aluminum (Al). The positive electrode active material layer includes, for example, a conductive agent, a binder and the like in addition to the positive electrode active material, and these are mixed with an appropriate solvent, applied onto the positive electrode current collector, dried and rolled. Layer.

正極活物質は、粒子形状であり、アルカリ金属元素を含む遷移金属酸化物、あるいは上記遷移金属酸化物に含まれる遷移金属元素の一部が異種元素によって置換された遷移金属酸化物等を用いることができる。アルカリ金属元素には、例えばリチウム(Li)、ナトリウム(Na)等が挙げられる。これらのアルカリ金属元素の中でもリチウムを用いることが好ましい。遷移金属元素には、スカンジウム(Sc)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、及びイットリウム(Y)等からなる群から選ばれる少なくとも1種の遷移金属元素を用いることができる。これらの遷移金属元素の中でも、Mn、Co、Ni等を用いることが好ましい。異種元素としては、マグネシウム(Mg)、アルミニウム(Al)、鉛(Pb)、アンチモン(Sb)及びホウ素(B)等からなる群から選ばれる少なくとも1種の異種元素を用いることができる。これらの異種元素の中でも、Mg、Al等を用いることが好ましい。   The positive electrode active material has a particle shape, and a transition metal oxide containing an alkali metal element or a transition metal oxide in which a part of the transition metal element contained in the transition metal oxide is substituted with a different element is used. Can do. Examples of the alkali metal element include lithium (Li) and sodium (Na). Among these alkali metal elements, lithium is preferably used. The transition metal element includes at least one selected from the group consisting of scandium (Sc), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), yttrium (Y), and the like. Various transition metal elements can be used. Among these transition metal elements, it is preferable to use Mn, Co, Ni or the like. As the different element, at least one different element selected from the group consisting of magnesium (Mg), aluminum (Al), lead (Pb), antimony (Sb), boron (B) and the like can be used. Of these different elements, Mg, Al, etc. are preferably used.

このような正極活物質の具体例には、アルカリ金属元素にリチウムを用いたリチウム含有遷移金属酸化物として、LiCoO2、LiNiO2、LiMn24、LiMnO2、LiNi1-yCoy2(0<y<1)、LiNi1-y-zCoyMnz2(0<y+z<1)、LiFePO4等が挙げられる。正極活物質24は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Specific examples of such a positive electrode active material include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 2 , LiNi 1-y Co y O 2 as lithium-containing transition metal oxides using lithium as an alkali metal element. (0 <y <1), LiNi 1-yz Co y Mn z O 2 (0 <y + z <1), LiFePO 4 , and the like. The positive electrode active material 24 may be used alone or in combination of two or more.

導電剤は、導電性を有する粉体または粒子などであり、正極活物質層の電子伝導性を高めるために用いられる。導電剤には、導電性を有する炭素材料、金属粉末、有機材料等が用いられる。具体的には、炭素材料としてアセチレンブラック、ケッチェンブラック、及び黒鉛等、金属粉末としてアルミニウム等、及び有機材料としてフェニレン誘導体等が挙げられる。これら導電剤は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。   The conductive agent is conductive powder or particles, and is used to increase the electronic conductivity of the positive electrode active material layer. As the conductive agent, a conductive carbon material, metal powder, organic material, or the like is used. Specifically, acetylene black, ketjen black, and graphite are used as the carbon material, aluminum is used as the metal powder, and a phenylene derivative is used as the organic material. These conductive agents may be used alone or in combination of two or more.

結着剤は、粒子形状あるいは網目構造を有する高分子であり、粒子形状の正極活物質及び粉体または粒子形状の導電剤間の良好な接触状態を維持し、かつ正極集電体表面に対する正極活物質等の結着性を高めるために用いられる。結着剤には、フッ素系高分子、ゴム系高分子等を用いることができる。具体的には、フッ素系高分子としてポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、またはこれらの変性体等、ゴム系高分子としてエチレン−プロピレン−イソプレン共重合体、エチレン−プロピレン−ブタジエン共重合体等が挙げられる。結着剤は、カルボキシメチルセルロース(CMC)、ポリエチレンオキシド(PEO)等の増粘剤と併用されてもよい。   The binder is a polymer having a particle shape or a network structure, maintains a good contact state between the particle shape positive electrode active material and the powder or the particle shape conductive agent, and is a positive electrode with respect to the surface of the positive electrode current collector. Used to enhance the binding properties of active materials and the like. As the binder, a fluorine polymer, a rubber polymer, or the like can be used. Specifically, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), or modified products thereof as the fluorine-based polymer, ethylene-propylene-isoprene copolymer, ethylene-propylene- Examples thereof include butadiene copolymers. The binder may be used in combination with a thickener such as carboxymethyl cellulose (CMC) or polyethylene oxide (PEO).

〔負極〕
負極は、例えば、金属箔等の負極集電体と、負極集電体上に形成された負極活物質層とで構成される。負極集電体には、負極の電位範囲でリチウムと合金を作らない金属の箔、または負極の電位範囲でリチウムと合金を作らない金属を表層に配置したフィルム等が用いられる。負極の電位範囲でリチウムと合金を作らない金属としては、低コストで加工がしやすく電子伝導性の良い銅を用いることが好適である。負極活物質層は、例えば、負極活物質と、結着剤等を含み、これらを水あるいは適当な溶媒で混合し、負極集電体上に塗布した後、乾燥及び圧延することにより得られる層である。
[Negative electrode]
The negative electrode includes, for example, a negative electrode current collector such as a metal foil and a negative electrode active material layer formed on the negative electrode current collector. As the negative electrode current collector, a metal foil that does not form an alloy with lithium in the potential range of the negative electrode or a film in which a metal that does not form an alloy with lithium in the potential range of the negative electrode is disposed on the surface layer is used. As a metal that does not form an alloy with lithium in the potential range of the negative electrode, it is preferable to use copper that is easy to process at low cost and has good electron conductivity. The negative electrode active material layer includes, for example, a negative electrode active material, a binder, and the like, mixed with water or an appropriate solvent, applied onto the negative electrode current collector, and then dried and rolled. It is.

負極活物質は、アルカリ金属イオンを吸蔵および放出可能な材料であれば、特に限定なく用いることができる。このような負極活物質としては、例えば、炭素材料、金属、合金、金属酸化物、金属窒化物、及びアルカリ金属を予め吸蔵させた炭素ならびに珪素等を用いることができる。炭素材料としては、天然黒鉛、人造黒鉛、ピッチ系炭素繊維等が挙げられる。金属もしくは合金の具体例としては、リチウム(Li)、ケイ素(Si)、スズ(Sn)、ゲルマニウム(Ge)、インジウム(In)、ガリウム(Ga)、リチウム合金、ケイ素合金、スズ合金等が挙げられる。負極活物質は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。   The negative electrode active material can be used without particular limitation as long as it is a material that can occlude and release alkali metal ions. As such a negative electrode active material, for example, carbon, silicon in which a carbon material, a metal, an alloy, a metal oxide, a metal nitride, and an alkali metal are occluded in advance can be used. Examples of the carbon material include natural graphite, artificial graphite, and pitch-based carbon fiber. Specific examples of the metal or alloy include lithium (Li), silicon (Si), tin (Sn), germanium (Ge), indium (In), gallium (Ga), lithium alloy, silicon alloy, tin alloy, and the like. It is done. A negative electrode active material may be used individually by 1 type, and may be used in combination of 2 or more type.

結着剤としては、正極の場合と同様にフッ素系高分子、ゴム系高分子等を用いることができるが、ゴム系高分子であるスチレン−ブタジエン共重合体(SBR)、またはこの変性体等を用いることが好適である。結着剤は、カルボキシメチルセルロース(CMC)等の増粘剤と併用されてもよい。   As the binder, as in the case of the positive electrode, a fluorine-based polymer, a rubber-based polymer, or the like can be used. Is preferably used. The binder may be used in combination with a thickener such as carboxymethylcellulose (CMC).

負極集電体には、負極の電位範囲でリチウムと合金を作らない金属の箔、または負極の電位範囲でリチウムと合金を作らない金属を表層に配置したフィルム等が用いられる。負極の電位範囲でリチウムと合金を作らない金属としては、低コストで加工がしやすく電子伝導性の良い銅を用いることが好適である。   As the negative electrode current collector, a metal foil that does not form an alloy with lithium in the potential range of the negative electrode or a film in which a metal that does not form an alloy with lithium in the potential range of the negative electrode is disposed on the surface layer is used. As a metal that does not form an alloy with lithium in the potential range of the negative electrode, it is preferable to use copper that is easy to process at low cost and has good electron conductivity.

〔非水電解質〕
非水電解質は、非水溶媒、非水溶媒に溶解する電解質塩及び添加剤を含む。
[Non-aqueous electrolyte]
The non-aqueous electrolyte includes a non-aqueous solvent, an electrolyte salt that dissolves in the non-aqueous solvent, and an additive.

非水溶媒は、環状炭酸エステル、環状カルボン酸エステル、環状エーテル、鎖状炭酸エステル、鎖状カルボン酸エステル、鎖状エーテル、ニトリル類、アミド類などを用いることができる。より具体的には、環状炭酸エステルとしてエチレンカーボネート(EC)やプロピレンカーボネート(PC)等、環状カルボン酸エステルとしてγ−ブチロラクトン(γ−GBL)等、鎖状炭酸エステルとしてエチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)等を用いることができる。中でも、高誘電率溶媒である環状炭酸エステルとしてエチレンカーボネート(EC)と、低粘度溶媒である鎖状炭酸エステルとしてエチルメチルカーボネート(EMC)を混合して用いることが好適である。また、上記非水溶媒の水素原子をフッ素原子などのハロゲン原子で置換したハロゲン置換体を用いることができる。ハロゲン置換体としては、例えば、4−フルオロエチレンカーボネート(FEC)が好ましい。   As the non-aqueous solvent, cyclic carbonic acid ester, cyclic carboxylic acid ester, cyclic ether, chain carbonic acid ester, chain carboxylic acid ester, chain ether, nitriles, amides and the like can be used. More specifically, ethylene carbonate (EC) or propylene carbonate (PC) as a cyclic carbonate, γ-butyrolactone (γ-GBL) or the like as a cyclic carboxylic acid ester, ethyl methyl carbonate (EMC) as a chain carbonate, Dimethyl carbonate (DMC) or the like can be used. Among them, it is preferable to use a mixture of ethylene carbonate (EC) as a cyclic carbonate which is a high dielectric constant solvent and ethyl methyl carbonate (EMC) as a chain carbonate which is a low viscosity solvent. Moreover, the halogen substituted body which substituted the hydrogen atom of the said non-aqueous solvent with halogen atoms, such as a fluorine atom, can be used. As the halogen-substituted product, for example, 4-fluoroethylene carbonate (FEC) is preferable.

電解質塩は、アルカリ金属塩を用いることができ、例えばリチウム塩であることがより好ましい。リチウム塩には、従来の非水電解質二次電池において支持塩として一般に使用されているLiPF6、LiBF4、LiClO4等を用いることができる。これらのリチウム塩は、1種で使用してもよく、また2種類以上組み合わせて使用してもよい。 As the electrolyte salt, an alkali metal salt can be used, and for example, a lithium salt is more preferable. As the lithium salt, LiPF 6 , LiBF 4 , LiClO 4 or the like generally used as a supporting salt in a conventional nonaqueous electrolyte secondary battery can be used. These lithium salts may be used alone or in combination of two or more.

添加剤としての含フッ素亜リン酸ジエステルは、初充電時の負極電位において還元分解し、負極表面にイオン透過性の被膜を形成することで、非水電解液と負極活物質との反応を抑制する機能を有すると考えられる。なお、ここでいう負極表面とは、反応に寄与する非水電解液と負極活物質との界面であり、つまり負極活物質層の表面及び負極活物質の表面を意味する。含フッ素亜リン酸ジエステル由来の形成被膜は、高温耐久性とレート特性とを向上させる。含フッ素亜リン酸ジエステルとしては、下記式(1)で表され、Rf1とRf2は、独立して炭素数1〜3のアルキル基であり、Rf1とRf2のうち少なくとも1つがフッ素を含有する(すなわち、少なくとも1つの水素原子がフッ素原子で置換された)化合物であることが好ましい。さらには、Rf1とRf2のそれぞれがフッ素を含有する化合物であることがより好ましい。Rf1とRf2としては、例えば、トリフルオロメチル基、ペンタフルオロエチル基、オクタフルオロプロピル基、2,2,2−トリフルオロエチル基、3,3,3−トリフルオロプロピル基、2,2,3,3,3−ペンタフルオロプロピル基等が挙げられる。さらには、下記式(2)で表される含フッ素亜リン酸ジエステルであることがより好ましい。   The fluorine-containing phosphite diester as an additive is reduced and decomposed at the negative electrode potential at the time of initial charge, and forms an ion-permeable film on the negative electrode surface, thereby suppressing the reaction between the non-aqueous electrolyte and the negative electrode active material. It is thought that it has the function to do. Here, the negative electrode surface is an interface between the non-aqueous electrolyte and the negative electrode active material that contributes to the reaction, that is, the surface of the negative electrode active material layer and the surface of the negative electrode active material. The formed coating derived from the fluorine-containing phosphite diester improves high temperature durability and rate characteristics. The fluorine-containing phosphite diester is represented by the following formula (1), Rf1 and Rf2 are each independently an alkyl group having 1 to 3 carbon atoms, and at least one of Rf1 and Rf2 contains fluorine ( That is, it is preferably a compound in which at least one hydrogen atom is substituted with a fluorine atom. Furthermore, it is more preferable that each of Rf1 and Rf2 is a compound containing fluorine. Examples of Rf1 and Rf2 include trifluoromethyl group, pentafluoroethyl group, octafluoropropyl group, 2,2,2-trifluoroethyl group, 3,3,3-trifluoropropyl group, 2,2,3 , 3,3-pentafluoropropyl group and the like. Furthermore, a fluorine-containing phosphite diester represented by the following formula (2) is more preferable.

Figure 2014146517
Figure 2014146517

Figure 2014146517
Figure 2014146517

添加剤は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。非水電解質に占める添加剤の割合は、添加剤由来の被膜を十分に形成できる量であることが好ましく、非水電解質の総量に対して0.01質量%以上10質量%以下が好ましい。さらには0.01質量%以上1質量%以下であることがより好ましい。   An additive may be used individually by 1 type and may be used in combination of 2 or more type. The ratio of the additive to the nonaqueous electrolyte is preferably an amount that can sufficiently form a film derived from the additive, and is preferably 0.01% by mass or more and 10% by mass or less with respect to the total amount of the nonaqueous electrolyte. Furthermore, it is more preferable that it is 0.01 mass% or more and 1 mass% or less.

〔セパレータ〕
セパレータは、正極と負極との間に配置されるイオン透過性及び絶縁性を有する多孔性フィルムが用いられる。多孔性フィルムとしては、微多孔薄膜、織布、不織布等が挙げられる。セパレータに用いられる材料としては、ポリオレフィンが好ましく、より具体的にはポリエチレン、ポリプロピレン等が好適である。
[Separator]
As the separator, a porous film having ion permeability and insulating properties disposed between the positive electrode and the negative electrode is used. Examples of the porous film include a microporous thin film, a woven fabric, and a non-woven fabric. As a material used for the separator, polyolefin is preferable, and more specifically, polyethylene, polypropylene, and the like are preferable.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。以下では、実施例1〜8及び比較例1〜2に用いる非水電解質二次電池を作製した。非水電解質二次電池の具体的な作製方法は以下の通りである。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in detail more concretely, this invention is not limited to a following example. Below, the nonaqueous electrolyte secondary battery used for Examples 1-8 and Comparative Examples 1-2 was produced. A specific method for producing the nonaqueous electrolyte secondary battery is as follows.

<実施例1>
[正極の作製]
正極活物質としては、組成式LiNi0.33Co0.33Mn0.332で表されるリチウム含有遷移金属酸化物を用いた。正極は、次のようにして作製した。まず、LiNi0.33Co0.33Mn0.332で表される正極活物質が92質量%、導電剤26としてのアセチレンブラックが5質量%、結着剤28としてのポリフッ化ビニリデン粉末が3質量%となるよう用意し、これとN−メチル−2−ピロリドン(NMP)溶液と混合してスラリーを調製した。このスラリーを厚さ15μmのアルミニウム製の正極集電体の両面にドクターブレード法により塗布して正極活物質層を形成した。その後、圧縮ローラーを用いて圧縮し、正極を作製した。
<Example 1>
[Production of positive electrode]
As the positive electrode active material, a lithium-containing transition metal oxide represented by the composition formula LiNi 0.33 Co 0.33 Mn 0.33 O 2 was used. The positive electrode was produced as follows. First, the positive electrode active material represented by LiNi 0.33 Co 0.33 Mn 0.33 O 2 is 92% by mass, acetylene black as the conductive agent 26 is 5% by mass, and the polyvinylidene fluoride powder as the binder 28 is 3% by mass. This was mixed with N-methyl-2-pyrrolidone (NMP) solution to prepare a slurry. The slurry was applied to both surfaces of a 15 μm thick aluminum positive electrode current collector by a doctor blade method to form a positive electrode active material layer. Then, it compressed using the compression roller and produced the positive electrode.

[負極の作製]
負極活物質としては、天然黒鉛、人造黒鉛、及び表面を非晶質炭素で被覆した人造黒鉛の3種類を用意し、各種ブレンドしたものを用いた。負極は次のようにして作製した。まず、負極活物質が98質量%と、結着剤としてのスチレン−ブタジエン共重合体(SBR)が1質量%、増粘剤としてのカルボキシメチルセルロースナトリウムが1質量%となるよう混合し、これを水と混合してスラリーを調製し、このスラリーを厚さ10μmの銅製の負極集電体の両面にドクターブレード法により塗布して負極活物質層を形成した。その後、圧縮ローラーを用いて所定の密度まで圧縮し、負極を作製した。
[Production of negative electrode]
As the negative electrode active material, three types of natural graphite, artificial graphite, and artificial graphite whose surface was coated with amorphous carbon were prepared and used in various blends. The negative electrode was produced as follows. First, the negative electrode active material was mixed to 98% by mass, the styrene-butadiene copolymer (SBR) as the binder was 1% by mass, and the sodium carboxymethylcellulose as the thickener was 1% by mass. A slurry was prepared by mixing with water, and the slurry was applied to both surfaces of a copper negative electrode collector having a thickness of 10 μm by a doctor blade method to form a negative electrode active material layer. Then, it compressed to the predetermined density using the compression roller, and produced the negative electrode.

[非水電解質の作製]
4−フルオロエチレンカーボネート(FEC)とエチルメチルカーボネート(EMC)とを体積比1:3で混合させた非水溶媒に、電解質塩としてのLiPF6を1.0mol/L溶解させ液状の非水電解質である非水電解液とした。次に、この非水電解液に対して添加剤として上記式(2)で表される含フッ素亜リン酸ジエステルを0.5質量%添加し、これを非水電解液として電池作製に供した。
[Production of non-aqueous electrolyte]
A liquid nonaqueous electrolyte is prepared by dissolving 1.0 mol / L of LiPF 6 as an electrolyte salt in a nonaqueous solvent in which 4-fluoroethylene carbonate (FEC) and ethylmethyl carbonate (EMC) are mixed at a volume ratio of 1: 3. It was set as the non-aqueous electrolyte which is. Next, 0.5% by mass of the fluorine-containing phosphite diester represented by the above formula (2) was added as an additive to this non-aqueous electrolyte, and this was used for battery preparation as a non-aqueous electrolyte. .

[電池の作製]
上記で得られた正極を30mm×40mmの大きさに切り取り、及び負極を32mm×42mmの大きさに切り取り、正極及び負極のそれぞれにリード端子を取り付けた。次に、セパレータを介して正極及び負極を対向させ電極体を得た。次に、電極体と非水電解液を、アルミニウムのラミネート体からなる電池外装体に入れ、電池外装体を封止し、電池を作製した。なお、電池の定格容量は、50mAhとした。作製した電池は、安定化させるため充放電試験を行った。充放電試験は、0.5It(25mA)の定電流で電圧4.4Vになるまで充電を行った後、電圧4.4Vの定電圧で電流2.5mAになるまで電池をさらに充電し、その後20分間放置した。次に、0.5It(25mA)の定電流で、電圧3.0Vになるまで放電を行った。この充放電試験を3サイクル行った。
[Production of battery]
The positive electrode obtained above was cut to a size of 30 mm × 40 mm, and the negative electrode was cut to a size of 32 mm × 42 mm, and a lead terminal was attached to each of the positive electrode and the negative electrode. Next, the positive electrode and the negative electrode were opposed to each other through a separator to obtain an electrode body. Next, the electrode body and the non-aqueous electrolyte were put in a battery outer body made of an aluminum laminate, and the battery outer body was sealed to prepare a battery. The rated capacity of the battery was 50 mAh. The produced battery was subjected to a charge / discharge test to stabilize it. In the charge / discharge test, the battery was further charged with a constant current of 0.5 It (25 mA) until the voltage reached 4.4 V, and then charged with a constant voltage of 4.4 V until the current reached 2.5 mA. Left for 20 minutes. Next, discharging was performed at a constant current of 0.5 It (25 mA) until the voltage reached 3.0V. This charge / discharge test was performed for 3 cycles.

[レート特性評価]
安定化させた後の電池について、レート特性評価を行った。評価方法としては、0.5It(25mA)の定電流で、電圧4.4Vになるまで充電を行った後、電圧4.4Vの定電圧で電流2.5mAになるまで電池をさらに充電し、その後20分間放置した。次に、5It(250mA)の定電流で電圧3.0Vになるまで放電を行い、5Itにおける放電容量Q5を測定した。その後20分間放置し、0.05It(2.5mA)の定電流で電圧3.0Vになるまで放電を行い、放電容量Q0.05を測定した。上記で求めた放電容量Q5、放電容量Q0.05をもとに下記の式にて算出した放電容量維持率(%)をレート特性として評価した。
放電容量維持率(%)=Q5/(Q5+Q0.05)×100
[Rate characteristics evaluation]
The rate characteristics of the battery after stabilization were evaluated. As an evaluation method, after charging until a voltage of 4.4 V is reached with a constant current of 0.5 It (25 mA), the battery is further charged until a current of 2.5 mA is reached with a constant voltage of 4.4 V, Then it was left for 20 minutes. Next, discharging was performed at a constant current of 5 It (250 mA) until the voltage reached 3.0 V, and the discharge capacity Q5 at 5 It was measured. Thereafter, the sample was left for 20 minutes, discharged at a constant current of 0.05 It (2.5 mA) until the voltage reached 3.0 V, and the discharge capacity Q0.05 was measured. Based on the discharge capacity Q5 and the discharge capacity Q0.05 obtained above, the discharge capacity retention rate (%) calculated by the following formula was evaluated as a rate characteristic.
Discharge capacity maintenance rate (%) = Q5 / (Q5 + Q0.05) × 100

[高温耐久性試験]
安定化させた後の電池について、高温耐久性を把握する目的で、60℃トリクル充電保存試験を行った。ここで、トリクル充電とは、連続充電を意味する。試験方法としては、0.5It(25mA)の定電流で、電圧4.4Vになるまで充電を行った後、電圧4.4Vの定電圧で電流2.5mAになるまで電池をさらに充電し、その後20分間放置した。次に、0.5It(25mA)の定電流で、電圧3.0Vになるまで放電を行い、放電容量Q0を測定した。次に、60℃の恒温槽内において、電圧4.4Vの定電圧で96時間充電した。次に、電池を室温になるまで冷却した後、室温下で0.5It(25mA)の定電流で、電圧3.0Vになるまで放電し、放電容量Q1を測定した。上記で求めた放電容量Q0、放電容量Q1をもとに下記の式にて算出したトリクル充電後の容量維持率(%)を高温耐久性として評価した。
トリクル充電後の容量維持率(%)=Q1/Q0×100
[High temperature durability test]
The battery after stabilization was subjected to a 60 ° C. trickle charge storage test for the purpose of grasping the high temperature durability. Here, trickle charging means continuous charging. As a test method, after charging to a voltage of 4.4 V at a constant current of 0.5 It (25 mA), the battery was further charged to a current of 2.5 mA at a constant voltage of 4.4 V, Then it was left for 20 minutes. Next, discharging was performed at a constant current of 0.5 It (25 mA) until the voltage reached 3.0 V, and the discharge capacity Q0 was measured. Next, it was charged at a constant voltage of 4.4 V for 96 hours in a constant temperature bath at 60 ° C. Next, after the battery was cooled to room temperature, it was discharged at a constant current of 0.5 It (25 mA) at room temperature until the voltage reached 3.0 V, and the discharge capacity Q1 was measured. The capacity retention rate (%) after trickle charge calculated by the following formula based on the discharge capacity Q0 and discharge capacity Q1 obtained above was evaluated as high temperature durability.
Capacity maintenance rate after trickle charge (%) = Q1 / Q0 × 100

<比較例1>
実施例1において、添加剤である上記式(2)で表される含フッ素亜リン酸ジエステルを添加しないこと以外は実施例1と同様にレート特性の評価および高温耐久性の試験を行った。
<Comparative Example 1>
In Example 1, rate characteristics and high-temperature durability tests were conducted in the same manner as in Example 1 except that the fluorine-containing phosphite diester represented by the above formula (2) as an additive was not added.

<比較例2>
実施例1において、添加剤として上記式(2)で表される含フッ素亜リン酸ジエステルを下記式(3)で表されるフッ素を含まない亜リン酸ジエチルに変更し、非水電解液に対して0.5質量%加えたこと以外は実施例1と同様にレート特性の評価および高温耐久性の試験を行った。
<Comparative Example 2>
In Example 1, the fluorine-containing phosphite diester represented by the above formula (2) was changed to diethyl phosphite containing no fluorine represented by the following formula (3) as an additive, and a non-aqueous electrolyte was obtained. On the other hand, the rate characteristics were evaluated and the high-temperature durability test was conducted in the same manner as in Example 1 except that 0.5% by mass was added.

Figure 2014146517
Figure 2014146517

<比較例3>
実施例1において、添加剤として上記式(2)で表される含フッ素亜リン酸ジエステルを下記式(4)で表されるフッ素を含まない亜リン酸ジメチルに変更し、非水電解液に対して0.5質量%加えたこと以外は実施例1と同様にレート特性の評価および高温耐久性の試験を行った。
<Comparative Example 3>
In Example 1, the fluorine-containing phosphite diester represented by the above formula (2) was changed to dimethyl phosphite containing no fluorine represented by the following formula (4) as an additive, and a non-aqueous electrolyte solution was obtained. On the other hand, the rate characteristics were evaluated and the high-temperature durability test was conducted in the same manner as in Example 1 except that 0.5% by mass was added.

Figure 2014146517
Figure 2014146517

表1に、実施例1及び比較例1〜3についての放電容量維持率と、トリクル充電後の容量維持率をまとめたものを示す。   Table 1 shows a summary of the discharge capacity maintenance rates for Example 1 and Comparative Examples 1 to 3 and the capacity maintenance rates after trickle charge.

Figure 2014146517
Figure 2014146517

表1より、本発明の含フッ素亜リン酸ジエステルを非水電解液に含有させた実施例1では、無添加の比較例1と比べて放電容量維持率が高い。また、フッ素を含んでいない従来の亜リン酸ジエステルを用いた比較例2,3においても同様の効果が得られた。つまり、本発明の含フッ素亜リン酸ジエステルを用いることでレート特性が向上する結果となった。これは、非水電解液が還元分解する電位より高い電位で含フッ素亜リン酸ジエステルが還元分解され、負極表面にリチウムイオンの透過性に優れる被膜を形成するためと推察される。   From Table 1, in Example 1 in which the fluorine-containing phosphite diester of the present invention was contained in the non-aqueous electrolyte, the discharge capacity retention rate was higher than that in Comparative Example 1 without addition. Moreover, the same effect was acquired also in the comparative examples 2 and 3 using the conventional phosphorous acid diester which does not contain a fluorine. That is, the rate characteristics were improved by using the fluorine-containing phosphite diester of the present invention. This is presumably because the fluorine-containing phosphite diester is reductively decomposed at a potential higher than the potential at which the nonaqueous electrolytic solution undergoes reductive decomposition, thereby forming a film having excellent lithium ion permeability on the negative electrode surface.

また、本発明の含フッ素亜リン酸ジエステルを非水電解液に含有させた実施例1では、トリクル充電後の容量維持率に低下は見られず、無添加の比較例1と同程度であった。これに対して、フッ素を含まない従来の亜リン酸ジエステルを添加した比較例2及び3では、トリクル充電後の容量維持率の低下が見られた。これは、添加剤中にフッ素を含んでいないと、トリクル充電保存試験において60℃の環境温度で96時間保存中に、添加剤の還元分解によって形成された被膜が非水電解液に溶解してしまい、非水電解液あるいは負極との副反応が起こるためと考えられる。   Further, in Example 1 in which the fluorine-containing phosphite diester of the present invention was contained in the non-aqueous electrolyte, the capacity retention rate after charge of trickle was not reduced, and was comparable to that in Comparative Example 1 without addition. It was. On the other hand, in Comparative Examples 2 and 3 in which the conventional phosphorous acid diester containing no fluorine was added, a decrease in capacity retention rate after trickle charge was observed. This is because if the additive does not contain fluorine, the film formed by reductive decomposition of the additive dissolves in the non-aqueous electrolyte during storage for 96 hours at an ambient temperature of 60 ° C. in the trickle charge storage test. This is probably because a side reaction with the non-aqueous electrolyte or the negative electrode occurs.

このように、含フッ素亜リン酸ジエステルを用いることにより、高温耐久性を低下させることなく、レート特性を向上させることが可能となる。   Thus, by using the fluorine-containing phosphite diester, the rate characteristics can be improved without reducing the high-temperature durability.

次に、添加剤として効果的となる含フッ素亜リン酸ジエステルの添加量を把握する目的で、添加量を変更して実施例1と同様のレート特性の評価を行った。   Next, for the purpose of grasping the amount of fluorine-containing phosphite diester that is effective as an additive, the amount of addition was changed and the same rate characteristics as in Example 1 were evaluated.

<実施例2>
実施例1において、上記式(2)で表される含フッ素亜リン酸ジエステルの添加量を、非水電解質に対して0.1質量%に変更したこと以外は実施例1と同様にレート特性の評価を行った。
<Example 2>
In Example 1, rate characteristics were the same as in Example 1 except that the addition amount of the fluorine-containing phosphite diester represented by the above formula (2) was changed to 0.1% by mass with respect to the nonaqueous electrolyte. Was evaluated.

<実施例3>
実施例1において、上記式(2)で表される含フッ素亜リン酸ジエステルの添加量を、非水電解質に対して0.2質量%に変更したこと以外は実施例1と同様にレート特性の評価を行った。
<Example 3>
In Example 1, rate characteristics were the same as in Example 1 except that the addition amount of the fluorine-containing phosphite diester represented by the above formula (2) was changed to 0.2% by mass with respect to the nonaqueous electrolyte. Was evaluated.

<実施例4>
実施例1において、上記式(2)で表される含フッ素亜リン酸ジエステルの添加量を、非水電解質に対して1質量%に変更したこと以外は実施例1と同様にレート特性の評価を行った。
<Example 4>
In Example 1, the rate characteristics were evaluated in the same manner as in Example 1 except that the addition amount of the fluorine-containing phosphite diester represented by the above formula (2) was changed to 1% by mass with respect to the nonaqueous electrolyte. Went.

表2に、実施例1〜4と比較例1について、含フッ素亜リン酸ジエステルの添加量と放電容量維持率とをまとめたものを示す。また、図1は、実施例1〜4と比較例1について添加量と放電容量維持率との関係性を示す図である。   Table 2 shows a summary of the amount of fluorine-containing phosphite diester added and the discharge capacity maintenance rate for Examples 1 to 4 and Comparative Example 1. Moreover, FIG. 1 is a figure which shows the relationship between the addition amount and discharge capacity maintenance factor about Examples 1-4 and the comparative example 1. FIG.

Figure 2014146517
Figure 2014146517

表2及び図1より、本発明の含フッ素亜リン酸ジエステルを非水電解液に含有させた実施例1〜4では、無添加の比較例1と比べていずれも放電容量維持率が高い。このことから、高い放電容量維持率を得るのに効果的な含フッ素亜リン酸ジエステルの添加量は、非水電解質の総量に対して0.1質量%以上1質量%以下が好適である。   From Table 2 and FIG. 1, in Examples 1-4 which made the non-aqueous electrolyte contain the fluorine-containing phosphite diester of this invention, compared with the additive-free Comparative Example 1, all have a high discharge capacity maintenance factor. For this reason, the addition amount of the fluorine-containing phosphite diester effective for obtaining a high discharge capacity retention rate is preferably 0.1% by mass or more and 1% by mass or less with respect to the total amount of the nonaqueous electrolyte.

ここで、図1より、放電容量維持率は、含フッ素亜リン酸ジエステルの添加量が0.5質量%において極大となる緩やかな放物線を描くような結果となっており、添加量が0.1質量%以下においてもその効果を発揮すると考えられる。このことから、含フッ素亜リン酸ジエステルの添加量は、非水電解質の総量に対して上記範囲が好ましいとされるが、図1に示される含フッ素亜リン酸ジエステルの添加量と放電容量維持率との関係性から、含フッ素亜リン酸ジエステルが添加されていればその効果が得られると推察される。含フッ素亜リン酸ジエステルは高価であることからコスト面を考慮し、含フッ素亜リン酸ジエステルの添加量は、添加されていることが好ましく、被膜形成が十分になされる量以上あればよいと考えられることから、非水電解質の総量に対して0.01質量%以上1質量%以下であることがより好ましい。   Here, as shown in FIG. 1, the discharge capacity retention rate is such that a gentle parabola is drawn when the addition amount of the fluorine-containing phosphite diester is 0.5% by mass, and the addition amount is 0.1%. The effect is considered to be exhibited even at 1% by mass or less. From this, it is considered that the addition amount of the fluorinated phosphite diester is preferably within the above range with respect to the total amount of the non-aqueous electrolyte, but the addition amount of the fluorinated phosphite diester and the discharge capacity maintenance shown in FIG. From the relationship with the rate, it is presumed that the effect can be obtained if the fluorine-containing phosphite diester is added. Since the fluorine-containing phosphite diester is expensive, considering the cost, the addition amount of the fluorine-containing phosphite diester is preferably added, and it should be more than the amount sufficient to form a film. Since it is considered, it is more preferable that it is 0.01 mass% or more and 1 mass% or less with respect to the total amount of nonaqueous electrolyte.

上記において、非水溶媒にフッ素を含む4−フルオロエチレンカーボネート(FEC)を用いた非水電解液に含フッ素亜リン酸ジエステルを添加させたときにレート特性や高温耐久性に優れることを確認したが、次に、非水溶媒をフッ素を含まない非水溶媒に変更した場合における効果を把握する目的で、非水溶媒をエチレンカーボネート(EC)に変更しレート特性の評価を行った。   In the above, it was confirmed that when the fluorine-containing phosphite diester was added to a non-aqueous electrolyte using 4-fluoroethylene carbonate (FEC) containing fluorine as a non-aqueous solvent, it was excellent in rate characteristics and high-temperature durability. However, the rate characteristics were evaluated by changing the nonaqueous solvent to ethylene carbonate (EC) for the purpose of grasping the effect when the nonaqueous solvent was changed to a nonaqueous solvent containing no fluorine.

<実施例5>
実施例2における非水溶媒としての4−フルオロエチレンカーボネート(FEC)をエチレンカーボネート(EC)に変更したこと以外は実施例2と同様にレート特性の評価を行った。
<Example 5>
The rate characteristics were evaluated in the same manner as in Example 2 except that 4-fluoroethylene carbonate (FEC) as the nonaqueous solvent in Example 2 was changed to ethylene carbonate (EC).

<実施例6>
実施例3における非水溶媒としての4−フルオロエチレンカーボネート(FEC)をエチレンカーボネート(EC)に変更したこと以外は実施例3と同様にレート特性の評価を行った。
<Example 6>
The rate characteristics were evaluated in the same manner as in Example 3 except that 4-fluoroethylene carbonate (FEC) as the nonaqueous solvent in Example 3 was changed to ethylene carbonate (EC).

<実施例7>
実施例1における非水溶媒としての4−フルオロエチレンカーボネート(FEC)をエチレンカーボネート(EC)に変更したこと以外は実施例1と同様にレート特性の評価を行った。
<Example 7>
The rate characteristics were evaluated in the same manner as in Example 1 except that 4-fluoroethylene carbonate (FEC) as the nonaqueous solvent in Example 1 was changed to ethylene carbonate (EC).

<実施例8>
実施例4における非水溶媒としての4−フルオロエチレンカーボネート(FEC)をエチレンカーボネート(EC)に変更したこと以外は実施例4と同様にレート特性の評価を行った。
<Example 8>
The rate characteristics were evaluated in the same manner as in Example 4 except that 4-fluoroethylene carbonate (FEC) as the nonaqueous solvent in Example 4 was changed to ethylene carbonate (EC).

<比較例2>
比較例1における非水溶媒としての4−フルオロエチレンカーボネート(FEC)をエチレンカーボネート(EC)に変更したこと以外は比較例1と同様にレート特性の評価を行った。
<Comparative Example 2>
The rate characteristics were evaluated in the same manner as in Comparative Example 1 except that 4-fluoroethylene carbonate (FEC) as the nonaqueous solvent in Comparative Example 1 was changed to ethylene carbonate (EC).

表3に、実施例5〜8と比較例2について、非水溶媒の内容と添加量と放電容量維持率とをまとめたものを示す。また、図2は、実施例5〜8と比較例2について添加量と放電容量維持率との関係性を示す図である。   Table 3 summarizes the contents of the nonaqueous solvent, the amount added, and the discharge capacity retention rate for Examples 5 to 8 and Comparative Example 2. Moreover, FIG. 2 is a figure which shows the relationship between the addition amount and discharge capacity maintenance factor about Examples 5-8 and the comparative example 2. FIG.

Figure 2014146517
Figure 2014146517

表3及び図2の内容は、実施例5〜8と比較例2について、表2の実施例1〜4と比較例1における非水溶媒としての4−フルオロエチレンカーボネート(FEC)をエチレンカーボネート(EC)に変更して同様の評価を行った結果である。   The contents of Table 3 and FIG. 2 are as follows. For Examples 5 to 8 and Comparative Example 2, 4-fluoroethylene carbonate (FEC) as a nonaqueous solvent in Examples 1 to 4 and Comparative Example 1 of Table 2 was changed to ethylene carbonate ( It is the result of changing to EC) and performing the same evaluation.

実施例5〜8と比較例2のそれぞれについて、実施例1〜4と比較例1に比べて放電容量維持率は低下する結果となった。しかしながら、実施例5〜8は、比較例2と比べていずれも放電容量維持率が高く、エチレンカーボネート(EC)を用いた場合においてもレート特性が向上した。つまり、エチレンカーボネート(EC)を用いた場合においても含フッ素亜リン酸ジエステルを非水電解液に含有させることでレート特性が向上する。これは、含フッ素亜リン酸ジエステルは、エチレンカーボネート(EC)を非水溶媒とする非水電解液が還元される電位より高い電位で還元分解し、負極表面にイオン透過性に優れる被膜を形成するためと考えられる。このように、含フッ素亜リン酸ジエステルは、4−フルオロエチレンカーボネート(FEC)のみならずエチレンカーボネート(EC)においても添加剤としての効果を発揮する。   About each of Examples 5-8 and Comparative Example 2, compared with Examples 1-4 and Comparative Example 1, it became a result that a discharge capacity maintenance factor fell. However, Examples 5-8 all had a high discharge capacity retention rate compared to Comparative Example 2, and the rate characteristics were improved even when ethylene carbonate (EC) was used. That is, even when ethylene carbonate (EC) is used, rate characteristics are improved by incorporating the fluorine-containing phosphite diester into the non-aqueous electrolyte. This is because the fluorine-containing phosphite diester undergoes reductive decomposition at a potential higher than the potential at which a non-aqueous electrolyte containing ethylene carbonate (EC) as a non-aqueous solvent is reduced, and forms a film with excellent ion permeability on the negative electrode surface. It is thought to do. Thus, the fluorine-containing phosphite diester exhibits an effect as an additive not only in 4-fluoroethylene carbonate (FEC) but also in ethylene carbonate (EC).

また、高い放電容量維持率を得るのに効果的な含フッ素亜リン酸ジエステルの添加量は、非水電解質の総量に対して0.1質量%以上1質量%以下が好ましい。   Moreover, the addition amount of the fluorine-containing phosphite diester effective for obtaining a high discharge capacity retention rate is preferably 0.1% by mass or more and 1% by mass or less with respect to the total amount of the nonaqueous electrolyte.

ここで、図2より、放電容量維持率は、含フッ素亜リン酸ジエステルの添加量が0.2質量%において最も良好な結果が得られており、その前後では低下する。ただし、その前後で放電容量維持率の低下がみられるものの無添加の場合よりはいずれも良い結果であり、その関係性から添加量が0.1質量%以下においても効果を発揮すると考えられる。このことから、含フッ素亜リン酸ジエステルの添加量は、非水電解質の総量に対して上記範囲が好ましいとされるが、図2に示される含フッ素亜リン酸ジエステルの添加量と放電容量維持率との関係性から、含フッ素亜リン酸ジエステルが添加されていればその効果が得られると推察される。含フッ素亜リン酸ジエステルは高価であることからコスト面を考慮し、含フッ素亜リン酸ジエステルの添加量は、添加されていることが好ましく、被膜形成が十分になされる量以上あればよいと考えられることから、非水電解質の総量に対して0.01質量%以上1質量%以下であることがより好ましい。   Here, as shown in FIG. 2, the discharge capacity retention rate is the best when the addition amount of the fluorine-containing phosphite diester is 0.2% by mass, and decreases before and after that. However, although a decrease in the discharge capacity retention rate is observed before and after that, both results are better than the case of no addition, and it is considered that the effect is exhibited even when the addition amount is 0.1% by mass or less from the relationship. From this, it is considered that the addition amount of the fluorine-containing phosphite diester is preferably within the above range with respect to the total amount of the nonaqueous electrolyte, but the addition amount of the fluorine-containing phosphite diester and the discharge capacity maintenance shown in FIG. From the relationship with the rate, it is presumed that the effect can be obtained if the fluorine-containing phosphite diester is added. Since the fluorine-containing phosphite diester is expensive, considering the cost, the addition amount of the fluorine-containing phosphite diester is preferably added, and it should be more than the amount sufficient to form a film. Since it is considered, it is more preferable that it is 0.01 mass% or more and 1 mass% or less with respect to the total amount of nonaqueous electrolyte.

このようにフッ素を含有しない非水溶媒においても含フッ素亜リン酸ジエステルを添加することでレート特性を向上させることが可能となる。   Thus, even in a non-aqueous solvent containing no fluorine, it is possible to improve rate characteristics by adding a fluorine-containing phosphite diester.

ここで、特許文献特開2011−49157の同文献段落0032によれば、含フッ素亜リン酸エステルとしての含フッ素ホスファイトが含まれると、電池性能が低下するという記載があり、上記着想は容易ではない。しかしながら、本発明者らの着想により、添加剤としての含フッ素亜リン酸ジエステルは、負極表面上にイオン透過性に優れる被膜を形成することで負極と非水電解質との反応を抑制し、高温耐久性とレート特性とを改善することが確認された。   Here, according to Paragraph 0032 of the same document of Japanese Patent Application Laid-Open No. 2011-49157, there is a description that battery performance decreases when fluorine-containing phosphite as a fluorine-containing phosphite is contained, and the above idea is easy. is not. However, according to the inventors' idea, the fluorine-containing phosphite diester as an additive suppresses the reaction between the negative electrode and the non-aqueous electrolyte by forming a film having excellent ion permeability on the negative electrode surface, and the high temperature It was confirmed to improve durability and rate characteristics.

このように、含フッ素亜リン酸ジエステルを含む非水電解質二次電池用非水電解質、及び非水電解質二次電池用非水電解質を具備する非水電解質二次電池は、高温耐久性と、レート特性に優れる。   Thus, the nonaqueous electrolyte for a nonaqueous electrolyte secondary battery containing a fluorine-containing phosphite diester, and the nonaqueous electrolyte secondary battery having a nonaqueous electrolyte for a nonaqueous electrolyte secondary battery have high-temperature durability, Excellent rate characteristics.

Claims (4)

非水電解質二次電池に用いられる非水電解質であって、
該非水電解質は、含フッ素亜リン酸ジエステルを含有し、
該含フッ素亜リン酸ジエステルは、一般式(1)で表され、Rf1とRf2は、独立して炭素数1〜3のアルキル基であり、Rf1とRf2のうち少なくとも1つがフッ素を含有することを特徴とする非水電解質二次電池用非水電解質。
Figure 2014146517
A non-aqueous electrolyte used in a non-aqueous electrolyte secondary battery,
The non-aqueous electrolyte contains a fluorine-containing phosphite diester,
The fluorine-containing phosphite diester is represented by the general formula (1), Rf1 and Rf2 are each independently an alkyl group having 1 to 3 carbon atoms, and at least one of Rf1 and Rf2 contains fluorine. A nonaqueous electrolyte for a nonaqueous electrolyte secondary battery.
Figure 2014146517
請求項1に記載の非水電解質二次電池用非水電解質において、
前記含フッ素亜リン酸ジエステルは、化学式(2)で表される化合物であることを特徴とする非水電解質二次電池用非水電解質。
Figure 2014146517
In the nonaqueous electrolyte for nonaqueous electrolyte secondary batteries according to claim 1,
The non-aqueous electrolyte for a non-aqueous electrolyte secondary battery, wherein the fluorine-containing phosphorous acid diester is a compound represented by the chemical formula (2).
Figure 2014146517
請求項1または2に記載の非水電解質二次電池用非水電解質において、
前記含フッ素亜リン酸ジエステルは、前記非水電解質の総量に対して0.01質量%以上1質量%以下を含有することを特徴とする非水電解質二次電池用非水電解質。
The nonaqueous electrolyte for a nonaqueous electrolyte secondary battery according to claim 1 or 2,
The non-aqueous electrolyte for a non-aqueous electrolyte secondary battery, wherein the fluorine-containing phosphite diester contains 0.01% by mass or more and 1% by mass or less with respect to the total amount of the non-aqueous electrolyte.
正極と、負極と、非水電解質とを備える非水電解質二次電池であって、
前記非水電解質は、含フッ素亜リン酸ジエステルを含有し、
該含フッ素亜リン酸ジエステルは、一般式(1)で表され、Rf1とRf2は、独立して炭素数1〜3のアルキル基であり、Rf1とRf2のうち少なくとも1つがフッ素を含有することを特徴とする非水電解質二次電池。
Figure 2014146517
A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte,
The non-aqueous electrolyte contains a fluorine-containing phosphite diester,
The fluorine-containing phosphite diester is represented by the general formula (1), Rf1 and Rf2 are each independently an alkyl group having 1 to 3 carbon atoms, and at least one of Rf1 and Rf2 contains fluorine. A non-aqueous electrolyte secondary battery.
Figure 2014146517
JP2013014848A 2013-01-29 2013-01-29 Nonaqueous electrolyte for nonaqueous electrolyte secondary battery Pending JP2014146517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013014848A JP2014146517A (en) 2013-01-29 2013-01-29 Nonaqueous electrolyte for nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013014848A JP2014146517A (en) 2013-01-29 2013-01-29 Nonaqueous electrolyte for nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2014146517A true JP2014146517A (en) 2014-08-14

Family

ID=51426592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013014848A Pending JP2014146517A (en) 2013-01-29 2013-01-29 Nonaqueous electrolyte for nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2014146517A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020095956A (en) * 2018-12-06 2020-06-18 三菱ケミカル株式会社 Nonaqueous electrolytic secondary battery
US11664535B2 (en) 2020-04-03 2023-05-30 Sk On Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery including the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020095956A (en) * 2018-12-06 2020-06-18 三菱ケミカル株式会社 Nonaqueous electrolytic secondary battery
JP7345376B2 (en) 2018-12-06 2023-09-15 三菱ケミカル株式会社 Nonaqueous electrolyte secondary battery
US11664535B2 (en) 2020-04-03 2023-05-30 Sk On Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery including the same

Similar Documents

Publication Publication Date Title
JP6628697B2 (en) Non-aqueous electrolyte secondary battery
JP6092263B6 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN108886166B (en) Nonaqueous electrolyte additive, and nonaqueous electrolyte for lithium secondary battery and lithium secondary battery containing same
JP6656717B2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte containing the same, and lithium secondary battery including the same
JP2017120765A (en) Nonaqueous electrolyte secondary battery
JP6271506B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JPWO2015004841A1 (en) Nonaqueous electrolyte secondary battery
JP2015018713A (en) Nonaqueous electrolytic solution and lithium-ion secondary battery using the same
CN103931030B (en) Lithium ion secondary battery and method for manufacturing same
KR20160069996A (en) Rechargeable lithium battery
JP2013239307A (en) Electrolytic solution and lithium ion secondary battery including the same
JP2019046589A (en) Aqueous electrolyte solution and aqueous lithium ion secondary battery
JP2018513542A (en) Non-aqueous electrolyte for lithium ion battery and lithium ion battery
CN108963192B (en) Method for producing negative electrode for nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
JPWO2014119249A1 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP7301266B2 (en) Non-aqueous electrolyte secondary battery
JP2009004357A (en) Nonaqueous electrolyte lithium-ion secondary battery
JPWO2017022731A1 (en) Lithium ion secondary battery
KR101640288B1 (en) Lithium secondary battery with improved output performance
JP2014146517A (en) Nonaqueous electrolyte for nonaqueous electrolyte secondary battery
JP6763144B2 (en) Non-aqueous electrolyte Non-aqueous electrolyte for secondary batteries and non-aqueous electrolyte secondary batteries
JP2014192069A (en) Lithium ion battery
JP2007294654A (en) Electrochemical capacitor
JP2014146518A (en) Nonaqueous electrolyte for nonaqueous electrolyte secondary battery
WO2014156116A1 (en) Positive electrode for nonaqueous-electrolyte secondary battery, method for manufacturing positive electrode for nonaqueous-electrolyte secondary battery, and nonaqueous-electrolyte secondary battery