JP2017025810A - Rotary machine, and manufacturing method of heat insulation structure for rotary machine - Google Patents

Rotary machine, and manufacturing method of heat insulation structure for rotary machine Download PDF

Info

Publication number
JP2017025810A
JP2017025810A JP2015145964A JP2015145964A JP2017025810A JP 2017025810 A JP2017025810 A JP 2017025810A JP 2015145964 A JP2015145964 A JP 2015145964A JP 2015145964 A JP2015145964 A JP 2015145964A JP 2017025810 A JP2017025810 A JP 2017025810A
Authority
JP
Japan
Prior art keywords
temperature
heat transfer
casing
heat insulating
intermediate heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015145964A
Other languages
Japanese (ja)
Other versions
JP6613679B2 (en
Inventor
克弥 藤咲
Katsuya Fujisaki
克弥 藤咲
兼太郎 小田
Kentaro Oda
兼太郎 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2015145964A priority Critical patent/JP6613679B2/en
Publication of JP2017025810A publication Critical patent/JP2017025810A/en
Application granted granted Critical
Publication of JP6613679B2 publication Critical patent/JP6613679B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rotary machine which reduces a heat intrusion amount by an intermediate heat transfer part and is also effective to reduce the heat intrusion amount propagated via a casing.SOLUTION: A cryogenic rotary machine 10 comprises: an impeller 12 disposed within a heat insulation container 8; a drive motor 14 which is disposed outside the heat insulation container 8 and rotates the impeller 12 via a rotary shaft 13; a heat insulation part 23 which surrounds a part of the rotary shaft 13 within the heat insulation container 8; a casing 15 which is fixed to the heat insulation container 8 and encloses the heat insulation part 23; and a middle heat transfer part 27 which vertically partitions the heat insulation part 23, is abutted to the casing 15 and reduces the heat intrusion amount that is propagated via the rotary shaft 13 while being maintained at a constant temperature Ts. In the state where influences of the middle heat transfer part 27 are excluded, in the cryogenic rotary machine 10, the casing 15 has a temperature gradient G within the heat insulation container 8, and the middle heat transfer part 27 is provided at a position where the temperature gradient G of the casing 15 corresponds to the constant temperature Ts.SELECTED DRAWING: Figure 3

Description

本発明は、断熱容器内の配管を通過する流体、例えば、極低温のヘリウムなどの流体を移送する回転機械、及び回転機械の断熱構造の製造方法に関する。   The present invention relates to a rotating machine for transferring a fluid passing through a pipe in a heat insulating container, for example, a fluid such as cryogenic helium, and a method for manufacturing a heat insulating structure of the rotating machine.

従来から、例えば超電導磁石を極低温で冷却するためにヘリウムが用いられており、このヘリウムを循環させる循環装置用の低温回転機械が知られている(特許文献1参照)。この種の低温回転機械では、保冷容器などの断熱容器内にインペラが配置され、断熱容器外に駆動用電動機が配置されている。駆動用電動機は、回転軸を介してインペラを回転させ、断熱容器内の配管を通過するヘリウム等の流体を循環移送する。   Conventionally, for example, helium is used to cool a superconducting magnet at an extremely low temperature, and a low-temperature rotating machine for a circulation device that circulates this helium is known (see Patent Document 1). In this type of low-temperature rotating machine, an impeller is disposed in a heat insulating container such as a cold storage container, and a driving motor is disposed outside the heat insulating container. The drive motor rotates the impeller through a rotating shaft, and circulates and transfers a fluid such as helium that passes through the piping in the heat insulating container.

インペラは、断熱容器に固定されたケーシングに収容されており、ケーシングは、回転軸の回りに配置された断熱材を包囲する。断熱材には循環する冷却ガスが供給される溝部が形成されている。溝部は、冷却ガスの循環によって低温に維持され、その結果、溝部は中間伝熱部として機能し、断熱材やケーシングを介して伝わる侵入熱を低減する。   The impeller is accommodated in a casing fixed to the heat insulating container, and the casing surrounds the heat insulating material arranged around the rotation shaft. The heat insulating material is formed with a groove portion to which a circulating cooling gas is supplied. The groove portion is maintained at a low temperature by the circulation of the cooling gas. As a result, the groove portion functions as an intermediate heat transfer portion, and reduces the intrusion heat transmitted through the heat insulating material and the casing.

特開平6−193598号公報JP-A-6-193598

以前より、断熱材やケーシングを介して伝わる侵入熱を低減するためには、中間伝熱部をできるだけ高温側に配置することが望ましいと考えられていた。しかしながら、中間伝熱部を高温側に配置すればするほど、定温に維持されている中間伝熱部とケーシングとの温度差が大きくなってしまい、中間伝熱部に接するケーシングの一部で局所的に熱収縮が大きくなり、応力集中が生じてケーシングに過度の負荷をかける。その結果、ケーシングの薄肉化が困難となり、ケーシングを介して伝わる熱侵入量の低減が不十分になる可能性があった。   In the past, in order to reduce the intrusion heat transmitted through the heat insulating material and the casing, it has been considered desirable to arrange the intermediate heat transfer section as high as possible. However, as the intermediate heat transfer section is arranged on the high temperature side, the temperature difference between the intermediate heat transfer section maintained at a constant temperature and the casing becomes larger, and a portion of the casing in contact with the intermediate heat transfer section is locally Thermal shrinkage increases, stress concentration occurs, and an excessive load is applied to the casing. As a result, it is difficult to reduce the thickness of the casing, and there is a possibility that the amount of heat intrusion transmitted through the casing is not sufficiently reduced.

本発明は、中間伝熱部によって熱侵入量を低減すると共に、ケーシングを介して伝わる熱侵入量の低減にも有効である回転機械、及び該回転機械の断熱構造の製造方法を提供することを目的とする。   The present invention provides a rotating machine that reduces the amount of heat intrusion by the intermediate heat transfer section and is also effective in reducing the amount of heat intrusion transmitted through the casing, and a method for manufacturing the heat insulating structure of the rotating machine. Objective.

本発明の一態様は、断熱容器内の配管を通過する流体を移送する回転機械であって、断熱容器内に配置され、回転によって流体を移送するインペラと、断熱容器外に配置され、且つ回転軸を介してインペラを回転させる駆動部と、断熱容器内で回転軸の少なくとも一部を包囲する断熱部と、断熱容器に固定されると共に、断熱部を包囲するケーシングと、断熱部を駆動部側とインペラ側とに区画し、且つケーシングに当接すると共に、定温に維持されて駆動部側からインペラ側への熱侵入量を低減する中間伝熱部と、を備え、中間伝熱部の影響を排除した状態において、ケーシングは、断熱容器内で、駆動部側からインペラ側にかけて温度が低下する温度分布を有し、中間伝熱部は、ケーシングの温度分布と定温とが対応する位置に設けられている。   One aspect of the present invention is a rotating machine that transfers a fluid that passes through a pipe in a heat insulating container, the impeller that is disposed in the heat insulating container and transfers the fluid by rotation, and is disposed outside the heat insulating container and rotates. A drive unit that rotates the impeller via the shaft, a heat insulating unit that surrounds at least a part of the rotating shaft in the heat insulating container, a casing that is fixed to the heat insulating container and surrounds the heat insulating unit, and a drive unit that drives the heat insulating unit An intermediate heat transfer section that is divided into a side and an impeller side, abuts against the casing, and is maintained at a constant temperature to reduce the amount of heat intrusion from the drive section side to the impeller side. The casing has a temperature distribution in which the temperature decreases from the drive unit side to the impeller side in the heat insulating container, and the intermediate heat transfer unit is provided at a position where the temperature distribution of the casing corresponds to the constant temperature. Is There.

この回転機械では、ケーシングの温度分布と中間伝熱部の定温とが対応する位置となるように中間伝熱部が設けられている。つまり、中間伝熱部によって熱侵入量を効果的に低減しながら、中間伝熱部とケーシングとの間に生じる温度差を小さくしてケーシングにかかる負荷を低減できる。その結果、ケーシングを薄肉化し易くなってケーシングを介して伝わる熱侵入量を十分に低減し易くなる。なお、ケーシングの温度分布と中間伝熱部の定温とが対応する位置とは、ケーシングの温度分布と中間伝熱部の定温とが一致する位置、及び所望の程度まで熱侵入量を低減するために薄肉化されたケーシングが、強度上、温度差に起因する熱収縮に耐え得る範囲の誤差を許容する意味である。   In this rotating machine, the intermediate heat transfer section is provided such that the temperature distribution of the casing and the constant temperature of the intermediate heat transfer section are in a corresponding position. That is, while effectively reducing the amount of heat penetration by the intermediate heat transfer section, the temperature difference generated between the intermediate heat transfer section and the casing can be reduced to reduce the load on the casing. As a result, it is easy to reduce the thickness of the casing, and it becomes easy to sufficiently reduce the amount of heat intrusion transmitted through the casing. In addition, the position where the temperature distribution of the casing and the constant temperature of the intermediate heat transfer section correspond to the position where the temperature distribution of the casing and the constant temperature of the intermediate heat transfer section match, and to reduce the amount of heat penetration to a desired level This means that the thinned casing allows an error in a range that can withstand heat shrinkage due to a temperature difference in terms of strength.

いくつかの態様において、断熱部を包囲する筒状部と、筒状部に設けられ、断熱容器に固定される固定部と、を備え、筒状部は、固定部に接続された外端部と、インペラ側の内端部とを備え、ケーシングの温度分布は、筒状部の外端部から内端部にかけて温度が低下する温度勾配とすることができる。ケーシングの温度分布は温度勾配によって近似でき、従って、ケーシングの温度分布を温度勾配と定義することで、温度分布の詳細な割り出しは不要になり、中間伝熱部の適切な配置が容易となる。   In some embodiments, a cylindrical portion surrounding the heat insulating portion, and a fixing portion provided in the cylindrical portion and fixed to the heat insulating container, the cylindrical portion being an outer end portion connected to the fixing portion And the inner end portion on the impeller side, and the temperature distribution of the casing can be a temperature gradient in which the temperature decreases from the outer end portion to the inner end portion of the cylindrical portion. The temperature distribution of the casing can be approximated by a temperature gradient. Therefore, by defining the temperature distribution of the casing as a temperature gradient, detailed indexing of the temperature distribution becomes unnecessary, and appropriate arrangement of the intermediate heat transfer section is facilitated.

また、この筒状部の外端部の温度と上記の定温との温度差をΔTaとし、筒状部の内端部の温度と上記の定温との温度差をΔTbとし、外端部から中間伝熱部までの距離をXaとし、内端部から中間伝熱部までの距離をXbとした場合に、ケーシングの温度勾配と定温とが対応する位置とは、ΔTa/ΔTb=Xa/Xbの条件を満たす位置とすることができる。ΔTa及びΔTbが決まれば、筒状部の外端部と内端部との距離から中間伝熱部の位置が決まるので、中間伝熱部の適切な位置への配置が容易となる。   Further, the temperature difference between the temperature at the outer end of the cylindrical portion and the above constant temperature is ΔTa, the temperature difference between the temperature at the inner end of the cylindrical portion and the above constant temperature is ΔTb, When the distance to the heat transfer part is Xa and the distance from the inner end part to the intermediate heat transfer part is Xb, the position where the temperature gradient of the casing corresponds to the constant temperature is ΔTa / ΔTb = Xa / Xb It can be a position that satisfies the condition. If ΔTa and ΔTb are determined, the position of the intermediate heat transfer portion is determined from the distance between the outer end portion and the inner end portion of the cylindrical portion, so that the arrangement of the intermediate heat transfer portion at an appropriate position is facilitated.

いくつかの態様における中間伝熱部は、筒状部における回転軸方向の中央よりもインペラ側に寄って配置されている態様とすることができる。この構成では、中間伝熱部の定温が温度分布の中間温度よりも低い場合であっても、中間伝熱部を適切に配置できる。   In some embodiments, the intermediate heat transfer section may be arranged closer to the impeller side than the center of the cylindrical portion in the rotation axis direction. In this configuration, even if the constant temperature of the intermediate heat transfer section is lower than the intermediate temperature of the temperature distribution, the intermediate heat transfer section can be appropriately arranged.

いくつかの態様においては、中間伝熱部に熱交換可能に接続され、冷媒を循環させて中間伝熱部を定温に維持する冷却ラインを更に備えることができる。冷却ラインを備えることで、より確実に中間伝熱部を定温に維持できる。   In some embodiments, a cooling line connected to the intermediate heat transfer section so as to be capable of exchanging heat and circulating the refrigerant to maintain the intermediate heat transfer section at a constant temperature may be further provided. By providing the cooling line, the intermediate heat transfer section can be more reliably maintained at a constant temperature.

いくつかの態様における中間伝熱部は、回転軸が貫通する貫通孔を有する板状の区画部と、貫通孔に沿って設けられると共に、回転軸に対向する円筒状の受熱部と、を備え、受熱部は、区画部の駆動部側に突き出して設けられている態様とすることができる。受熱部を区画部の駆動部側に突き出して設けることで、区画部に比べて受熱部を高温側に配置することになり、回転軸を介して伝わる熱侵入量を、回転軸のより高温側から低減できるようになって有利である。   In some embodiments, the intermediate heat transfer section includes a plate-shaped partition portion having a through hole through which the rotation shaft passes, and a cylindrical heat receiving portion provided along the through hole and facing the rotation shaft. The heat receiving part may be provided so as to protrude toward the drive part side of the partition part. By providing the heat receiving part protruding to the drive part side of the partitioning part, the heat receiving part is arranged on the high temperature side compared to the partitioning part, and the amount of heat intrusion transmitted through the rotating shaft is higher than the rotating shaft side. It is advantageous to be able to reduce from.

また、本発明の一態様は、断熱容器内の配管を通過する流体を移送する回転機械の断熱構造の製造方法であって、この回転機械は、断熱容器内に配置され、回転によって流体を移送するインペラと、断熱容器外に配置され、且つ回転軸を介してインペラを回転させる駆動部と、断熱容器内で回転軸の少なくとも一部を包囲する断熱部と、断熱容器に固定されると共に、断熱部を包囲するケーシングと、断熱部を駆動部側とインペラ側とに区画し、且つケーシングに当接すると共に、定温に維持されて駆動部側からインペラ側への熱侵入量を低減する中間伝熱部と、を備え、断熱容器内において駆動部側からインペラ側にかけて温度が低下するケーシングの温度分布を、中間伝熱部の影響を排除した状態を仮定して導出しておき、導出された温度分布と定温とが対応する位置に中間伝熱部を設ける。この製造方法によれば、中間伝熱部を適切に配置して熱侵入量を低減すると共に、ケーシングを介して伝わる熱侵入量の低減にも有効である回転機械の断熱構造を製造できる。   Another embodiment of the present invention is a method for manufacturing a heat insulating structure of a rotating machine that transfers a fluid that passes through a pipe in a heat insulating container. The rotating machine is disposed in the heat insulating container and transfers the fluid by rotation. And an impeller disposed outside the heat insulating container and rotating the impeller via the rotating shaft, a heat insulating portion surrounding at least a part of the rotating shaft in the heat insulating container, and being fixed to the heat insulating container, A casing that surrounds the heat insulating part, and an intermediate transmission that divides the heat insulating part into a drive part side and an impeller side, abuts against the casing, and is maintained at a constant temperature to reduce the amount of heat intrusion from the drive part side to the impeller side. A temperature distribution of the casing that is reduced in temperature from the drive unit side to the impeller side in the heat insulating container, assuming that the influence of the intermediate heat transfer unit is excluded, and is derived. Warm Distribution and a constant temperature is provided an intermediate heat transfer unit in the corresponding position. According to this manufacturing method, it is possible to manufacture a heat insulating structure for a rotating machine that is effective in reducing the amount of heat intrusion transmitted through the casing while appropriately disposing the intermediate heat transfer section.

また、本発明の一態様は、常温側ケーシングと、インペラの回転軸の一部を包囲する断熱部を内側に含み、断熱部には常温側ケーシングの側から回転軸を介して伝わる熱量を低減する中間伝熱部が含まれている低温側ケーシングと、を有し、流体を移送する回転機械であって、低温側ケーシングの中間伝熱部との当接箇所の温度と中間伝熱部の温度とは対応している。   Further, one embodiment of the present invention includes a normal temperature side casing and a heat insulating portion that surrounds a part of the impeller's rotating shaft, and the heat insulating portion reduces the amount of heat transmitted from the normal temperature side casing side through the rotating shaft. A low-temperature side casing including an intermediate heat transfer portion, and a rotary machine for transferring a fluid, wherein the temperature of the contact point with the intermediate heat transfer portion of the low-temperature side casing and the intermediate heat transfer portion Corresponds to temperature.

この回転機械では、低温側ケーシングの中間伝熱部との当接箇所の温度と中間伝熱部の温度とは対応している。つまり、中間伝熱部によって熱侵入量を効果的に低減しながら、中間伝熱部と低温側ケーシングとの間に生じる温度差を小さくして低温側ケーシングにかかる負荷を低減できる。その結果、低温側ケーシングを薄肉化し易くなって低温側ケーシングを介して伝わる熱侵入量を十分に低減し易くなる。低温側ケーシングの中間伝熱部との当接箇所の温度と中間伝熱部の温度との対応とは、低温側ケーシングの中間伝熱部との当接箇所の温度と中間伝熱部の温度とが一致する場合、及び所望の程度まで熱侵入量を低減するために薄肉化された低温側ケーシングが、強度上、温度差に起因する熱収縮に耐え得る範囲の誤差を許容する意味である。   In this rotating machine, the temperature of the contact portion of the low-temperature casing with the intermediate heat transfer portion corresponds to the temperature of the intermediate heat transfer portion. That is, while effectively reducing the amount of heat penetration by the intermediate heat transfer section, the temperature difference generated between the intermediate heat transfer section and the low temperature casing can be reduced to reduce the load on the low temperature casing. As a result, the low-temperature casing can be easily thinned, and the amount of heat penetration transmitted through the low-temperature casing can be easily reduced sufficiently. The correspondence between the temperature of the contact portion of the low temperature casing with the intermediate heat transfer portion and the temperature of the intermediate heat transfer portion is the temperature of the contact portion of the low temperature casing with the intermediate heat transfer portion and the temperature of the intermediate heat transfer portion. , And the low-temperature casing thinned to reduce the amount of heat penetration to the desired level allows for an error in a range that can withstand heat shrinkage due to a temperature difference in strength. .

本発明のいくつかの態様によれば、中間伝熱部によって熱侵入量を低減すると共に、ケーシングを介して伝わる熱侵入量の低減にも有効である。   According to some aspects of the present invention, the heat intrusion amount is reduced by the intermediate heat transfer section, and the heat intrusion amount transmitted through the casing is also effective.

冷却システム全体を示す概略の説明図である。It is a schematic explanatory drawing which shows the whole cooling system. 本実施形態に係る極低温回転機械を一部破断して示す側面図である。It is a side view which shows the cryogenic rotary machine which concerns on this embodiment partially fractured | ruptured. 本実施形態に係る極低温回転機械の低温側ケーシング部、及び中間伝熱部を拡大して示す断面図である。It is sectional drawing which expands and shows the low temperature side casing part and intermediate | middle heat-transfer part of the cryogenic rotary machine which concern on this embodiment. 図2のIV−IV線に沿った断面図である。It is sectional drawing along the IV-IV line of FIG. 低温側ケーシング部の筒状部における温度勾配を示すグラフである。It is a graph which shows the temperature gradient in the cylindrical part of a low temperature side casing part. 中間伝熱部の配置と筒状部の熱収縮との関係を模式的に示す断面図であり、図6(a)は筒状部の環状突出部、及び中間伝熱部を配置していない状態を示す図であり、図6(b)は筒状部の環状突出部、及び中間伝熱部を温度勾配の対応する位置よりも高温側に配置した状態を示す図であり、図6(c)は筒状部の環状突出部、及び中間伝熱部を温度勾配の対応する位置に配置した状態を示す図である。It is sectional drawing which shows typically the relationship between arrangement | positioning of an intermediate | middle heat-transfer part, and the thermal contraction of a cylindrical part, Fig.6 (a) does not arrange | position the cyclic | annular protrusion part and intermediate | middle heat-transfer part of a cylindrical part. FIG. 6B is a diagram illustrating a state in which the annular projecting portion of the cylindrical portion and the intermediate heat transfer portion are arranged on the higher temperature side than the corresponding position of the temperature gradient. (c) is a figure which shows the state which has arrange | positioned the cyclic | annular protrusion part of a cylindrical part, and the intermediate | middle heat-transfer part in the position corresponding to a temperature gradient.

以下、本発明の実施形態について、図面を参照しながら説明する。なお、図面の説明において同一要素には同一符号を付し、重複する説明は省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant descriptions are omitted.

まず、図1を参照して極低温回転機械10が備え付けられた冷却システム1について説明する。冷却システム1は、循環する流体によって超電導磁石2を冷却するためのシステムである。この冷却システム1では、循環する流体としてヘリウムを使用するが、冷却対象によっては窒素、水素、ネオン等の流体であってもよい。本実施形態では、極低温回転機械10を回転機械の一例として説明する。   First, the cooling system 1 provided with the cryogenic rotating machine 10 will be described with reference to FIG. The cooling system 1 is a system for cooling the superconducting magnet 2 with a circulating fluid. In this cooling system 1, helium is used as the circulating fluid, but depending on the object to be cooled, a fluid such as nitrogen, hydrogen, neon, or the like may be used. In the present embodiment, the cryogenic rotating machine 10 will be described as an example of a rotating machine.

冷却システム1は、ヘリウム(以下、「主冷媒」という)Mfが循環する循環ライン3と、循環ライン3を通過する主冷媒Mfを圧送するサーキュレータポンプなどの極低温回転機械10と、循環ライン3を通過する主冷媒Mfを4K程度(極低温)にまで冷却する冷却装置4と、超電導磁石2と循環ライン3とを熱交換可能に接続する第一熱交換器5と、循環ライン3の超電導磁石2よりも下流側に配置され、冷却装置4と循環ライン3とを熱交換可能に接続する第二熱交換器6と、を備えている。   The cooling system 1 includes a circulation line 3 through which helium (hereinafter referred to as “main refrigerant”) Mf circulates, a cryogenic rotating machine 10 such as a circulator pump that pumps the main refrigerant Mf passing through the circulation line 3, and a circulation line 3. The cooling device 4 that cools the main refrigerant Mf that passes through to about 4K (very low temperature), the first heat exchanger 5 that connects the superconducting magnet 2 and the circulation line 3 so that heat exchange is possible, and the superconductivity of the circulation line 3 The second heat exchanger 6 is disposed downstream of the magnet 2 and connects the cooling device 4 and the circulation line 3 so that heat exchange is possible.

図1、及び図2に示されるように、循環ライン3は、主冷媒Mfが通過する配管3aを備えており、外気温(常温)の影響を避けるために断熱容器8内に配置されている。断熱容器8内は、対流による主冷媒Mfの温度上昇を防止するために真空に保持されている。断熱容器8の天井部分8aには、極低温回転機械10の主要部11が設置されている。極低温回転機械10の主要部11は、回転によって主冷媒Mfを移送するインペラ12と、回転軸13を介してインペラ12を回転させる駆動モータ14とを備えている。本実施形態では、駆動モータ14を駆動部の一例として説明する。   As shown in FIGS. 1 and 2, the circulation line 3 includes a pipe 3 a through which the main refrigerant Mf passes, and is arranged in the heat insulating container 8 in order to avoid the influence of outside air temperature (normal temperature). . The inside of the heat insulating container 8 is kept in vacuum in order to prevent the temperature of the main refrigerant Mf from rising due to convection. A main portion 11 of the cryogenic rotating machine 10 is installed on the ceiling portion 8 a of the heat insulating container 8. The main part 11 of the cryogenic rotating machine 10 includes an impeller 12 that transfers the main refrigerant Mf by rotation, and a drive motor 14 that rotates the impeller 12 via a rotating shaft 13. In the present embodiment, the drive motor 14 will be described as an example of a drive unit.

極低温回転機械10は、主要部11を収容するケーシング15を備えている。ケーシング15は、駆動モータ14を収容する常温側ケーシング部16と、インペラ12を収容する低温側ケーシング部17とを備えており、常温側ケーシング部16は、断熱容器8の外側に配置され、低温側ケーシング部17は、主に断熱容器8の内側(内部)に配置されている。   The cryogenic rotating machine 10 includes a casing 15 that houses the main part 11. The casing 15 includes a normal temperature side casing portion 16 that accommodates the drive motor 14 and a low temperature side casing portion 17 that accommodates the impeller 12. The normal temperature side casing portion 16 is disposed outside the heat insulating container 8, and has a low temperature. The side casing portion 17 is mainly disposed inside (inside) the heat insulating container 8.

低温側ケーシング部17は、インペラ12を収容し、循環ライン3の配管3aに接続されたインペラ室18と、回転軸13に沿ってインペラ室18から立設された薄肉円筒状の筒状部19と、筒状部19の上端側から張り出すように設けられた固定フランジ部20とを備えている。低温側ケーシング部17は、断熱容器8の区画壁81に形成された円形孔に通され、固定フランジ部20が区画壁81に溶接により固定されている。   The low temperature side casing portion 17 accommodates the impeller 12, an impeller chamber 18 connected to the pipe 3 a of the circulation line 3, and a thin cylindrical cylindrical portion 19 erected from the impeller chamber 18 along the rotation shaft 13. And a fixed flange portion 20 provided so as to protrude from the upper end side of the cylindrical portion 19. The low temperature side casing portion 17 is passed through a circular hole formed in the partition wall 81 of the heat insulating container 8, and the fixing flange portion 20 is fixed to the partition wall 81 by welding.

常温側ケーシング部16は、回転軸13を囲むように立設され、駆動モータ14を収容する筒状の胴体部16aと、胴体部16aの上部開口を塞ぐ蓋部16bと、胴体部16aの下端に設けられたフランジ部16cとを備えている。フランジ部16cは、低温側ケーシング部17の固定フランジ部20の上面に重なり、シール部材を挟んで密閉状態を確保しながら固定フランジ部20にボルト止めされている。フランジ部16cのボルトを緩め、低温側ケーシング部17から常温側ケーシング部16を離脱させることで、主要部11を低温側ケーシング部17から引き出すことができる。具体的には、常温側ケーシング部16に支持された回転軸13と一緒に、インペラ12、及び後述の断熱部23の一部、及び中間伝熱部27を低温側ケーシング部17から引き出すことができ、更に、常温側ケーシング部16の蓋部16bを開くことで、容易に主要部11をメンテナンスできる。   The room temperature side casing portion 16 is erected so as to surround the rotary shaft 13, and has a cylindrical body portion 16a that houses the drive motor 14, a lid portion 16b that closes an upper opening of the body portion 16a, and a lower end of the body portion 16a. And a flange portion 16c provided on the surface. The flange portion 16c overlaps the upper surface of the fixed flange portion 20 of the low temperature side casing portion 17, and is bolted to the fixed flange portion 20 while ensuring a sealed state with a seal member interposed therebetween. The main part 11 can be pulled out from the low temperature side casing part 17 by loosening the bolt of the flange part 16 c and detaching the normal temperature side casing part 16 from the low temperature side casing part 17. Specifically, the impeller 12, a part of a heat insulating part 23 to be described later, and the intermediate heat transfer part 27 can be pulled out from the low temperature side casing part 17 together with the rotating shaft 13 supported by the room temperature side casing part 16. Furthermore, the main part 11 can be easily maintained by opening the cover part 16b of the room temperature side casing part 16.

常温側ケーシング部16の内部には、駆動モータ14を挟むように上下二箇所にラジアル軸受部21が配置されており、更に、駆動モータ14と下側のラジアル軸受部21との間には、回転軸13方向の荷重を受けながら回転軸13を支えるスラスト軸受部22が配置されている。   Inside the normal temperature side casing portion 16, radial bearing portions 21 are arranged at two places above and below so as to sandwich the drive motor 14. Further, between the drive motor 14 and the lower radial bearing portion 21, A thrust bearing portion 22 that supports the rotary shaft 13 while receiving a load in the direction of the rotary shaft 13 is disposed.

低温側ケーシング部17の内部には断熱材が収容されて断熱部23が形成されている。断熱部23には、回転軸13が貫通する円形の貫通孔23aが形成されており、その結果、断熱部23は回転軸13の一部を包囲している。なお、本実施形態では、低温側ケーシング部17の内部に断熱材を収容することで断熱部23を形成するが、低温側ケーシング部17の内部に真空の断熱室を形成し、更に断熱室内に対流防止材を配置して断熱部とすることも可能である。   A heat insulating material is accommodated inside the low temperature side casing portion 17 to form a heat insulating portion 23. The heat insulating portion 23 is formed with a circular through hole 23 a through which the rotary shaft 13 passes. As a result, the heat insulating portion 23 surrounds a part of the rotary shaft 13. In the present embodiment, the heat insulating portion 23 is formed by accommodating a heat insulating material inside the low temperature side casing portion 17. However, a vacuum heat insulating chamber is formed inside the low temperature side casing portion 17, and further inside the heat insulating chamber. It is also possible to arrange a convection prevention material to form a heat insulating part.

断熱部23は、上下二段に分かれており、上段断熱部24と下段断熱部25との間には、−190℃程度の定温に維持された中間伝熱部27が配置されている。中間伝熱部27は、サーマルアンカーとも呼ばれ、回転軸13と同等以上の熱伝導性を有し、例えば銅板等によって形成される。中間伝熱部27は、回転軸13を介して高温側から低温側に伝わる侵入熱量を低減するために設けられており、更に断熱部23を介して僅かに伝わる侵入熱量の低減にも有効である。なお、下段断熱部25は更に内側部分25aと外側部分25bとに分割されており、メンテナンス時には、内側部分25aのみが回転軸13や中間伝熱部27と一緒に引き出される。   The heat insulation part 23 is divided into upper and lower two stages, and an intermediate heat transfer part 27 maintained at a constant temperature of about −190 ° C. is disposed between the upper heat insulation part 24 and the lower heat insulation part 25. The intermediate heat transfer section 27 is also called a thermal anchor, has a thermal conductivity equal to or higher than that of the rotary shaft 13, and is formed of, for example, a copper plate. The intermediate heat transfer section 27 is provided to reduce the amount of intrusion heat transmitted from the high temperature side to the low temperature side via the rotary shaft 13, and is also effective in reducing the amount of intrusion heat slightly transmitted through the heat insulating section 23. is there. The lower heat insulating portion 25 is further divided into an inner portion 25a and an outer portion 25b, and only the inner portion 25a is pulled out together with the rotating shaft 13 and the intermediate heat transfer portion 27 during maintenance.

中間伝熱部27は、筒状部19の内面側に設けられた環状突出部30に接触する。環状突出部30は、−190℃程度に維持されながら循環するヘリウム(以下、「副冷媒」という)Sfによって定温に維持されている。中間伝熱部27は、回転軸13から伝わった熱量を環状突出部30との間で熱交換することにより、−190℃程度の定温に維持されている。なお、本実施形態では副冷媒Sfとしてヘリウムを利用する態様を例示するが、必要に応じて窒素等であってもよい。   The intermediate heat transfer portion 27 contacts an annular protrusion 30 provided on the inner surface side of the tubular portion 19. The annular protrusion 30 is maintained at a constant temperature by helium (hereinafter referred to as “sub-refrigerant”) Sf that circulates while being maintained at about −190 ° C. The intermediate heat transfer section 27 is maintained at a constant temperature of about −190 ° C. by exchanging heat with the annular protrusion 30 for the amount of heat transferred from the rotary shaft 13. In the present embodiment, an example in which helium is used as the auxiliary refrigerant Sf is illustrated, but nitrogen or the like may be used as necessary.

極低温回転機械10は、副冷媒Sfを循環させる冷却ライン31を備えている(図1参照)。環状突出部30内に形成された副冷媒Sfの流路30aは、1パスで入口と出口とを有し、中間伝熱部27の回りを略1周するように形成されている。冷却ライン31は、副冷媒Sfを循環させるラインであり、環状突出部30に形成された副冷媒Sfの入口と出口とのそれぞれに接続された配管31a、及びサーキュレータポンプ(図示省略)等を備えている。冷却ライン31は、第三熱交換器7を介して冷却装置110との間で熱交換可能に配置されており、熱交換後の副冷媒Sfは、−190℃に維持されて筒状部19の環状突出部30に供給され、環状突出部30から排出された副冷媒Sfは第三熱交換器7に到達して再び冷却される。   The cryogenic rotating machine 10 includes a cooling line 31 for circulating the sub refrigerant Sf (see FIG. 1). The flow path 30a of the sub-refrigerant Sf formed in the annular projecting portion 30 has an inlet and an outlet in one pass, and is formed so as to make one round around the intermediate heat transfer portion 27. The cooling line 31 is a line for circulating the sub refrigerant Sf, and includes a pipe 31 a connected to each of the inlet and the outlet of the sub refrigerant Sf formed in the annular protrusion 30, a circulator pump (not shown), and the like. ing. The cooling line 31 is arranged to be able to exchange heat with the cooling device 110 via the third heat exchanger 7, and the sub-refrigerant Sf after heat exchange is maintained at −190 ° C. The sub refrigerant Sf supplied to and discharged from the annular protrusion 30 reaches the third heat exchanger 7 and is cooled again.

[中間伝熱部の構造]
図3、及び図4に示されるように、中間伝熱部27は、上段断熱部24と下段断熱部25とを区画する板状で、且つ環状の区画部27aと、区画部27aの内周側で、断熱部23の貫通孔23aに沿って形成された円筒部27bと、を備える。円筒部27bの内面は、回転軸13に対向し、また回転軸13にできるだけ近づけながら回転に支障をきたさない程度の僅かな隙間が設けられている。−190℃程度の定温に維持された円筒部27bは、回転軸13との間で熱交換を行い、回転軸13を介して伝わる侵入熱量を低減する機能を有する。なお、回転軸13には、侵入熱量の低減のために真空の空洞13aが設けられている。
[Structure of intermediate heat transfer section]
As shown in FIG. 3 and FIG. 4, the intermediate heat transfer section 27 is a plate-shaped and annular partition section 27 a that partitions the upper heat insulation section 24 and the lower heat insulation section 25, and the inner periphery of the partition section 27 a. And a cylindrical portion 27b formed along the through hole 23a of the heat insulating portion 23 on the side. The inner surface of the cylindrical portion 27 b is opposed to the rotation shaft 13 and is provided with a slight gap that does not hinder rotation while being as close as possible to the rotation shaft 13. The cylindrical portion 27 b maintained at a constant temperature of about −190 ° C. has a function of exchanging heat with the rotating shaft 13 and reducing the amount of intrusion heat transmitted through the rotating shaft 13. The rotary shaft 13 is provided with a vacuum cavity 13a for reducing the amount of intrusion heat.

円筒部27bは、区画部27aを挟んで回転軸13の両方向に突き出しており、特に、駆動モータ14側の方により多く突き出している受熱部27cを備えている。その結果、回転軸13を介して伝わる熱侵入量を、回転軸13の区画部27aに対応する位置よりも、より高温側から低減できるようになって有利である。   The cylindrical portion 27b protrudes in both directions of the rotating shaft 13 with the partition portion 27a interposed therebetween, and particularly includes a heat receiving portion 27c protruding more toward the drive motor 14 side. As a result, the amount of heat intrusion transmitted through the rotating shaft 13 can be advantageously reduced from the higher temperature side than the position corresponding to the partition portion 27a of the rotating shaft 13.

区画部27aは、円筒部27bに接続された内側の主板部27dと、主板部27dの外側で、主板部27dよりも薄肉化されて段差が形成された外縁部27eとを備える。外縁部27eは、低温側ケーシング部17の筒状部19に当接する。筒状部19の内面側には、中間伝熱部27を囲み、そして外縁部27eに当接する環状の環状突出部30が形成されている。環状突出部30内には、中間伝熱部27の周方向に沿うように流れる1パス(単一流路)の副冷媒Sfの流路30aが形成されている。副冷媒Sfは、−190℃程度の極低温に維持されながら循環している。   The partition portion 27a includes an inner main plate portion 27d connected to the cylindrical portion 27b, and an outer edge portion 27e which is thinner than the main plate portion 27d and has a step formed outside the main plate portion 27d. The outer edge portion 27 e contacts the cylindrical portion 19 of the low temperature side casing portion 17. On the inner surface side of the tubular portion 19, an annular projecting portion 30 that surrounds the intermediate heat transfer portion 27 and abuts on the outer edge portion 27 e is formed. In the annular projecting portion 30, a flow path 30 a of the one-pass (single flow path) sub refrigerant Sf that flows along the circumferential direction of the intermediate heat transfer section 27 is formed. The auxiliary refrigerant Sf circulates while being maintained at an extremely low temperature of about −190 ° C.

中間伝熱部27は、外縁部27eと環状突出部30との熱交換によって−190℃程度に維持されている。また、外縁部27eは、主板部27dに対して段差を形成しており、その段差を含めて環状突出部30に接している。したがって、段差無く平坦であるよりも、環状突出部30との接触面積が大きくなり、環状突出部30との間での熱交換を効率よく実施できる。   The intermediate heat transfer part 27 is maintained at about −190 ° C. by heat exchange between the outer edge part 27 e and the annular protrusion part 30. Further, the outer edge portion 27e forms a step with respect to the main plate portion 27d, and is in contact with the annular protrusion 30 including the step. Therefore, the contact area with the annular projecting portion 30 becomes larger than when flat without a step, and heat exchange with the annular projecting portion 30 can be performed efficiently.

[中間伝熱部、及び環状突出部の配置]
図3、及び図5に示されるように、低温側ケーシング部17は、断熱容器8に固定された駆動モータ14側(外部側)の上部で最も温度が高く、インペラ12側(内部側)が最も低くなる。具体的には、低温側ケーシング部17は、固定フランジ部20で最も温度が高く、インペラ室18で最も温度が低くなるような温度分布となる。ここで固定フランジ部20からインペラ室18への侵入熱量を極力低減させる必要があり、固定フランジ部20とインペラ室18との間には断面積をできるだけ小さくして侵入熱量の低減を図るべく、薄肉の筒状部19が配置されている。なお、固定フランジ部20は、断熱容器8に固定される固定部の一例である。
[Arrangement of intermediate heat transfer section and annular protrusion]
As shown in FIGS. 3 and 5, the low temperature side casing portion 17 has the highest temperature at the upper part on the drive motor 14 side (external side) fixed to the heat insulating container 8, and the impeller 12 side (internal side) is on the upper side. The lowest. Specifically, the low temperature side casing portion 17 has a temperature distribution such that the temperature is highest in the fixed flange portion 20 and lowest in the impeller chamber 18. Here, it is necessary to reduce the amount of intrusion heat from the fixed flange portion 20 to the impeller chamber 18 as much as possible. In order to reduce the amount of intrusion heat between the fixed flange portion 20 and the impeller chamber 18 as small as possible, A thin cylindrical portion 19 is disposed. The fixed flange portion 20 is an example of a fixed portion that is fixed to the heat insulating container 8.

また、筒状部19の内側には断熱部23が収容されており、更に、中間伝熱部27により、回転軸13を介して伝わる侵入熱量の低減も図られている。中間伝熱部27は、−190℃程度の定温Tsに維持されており、中間伝熱部27の定温維持は、筒状部19に形成した環状突出部30内を循環する副冷媒Sfとの熱交換によって実現されている。   Moreover, the heat insulation part 23 is accommodated inside the cylindrical part 19, and also the reduction | decrease of the penetration | invasion heat amount transmitted through the rotating shaft 13 by the intermediate heat transfer part 27 is aimed at. The intermediate heat transfer section 27 is maintained at a constant temperature Ts of about −190 ° C., and the constant temperature maintenance of the intermediate heat transfer section 27 is performed with the sub-refrigerant Sf circulating in the annular protrusion 30 formed in the cylindrical section 19. Realized by heat exchange.

ここで、本実施形態に係る極低温回転機械10において、中間伝熱部27、筒状部19の環状突出部30、及び冷却ライン31が存在しない試験態様100(図6(a)参照)を仮定して温度分布のシミュレーションを行う。すると、筒状部19での温度分布は、固定フランジ部20に接続された上端部(外端部)19aで最も温度(約0℃)が高く(図5参照)、インペラ12側である下端部(内端部)19bで最も温度(約−260℃)が低い温度勾配Gによって近似できる。また、筒状部19は、温度による熱収縮によって縮径するので、最大でも2mm程度の差ではあるが、上端部19aの径が最も大きく、下端部19bの径が最も小さくなる。   Here, in the cryogenic rotating machine 10 according to the present embodiment, the test mode 100 (see FIG. 6A) in which the intermediate heat transfer portion 27, the annular protrusion 30 of the cylindrical portion 19, and the cooling line 31 do not exist. Assuming temperature distribution simulation. Then, the temperature distribution in the cylindrical portion 19 is highest at the upper end portion (outer end portion) 19a connected to the fixed flange portion 20 (about 0 ° C.) (see FIG. 5), and the lower end on the impeller 12 side. It can be approximated by a temperature gradient G having the lowest temperature (about −260 ° C.) at the portion (inner end portion) 19b. Moreover, since the cylindrical part 19 is reduced in diameter by the thermal contraction by temperature, although the difference is about 2 mm at the maximum, the diameter of the upper end part 19a is the largest and the diameter of the lower end part 19b is the smallest.

次に、試験態様100の所定の温度勾配Gを有する筒状部19に対し、中間伝熱部27、筒状部19の環状突出部30、及び冷却ライン31を仮定的に設ける。ここで、中間伝熱部27、及び環状突出部30の定温Ts(例えば、−190℃)と、筒状部19との温度差が大きくなると(図6(b)参照)、中間伝熱部27、及び環状突出部30を配置した筒状部19の一部分Pxで局所的に熱収縮が大きくなり、応力集中が生じて筒状部19に過度の負荷をかけてしまう。具体的には、温度勾配Gが−40℃〜−50℃の高さ位置に、−190℃の中間伝熱部27、及び環状突出部30を配置すると、その配置箇所に100℃を超える温度差が生じ、局所的に極端な熱収縮が起こり、筒状部19に過度の負荷をかけてしまう。その結果、この過度の負荷に耐え得るように筒状部19を厚肉にする必要が生じ、結果的に、筒状部19を介して伝わる侵入熱量を所望の程度まで低減することが困難になる。   Next, with respect to the cylindrical part 19 having the predetermined temperature gradient G in the test mode 100, the intermediate heat transfer part 27, the annular projecting part 30 of the cylindrical part 19, and the cooling line 31 are provided on the assumption. Here, when the temperature difference between the intermediate heat transfer portion 27 and the constant temperature Ts (for example, −190 ° C.) of the annular protrusion 30 and the tubular portion 19 becomes large (see FIG. 6B), the intermediate heat transfer portion. 27 and a portion Px of the cylindrical portion 19 where the annular protrusion 30 is disposed, the thermal shrinkage locally increases, stress concentration occurs, and an excessive load is applied to the cylindrical portion 19. Specifically, when the intermediate heat transfer portion 27 and the annular protrusion 30 having a temperature gradient G of −40 ° C. to −50 ° C. are arranged at a height of −40 ° C. to −50 ° C., the temperature exceeding 100 ° C. A difference arises, extreme thermal shrinkage occurs locally, and an excessive load is applied to the tubular portion 19. As a result, it is necessary to make the cylindrical portion 19 thick so that it can withstand this excessive load, and as a result, it is difficult to reduce the amount of intrusion heat transmitted through the cylindrical portion 19 to a desired level. Become.

一方で、試験態様100において、中間伝熱部27、及び環状突出部30を、筒状部19の温度勾配Gに対応する位置に配置すると、局所的な熱収縮を低減して応力集中を防ぐことができ、筒状部19にかかる負荷を低減できる(図6(c)参照)。本実施形態では、中間伝熱部27、及び環状突出部30の定温Ts(例えば、−190℃)と筒状部19の温度勾配Gとが対応する位置に中間伝熱部27、及び環状突出部30を設けており、その結果、筒状部19に過度の負荷をかけてしまうのを防いでいる。なお、中間伝熱部27、及び環状突出部30の定温Tsと筒状部19の温度勾配Gとが対応する位置とは、筒状部19の温度分布(本実施形態では、温度勾配G)と中間伝熱部27の定温Tsとが一致する位置、及び所望の程度まで熱侵入量を低減するために薄肉化された筒状部19が、強度上、温度差に起因する熱収縮に耐え得る範囲の誤差を許容する意味である。   On the other hand, in the test mode 100, when the intermediate heat transfer section 27 and the annular protrusion 30 are disposed at positions corresponding to the temperature gradient G of the tubular section 19, local heat shrinkage is reduced and stress concentration is prevented. It is possible to reduce the load applied to the cylindrical portion 19 (see FIG. 6C). In the present embodiment, the intermediate heat transfer portion 27 and the annular protrusion 30 are located at positions where the constant temperature Ts (for example, −190 ° C.) of the intermediate heat transfer portion 27 and the annular protrusion 30 corresponds to the temperature gradient G of the tubular portion 19. As a result, an excessive load is prevented from being applied to the cylindrical portion 19. Note that the position where the constant temperature Ts of the intermediate heat transfer section 27 and the annular protrusion 30 corresponds to the temperature gradient G of the cylindrical section 19 is the temperature distribution of the cylindrical section 19 (in this embodiment, the temperature gradient G). And the temperature at which the constant temperature Ts of the intermediate heat transfer section 27 coincides, and the cylindrical portion 19 thinned to reduce the amount of heat penetration to a desired level, withstands heat shrinkage due to temperature difference in strength. It means to allow an error in the range to obtain.

上述の定温Tsと筒状部19の温度勾配Gとが対応する位置の一例について具体的に説明する(図3、及び図5参照)。例えば、筒状部19の上端部19aの温度と、上記の定温Tsとの温度差をΔTaとし、筒状部19の下端部19bの温度と上記の定温Tsとの温度差をΔTbとする。また、上端部19aから中間伝熱部27までの距離をXaとし、下端部19bから中間伝熱部27までの距離をXbとする。なお、本実施形態では、上端部19aまたは下端部19bから中間伝熱部27までの距離Xa、及びXbは、中間伝熱部27と環状突出部30との接点を基準にしている。具体的には、上端部19aから中間伝熱部27までの距離Xaは、中間伝熱部27に接する中間伝熱部27の上面(接触面)27xと上端部19aとの間の距離とし、下端部19bから中間伝熱部27までの距離Xbは、中間伝熱部27に接する環状突出部30の上面(接触面)27xと下端部19bとの間の距離としている。   An example of a position where the above-described constant temperature Ts corresponds to the temperature gradient G of the cylindrical portion 19 will be specifically described (see FIGS. 3 and 5). For example, the temperature difference between the temperature of the upper end portion 19a of the cylindrical portion 19 and the constant temperature Ts is ΔTa, and the temperature difference between the temperature of the lower end portion 19b of the cylindrical portion 19 and the constant temperature Ts is ΔTb. Moreover, the distance from the upper end part 19a to the intermediate heat transfer part 27 is set to Xa, and the distance from the lower end part 19b to the intermediate heat transfer part 27 is set to Xb. In the present embodiment, the distances Xa and Xb from the upper end portion 19a or the lower end portion 19b to the intermediate heat transfer portion 27 are based on the contact point between the intermediate heat transfer portion 27 and the annular protrusion 30. Specifically, the distance Xa from the upper end portion 19a to the intermediate heat transfer portion 27 is a distance between the upper surface (contact surface) 27x of the intermediate heat transfer portion 27 in contact with the intermediate heat transfer portion 27 and the upper end portion 19a. A distance Xb from the lower end portion 19b to the intermediate heat transfer portion 27 is a distance between the upper surface (contact surface) 27x of the annular protrusion 30 in contact with the intermediate heat transfer portion 27 and the lower end portion 19b.

この場合に、筒状部19の温度勾配Gと上記の定温Tsとが対応する位置について、ΔTa/ΔTb=Xa/Xbの条件を満たす位置とすることができる。この条件を利用すると、ΔTa及びΔTbが決まれば、筒状部19の上端部19aと下端部19bとの距離から中間伝熱部27や環状突出部30の位置が決まるので、中間伝熱部27や環状突出部30の適切な位置への配置が容易となる。   In this case, the position corresponding to the temperature gradient G of the cylindrical portion 19 and the above-described constant temperature Ts can be a position that satisfies the condition of ΔTa / ΔTb = Xa / Xb. If ΔTa and ΔTb are determined by using this condition, the positions of the intermediate heat transfer portion 27 and the annular protrusion 30 are determined from the distance between the upper end portion 19a and the lower end portion 19b of the cylindrical portion 19, so the intermediate heat transfer portion 27 is determined. And the arrangement | positioning to the appropriate position of the cyclic | annular protrusion 30 becomes easy.

更に本実施形態に係る中間伝熱部27の定温Tsは、筒状部19の温度勾配Gの中間温度よりも低くなっており、従って、中間伝熱部27は、筒状部19における回転軸13の軸線La方向(回転軸方向)の中央よりもインペラ12側に寄って配置されていると好ましい。更に筒状部19の上端部19aから下端部19bまでの距離をLとした場合に、中間伝熱部27を上端部19aから2L/3以上で、L未満の範囲に配置することが望ましい。   Furthermore, the constant temperature Ts of the intermediate heat transfer section 27 according to the present embodiment is lower than the intermediate temperature of the temperature gradient G of the tubular portion 19, and therefore the intermediate heat transfer section 27 is a rotating shaft in the tubular portion 19. It is preferable that the nozzles 13 are arranged closer to the impeller 12 side than the center in the direction of the axis La (rotational axis direction). Furthermore, when the distance from the upper end part 19a to the lower end part 19b of the cylindrical part 19 is L, it is desirable to arrange the intermediate heat transfer part 27 in the range of 2L / 3 or more from the upper end part 19a and less than L.

[極低温回転機械の断熱構造の製造方法]
上述の通り、中間伝熱部27、及び環状突出部30の配置を決める際には、試験態様100(図6参照)を仮定して、筒状部19での温度分布を導出しておく。ここで、この温度分布を精度良く求め、その温度分布に対応する位置に中間伝熱部27、及び環状突出部30を配置するように極低温回転機械10の断熱構造を製造することも可能である。しかしながら、この温度分布は、筒状部19の上端部19aから下端部19bにかけて低下する温度勾配Gによって近似できるので、本実施形態では筒状部19の温度勾配Gを導出しておき、その温度勾配Gに対応する位置に中間伝熱部27、及び環状突出部30を配置するように極低温回転機械10の断熱構造を製造する。
[Method of manufacturing heat insulation structure of cryogenic rotating machine]
As described above, when determining the arrangement of the intermediate heat transfer section 27 and the annular protrusion 30, the temperature distribution in the tubular section 19 is derived assuming the test mode 100 (see FIG. 6). Here, it is also possible to manufacture the heat insulation structure of the cryogenic rotating machine 10 so that the temperature distribution is obtained with high accuracy and the intermediate heat transfer section 27 and the annular protrusion 30 are arranged at positions corresponding to the temperature distribution. is there. However, since this temperature distribution can be approximated by a temperature gradient G that decreases from the upper end portion 19a to the lower end portion 19b of the cylindrical portion 19, in this embodiment, the temperature gradient G of the cylindrical portion 19 is derived, and the temperature The heat insulation structure of the cryogenic rotating machine 10 is manufactured so that the intermediate heat transfer section 27 and the annular protrusion 30 are disposed at a position corresponding to the gradient G.

[本実施形態に係る極低温回転機械の作用、効果]
極低温回転機械10では、低温側ケーシング部17の温度勾配(温度分布)Gと中間伝熱部27の定温Tsとが対応する位置となるように中間伝熱部27が設けられている。つまり、中間伝熱部27によって熱侵入量を効果的に低減しながら、中間伝熱部27と低温側ケーシング部17との間に生じる温度差を小さくして低温側ケーシング部17にかかる負荷を低減できる。その結果、低温側ケーシング部17の特に筒状部19を薄肉化し易くなり、筒状部19を介して伝わる熱侵入量を十分に低減し易くなる。
[Operation and effect of cryogenic rotating machine according to this embodiment]
In the cryogenic rotary machine 10, the intermediate heat transfer section 27 is provided so that the temperature gradient (temperature distribution) G of the low temperature side casing section 17 and the constant temperature Ts of the intermediate heat transfer section 27 correspond to each other. That is, while effectively reducing the amount of heat intrusion by the intermediate heat transfer portion 27, the temperature difference generated between the intermediate heat transfer portion 27 and the low temperature side casing portion 17 is reduced to reduce the load on the low temperature side casing portion 17. Can be reduced. As a result, the cylindrical portion 19 of the low-temperature casing portion 17 can be easily thinned, and the amount of heat intrusion transmitted through the cylindrical portion 19 can be easily reduced sufficiently.

また、本実施形態では、低温側ケーシング部17の温度分布について、筒状部19の外端部から内端部にかけて温度が低下する温度勾配Gと定義しており、その結果、温度分布の詳細な割り出しは不要になり、中間伝熱部27の適切な配置が容易となる。   In the present embodiment, the temperature distribution of the low temperature side casing portion 17 is defined as a temperature gradient G in which the temperature decreases from the outer end portion to the inner end portion of the cylindrical portion 19, and as a result, details of the temperature distribution Indexing becomes unnecessary, and appropriate arrangement of the intermediate heat transfer section 27 is facilitated.

また、本実施形態に係る中間伝熱部27は、筒状部19における回転軸13方向の中央よりもインペラ12側に寄って配置されている。この態様では、中間伝熱部27の定温Tsが温度勾配(温度分布)Gの中間温度よりも低い場合であっても、中間伝熱部27を適切に配置できる。   Further, the intermediate heat transfer section 27 according to the present embodiment is disposed closer to the impeller 12 side than the center of the cylindrical section 19 in the direction of the rotation shaft 13. In this aspect, even if the constant temperature Ts of the intermediate heat transfer section 27 is lower than the intermediate temperature of the temperature gradient (temperature distribution) G, the intermediate heat transfer section 27 can be appropriately arranged.

また、極低温回転機械10は、中間伝熱部27に熱交換可能に接続され、副冷媒Sfを循環させて中間伝熱部27を定温Tsに維持する冷却ライン31を備えており、より確実に中間伝熱部27を定温Tsに維持できる。   The cryogenic rotating machine 10 is connected to the intermediate heat transfer section 27 so as to be able to exchange heat, and includes a cooling line 31 that circulates the sub-refrigerant Sf and maintains the intermediate heat transfer section 27 at the constant temperature Ts. In addition, the intermediate heat transfer section 27 can be maintained at a constant temperature Ts.

また、本実施形態に係る中間伝熱部27は、回転軸13に対向する円筒部27b(受熱部の一例)を備え、更に円筒部27bは、区画部27aの駆動モータ14側に突き出している受熱部27cを備えている。つまり、回転軸13との間で熱交換する受熱部27cを区画部27aに比べて高温側に配置することになり、回転軸13を介して伝わる熱侵入量を、回転軸13のより高温側から低減できるようになって有利である。   Further, the intermediate heat transfer section 27 according to the present embodiment includes a cylindrical portion 27b (an example of a heat receiving portion) facing the rotating shaft 13, and the cylindrical portion 27b protrudes toward the drive motor 14 side of the partition portion 27a. A heat receiving portion 27c is provided. That is, the heat receiving portion 27c that exchanges heat with the rotating shaft 13 is disposed on the higher temperature side than the partitioning portion 27a, and the amount of heat intrusion transmitted through the rotating shaft 13 is higher than that on the rotating shaft 13. It is advantageous to be able to reduce from.

また、上述の極低温回転機械10の断熱構造の製造方法では、低温側ケーシング部17の温度勾配(温度分布)Gを、中間伝熱部27の影響を排除した状態を仮定して導出しておき、導出された温度勾配Gと定温Tsとが対応する位置に中間伝熱部27を設ける。この製造方法によれば、中間伝熱部27を適切に配置して熱侵入量を低減すると共に、低温側ケーシング部17を介して伝わる熱侵入量の低減にも有効である極低温回転機械10の断熱構造を製造できる。   Moreover, in the manufacturing method of the heat insulation structure of the cryogenic rotary machine 10 described above, the temperature gradient (temperature distribution) G of the low temperature side casing portion 17 is derived on the assumption that the influence of the intermediate heat transfer portion 27 is excluded. The intermediate heat transfer section 27 is provided at a position where the derived temperature gradient G and the constant temperature Ts correspond. According to this manufacturing method, the cryogenic rotating machine 10 that is also effective in reducing the amount of heat intrusion transmitted through the low-temperature side casing portion 17 while appropriately disposing the intermediate heat transfer portion 27. Can be manufactured.

また、極低温回転機械10は、常温側ケーシング部(常温側ケーシング)16と、インペラ12の回転軸13の一部を包囲する断熱部23を内側に含み、断熱部23には常温側ケーシング部16の側から回転軸13を介して伝わる熱量を低減する中間伝熱部27が含まれている低温側ケーシング部(低温側ケーシング)17と、を有し、低温側ケーシング部17の中間伝熱部27との当接箇所の温度と中間伝熱部27の温度とは対応している。つまり、中間伝熱部27によって熱侵入量を効果的に低減しながら、中間伝熱部27と低温側ケーシング部17との間に生じる温度差を小さくして低温側ケーシング部17にかかる負荷を低減できる。その結果、低温側ケーシング部17の特に筒状部19を薄肉化し易くなり、筒状部19を介して伝わる熱侵入量を十分に低減し易くなる。なお、低温側ケーシング部17の中間伝熱部27との当接箇所の温度と中間伝熱部27の温度との対応とは、低温側ケーシング部17の中間伝熱部27との当接箇所の温度と中間伝熱部27の温度とが一致する位置、及び所望の程度まで熱侵入量を低減するために薄肉化された低温側ケーシング部17が、強度上、温度差に起因する熱収縮に耐え得る範囲の誤差を許容する意味である。   The cryogenic rotating machine 10 includes a room temperature side casing part (room temperature side casing) 16 and a heat insulating part 23 surrounding a part of the rotating shaft 13 of the impeller 12 inside. A low-temperature side casing part (low-temperature side casing) 17 including an intermediate heat-transfer part 27 that reduces the amount of heat transferred from the 16 side via the rotary shaft 13, and the intermediate heat transfer of the low-temperature side casing part 17 The temperature of the contact portion with the portion 27 corresponds to the temperature of the intermediate heat transfer portion 27. That is, while effectively reducing the amount of heat intrusion by the intermediate heat transfer portion 27, the temperature difference generated between the intermediate heat transfer portion 27 and the low temperature side casing portion 17 is reduced to reduce the load on the low temperature side casing portion 17. Can be reduced. As a result, the cylindrical portion 19 of the low-temperature casing portion 17 can be easily thinned, and the amount of heat intrusion transmitted through the cylindrical portion 19 can be easily reduced sufficiently. Note that the correspondence between the temperature of the low temperature side casing portion 17 in contact with the intermediate heat transfer portion 27 and the temperature of the intermediate heat transfer portion 27 is the contact position of the low temperature side casing portion 17 with the intermediate heat transfer portion 27. The temperature of the intermediate heat transfer section 27 coincides with that of the intermediate heat transfer section 27, and the low-temperature casing portion 17 thinned in order to reduce the amount of heat penetration to a desired level has a heat shrinkage due to a temperature difference in strength. This means that an error within a range that can withstand the above is allowed.

以上、実施形態について説明したが、本発明は、以上の実施形態のみに限定されない。例えば、上記の実施形態では、極低温で移送される流体の定温維持と中間伝熱部の定温維持とを同じ冷却装置を利用して行い、その結果、中間伝熱部の定温に合せて中間伝熱部の配置が決められる態様について説明した。しかしながら、中間伝熱部の配置を先に決め、この配置におけるケーシングの温度分布(または温度勾配)に対応するように中間伝熱部の定温を決め、そして冷却ラインを通過する冷媒の温度を決めるようにしてもよい。   As mentioned above, although embodiment was described, this invention is not limited only to the above embodiment. For example, in the above embodiment, the constant temperature maintenance of the fluid transferred at an extremely low temperature and the constant temperature maintenance of the intermediate heat transfer unit are performed using the same cooling device, and as a result, the intermediate temperature is adjusted to the constant temperature of the intermediate heat transfer unit. The aspect in which the arrangement of the heat transfer unit is determined has been described. However, the arrangement of the intermediate heat transfer section is determined first, the constant temperature of the intermediate heat transfer section is determined so as to correspond to the temperature distribution (or temperature gradient) of the casing in this arrangement, and the temperature of the refrigerant passing through the cooling line is determined. You may do it.

本発明は、断熱容器内の配管を通過する流体を移送する回転機械において広く利用でき、サーキュレータポンプなどの流体移送手段のみならず、コンプレッサーやタービン、インデューサ等であっても良い。   The present invention can be widely used in rotating machines that transfer fluid passing through piping in a heat insulating container, and may be not only fluid transfer means such as a circulator pump but also a compressor, turbine, inducer, and the like.

3 循環ライン
3a 配管
8 断熱容器
10 極低温回転機械(回転機械)
12 インペラ
13 回転軸
14 駆動モータ(駆動部)
15 ケーシング
16 常温側ケーシング部(常温側ケーシング)
17 低温側ケーシング部(低温側ケーシング)
19 筒状部
19a 上端部(外端部)
19b 下端部(内端部)
20 固定フランジ部(固定部)
23 断熱部
27 中間伝熱部
27a 区画部
27c 受熱部
31 冷却ライン
Mf 主冷媒(流体)
Sf 副冷媒(冷媒)
Ts 定温
G 温度勾配(温度分布)
3 Circulation line 3a Piping 8 Thermal insulation container 10 Cryogenic rotating machine (Rotating machine)
12 Impeller 13 Rotating shaft 14 Drive motor (drive unit)
15 Casing 16 Normal temperature side casing (normal temperature side casing)
17 Low temperature side casing (low temperature side casing)
19 Cylindrical part 19a Upper end part (outer end part)
19b Lower end (inner end)
20 Fixed flange (fixed part)
23 heat insulation part 27 intermediate heat transfer part 27a partition part 27c heat receiving part 31 cooling line Mf main refrigerant (fluid)
Sf Sub refrigerant (refrigerant)
Ts Constant temperature G Temperature gradient (temperature distribution)

Claims (8)

断熱容器内の配管を通過する流体を移送する回転機械であって、
前記断熱容器内に配置され、回転によって前記流体を移送するインペラと、
前記断熱容器外に配置され、且つ回転軸を介して前記インペラを回転させる駆動部と、
前記断熱容器内で前記回転軸の少なくとも一部を包囲する断熱部と、
前記断熱容器に固定されると共に、前記断熱部を包囲するケーシングと、
前記断熱部を前記駆動部側と前記インペラ側とに区画し、且つ前記ケーシングに当接すると共に、定温に維持されて前記駆動部側から前記インペラ側への熱侵入量を低減する中間伝熱部と、を備え、
前記中間伝熱部の影響を排除した状態において、前記ケーシングは、前記断熱容器内で、前記駆動部側から前記インペラ側にかけて温度が低下する温度分布を有し、
前記中間伝熱部は、前記ケーシングの前記温度分布と前記定温とが対応する位置に設けられている、回転機械。
A rotating machine for transferring a fluid passing through a pipe in an insulated container,
An impeller disposed in the heat insulating container and transferring the fluid by rotation;
A drive unit disposed outside the heat insulating container and rotating the impeller via a rotation shaft;
A heat insulating part surrounding at least a part of the rotating shaft in the heat insulating container;
A casing that is fixed to the heat insulating container and surrounds the heat insulating portion;
An intermediate heat transfer section that divides the heat insulating section into the drive section side and the impeller side, abuts against the casing, and is maintained at a constant temperature to reduce a heat penetration amount from the drive section side to the impeller side. And comprising
In a state in which the influence of the intermediate heat transfer unit is excluded, the casing has a temperature distribution in which the temperature decreases from the drive unit side to the impeller side in the heat insulating container,
The intermediate heat transfer section is a rotating machine provided at a position where the temperature distribution of the casing corresponds to the constant temperature.
前記ケーシングは、前記断熱部を包囲する筒状部と、前記筒状部に設けられ、前記断熱容器に固定される固定部と、を備え、
前記筒状部は、前記固定部に接続された外端部と、前記インペラ側の内端部とを備え、
前記ケーシングの前記温度分布は、前記筒状部の前記外端部から前記内端部にかけて温度が低下する温度勾配である、請求項1記載の回転機械。
The casing includes a cylindrical part that surrounds the heat insulating part, and a fixing part that is provided in the cylindrical part and is fixed to the heat insulating container.
The cylindrical portion includes an outer end portion connected to the fixed portion, and an inner end portion on the impeller side,
The rotating machine according to claim 1, wherein the temperature distribution of the casing is a temperature gradient in which the temperature decreases from the outer end portion to the inner end portion of the cylindrical portion.
前記外端部の温度と前記定温との温度差をΔTaとし、前記内端部の温度と前記定温との温度差をΔTbとし、前記外端部から前記中間伝熱部までの距離をXaとし、前記内端部から前記中間伝熱部までの距離をXbとした場合に、前記ケーシングの前記温度勾配と前記定温とが対応する位置とは、ΔTa/ΔTb=Xa/Xbの条件を満たす位置である、請求項2記載の回転機械。   The temperature difference between the outer end temperature and the constant temperature is ΔTa, the temperature difference between the inner end portion and the constant temperature is ΔTb, and the distance from the outer end portion to the intermediate heat transfer portion is Xa. When the distance from the inner end portion to the intermediate heat transfer portion is Xb, the position corresponding to the temperature gradient and the constant temperature of the casing is a position satisfying the condition of ΔTa / ΔTb = Xa / Xb The rotating machine according to claim 2, wherein 前記中間伝熱部は、前記筒状部における前記回転軸方向の中央よりも前記インペラ側に寄って配置されている、請求項2または3記載の回転機械。   The rotary machine according to claim 2 or 3, wherein the intermediate heat transfer section is disposed closer to the impeller side than a center of the cylindrical section in the rotation axis direction. 前記中間伝熱部に熱交換可能に接続され、冷媒を循環させて前記中間伝熱部を前記定温に維持する冷却ラインを更に備える、請求項1〜4のいずれか一項記載の回転機械。   The rotary machine according to any one of claims 1 to 4, further comprising a cooling line connected to the intermediate heat transfer section so as to be able to exchange heat and circulating a refrigerant to maintain the intermediate heat transfer section at the constant temperature. 前記中間伝熱部は、前記回転軸が貫通する貫通孔を有する板状の区画部と、前記貫通孔に沿って設けられると共に、前記回転軸に対向する円筒状の受熱部と、を備え、
前記受熱部は、前記区画部の前記駆動部側に突き出して設けられている、請求項1〜5のいずれか一項記載の回転機械。
The intermediate heat transfer section includes a plate-shaped partition portion having a through-hole through which the rotating shaft passes, and a cylindrical heat receiving portion provided along the through-hole and facing the rotating shaft,
The rotary machine according to any one of claims 1 to 5, wherein the heat receiving portion is provided so as to protrude toward the drive portion side of the partition portion.
断熱容器内の配管を通過する流体を移送する回転機械の断熱構造の製造方法であって、
前記回転機械は、
前記断熱容器内に配置され、回転によって前記流体を移送するインペラと、
前記断熱容器外に配置され、且つ回転軸を介して前記インペラを回転させる駆動部と、
前記断熱容器内で前記回転軸の少なくとも一部を包囲する断熱部と、
前記断熱容器に固定されると共に、前記断熱部を包囲するケーシングと、
前記断熱部を前記駆動部側と前記インペラ側とに区画し、且つ前記ケーシングに当接すると共に、定温に維持されて前記駆動部側から前記インペラ側への熱侵入量を低減する中間伝熱部と、を備え、
前記断熱容器内において前記駆動部側から前記インペラ側にかけて温度が低下する前記ケーシングの温度分布を、前記中間伝熱部の影響を排除した状態を仮定して導出しておき、
導出された前記温度分布と前記定温とが対応する位置に前記中間伝熱部を設ける、回転機械の断熱構造の製造方法。
A method for manufacturing a heat insulating structure of a rotating machine that transfers a fluid passing through a pipe in a heat insulating container,
The rotating machine is
An impeller disposed in the heat insulating container and transferring the fluid by rotation;
A drive unit disposed outside the heat insulating container and rotating the impeller via a rotation shaft;
A heat insulating part surrounding at least a part of the rotating shaft in the heat insulating container;
A casing that is fixed to the heat insulating container and surrounds the heat insulating portion;
An intermediate heat transfer section that divides the heat insulating section into the drive section side and the impeller side, abuts against the casing, and is maintained at a constant temperature to reduce a heat penetration amount from the drive section side to the impeller side. And comprising
Deriving the temperature distribution of the casing in which the temperature decreases from the drive unit side to the impeller side in the heat insulating container, assuming that the influence of the intermediate heat transfer unit is excluded,
A method for manufacturing a heat insulating structure of a rotary machine, wherein the intermediate heat transfer portion is provided at a position where the derived temperature distribution and the constant temperature correspond.
常温側ケーシングと、インペラの回転軸の一部を包囲する断熱部を内側に含み、前記断熱部には前記常温側ケーシングの側から前記回転軸を介して伝わる熱量を低減する中間伝熱部が含まれている低温側ケーシングと、を有し、流体を移送する回転機械であって、
前記低温側ケーシングの前記中間伝熱部との当接箇所の温度と前記中間伝熱部の温度とは対応している、回転機械。
A room temperature side casing and a heat insulating part surrounding a part of the impeller rotating shaft are included inside, and the heat insulating part has an intermediate heat transfer part for reducing the amount of heat transferred from the room temperature side casing side through the rotating shaft. A rotating machine for transferring fluid, comprising a low-temperature side casing,
The rotating machine in which the temperature of the contact portion of the low-temperature casing with the intermediate heat transfer portion corresponds to the temperature of the intermediate heat transfer portion.
JP2015145964A 2015-07-23 2015-07-23 Rotating machine and method of manufacturing heat insulating structure of rotating machine Active JP6613679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015145964A JP6613679B2 (en) 2015-07-23 2015-07-23 Rotating machine and method of manufacturing heat insulating structure of rotating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015145964A JP6613679B2 (en) 2015-07-23 2015-07-23 Rotating machine and method of manufacturing heat insulating structure of rotating machine

Publications (2)

Publication Number Publication Date
JP2017025810A true JP2017025810A (en) 2017-02-02
JP6613679B2 JP6613679B2 (en) 2019-12-04

Family

ID=57949400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015145964A Active JP6613679B2 (en) 2015-07-23 2015-07-23 Rotating machine and method of manufacturing heat insulating structure of rotating machine

Country Status (1)

Country Link
JP (1) JP6613679B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108333386A (en) * 2018-04-12 2018-07-27 上海南华机电有限公司 A kind of mechanical temperature control type type wind detection sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000035191A (en) * 1998-07-16 2000-02-02 Ishikawajima Harima Heavy Ind Co Ltd Heat insulating structure of rotating machinery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000035191A (en) * 1998-07-16 2000-02-02 Ishikawajima Harima Heavy Ind Co Ltd Heat insulating structure of rotating machinery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108333386A (en) * 2018-04-12 2018-07-27 上海南华机电有限公司 A kind of mechanical temperature control type type wind detection sensor

Also Published As

Publication number Publication date
JP6613679B2 (en) 2019-12-04

Similar Documents

Publication Publication Date Title
CN111279086B (en) Centrifugal compressor
BRPI0709128A2 (en) compressor unit
US20180269742A1 (en) Foil bearing supported motor with adjustable thrust bearing cap
JP2017048768A (en) Canned motor pump
JP6613679B2 (en) Rotating machine and method of manufacturing heat insulating structure of rotating machine
US9018805B2 (en) Superconducting machines
JP2018040320A (en) Oil-free screw compressor
JP6631094B2 (en) Rotating machinery
US6880338B2 (en) Lead-in structure and a fixing flange for a turbo generator
JP4704869B2 (en) Superconducting rotating electrical machine refrigerant supply / discharge device
JP2021063472A (en) Vacuum pump device
JP6617458B2 (en) Rotating machine
US20240068382A1 (en) Rotary machine and refrigeration device using same
JP2021175893A (en) Motor pump, method for fitting cooling jacket to motor pump and method for extend temperature range of transported liquid of motor pump
JP2008091802A (en) Cryogenic container
JP5806338B2 (en) Superconducting synchronous machine having at least one superconducting winding and having a rotor rotatable relative to the stator
KR101438112B1 (en) insulation device of internal structure at reactor cooling pump and reactor cooling pump having the same
JP2016537544A (en) Rotating machine casing and rotating machine including such a casing
JP2011133142A (en) Electric compressor and vapor compression type refrigerating machine using the same
RU2807854C1 (en) System containing cooling device for machine enclosed in pressurized casing
JP6004947B2 (en) Steam turbine
JP7449157B2 (en) motor pump
JP2000035191A (en) Heat insulating structure of rotating machinery
US20230048319A1 (en) Rotating device and vacuum pump
JP2018011380A (en) Superconducting rotary machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191021

R151 Written notification of patent or utility model registration

Ref document number: 6613679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151