JP2017025350A - Method and apparatus for hardening surface of steel material - Google Patents

Method and apparatus for hardening surface of steel material Download PDF

Info

Publication number
JP2017025350A
JP2017025350A JP2015141575A JP2015141575A JP2017025350A JP 2017025350 A JP2017025350 A JP 2017025350A JP 2015141575 A JP2015141575 A JP 2015141575A JP 2015141575 A JP2015141575 A JP 2015141575A JP 2017025350 A JP2017025350 A JP 2017025350A
Authority
JP
Japan
Prior art keywords
steel material
temperature
hardening
carburizing
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015141575A
Other languages
Japanese (ja)
Other versions
JP6387916B2 (en
Inventor
真一 平松
Shinichi Hiramatsu
真一 平松
角田 佳介
Keisuke Tsunoda
佳介 角田
久佳 田和
Hisayoshi Tawa
久佳 田和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015141575A priority Critical patent/JP6387916B2/en
Publication of JP2017025350A publication Critical patent/JP2017025350A/en
Application granted granted Critical
Publication of JP6387916B2 publication Critical patent/JP6387916B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and apparatus for hardening (for example, carburizing) the surface of a work piece by blowing processing gas, capable of obtaining an excellent hardened layer in a short time by avoiding the reduction of temperature on the surface of the work piece due to the blowing of the processing gas.SOLUTION: An apparatus A for hardening the surface of a work piece W by blowing processing gas on the surface of the work piece W in a high temperature state comprises at least: first heating means 10 for heating the work piece W to be processed; a nozzle 20 for blowing the processing gas on the work piece W; and second heating means 25 for heating a portion W2 of the work piece W a temperature of which might be reduced due to the blowing of the processing gas. Heating by the second heating means 25 can avoid the temperature reduction of the blown portion.SELECTED DRAWING: Figure 1

Description

本発明は、鋼材の表面を硬化処理する方法と装置に関する。   The present invention relates to a method and apparatus for hardening a surface of a steel material.

エンジン等の駆動部品には、所要の動力伝達機能を果たすために、耐摩耗性や面圧疲労強度といった品質が必要であり、これらの品質確保のために、部品である鋼材の表面に炭素あるいは窒素を含浸拡散させて表面層の炭素量あるいは窒素量を増加させる浸炭処理あるいは浸窒処理が行われる。大気雰囲気中で鋼材表面に浸炭処理あるいは浸窒処理を施す方法および装置も提案されており、特許文献1には、浸炭装置としてのその一例が記載されている。   Drive parts such as engines require quality such as wear resistance and surface fatigue strength in order to perform the required power transmission function. To ensure these qualities, the surface of the steel material is carbon or Carburizing treatment or nitriding treatment for increasing the amount of carbon or nitrogen in the surface layer by impregnating and diffusing nitrogen is performed. A method and apparatus for carburizing or nitriding the surface of a steel material in an air atmosphere have also been proposed. Patent Document 1 describes an example of a carburizing apparatus.

この浸炭装置は、図7に示すように、鋼材であるワークWを加熱する加熱手段10と、前記ワークWに対して浸炭ガスを吹き付けるノズル20とを備え、加熱手段10によって加熱されたワークWの浸炭必要部位W1に、爆発限界未満の濃度の浸炭ガスを、ノズル20から直接吹き付けることで、浸炭処理を行うようにしている。   As shown in FIG. 7, the carburizing apparatus includes a heating unit 10 that heats a workpiece W that is a steel material, and a nozzle 20 that blows a carburizing gas onto the workpiece W, and the workpiece W heated by the heating unit 10. Carburizing treatment is performed by directly blowing a carburizing gas having a concentration less than the explosion limit from the nozzle 20 to the carburizing required portion W1.

特開2011−026651号公報JP 2011-026651 A

特許文献1に記載される形態の大気雰囲気中で鋼材表面に浸炭処理施す方法および装置において、処理時に、処理ガスである浸炭ガスが加熱されたワークWの浸炭必要部位W1に吹き付けられるが、浸炭ガスの吹き付けによりワークWの表面温度が低下するのを避けられない。ワークWの表面温度が設定温度より低下すると浸炭能力が低下し、浸炭ができなくなるか、浸炭深さが不十分となる恐れがある。それを解決するために、ガス吹き付けにより温度低下する分、ワークWの温度を予め高くしておくことが考えられるが、所望処理温度以上に鋼材であるワークWを加熱すると、結晶粒が粗大化して強度が低下する恐れがある。また、ワークWの周辺で処理ガスが分解し、ワークWの表面に辿りつく浸炭ガス量が少なくなる恐れもある。浸炭ガスを予め温めておくことも考えられるが、鋼材であるワークWの処理温度程度にまで浸炭ガスを加熱することはできない。それらのことから、実際の処理においては、処理時間を長くすることで、表面の温度低下によって生じる不都合をカバーするようにしている。   In the method and apparatus for carburizing the steel material surface in the atmosphere described in Patent Document 1, the carburizing gas, which is the processing gas, is blown to the carburized portion W1 of the heated workpiece W during the processing. It is inevitable that the surface temperature of the workpiece W is lowered by the gas blowing. When the surface temperature of the workpiece W is lower than the set temperature, the carburizing ability is lowered, and carburizing cannot be performed or the carburizing depth may be insufficient. In order to solve this, it is conceivable that the temperature of the workpiece W is increased in advance by the amount of the temperature drop caused by gas blowing, but when the workpiece W, which is a steel material, is heated to a temperature higher than the desired processing temperature, the crystal grains become coarse. The strength may decrease. Further, the processing gas is decomposed around the workpiece W, and the amount of carburizing gas that reaches the surface of the workpiece W may be reduced. Although it is conceivable to warm the carburizing gas in advance, the carburizing gas cannot be heated to the processing temperature of the workpiece W that is a steel material. Therefore, in actual processing, the inconvenience caused by the temperature drop of the surface is covered by extending the processing time.

本発明は、処理ガスの吹き付けによって鋼材であるワークの表面に硬化処理を施す方法および装置において、処理ガスの吹き付けによりワーク表面の温度が低下することによって生じる上記のような不都合を解消することのできる、より改良された鋼材表面の硬化処理方法および装置を提供することを課題とする。   The present invention eliminates the above-mentioned inconvenience caused by the temperature of the workpiece surface being lowered by spraying the processing gas in the method and apparatus for performing the hardening treatment on the surface of the workpiece, which is a steel material, by spraying the processing gas. It is an object of the present invention to provide a more improved method and apparatus for hardening a steel surface that can be performed.

本発明による鋼材表面の硬化処理方法は、高温状態にある鋼材の表面に処理ガスを吹き付けることで当該鋼材の表面を硬化させる鋼材表面の硬化処理方法であって、吹き付けられる処理ガスに接することで生じる鋼材表面の温度低下を当該鋼材を高温状態に保持するための加熱手段とは別の第2の加熱手段によって補助加熱しながら硬化処理を行うことを特徴とする。   The steel material surface hardening treatment method according to the present invention is a steel material surface hardening treatment method in which the surface of the steel material is hardened by spraying a treatment gas on the surface of the steel material in a high temperature state, by contacting the treatment gas to be blown. Curing treatment is performed while auxiliary heating is performed by a second heating means different from the heating means for maintaining the steel material at a high temperature in order to reduce the temperature drop of the steel material surface.

本発明による鋼材表面の硬化処理方法によれば、処理ガスの吹き付けによって生じる鋼材の表面の温度低下は第2の加熱手段による加熱によって補填されるので、処理時にワークの表面温度は所要の温度に維持されることとなり、処理時間を長くすることなく、所要の硬化処理を終了することができる。また、鋼材であるワークの温度を処理に適した温度以上に高温化することも要しないので、結晶粒が粗大化して強度が低下するのも回避できるとともに、処理ガスが不要に分解してしまうのも回避できる。   According to the method for hardening a steel surface according to the present invention, the temperature drop on the surface of the steel material caused by the spraying of the processing gas is compensated by the heating by the second heating means, so that the surface temperature of the workpiece is set to a required temperature during the processing. Thus, the required curing process can be completed without increasing the processing time. In addition, since it is not necessary to raise the temperature of the workpiece, which is a steel material, to a temperature higher than that suitable for processing, it is possible to prevent the crystal grains from becoming coarse and lowering the strength, and the processing gas is unnecessarily decomposed. Can also be avoided.

本発明による鋼材表面の硬化処理方法の一態様では、前記処理ガスが吹き付けられる部位での鋼材(ワーク)の表面温度を測定し、前記表面温度が所定の温度になるように前記第2の加熱手段による加熱量を制御しながら硬化処理を行うことを特徴とする。この方法によれば、ワーク個間の処理バラつきを低減でき、また、個内のバラつきを低減できる。   In one aspect of the steel material surface hardening treatment method according to the present invention, the surface temperature of the steel material (work) is measured at a portion where the treatment gas is sprayed, and the second heating is performed so that the surface temperature becomes a predetermined temperature. The curing process is performed while controlling the heating amount by the means. According to this method, it is possible to reduce the processing variation between workpieces, and to reduce the variation within the workpiece.

本発明による鋼材表面の硬化処理方法において、第2の加熱手段は所望の位置を局所的に加熱できる手段であれば適宜の加熱手段を用いることができる。好ましくはレーザであるが、他に、赤外線ヒータ(ランプ)のような加熱手段であってもよい。   In the method for hardening a steel surface according to the present invention, any suitable heating means can be used as the second heating means as long as it can locally heat a desired position. Laser is preferable, but heating means such as an infrared heater (lamp) may be used.

本発明による鋼材表面の硬化処理方法は、従来知られた、高温状態にある鋼材の表面に処理ガスを吹き付けることで当該鋼材の表面を硬化させる硬化処理方法のいずれにも適用することができる。例として、処理ガスの吹き付けによる、浸炭処理または浸窒処理を挙げることができる。   The steel material surface hardening treatment method according to the present invention can be applied to any conventionally known hardening treatment method in which the surface of the steel material is hardened by blowing a treatment gas onto the surface of the steel material in a high temperature state. As an example, a carburizing process or a nitriding process by spraying a processing gas can be given.

本発明は、さらに、高温状態にある鋼材の表面に処理ガスを吹き付けることで当該鋼材の表面を硬化させる鋼材表面の硬化処理を行う装置であって、前記装置は、処理対象物である前記鋼材を加熱する第1の加熱手段と、前記鋼材に対して処理ガスを吹き付けるノズルと、前記鋼材における前記ノズルからの処理ガスが吹き付けられる部位を加熱する第2の加熱手段と、を少なくとも備えることを特徴とする鋼材表面の硬化処理を行う装置をも開示する。   The present invention is further an apparatus for performing a hardening treatment on the surface of a steel material by hardening the surface of the steel material by blowing a treatment gas on the surface of the steel material in a high temperature state, and the apparatus is the steel material that is a processing object. A first heating means for heating the steel, a nozzle for blowing a processing gas to the steel material, and a second heating means for heating a portion of the steel material to which the processing gas from the nozzle is blown. An apparatus for performing a hardening treatment on the steel surface is also disclosed.

本発明による鋼材表面の硬化処理を行う装置において、前記鋼材における前記ノズルからの処理ガスが吹き付けられる部位の温度を測定する温度測定手段と、前記温度測定手段の測定結果に基づき前記第2の加熱手段の加熱量を制御する加熱制御手段と、をさらに備えることは、好ましい態様である。   In the apparatus for hardening a steel surface according to the present invention, a temperature measuring means for measuring a temperature of a portion of the steel material to which a processing gas from the nozzle is blown, and the second heating based on a measurement result of the temperature measuring means. It is a preferable aspect to further include heating control means for controlling the heating amount of the means.

また、本発明による鋼材表面の硬化処理を行う装置において、第2の加熱手段は所望の位置を局所的に加熱できる手段であれば適宜の加熱手段を用いることができる。好ましくはレーザであるが、他に、赤外線ヒータ(ランプ)のような加熱手段であってもよい。   In the apparatus for performing the hardening treatment on the surface of the steel material according to the present invention, any suitable heating means can be used as the second heating means as long as it can locally heat a desired position. Laser is preferable, but heating means such as an infrared heater (lamp) may be used.

本発明による鋼材表面の硬化処理を行う装置は、従来知られた、高温状態にある鋼材の表面に処理ガスを吹き付けることで当該鋼材の表面を硬化させる硬化処理装置のいずれにも適用することができる。例として、処理ガスの吹き付けによる、浸炭処理装置または浸窒処理装置を挙げることができる。   The apparatus for hardening a steel surface according to the present invention can be applied to any of the conventionally known hardening treatment apparatuses that harden the surface of the steel by blowing a treatment gas on the surface of the steel in a high temperature state. it can. As an example, a carburizing treatment apparatus or a nitriding treatment apparatus by spraying a treatment gas can be mentioned.

本発明によれば、高温状態にある鋼材の表面に処理ガスを吹き付けることで当該鋼材の表面を硬化する鋼材表面の硬化処理方法および装置において、処理ガスの吹き付けによって生じる鋼材の表面に生じる温度低下を第2の加熱手段による加熱によって補填することで、処理時に鋼材であるワークの表面温度を所要の温度に維持することが可能となり、結果として、処理時間を長くすることなく、所要の硬化処理を終了することができる。また、鋼材であるワークの温度も処理に適した温度以上に高温化することを要しないので、結晶粒が粗大化して強度が低下するのも回避できる。また、処理ガスが不要に分解してしまうのも抑制することができる。   According to the present invention, in the method and apparatus for hardening a steel surface that hardens the surface of the steel material by blowing the treatment gas onto the surface of the steel material in a high temperature state, the temperature drop generated on the surface of the steel material caused by the blowing of the treatment gas Is compensated by heating by the second heating means, so that the surface temperature of the workpiece, which is a steel material, can be maintained at a required temperature at the time of processing. As a result, the required hardening process can be performed without increasing the processing time. Can be terminated. Moreover, since it is not necessary to raise the temperature of the workpiece | work which is steel materials more than the temperature suitable for a process, it can also avoid that a crystal grain coarsens and intensity | strength falls. In addition, it is possible to suppress unnecessary decomposition of the processing gas.

本発明による鋼材表面の硬化処理方法を実施することのできる装置の一例を示す模式的図。The schematic diagram which shows an example of the apparatus which can implement the hardening processing method of the steel material surface by this invention. 浸炭温度と単位時間単位面積あたりの浸炭量との関係を示すグラフ。The graph which shows the relationship between carburizing temperature and the amount of carburizing per unit time unit area. 本発明を浸炭処理に適用した実施例におけるワーク表面の温度と時間の関係を示すグラフ(図3(a))と、処理後の状態を示す断面写真(図3(b))。The graph (FIG. 3 (a)) which shows the relationship between the temperature and time of the workpiece | work surface in the Example which applied this invention to the carburizing process, and sectional photograph (FIG.3 (b)) which shows the state after a process. 浸炭処理における比較例でのワーク表面の温度と時間の関係を示すグラフ(図4(a))と、処理後の状態を示す断面写真(図4(b))。The graph (FIG. 4 (a)) which shows the relationship between the temperature of the workpiece | work surface and time in the comparative example in a carburizing process, and sectional drawing (FIG.4 (b)) which shows the state after a process. 本発明を浸窒処理に適用した実施例におけるワーク表面の温度と時間の関係を示すグラフ(図5(a))と、処理後の状態を示す断面写真(図5(b))。The graph (FIG. 5 (a)) which shows the relationship between the temperature of the workpiece | work surface and time in the Example which applied this invention to the nitriding process, and sectional photograph (FIG.5 (b)) which shows the state after a process. 浸窒処理における比較例でのワーク表面の温度と時間の関係を示すグラフ(図6(a))と、処理後の状態を示す断面写真(図6(b))。The graph (FIG. 6 (a)) which shows the relationship between the temperature of the workpiece | work surface and time in the comparative example in a nitriding process, and sectional drawing (FIG.6 (b)) which shows the state after a process. 大気雰囲気中で鋼材表面に浸炭処理を施す従来の装置を説明する模式的図。The schematic diagram explaining the conventional apparatus which performs the carburizing process on the steel material surface in air | atmosphere.

以下、本発明による鋼材表面の硬化処理方法および装置の実施の一形態を、浸炭方法および浸炭装置を例として、図面を参照しながら説明する。   Hereinafter, an embodiment of a method and apparatus for hardening a steel surface according to the present invention will be described with reference to the drawings, taking a carburizing method and a carburizing apparatus as an example.

図1に示すように、浸炭装置Aは、鋼材であるワークWを支持するための適宜の冶具1を備え、ワークWは、該冶具1に対して、回転自在に支持されている。ワークWを囲むようにして円環状の第1の加熱手段10が位置しており、この例では高周波加熱装置を用いている。第1の加熱手段10には、少なくともワークWに求められる浸炭必要部位W1を所要の温度にまで加熱できる加熱手段であれば適宜用いることができ、赤外線ヒータ(ランプ)なども使用できる。また、通電による加熱であってもよい。   As shown in FIG. 1, the carburizing apparatus A includes an appropriate jig 1 for supporting a workpiece W that is a steel material, and the workpiece W is rotatably supported by the jig 1. An annular first heating means 10 is positioned so as to surround the workpiece W, and in this example, a high-frequency heating device is used. As the first heating means 10, any heating means that can heat at least the necessary carburizing portion W <b> 1 required for the workpiece W to a required temperature can be used as appropriate, and an infrared heater (lamp) or the like can also be used. Moreover, the heating by electricity supply may be sufficient.

浸炭装置Aは、ワークWにおける浸炭必要部位W1の軸方向のほぼ中心部に向けて浸炭ガスを吹き付けることのできる位置にノズル20を備える。該ノズル20には、圧力調整装置を備えたガスボンベ21からの浸炭ガスが、マスフローコントローラ22を介して送給される。送給された浸炭ガスは、ノズル20から、ワークWにおける浸炭必要部位W1に向けて吹き付けられる。   The carburizing apparatus A includes a nozzle 20 at a position where the carburizing gas can be sprayed toward the substantially central portion of the workpiece W in the axial direction of the carburizing required portion W1. Carburizing gas from a gas cylinder 21 equipped with a pressure adjusting device is fed to the nozzle 20 via a mass flow controller 22. The fed carburizing gas is sprayed from the nozzle 20 toward the carburizing required portion W1 of the workpiece W.

浸炭装置Aは、浸炭ガスが吹き付けられる部位のワークWの表面温度を測定できる温度測定手段として、放射温度計23を備える。温度測定手段は放射温度計23が好ましいが、これに限らない。温度測定手段が温度を測定する領域は浸炭必要部位W1の全領域であることが好ましく、その平均温度を出力することのできる温度測定手段であることが望ましいが、浸炭必要部位W1の軸方向の中央位置近傍を測温して、その値を出力するようにしても、所期の目的は達成可能である。放射温度計23の温度情報は制御部24に送られる。   The carburizing apparatus A includes a radiation thermometer 23 as temperature measuring means capable of measuring the surface temperature of the work W at a site where the carburizing gas is sprayed. The temperature measuring means is preferably the radiation thermometer 23, but is not limited thereto. The region where the temperature measuring means measures the temperature is preferably the entire region of the carburizing required portion W1, and is preferably a temperature measuring means capable of outputting the average temperature, but in the axial direction of the carburizing required portion W1. Even if the temperature in the vicinity of the center position is measured and the value is output, the intended purpose can be achieved. The temperature information of the radiation thermometer 23 is sent to the control unit 24.

浸炭装置Aには、前記ノズル20から浸炭ガスが吹き付けられることで温度が低下するワークWの部位W2を加熱することのできる第2の加熱手段として、レーザ発振手段25を備える。レーザ発振手段25は従来知られたものであってよい。レーザ発振手段25からのレーザのエネルギーにより、前記した温度が低下した部位W2が加熱される。第2の加熱手段によって加熱される領域は、ワークWにおける浸炭ガスが吹き付けによって温度が低下する領域のすべてであることが好ましく、そのために、レーザ発振手段25はレーザの照射領域をワークWの軸方向に調整できるものであるか、または、レーザのビーム径を可変にして面として加熱できるものが好ましい。鋼材であるワークWは熱伝導性を有しているので、局所的な加熱であっても差支えない。なお、図1で30はケーシングであるが、省略可能である。   The carburizing apparatus A includes a laser oscillation unit 25 as a second heating unit that can heat the portion W2 of the workpiece W, the temperature of which decreases when the carburizing gas is blown from the nozzle 20. The laser oscillation means 25 may be a conventionally known one. Due to the laser energy from the laser oscillating means 25, the portion W2 where the temperature has decreased is heated. The region heated by the second heating means is preferably all of the region where the temperature of the workpiece W is lowered by the blowing of the carburizing gas. For this reason, the laser oscillation means 25 sets the laser irradiation region as the axis of the workpiece W. Those that can be adjusted in the direction or those that can be heated as a surface by changing the beam diameter of the laser are preferable. Since the workpiece W, which is a steel material, has thermal conductivity, local heating may be used. In addition, although 30 is a casing in FIG. 1, it is omissible.

一つの態様では、放射温度計23による温度監視部位と、レーザ発振手段25のレーザノズルからのレーザ照射部位とが同一部位となるように、放射温度計23とレーザ発振手段25とを位置制御する。その際に、前記「同一部位」は、ワークWにおける浸炭必要部位W1の軸方向のほぼ中心部とすることが望ましい。それにより、浸炭処理中に、放射温度計23とレーザ発振手段25に対して格別の位置制御を行うことなく、温度低下部位を確実に加熱することが可能となる。   In one aspect, the radiation thermometer 23 and the laser oscillation means 25 are position-controlled so that the temperature monitoring part by the radiation thermometer 23 and the laser irradiation part from the laser nozzle of the laser oscillation means 25 are the same part. . In that case, it is desirable that the “same part” is a substantially central part in the axial direction of the carburizing required part W1 in the workpiece W. Accordingly, it is possible to reliably heat the temperature-decreasing portion without performing special position control on the radiation thermometer 23 and the laser oscillation means 25 during the carburizing process.

レーザ発振手段25からのレーザ出力は、前記した制御部24からの信号により制御される。一つの態様は、制御部24が、前記放射温度計23からの温度情報に基づき、ワークWの浸炭必要部位W1の温度が、当初の温度、すなわち浸炭ガス吹き付け前の温度から浸炭ガスの吹き付けによってどの程度だけ温度低下したかを継続的に判断し、その温度低下を補填できるだけのエネルギーをレーザ出力するように、制御部24がレーザ発振手段25を制御する態様である。このようにレーザ発振手段25の出力制御を行うことで、ワークWの浸炭必要部位W1の温度を所要の温度に継続して維持することが可能となり、所期通りの浸炭処理が進行し、所望の浸炭深さを得るための浸炭処理時間を短縮化することができる。   The laser output from the laser oscillating means 25 is controlled by a signal from the control unit 24 described above. In one aspect, the control unit 24 determines that the temperature of the carburization required portion W1 of the work W is based on the temperature information from the radiation thermometer 23 by blowing the carburizing gas from the initial temperature, that is, the temperature before the carburizing gas blowing. This is a mode in which the controller 24 controls the laser oscillation means 25 so as to continuously determine how much the temperature has decreased and to output laser energy sufficient to compensate for the temperature decrease. By controlling the output of the laser oscillating means 25 in this way, it becomes possible to continuously maintain the temperature of the part W1 requiring carburization of the workpiece W at a required temperature, and the desired carburizing process proceeds, and the desired The carburizing time for obtaining the carburizing depth can be shortened.

実機の運転実績から、または演算により、浸炭処理時において浸炭ガスの吹き付けによってワーク表面がどの程度温度低下するかを予測することができる。その場合には、放射温度計23からの温度情報によることなく、制御部24に予め予測される温度低下に関する情報を持たせておき、その情報に基づいてレーザ発振手段25の出力を制御するようにしてもよい。その場合には、温度測定手段としての放射温度計23を省略することが可能である。   It is possible to predict how much the temperature of the workpiece surface is lowered by the blowing of carburizing gas during the carburizing process from the actual operation results of the actual machine or by calculation. In that case, the control unit 24 is provided with information on the predicted temperature drop without using the temperature information from the radiation thermometer 23, and the output of the laser oscillation means 25 is controlled based on the information. It may be. In that case, the radiation thermometer 23 as temperature measuring means can be omitted.

「第2の加熱手段」は1つであってもよく、ワークWにおける浸炭必要部位W1の軸方向に2個以上配列するようにしてもよい。また、加熱の必要な部位を面として加熱できるような加熱手段、例えば赤外線ヒータ(ランプ)のような加熱手段を用いることもできる。   There may be one “second heating means”, or two or more “second heating means” may be arranged in the axial direction of the carburization-needed portion W1 of the workpiece W. Further, a heating means that can heat a part that needs to be heated as a surface, for example, a heating means such as an infrared heater (lamp) can be used.

浸炭処理において、浸炭量は温度に依存して変化する。図2はその一例を示しており、浸炭ガスとしてC(1%)(その他N)を用い、浸炭ガス分圧740Pa、浸炭時間33分で浸炭処理したときの、浸炭温度とF値(単位時間単位面積当たりの浸炭量)の関係の一例を示している。グラフが示すように、浸炭温度の増加と共にF値が増加しており、実際の浸炭処理において、浸炭ガスの吹き付けによってワークWに温度低下が生じると、それに伴い浸炭量が低下する。そのような温度低下が生じると、所望の浸炭量を確保するためには、処理時間を長くすることが必要となる。本発明による場合には、吹き付けられる処理ガスに接することで鋼材(ワークW)の表面に生じる温度低下を、当該鋼材(ワークW)を高温状態に保持するための加熱手段とは別の第2の加熱手段(レーザ発振手段25からの出力)による補助加熱によって補填しながら硬化処理を行うので、上記した温度低下をなくすことができ、処理時間を長くすることなく、所望の浸炭量を確保することができる。 In the carburizing process, the carburizing amount changes depending on the temperature. FIG. 2 shows an example of this. Carburizing temperature and F when C 3 H 8 (1%) (other N 2 ) is used as the carburizing gas and carburizing treatment is performed at a carburizing gas partial pressure of 740 Pa and a carburizing time of 33 minutes. An example of the relationship between values (the amount of carburization per unit time unit area) is shown. As shown in the graph, the F value increases with the increase in the carburizing temperature, and in actual carburizing treatment, when the temperature of the work W is decreased by blowing the carburizing gas, the carburizing amount decreases accordingly. When such a temperature drop occurs, it is necessary to lengthen the treatment time in order to ensure a desired carburization amount. In the case of the present invention, the temperature drop generated on the surface of the steel material (work W) by being in contact with the sprayed processing gas is different from the heating means for maintaining the steel material (work W) in a high temperature state. Since the curing process is performed while supplementing by auxiliary heating by the heating means (output from the laser oscillation means 25), the above-described temperature drop can be eliminated, and a desired carburizing amount can be ensured without lengthening the processing time. be able to.

なお、上記では、浸炭処理を例として説明したが、本発明による方法および装置は、ワークの表面に処理ガスを吹き付けることで当該ワークの表面の硬化処理を行う他の形態、例えば、浸窒処理にもそのまま適用することができる。   In the above description, the carburizing process has been described as an example. However, the method and apparatus according to the present invention may be applied in another form in which the surface of the work is hardened by blowing a processing gas onto the surface of the work, for example, a nitriding process. It can be applied as it is.

以下、実施例と比較例とにより本発明の優位性を説明する。   Hereinafter, advantages of the present invention will be described with reference to Examples and Comparative Examples.

[実施例1:浸炭処理]
図1に基づき説明した装置を用いた。ワークWとして、直径18mm、高さ40mmの円筒体である鋼材(S25C)を用いた。ワークWを回転自在な冶具1に取り付け、ワークWに100rpmの回転を与えた。第1の加熱手段10として高周波誘導加熱手段を用いた。温度測定手段として放射温度計23を用い、ワークWの浸炭必要部位W1における軸方向の中央位置を測温できるようにした。第2の加熱手段としてノズルを備えたレーザ発振手段25を用い、レーザ照射部位を浸炭必要部位W1における軸方向の中央位置となるようにセットした。
[Example 1: Carburizing treatment]
The apparatus described based on FIG. 1 was used. As the workpiece W, a steel material (S25C) which is a cylindrical body having a diameter of 18 mm and a height of 40 mm was used. The workpiece W was attached to the rotatable jig 1, and the workpiece W was rotated at 100 rpm. High frequency induction heating means was used as the first heating means 10. A radiation thermometer 23 was used as the temperature measuring means, and the center position in the axial direction of the workpiece W requiring carburization W1 could be measured. Laser oscillating means 25 provided with a nozzle was used as the second heating means, and the laser irradiation part was set so as to be the central position in the axial direction of carburizing required part W1.

ワークWを高周波誘導加熱にて加熱し、所定の温度(950℃)となったところで、ノズル20からワークWの浸炭必要部位W1における軸方向の中央位置に向けて浸炭ガスを吹き付けた。
実験条件は表1に示すとおりである。
When the workpiece W was heated by high frequency induction heating and reached a predetermined temperature (950 ° C.), the carburizing gas was sprayed from the nozzle 20 toward the axial center position of the workpiece W in the carburizing required portion W1.
The experimental conditions are as shown in Table 1.

Figure 2017025350
Figure 2017025350

実験開始からの経過時間(s)と放射温度計23が計測した温度(ワークWの浸炭必要部位W1における軸方向の中央位置の温度)との関係を図3(a)に示した。実験では、高周波誘導加熱によってワークWの表面温度が950℃になった時点で、ノズル20から処理ガスの吹き出しを開始すると同時に、レーザ発振手段25を作動させた。そして、放射温度計23からの温度情報に基づき、測定温度が継続して950℃を維持できるように、レーザ発振手段25の出力を制御した。その結果、吹き付け開始以降も、ワークWの表面温度をほぼ950℃に保持することができた。   FIG. 3A shows the relationship between the elapsed time (s) from the start of the experiment and the temperature measured by the radiation thermometer 23 (the temperature at the central position in the axial direction at the carburizing required portion W1 of the workpiece W). In the experiment, when the surface temperature of the workpiece W reached 950 ° C. by high-frequency induction heating, the laser oscillation means 25 was activated at the same time as the blowing of the processing gas from the nozzle 20 was started. And based on the temperature information from the radiation thermometer 23, the output of the laser oscillation means 25 was controlled so that measurement temperature could continue and maintain 950 degreeC. As a result, the surface temperature of the workpiece W could be maintained at approximately 950 ° C. even after the start of spraying.

吹き付けを10分間行った後のワークWの組織を観察した。図3(b)は処理後の状態を示す断面写真である。写真に示されるように、ワークWの表面には、所望の深さ(100μm程度)の浸炭層が形成されていた。   The structure of the work W after spraying for 10 minutes was observed. FIG. 3B is a cross-sectional photograph showing a state after processing. As shown in the photograph, a carburized layer having a desired depth (about 100 μm) was formed on the surface of the workpiece W.

[比較例1]
実施例1と同様にして浸炭処理を行った。ただし、ノズル20から処理ガスの吹き出しを開始しても、レーザ発振手段25を作動させなかった。実験開始からの経過時間(s)と放射温度計23が計測した温度(ワークWの浸炭必要部位W1における軸方向の中央位置の温度)との関係を図4(a)に示した。また、吹き付けを10分間行った後のワークWの断面写真を図4(b)に示した。
[Comparative Example 1]
Carburizing treatment was performed in the same manner as in Example 1. However, the laser oscillating means 25 was not operated even when the processing gas was blown from the nozzle 20. FIG. 4A shows the relationship between the elapsed time (s) from the start of the experiment and the temperature measured by the radiation thermometer 23 (the temperature at the central position in the axial direction in the carburizing portion W1 of the workpiece W). Moreover, the cross-sectional photograph of the workpiece | work W after performing spraying for 10 minutes was shown in FIG.4 (b).

吹き付け後にレーザ発振手段25を作動させなかったことで、ワークWの表面温度はほぼ607℃まで低下した。その結果、10分経過後にも、ワークWの表面には、図4(b)に示すように、浸炭層は形成されなかった。   Since the laser oscillation means 25 was not operated after spraying, the surface temperature of the workpiece W was lowered to approximately 607 ° C. As a result, a carburized layer was not formed on the surface of the workpiece W as shown in FIG.

なお、処理ガスの流量を調整することで、ワークWの温度低下を小さくすることができ、レーザ発振手段25を作動させなくても、例えば、ワークWの表面温度を723℃以上に維持することができる。しかし、この場合には、同じ厚みの浸炭層を形成するのに、より長い処理時間が必要となる。   The temperature drop of the workpiece W can be reduced by adjusting the flow rate of the processing gas. For example, the surface temperature of the workpiece W can be maintained at 723 ° C. or more without operating the laser oscillation means 25. Can do. However, in this case, a longer treatment time is required to form a carburized layer having the same thickness.

[実施例2:浸窒処理]
実施例1と同様にして、浸窒処理を行った。用いた装置およびワークWは実施例1のものと同じである。実験条件は表2に示した。
実験条件は表2に示すとおりである。
[Example 2: Nitrogen treatment]
Nitrogen treatment was performed in the same manner as in Example 1. The apparatus and workpiece W used are the same as those in the first embodiment. The experimental conditions are shown in Table 2.
The experimental conditions are as shown in Table 2.

Figure 2017025350
Figure 2017025350

実験開始からの経過時間(s)と放射温度計23が計測した温度(ワークWの浸窒必要部位W1における軸方向の中央位置の温度)との関係を図5(a)に示した。実験では、高周波誘導加熱によってワークWの表面温度が780℃になった時点で、ノズル20から処理ガスの吹き出しを開始すると同時に、レーザ発振手段25を作動させた。実施例1と同様に、放射温度計23からの温度情報に基づき、測定温度が継続して780℃を維持できるように、レーザ発振手段25の出力を制御した。その結果、吹き付け開始以降も、ワークWの表面温度をほぼ780℃に保持することができた。   FIG. 5A shows the relationship between the elapsed time (s) from the start of the experiment and the temperature measured by the radiation thermometer 23 (the temperature at the central position in the axial direction of the workpiece W where nitriding is required). In the experiment, when the surface temperature of the workpiece W reached 780 ° C. by the high frequency induction heating, the laser oscillation means 25 was activated simultaneously with the start of the blowing of the processing gas from the nozzle 20. Similarly to Example 1, based on the temperature information from the radiation thermometer 23, the output of the laser oscillation means 25 was controlled so that the measured temperature could be maintained at 780 ° C. As a result, the surface temperature of the workpiece W could be maintained at approximately 780 ° C. even after the start of spraying.

吹き付けを10分間行った後のワークWの組織を観察した。図5(b)は処理後の状態を示す断面写真である。写真に示されるように、ワークWの表面には、所望の深さ(150μm程度)の浸窒層が形成されていた。   The structure of the work W after spraying for 10 minutes was observed. FIG. 5B is a cross-sectional photograph showing a state after processing. As shown in the photograph, a nitriding layer having a desired depth (about 150 μm) was formed on the surface of the workpiece W.

[比較例2]
実施例2と同様にして浸窒処理を行った。ただし、ノズル20から処理ガスの吹き出しを開始しても、レーザ発振手段25を作動させなかった。実験開始からの経過時間(s)と放射温度計23が計測した温度(ワークWの浸炭必要部位W1における軸方向の中央位置の温度)との関係を図5(a)に示した。また、吹き付けを10分間行った後のワークWの断面写真を図5(b)に示した。
[Comparative Example 2]
Nitrogen treatment was performed in the same manner as in Example 2. However, the laser oscillating means 25 was not operated even when the processing gas was blown from the nozzle 20. FIG. 5A shows the relationship between the elapsed time (s) from the start of the experiment and the temperature measured by the radiation thermometer 23 (the temperature at the central position in the axial direction of the workpiece W where the carburization is required). Moreover, the cross-sectional photograph of the workpiece | work W after performing spraying for 10 minutes was shown in FIG.5 (b).

吹き付け後にレーザ発振手段25を作動させなかったことで、ワークWの表面温度はほぼ510℃まで低下した。その結果、10分経過後にも、ワークWの表面には、図5(b)に示すように、浸窒層は形成されなかった。   Since the laser oscillation means 25 was not operated after spraying, the surface temperature of the workpiece W was lowered to about 510 ° C. As a result, even after 10 minutes, no nitriding layer was formed on the surface of the workpiece W as shown in FIG.

なお、浸窒処理おいても、処理ガスの流量を調整することで、ワークWの温度低下を小さくすることができ、レーザ発振手段25を作動させなくても、例えば、ワークWの表面温度を723℃以上に維持することができる。しかし、この場合には、同じ厚みの浸窒層を形成するのに、より長い処理時間が必要となる。   Even in the nitriding treatment, the temperature drop of the workpiece W can be reduced by adjusting the flow rate of the processing gas. For example, the surface temperature of the workpiece W can be reduced without operating the laser oscillation means 25. It can be maintained at 723 ° C. or higher. However, in this case, a longer treatment time is required to form a nitriding layer having the same thickness.

A…浸炭装置、
W…ワーク(鋼材)、
W1…ワークWに求められる浸炭必要部位、
W2…浸炭ガスの吹き付けによって温度が低下する領域、
1…冶具、
10…第1の加熱手段、
20…浸炭ガスを吹き付けるノズル、
21…ガスボンベ、
22…マスフローコントローラ、
23…温度測定手段としての放射温度計、
24…制御部、
25…第2の加熱手段としてのレーザ発振手段、
30…ケーシング。
A ... Carburizing device,
W ... Work (steel),
W1 ... Carburization required part required for workpiece W,
W2 ... the region where the temperature drops due to the blowing of carburizing gas,
1 ... Jig,
10: First heating means,
20 ... Nozzle that blows carburizing gas,
21 ... Gas cylinder,
22 ... Mass flow controller,
23: Radiation thermometer as temperature measuring means,
24 ... control unit,
25... Laser oscillation means as second heating means,
30. Casing.

Claims (8)

高温状態にある鋼材の表面に処理ガスを吹き付けることで当該鋼材の表面を硬化させる鋼材表面の硬化処理方法であって、
吹き付けられる処理ガスに接することで生じる鋼材表面の温度低下を当該鋼材を高温状態に保持するための加熱手段とは別の第2の加熱手段によって補助加熱しながら硬化処理を行うことを特徴とする鋼材表面の硬化処理方法。
A method of hardening a steel surface to harden the surface of the steel material by blowing a treatment gas on the surface of the steel material in a high temperature state,
It is characterized in that a hardening process is performed while auxiliary heating is performed by a second heating means different from a heating means for maintaining the steel material in a high temperature state due to a temperature drop on the surface of the steel material caused by contact with the sprayed processing gas. Hardening method for steel surface.
前記処理ガスが吹き付けられる部位での鋼材の表面温度を測定し、前記表面温度が所定の温度になるように前記第2の加熱手段による加熱量を制御しながら硬化処理を行うことを特徴とする請求項1に記載の鋼材表面の硬化処理方法。   It measures the surface temperature of the steel material at the site where the processing gas is sprayed, and performs the hardening process while controlling the heating amount by the second heating means so that the surface temperature becomes a predetermined temperature. The method for hardening a steel surface according to claim 1. 前記第2の加熱手段としてレーザを用いることを特徴とする請求項1または2に記載の鋼材表面の硬化処理方法。   The method of hardening a steel material according to claim 1 or 2, wherein a laser is used as the second heating means. 鋼材表面の硬化処理が浸炭処理または浸窒処理のいずれかであることを特徴とする請求項1〜3のいずれか一項に記載の鋼材表面の硬化処理方法。   The steel material surface hardening treatment method according to any one of claims 1 to 3, wherein the steel material surface hardening treatment is either carburizing treatment or nitriding treatment. 高温状態にある鋼材の表面に処理ガスを吹き付けることで当該鋼材の表面を硬化させる鋼材表面の硬化処理を行う装置であって、前記装置は、
処理対象物である前記鋼材を加熱する第1の加熱手段と、
前記鋼材に対して処理ガスを吹き付けるノズルと、
前記鋼材における前記ノズルからの処理ガスが吹き付けられる部位を加熱する第2の加熱手段と、
を少なくとも備えることを特徴とする鋼材表面の硬化処理を行う装置。
An apparatus for performing a hardening treatment on the surface of a steel material by hardening a surface of the steel material by blowing a treatment gas on the surface of the steel material in a high temperature state,
A first heating means for heating the steel material that is the object to be treated;
A nozzle for blowing a processing gas on the steel material;
A second heating means for heating a portion of the steel material to which the processing gas from the nozzle is sprayed;
The apparatus which performs the hardening process of the steel material surface characterized by including at least.
前記鋼材における前記ノズルからの処理ガスが吹き付けられる部位の温度を測定する温度測定手段と、
前記温度測定手段の測定結果に基づき前記第2の加熱手段の加熱量を制御する加熱制御手段と、
をさらに備えることを特徴とする請求項5に記載の鋼材表面の硬化処理を行う装置。
Temperature measuring means for measuring the temperature of the portion of the steel material to which the processing gas from the nozzle is sprayed;
Heating control means for controlling the heating amount of the second heating means based on the measurement result of the temperature measuring means;
The apparatus which performs hardening processing of the steel material surface of Claim 5 characterized by the above-mentioned.
前記第2の加熱手段がレーザであることを特徴とする請求項5または6に記載の鋼材表面の硬化処理を行う装置。   The apparatus for performing a hardening treatment on a steel material surface according to claim 5 or 6, wherein the second heating means is a laser. 前記装置が、浸炭処理装置または浸窒処理装置のいずれかであることを特徴とする請求項5〜7のいずれか一項に記載の鋼材表面の硬化処理を行う装置。   The said apparatus is either a carburizing processing apparatus or a nitriding processing apparatus, The apparatus which performs the hardening process of the steel material surface as described in any one of Claims 5-7 characterized by the above-mentioned.
JP2015141575A 2015-07-15 2015-07-15 Method and apparatus for hardening steel surface Active JP6387916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015141575A JP6387916B2 (en) 2015-07-15 2015-07-15 Method and apparatus for hardening steel surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015141575A JP6387916B2 (en) 2015-07-15 2015-07-15 Method and apparatus for hardening steel surface

Publications (2)

Publication Number Publication Date
JP2017025350A true JP2017025350A (en) 2017-02-02
JP6387916B2 JP6387916B2 (en) 2018-09-12

Family

ID=57945518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015141575A Active JP6387916B2 (en) 2015-07-15 2015-07-15 Method and apparatus for hardening steel surface

Country Status (1)

Country Link
JP (1) JP6387916B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019093290A1 (en) * 2017-11-08 2019-05-16 株式会社デンソー Gas carburization device and gas carburization method
JP2019173080A (en) * 2018-03-28 2019-10-10 株式会社アマダホールディングス Laser processing device, thermal refining method by laser beam, and method for producing thermally refined material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550458A (en) * 1978-10-09 1980-04-12 Hitachi Ltd Quick nitriding method for stainless steel and heat- resisting steel utilized fusion
JPH0741933A (en) * 1993-07-23 1995-02-10 Aisin Seiki Co Ltd Local heating flame carburization heat treating device
JPH08176650A (en) * 1994-12-27 1996-07-09 Nkk Corp Laser carbonizing and quenching equipment
JP2008214750A (en) * 2007-02-05 2008-09-18 Jtekt Corp Heat treatment apparatus, heat treatment method, and compound machine using the same
JP2011026651A (en) * 2009-07-23 2011-02-10 Toyota Motor Corp Carburizing method and carburizing device
JP2014055343A (en) * 2012-09-14 2014-03-27 Nhk Spring Co Ltd Compression coil spring and manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550458A (en) * 1978-10-09 1980-04-12 Hitachi Ltd Quick nitriding method for stainless steel and heat- resisting steel utilized fusion
JPH0741933A (en) * 1993-07-23 1995-02-10 Aisin Seiki Co Ltd Local heating flame carburization heat treating device
JPH08176650A (en) * 1994-12-27 1996-07-09 Nkk Corp Laser carbonizing and quenching equipment
JP2008214750A (en) * 2007-02-05 2008-09-18 Jtekt Corp Heat treatment apparatus, heat treatment method, and compound machine using the same
JP2011026651A (en) * 2009-07-23 2011-02-10 Toyota Motor Corp Carburizing method and carburizing device
JP2014055343A (en) * 2012-09-14 2014-03-27 Nhk Spring Co Ltd Compression coil spring and manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019093290A1 (en) * 2017-11-08 2019-05-16 株式会社デンソー Gas carburization device and gas carburization method
JP2019085623A (en) * 2017-11-08 2019-06-06 株式会社デンソー Gas carburization apparatus, and gas carburization method
CN111315913A (en) * 2017-11-08 2020-06-19 株式会社电装 Gas carburizing apparatus and gas carburizing method
CN111315913B (en) * 2017-11-08 2022-03-11 株式会社电装 Gas carburizing apparatus and gas carburizing method
JP2019173080A (en) * 2018-03-28 2019-10-10 株式会社アマダホールディングス Laser processing device, thermal refining method by laser beam, and method for producing thermally refined material
JP7097206B2 (en) 2018-03-28 2022-07-07 株式会社アマダ Laser processing equipment, heat tempering method using laser light, and manufacturing method of heat tempering material

Also Published As

Publication number Publication date
JP6387916B2 (en) 2018-09-12

Similar Documents

Publication Publication Date Title
JP5658934B2 (en) Carburizing and quenching method
JP2006265606A (en) High frequency induction heat-treatment method, high frequency induction heat-treatment facility and high frequency induction heat-treating article
JP6387916B2 (en) Method and apparatus for hardening steel surface
JP2009203498A (en) High frequency-induction heating method, heating apparatus and bearing
WO2019156169A1 (en) Tool material manufacturing method and tool material
JP5187680B2 (en) Method for case hardening treatment of components and processing apparatus for carrying out the method
KR102288017B1 (en) Apparatus and method for heat treatment
JP5026175B2 (en) Workpiece manufacturing method
JP6168008B2 (en) Steel manufacturing method
WO2014069149A1 (en) Heat treatment method and method for manufacturing machine part
JP2013181226A (en) Quenching method and quenching apparatus
JP5274762B2 (en) Heat treatment method
EP1598440B1 (en) Method of gas carburizing
JP6113927B2 (en) Heat treatment method and apparatus for friction lining
JP2012102379A (en) Method and apparatus for applying heat treatment to long-length metal part, and long-length metal part to which heat treatment is applied with the method
JP7232452B2 (en) Plating film surface modification method and apparatus
JP2004315851A (en) Method and apparatus for induction hardening of rack bar
JP2016069671A (en) Manufacturing apparatus of cast-iron friction member and manufacturing method of the same
US7416614B2 (en) Method of gas carburizing
JP2007231367A (en) Heat treatment method and device
JP2006265589A (en) Induction hardening apparatus
KR101543879B1 (en) Sleeve assembling apparatus of plating roll
JP2016194132A (en) Method for quenching steel sheet
JP2009293076A (en) Heat-treatment method
JP2003103382A (en) Setting method for laser beam irradiation position

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180730

R151 Written notification of patent or utility model registration

Ref document number: 6387916

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151