JP2017023023A - Seafood anesthetization method - Google Patents

Seafood anesthetization method Download PDF

Info

Publication number
JP2017023023A
JP2017023023A JP2015143263A JP2015143263A JP2017023023A JP 2017023023 A JP2017023023 A JP 2017023023A JP 2015143263 A JP2015143263 A JP 2015143263A JP 2015143263 A JP2015143263 A JP 2015143263A JP 2017023023 A JP2017023023 A JP 2017023023A
Authority
JP
Japan
Prior art keywords
oxygen
water
anesthesia
carbon dioxide
fish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015143263A
Other languages
Japanese (ja)
Inventor
威一郎 藤川
Iichiro Fujikawa
威一郎 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2015143263A priority Critical patent/JP2017023023A/en
Publication of JP2017023023A publication Critical patent/JP2017023023A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Farming Of Fish And Shellfish (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a seafood anesthetization method hardly deteriorating the quality of seafood although using a compact and simple device, capable of anesthetizing for a short time period, and capable of maintaining the anesthetization stably for a prolonged period.SOLUTION: An anesthetization method according to the invention comprises: an anesthetization step of dissolving carbon dioxide of a predetermined quantity necessary for anesthetization of a seafood in water; and an oxygen super-saturation step of keeping the oxygen dissolved in water in a super-saturation state. At the oxygen super-saturation step, the quantity of dissolved oxygen in water is kept at 12 mg/l or more in a prescribed proper water temperature region of each seafood.SELECTED DRAWING: Figure 5

Description

本発明は、魚介類の麻酔方法に関する。詳しくは、コンパクトで簡単な装置を使いながら、魚介類の品質を劣化させにくく、短時間で麻酔をかけ、長時間にわたって麻酔を安定して持続できる魚介類の麻酔方法に係わるものである。   The present invention relates to a method for anesthetizing fish and shellfish. More specifically, the present invention relates to a method for anesthetizing fish and shellfish that can be used to make anesthesia in a short time and stably maintain anesthesia over a long period of time while using a compact and simple device.

従来より、魚の養殖現場で、疾病予防のためのワクチン接種、噛み合い防止のための歯切り、標識装着、体重測定などを行う際、あるいは活魚の輸送を行う際などに、魚が暴れると、作業性の低下、魚体の損傷、魚の生活活動の低下を招くことから、魚に麻酔をかけて静かにさせる技術が求められている。   Traditionally, when a fish is exposed in a fish farm, such as when vaccination is used to prevent disease, biting is performed to prevent biting, labeling, weight measurement, or when live fish is transported, Since this leads to a decline in sex, damage to the fish body, and a decrease in fish life activity, there is a need for a technique for anesthetizing and quieting the fish.

しかし、麻酔技術のうち、薬物による麻酔の場合は、魚の体内に薬成分などの異物が残留して品質が落ちる恐れがある。また、魚の体温を徐々に低下させて代謝を減少させる低温麻酔の場合は、魚に麻酔がかかるまでに長時間を費やし、大がかりな装置も必要になる。このため、現在、二酸化炭素による麻酔技術が注目されている。   However, among anesthesia techniques, in the case of anesthesia with drugs, foreign substances such as drug components may remain in the body of the fish and the quality may deteriorate. In the case of low-temperature anesthesia that gradually lowers the body temperature of fish to reduce metabolism, it takes a long time until the fish is anesthetized, and a large-scale device is also required. For this reason, anesthesia technology using carbon dioxide is currently attracting attention.

この二酸化炭素による麻酔技術に関しては、麻酔効果を有する濃度の溶存二酸化炭素と、魚が生存するために必要な濃度の溶存酸素(Dissolved Oxygen)とを含む麻酔用炭酸水を予め製造しておき、この麻酔用炭酸水を水槽に供給し、その中に魚を投入して麻酔をかける技術が公知となっている(例えば、特許文献1参照)。   Regarding the carbon dioxide anesthesia technology, an anesthetic carbonated water containing dissolved carbon dioxide having an anesthetic effect and dissolved oxygen (Dissolved Oxygen) at a concentration necessary for the fish to survive is prepared in advance. A technique of supplying anesthesia carbonated water to an aquarium and putting fish into it for anesthesia is known (for example, see Patent Document 1).

更に、水槽の水に二酸化炭素を通気し、麻酔効果を有する濃度まで溶存二酸化炭素を上昇させると同時に、水中に微細な酸素気泡を持続的に供給し、魚の鰓部分に酸素気泡を直接接触させるようにして麻酔をかける技術も公知となっている(例えば、特許文献2参照)。   Furthermore, carbon dioxide is ventilated into the water in the aquarium, and dissolved carbon dioxide is raised to a concentration having an anesthetic effect. At the same time, fine oxygen bubbles are continuously supplied into the water, and oxygen bubbles are brought into direct contact with the fish cage. Thus, a technique for applying anesthesia is also known (see, for example, Patent Document 2).

特開2008−54559号公報JP 2008-54559 A 特開2014−39514号公報JP 2014-39514 A

しかしながら、前者の技術では、溶存酸素の濃度(以下、「溶存酸素量」とする)DOが、例えば1.5mg/l以上かつ飽和酸素濃度以下と少ないことから、鰓から吸収される酸素量も少ない。このため、魚の各個体の酸素需要量を充分には満たすことができずに、麻酔にかかってから魚が斃死するまでの経過時間(以下、「麻酔限界時間」とする)が、最長でも20分と短い。   However, in the former technique, since the concentration of dissolved oxygen (hereinafter referred to as “the amount of dissolved oxygen”) DO is as small as 1.5 mg / l or more and the saturated oxygen concentration or less, for example, the amount of oxygen absorbed from soot is also low. Few. For this reason, the oxygen demand of each individual fish cannot be sufficiently satisfied, and the elapsed time from the start of anesthesia to the death of the fish (hereinafter referred to as “anesthetic limit time”) is 20 at the longest. Minute and short.

特に、生魚の輸送では、一般に、麻酔状態を短くても5時間以上は継続させる必要があり(以下、「必要麻酔時間」とする)、これよりも麻酔限界時間が短いと、輸送の途中で魚が呼吸不全を起こして斃死してしまう。なお、以下の説明における溶存ガス量は、全て1気圧下での値とする。   In particular, when transporting raw fish, it is generally necessary to continue for at least 5 hours (hereinafter referred to as “required anesthesia time”) even if the state of anesthesia is short. Fish dying due to respiratory failure. In the following description, all dissolved gas amounts are values under 1 atm.

後者の技術では、酸素気泡を魚の鰓の部分に直接接触させる必要から、酸素気泡を、麻酔がかかるまで魚の活動する水槽の全体にわたり、しかも鰓の部分に向かって、精度良く持続的に供給しなければならない。   In the latter technique, since oxygen bubbles need to be in direct contact with the fish cage, the oxygen bubbles are supplied accurately and continuously throughout the aquarium where the fish is active until anesthesia is applied. There must be.

このため、複雑で大がかりな酸素供給装置を設けることが必須となり、麻酔装置が大型化すると共に、生魚の輸送の際の水槽の振動などが原因で酸素気泡が鰓まで届かない恐れもあり、この場合は鰓から吸収される酸素量が少なくなり、前者の技術と同様に、輸送の途中で魚が呼吸不全を起こして斃死してしまう。   For this reason, it is indispensable to provide a complicated and large oxygen supply device, the anesthesia device is enlarged, and there is a possibility that oxygen bubbles may not reach the cage due to vibration of the aquarium during transport of raw fish. In this case, the amount of oxygen absorbed from the carp is reduced, and as with the former technique, the fish becomes drowned due to respiratory failure during transportation.

上記の目的を達成するために、本発明の麻酔方法は、魚介類の麻酔に要する所定量の二酸化炭素を水中に溶存させる麻酔工程と、水中の溶存酸素を過飽和状態に維持する酸素過飽和工程とを備えている。   In order to achieve the above object, the anesthesia method of the present invention includes an anesthesia step for dissolving a predetermined amount of carbon dioxide required for anesthesia of seafood in water, and an oxygen supersaturation step for maintaining dissolved oxygen in the water in a supersaturated state. It has.

そして、魚介類の麻酔に要する所定量の二酸化炭素を水中に溶存させる麻酔工程を備えることにより、魚介類の品質を良好に保ったまま、簡単な装置を使って、迅速に麻酔をかけることができる。すなわち、大気中や生物の体内に含まれる二酸化炭素が使用されるため、麻酔薬のような異物が魚介類の体内に残留することがない。しかも、二酸化炭素は水に溶解しやすいため、低温麻酔とは異なり、ガスボンベなどからの二酸化炭素を水中に通気するだけの簡単な装置で、溶存二酸化炭素の濃度を、麻酔効果を有する濃度まで短時間で上昇させることができる。   And by providing an anesthesia process that dissolves a predetermined amount of carbon dioxide required for anesthesia of seafood in water, it is possible to quickly anesthetize using simple equipment while maintaining good quality of seafood. it can. That is, since carbon dioxide contained in the atmosphere or living organism is used, foreign substances such as anesthetics do not remain in the fish and shellfish. Moreover, because carbon dioxide is easily dissolved in water, unlike low-temperature anesthesia, the concentration of dissolved carbon dioxide is reduced to a level that has an anesthetic effect with a simple device that simply vents carbon dioxide from a gas cylinder or the like into the water. Can be raised in time.

更に、水中の溶存酸素を過飽和状態に維持する酸素過飽和工程を備えることにより、コンパクトで簡単な装置を使って、安定した長時間麻酔をかけることができる。すなわち、過飽和状態では水中に多量の溶存酸素が存在するため、鰓から充分な量の酸素が吸収されて各個体の酸素需要量を満たし、麻酔限界時間を長くすることができる。しかも、酸素気泡を魚介類の鰓の部分に直接接触させる必要がないため、ガスボンベなどからの酸素を水中の任意部分に通気するだけの、コンパクトで簡単な装置を用いることができる。   Furthermore, by providing an oxygen supersaturation step for maintaining dissolved oxygen in water in a supersaturated state, a stable and long-term anesthesia can be performed using a compact and simple device. That is, since a large amount of dissolved oxygen exists in the water in the supersaturated state, a sufficient amount of oxygen is absorbed from the salmon to satisfy the individual oxygen demand, and the anesthetic limit time can be extended. In addition, since it is not necessary to bring oxygen bubbles into direct contact with the seafood salmon, it is possible to use a compact and simple device in which oxygen from a gas cylinder or the like is vented to any part of the water.

また、二酸化炭素が前記所定量に達した際の水中の溶存酸素を過飽和状態とする場合は、魚介類が麻酔にかかった際、水中に多量の溶存酸素が存在するため、鰓から充分な量の酸素が吸収されて各個体の酸素需要量を満たすことができる。これにより、麻酔直後に酸素吸収が間に合わずに魚介類が呼吸不全を起こすのを、確実に防止することができる。   In addition, when the dissolved oxygen in water when carbon dioxide reaches the predetermined amount is supersaturated, a large amount of dissolved oxygen exists in the water when seafood is anesthetized. The amount of oxygen absorbed is sufficient to meet the oxygen demand of each individual. As a result, it is possible to reliably prevent fish and shellfish from causing respiratory failure due to insufficient oxygen absorption immediately after anesthesia.

また、前述した酸素過飽和工程では、各魚介類の所定の適水温域にて、水中の溶存酸素量を12mg/l以上に保持するものである。   Moreover, in the oxygen supersaturation step described above, the amount of dissolved oxygen in water is maintained at 12 mg / l or more in a predetermined appropriate water temperature range for each fish and shellfish.

ここで、適水温域とは、魚介類の生活活動が良好に維持される水温域であって、魚介類の種類によって異なる。例えば、イシダイでは17〜27℃、ブリでは18〜28℃、スズキでは10〜28℃である。そして、いずれの適水温域から外れても、魚介類の動きが鈍って摂餌行動が急激に落ちて衰弱したり、場合によっては仮死状態に陥る。   Here, the appropriate water temperature range is a water temperature range in which the daily activities of fish and shellfish are well maintained, and varies depending on the type of fish and shellfish. For example, it is 17-27 ° C. for Ishidai, 18-28 ° C. for yellowtail, and 10-28 ° C. for Suzuki. And even if it remove | deviates from any suitable water temperature range, the movement of seafood dulls and feeding behavior falls suddenly and weakens, or it falls into a temporary death state depending on the case.

このような適水温域にて、水中の溶存酸素量は、12mg/l以上とする。
溶存酸素量が12mg/l未満では、水中の酸素濃度が低くて鰓から吸収される酸素量が不足し、各個体の酸素需要量を充分には満たすことができず、魚介類が呼吸不全を起こして短時間で斃死する。
In such an appropriate water temperature range, the amount of dissolved oxygen in water is 12 mg / l or more.
If the amount of dissolved oxygen is less than 12 mg / l, the oxygen concentration in the water is low and the amount of oxygen absorbed from the trough is insufficient, so that the individual oxygen demand cannot be satisfied sufficiently, and fish and shellfish have respiratory failure. Wake up and drown in a short time.

更に、この溶存酸素量12mg/lとは、水温約6℃における酸素の飽和溶解度に相当すると共に、飽和溶解度は高温ほど減少し、更に、一般に魚介類の適水温域は水温6℃よりも高温側に存在することから、魚介類の適水温域においては、溶存酸素量12mg/l以上にすることで常に過飽和状態に維持することができる。   Furthermore, the dissolved oxygen amount of 12 mg / l corresponds to the saturation solubility of oxygen at a water temperature of about 6 ° C., and the saturation solubility decreases as the temperature increases. Further, generally, the appropriate water temperature range for seafood is higher than the water temperature of 6 ° C. Therefore, in a proper water temperature range for fish and shellfish, it is always possible to maintain a supersaturated state by setting the dissolved oxygen amount to 12 mg / l or more.

また、二酸化炭素含有ガスを気孔から噴出する第一散気管と、酸素含有ガスを気孔から噴出する第二散気管とを別体に設けて水中に配置すると共に、気孔の直径を2μm以上100μm以下に設定する。   In addition, the first air diffuser for ejecting the carbon dioxide-containing gas from the pores and the second air diffuser for ejecting the oxygen-containing gas from the pores are provided separately in water, and the diameter of the pores is 2 μm or more and 100 μm or less. Set to.

そして、二酸化炭素含有ガスを気孔から噴出する第一散気管と、酸素含有ガスを気孔から噴出する第二散気管とを別体に設けて水中に配置する場合には、ガスの種類や機能などに応じて、適正な大きさや形状の気孔を選択することができる。これにより、供給するガスの種類毎に、気泡の大きさや量などを自在に調節し、二酸化炭素の溶解速度を上げて麻酔にかかるまでの時間を短縮したり、溶存酸素量を高精度で制御し、麻酔作業の効率化やガスコストの低減を図ることができる。   In the case where the first air diffuser for ejecting the carbon dioxide-containing gas from the pores and the second air diffuser for ejecting the oxygen-containing gas from the pores are provided separately and placed in water, the type and function of the gas, etc. Accordingly, pores having an appropriate size and shape can be selected. This makes it possible to freely adjust the size and amount of bubbles for each type of gas supplied, increase the dissolution rate of carbon dioxide, shorten the time required for anesthesia, and control the amount of dissolved oxygen with high accuracy. In addition, the efficiency of anesthesia work and the reduction of gas costs can be achieved.

更に、気孔の直径は2μm以上100μm以下に設定する。
気孔の直径が2μm未満では、噴出する気泡が微小となって単位体積あたりのガス溶解速度は増すが、気孔の目詰まりが著しくなる。特に、ナノレベルの直径の気孔では、高いガス圧が必要となって配管コストが高くなり、点検頻度も多くなってメンテナンスコストが増加する。一方、気孔の直径が100μm超えでは、必要ガス量が多くなってガスコストが著しく増加する。
Furthermore, the diameter of the pores is set to 2 μm or more and 100 μm or less.
When the diameter of the pores is less than 2 μm, the bubbles to be ejected are minute and the gas dissolution rate per unit volume increases, but the pores are clogged significantly. In particular, pores with a nano-level diameter require a high gas pressure, which increases piping costs, increases the frequency of inspections, and increases maintenance costs. On the other hand, if the pore diameter exceeds 100 μm, the required gas amount increases and the gas cost increases remarkably.

本発明に係わる魚介類の麻酔方法は、コンパクトで簡単な装置を使いながら、魚介類の品質を劣化させにくく、短時間で麻酔をかけ、長時間にわたって麻酔を安定して持続できるものとなっている。   The anesthesia method for seafood according to the present invention is such that while using a compact and simple device, the quality of the seafood is hardly deteriorated, and anesthesia is applied in a short time, and anesthesia can be stably maintained for a long time. Yes.

本発明に係わる麻酔装置の全体構成を示す斜視図である。It is a perspective view which shows the whole structure of the anesthesia apparatus concerning this invention. イシダイの麻酔限界時間と溶存酸素量との関係を示すグラフである。It is a graph which shows the relationship between the anesthetic limit time and the amount of dissolved oxygen of a sea bream. ブリの麻酔限界時間と溶存酸素量との関係を示すグラフである。It is a graph which shows the relationship between the anesthetic limit time of a yellowtail and the amount of dissolved oxygen. スズキの麻酔限界時間と溶存酸素量との関係を示すグラフである。It is a graph which shows the relationship between the anesthetic limit time of Suzuki and the amount of dissolved oxygen. 下限溶存酸素量と水温との関係を示すグラフである。It is a graph which shows the relationship between a lower limit dissolved oxygen amount and water temperature.

以下、魚介類の麻酔方法に関する本発明の実施の形態について、図面を参照しながら説明し、本発明の理解に供する。なお、図1の矢印Fで示す方向を前方とし、矢印Lで示す方向を左方とし、以下で述べる各部の位置や方向等はこの前方と左方を基準とするものである。   Hereinafter, embodiments of the present invention relating to an anesthesia method for fish and shellfish will be described with reference to the drawings to provide an understanding of the present invention. The direction indicated by the arrow F in FIG. 1 is the front, the direction indicated by the arrow L is the left, and the position and direction of each part described below are based on the front and the left.

まず、本発明を適用した麻酔装置1の全体構成について、図1により説明する。
麻酔装置1は、海水6が注水されてイシダイなどの試験魚7が収容される水槽2と、この水槽2内の海水6を浄化しつつ循環させるポンプ装置3と、海水6中に二酸化炭素ガスや酸素ガスの気泡を噴出させて各ガスを海水6中に溶存させる気泡発生装置4と、二酸化炭素ガスや酸素ガスの海水6中への溶存量を計測するガス濃度測定装置5とから構成される。
First, the overall configuration of an anesthesia apparatus 1 to which the present invention is applied will be described with reference to FIG.
The anesthesia apparatus 1 includes a water tank 2 in which seawater 6 is injected and test fish 7 such as sea bream is accommodated, a pump apparatus 3 that purifies and circulates the seawater 6 in the water tank 2, and carbon dioxide gas in the seawater 6. And a bubble generating device 4 for jetting bubbles of oxygen gas and dissolving each gas in the seawater 6, and a gas concentration measuring device 5 for measuring the dissolved amount of carbon dioxide gas or oxygen gas in the seawater 6. The

このうちの水槽2においては、床面11上に矩形厚板状の基台8が設置され、この基台8上に、アクリル樹脂などの透明部材から成るボックス状の水槽本体9が載置固定されている。そして、この水槽本体9の上部は開放されて蓋体10が覆設され、蓋体10には、試験魚7を出し入れするための左右の作業口10aと作業口10bが開口されている。   In the water tank 2, a rectangular thick plate-shaped base 8 is installed on the floor 11, and a box-shaped water tank body 9 made of a transparent member such as acrylic resin is placed and fixed on the base 8. Has been. And the upper part of this water tank main body 9 is open | released, the cover body 10 is covered, and the work body 10a and the work port 10b on either side for taking in / out the test fish 7 are opened in the cover body 10. As shown in FIG.

この作業口10aと作業口10bのいずれも、アクリル樹脂などの透明部材から成る平面視矩形状のカバー12によって覆われ、カバー12の周縁角部は、いずれも直線状に切断されて斜辺12aが形成されている。そして、この斜辺12aと作業口10aの後部左側の内隅部10a1との間には、隙間16aが開口され、斜辺12aと作業孔10aの前部左側の内隅部10a2との間には、隙間16bが開口され、斜辺12aと作業孔10bの後部右側の内隅部10b1との間には、隙間16cが開口されている。   Both the working port 10a and the working port 10b are covered with a rectangular cover 12 made of a transparent member such as an acrylic resin, and the peripheral corners of the cover 12 are both cut in a straight line so that the hypotenuse 12a is formed. Is formed. A gap 16a is opened between the oblique side 12a and the inner left corner 10a1 of the work port 10a, and between the oblique side 12a and the inner left corner 10a2 of the front of the working hole 10a, A gap 16b is opened, and a gap 16c is opened between the oblique side 12a and the inner right corner 10b1 of the rear portion of the work hole 10b.

これにより、水槽本体9の側方やカバー12の上方から、水槽2内に収容された海水6中の試験魚7の状態を確実に視認することができる。更に、前述した隙間16a、16b、16cなどを介することで、海水6中に溶解されなかった二酸化炭素ガスや酸素ガスを外部に排気したり、後述する給水チューブ14、吸引チューブ15を水槽2内の海水6中に容易に挿入することができる。   Thereby, the state of the test fish 7 in the seawater 6 accommodated in the aquarium 2 can be reliably visually recognized from the side of the aquarium main body 9 or from above the cover 12. Furthermore, carbon dioxide gas and oxygen gas that have not been dissolved in the seawater 6 are exhausted to the outside through the gaps 16a, 16b, and 16c described above, and a water supply tube 14 and a suction tube 15 described later are placed in the water tank 2. Can be easily inserted into the seawater 6.

また、ポンプ装置3においては、床面11上に水流ポンプ13が配置され、この水流ポンプ13の吐出口13aは、給水チューブ14の一端に接続され、給水チューブ14の他端は、隙間16aを通って海水6中に挿入されている。同様にして、水流ポンプ13の吸水口13bは、吸引チューブ15の一端に接続され、吸引チューブ15の他端は、隙間16cを通って海水6中に挿入されている。   Further, in the pump device 3, the water flow pump 13 is disposed on the floor surface 11, the discharge port 13 a of the water flow pump 13 is connected to one end of the water supply tube 14, and the other end of the water supply tube 14 has a gap 16 a. It is inserted into the seawater 6 through. Similarly, the water inlet 13b of the water flow pump 13 is connected to one end of the suction tube 15, and the other end of the suction tube 15 is inserted into the seawater 6 through the gap 16c.

これにより、水流ポンプ13を駆動すると、水槽2内の海水6が吸引チューブ15から吸い上げられ、水流ポンプ13内に組み込まれた濾過器によって不純物が濾過された後、給水チューブ14を通って水槽2内に再び戻され、この繰り返しによって海水6が循環され、水質が良好に維持される。   Accordingly, when the water flow pump 13 is driven, the seawater 6 in the water tank 2 is sucked up from the suction tube 15, and impurities are filtered by a filter incorporated in the water flow pump 13, and then passed through the water supply tube 14 and the water tank 2. The seawater 6 is circulated by repeating this operation, and the water quality is maintained well.

また、気泡発生装置4においては、二酸化炭素ガスボンベ17と酸素ガスボンベ18が、後ろから順に床面11上に立設されると共に、二酸化炭素ガスボンベ17と酸素ガスボンベ18の上部には、それぞれガス圧調整用のレギュレータ19とレギュレータ20が装着されている。   In the bubble generating device 4, the carbon dioxide gas cylinder 17 and the oxygen gas cylinder 18 are erected on the floor 11 in order from the rear, and the gas pressure is adjusted above the carbon dioxide gas cylinder 17 and the oxygen gas cylinder 18, respectively. Regulator 19 and regulator 20 are mounted.

ここで、前述した水槽本体9の底面9a上には、筒状の第一散気管23と第二散気管24が、長手方向を左右に向けて、後ろから順に並設されている。そして、このうちの第一散気管23は、左端が閉塞されると共に外周に多数の気孔23a1が径方向に穿孔された筒状の本管部23aと、この本管部23aの右端に連通され径方向に伸びる注入管部23bとから構成される。同様に、第二散気管24も、左端が閉塞されると共に外周に多数の気孔24a1が径方向に穿孔された筒状の本管部24aと、この本管部24aの右端に連通され径方向に伸びる注入管部24bとから構成される。   Here, on the bottom surface 9a of the water tank main body 9 described above, a cylindrical first air diffuser 23 and a second air diffuser 24 are arranged in parallel from the rear with the longitudinal direction turned to the left and right. Of these, the first air diffuser 23 is communicated with a cylindrical main pipe portion 23a whose left end is closed and a large number of pores 23a1 are formed in the outer periphery in the radial direction, and a right end of the main pipe portion 23a. It is comprised from the injection tube part 23b extended in radial direction. Similarly, the second air diffuser 24 is also connected to the cylindrical main pipe portion 24a whose left end is closed and a large number of pores 24a1 are radially drilled on the outer periphery, and to the right end of the main pipe portion 24a. And an injection tube portion 24b extending in the direction.

そして、このうちの注入管部23bと注入管部24bは、それぞれ、ガスチューブ21とガスチューブ22を介して、レギュレータ19の吐出管19aとレギュレータ20の吐出管20aに連通するように接続される。   Of these, the injection tube portion 23b and the injection tube portion 24b are connected to communicate with the discharge tube 19a of the regulator 19 and the discharge tube 20a of the regulator 20 through the gas tube 21 and the gas tube 22, respectively. .

これにより、レギュレータ19を使って適正な吐出圧力に調整された二酸化炭素ガスを、ガスチューブ21を介して第一散気管23に注入し、多数の細かい気孔23a1から気泡となって噴出させることができる。同様に、レギュレータ20を使って適正な吐出圧力に調整された酸素ガスを、ガスチューブ22を介して第二散気管24に注入し、多数の細かい気孔24a1から気泡となって噴出させることができる。   As a result, carbon dioxide gas adjusted to an appropriate discharge pressure using the regulator 19 is injected into the first air diffuser 23 via the gas tube 21 and ejected as bubbles from a number of fine pores 23a1. it can. Similarly, oxygen gas adjusted to an appropriate discharge pressure using the regulator 20 can be injected into the second air diffuser tube 24 via the gas tube 22 and ejected as bubbles from a number of fine pores 24a1. .

また、前述したガス濃度測定装置5においては、水槽2の左方に測定台28が配置され、この測定台28の上に、計測スタンド27が設置されている。そして、この計測スタンド27は、矩形板状の基台27aと、基台27a上の水槽2側より立設するガイドバー27bと、ガイドバー27bに一端が高さ調整可能かつ水平回動可能に外嵌された把持ステー27cとから構成される。   Further, in the gas concentration measuring device 5 described above, a measuring table 28 is disposed on the left side of the water tank 2, and a measuring stand 27 is installed on the measuring table 28. The measuring stand 27 has a rectangular plate-shaped base 27a, a guide bar 27b erected from the water tank 2 side on the base 27a, and one end of the guide bar 27b whose height can be adjusted and horizontally rotated. The gripping stay 27c is externally fitted.

この把持ステー27cの他端は、水槽2に向かって突出され、その先部から、二酸化炭素ガス濃度計26の柱状のセンサ体26bが垂設され、このセンサ体26b下端のセンサ部26b1は、前述した隙間16bを通って海水6内に浸漬されている。そして、センサ体26bの上端は、ケーブル26cを介して、計算部や表示部を備えると共に基台27a上に載置された二酸化炭素用の計測本体26aに接続されている。   The other end of the gripping stay 27c protrudes toward the water tank 2, and a columnar sensor body 26b of the carbon dioxide gas concentration meter 26 is suspended from the tip thereof, and the sensor part 26b1 at the lower end of the sensor body 26b is It is immersed in the seawater 6 through the gap 16b described above. And the upper end of the sensor body 26b is connected to the measurement main body 26a for carbon dioxide provided with the calculation part and the display part and mounted on the base 27a via the cable 26c.

これにより、海水6中に浸漬されたセンサ部26b1からの濃度信号が、ケーブル26cを介して計測本体26aに入力されると、二酸化炭素ガスの濃度が、逐次算出されて即時に表示されるようにしている。   Thus, when the concentration signal from the sensor unit 26b1 immersed in the seawater 6 is input to the measurement main body 26a via the cable 26c, the concentration of carbon dioxide gas is sequentially calculated and displayed immediately. I have to.

更に、水槽2内において、前述したセンサ体26b近傍の海水6中には、下端にセンサ部25b1を有する酸素ガス濃度計25の柱状のセンサ体25bが浸漬されている。そして、このセンサ体25bの上端にはケーブル25cの一端が接続され、ケーブル25cの他端は、前述したセンサ体26bと同じ隙間16bを通って、測定台28上に載置された酸素ガス用の計測本体25aに接続されている。   Further, in the water tank 2, the columnar sensor body 25 b of the oxygen gas concentration meter 25 having the sensor portion 25 b 1 at the lower end is immersed in the seawater 6 in the vicinity of the sensor body 26 b described above. One end of a cable 25c is connected to the upper end of the sensor body 25b, and the other end of the cable 25c passes through the same gap 16b as that of the sensor body 26b described above and is for oxygen gas placed on the measurement table 28. Connected to the measurement main body 25a.

これにより、海水6中に浸漬されたセンサ部25b1からの濃度信号が、ケーブル25cを介して計測本体25aに入力されると、酸素ガスの濃度が、逐次算出されて即時に表示されるようにしている。   Thus, when the concentration signal from the sensor unit 25b1 immersed in the seawater 6 is input to the measurement main body 25a via the cable 25c, the oxygen gas concentration is sequentially calculated and displayed immediately. ing.

次に、このような構成の麻酔装置1による麻酔工程と酸素過飽和工程について説明する。ただし、本発明は、かかる実施例に限定されるものではない。   Next, an anesthesia process and an oxygen supersaturation process by the anesthesia apparatus 1 having such a configuration will be described. However, the present invention is not limited to such examples.

麻酔工程においては、イシダイ、ブリ、スズキなどの試験魚7に対して、種類毎の適水温域内の水温と、適水温域外の水温にて、二酸化炭素による麻酔を行った。   In the anesthesia process, anesthesia with carbon dioxide was performed on the test fish 7 such as sea bream, yellowtail, and sea bass at a water temperature within the appropriate water temperature range and a water temperature outside the appropriate water temperature range for each type.

具体的には、電熱ヒータやドライアイスなどを使い、海水6を、イシダイでは15〜30℃、ブリでは15〜30℃、スズキでは5〜30℃の各水温に設定した後、水槽2のカバー12を外して開放した作業口10a、10bを通じ、生け簀から玉網などで捕獲した試験魚7を水槽2内に投入する。   Specifically, using an electric heater, dry ice, etc., the seawater 6 is set to 15-30 ° C. for sea bream, 15-30 ° C. for yellowtail, and 5-30 ° C. for Suzuki, and then the water tank 2 cover. The test fish 7 captured from the ginger with a ball net or the like is thrown into the aquarium 2 through the work ports 10a and 10b which are opened by removing 12.

そして、二酸化炭素ガスボンベ17からの二酸化炭素ガスの吐出圧力を、レギュレータ19を使って0.5MPaに設定した後、この二酸化炭素ガスを、二酸化炭素ガスボンベ17からガスチューブ21を介して第一散気管23に注入すると、二酸化炭素ガスが、この第一散気管23の本管部23aに設けた各気孔23a1から、多数の細かな気泡となって海水6中に噴出して溶解し、海水6中の溶存二酸化炭素が所定の濃度まで上昇する。   Then, after setting the discharge pressure of the carbon dioxide gas from the carbon dioxide gas cylinder 17 to 0.5 MPa using the regulator 19, the carbon dioxide gas is supplied from the carbon dioxide gas cylinder 17 through the gas tube 21 to the first air diffuser. 23, when carbon dioxide gas is injected into the seawater 6 from the pores 23a1 provided in the main pipe portion 23a of the first air diffusion pipe 23, the carbon dioxide gas is jetted into the seawater 6 and dissolved. The dissolved carbon dioxide increases to a predetermined concentration.

このような二酸化炭素溶存状態下で試験魚7が横転状態となった時に、試験魚7が麻酔にかかったものと判断し、レギュレータ19による二酸化炭素ガスの供給を停止する。この際、以下で詳述する酸素過飽和工程によって、水中の溶存酸素は過飽和状態となっている。   When the test fish 7 rolls over in such a state in which carbon dioxide is dissolved, it is determined that the test fish 7 has been anesthetized, and the supply of carbon dioxide gas by the regulator 19 is stopped. At this time, dissolved oxygen in water is in a supersaturated state by an oxygen supersaturation step described in detail below.

また、酸素過飽和工程は、前述したように二酸化炭素ガスボンベ17からの二酸化炭素ガスを第一散気管23に注入するのに並行し、レギュレータ20を使って吐出圧力を調整した酸素ガスを、酸素ボンベ18からガスチューブ22を介して第二散気管24に注入する。   Further, in the oxygen supersaturation step, as described above, in parallel with the injection of the carbon dioxide gas from the carbon dioxide gas cylinder 17 into the first air diffuser 23, the oxygen gas whose discharge pressure is adjusted using the regulator 20 is converted into the oxygen cylinder. 18 is injected into the second air diffuser 24 through the gas tube 22.

すると、酸素ガスが、この第二散気管24の本管部24aに設けた各気孔24a1から、多数の細かな気泡となって海水6中に噴出して溶解し、海水6中の溶存酸素が所定の濃度まで上昇して維持される。   Then, oxygen gas is ejected into the seawater 6 from the pores 24a1 provided in the main pipe portion 24a of the second air diffuser 24, and dissolved into the seawater 6 to dissolve dissolved oxygen in the seawater 6. It is maintained up to a predetermined concentration.

この際、溶存酸素量DOは、レギュレータ20で吐出圧力を変更して気孔24a1から吹き出す気泡の形態や量を変えることにより、約8mg/lから約15mg/lまでの間に設定する。更に、図示せぬエアポンプなどによって外気を海水6中に吹き込む、いわゆるエアレーションを行うことにより、溶存酸素量DOを約5mg/lに設定する。   At this time, the dissolved oxygen amount DO is set between about 8 mg / l and about 15 mg / l by changing the discharge pressure by the regulator 20 and changing the form and amount of bubbles blown out from the pores 24a1. Furthermore, the dissolved oxygen amount DO is set to about 5 mg / l by performing so-called aeration in which outside air is blown into the seawater 6 by an air pump (not shown).

そして、この溶存酸素量DOが同一圧、同一水温における酸素の飽和溶解度よりも高い場合は、溶存酸素が過飽和状態にあって過剰な酸素が水中に存在する。例えば、25℃における酸素の飽和溶解度は8.11mg/lであるが、後述する調査で示すように、25℃で溶存酸素量DOが12.1mg/lの場合には、溶存酸素が過飽和状態となって、試験魚7の鰓に対して充分な量の酸素を供給することができるのである。   And when this dissolved oxygen amount DO is higher than the saturation solubility of oxygen at the same pressure and the same water temperature, the dissolved oxygen is in a supersaturated state and excess oxygen exists in the water. For example, the saturation solubility of oxygen at 25 ° C. is 8.11 mg / l, but as shown in the investigation described later, when the dissolved oxygen amount DO is 12.1 mg / l at 25 ° C., the dissolved oxygen is in a supersaturated state. Thus, a sufficient amount of oxygen can be supplied to the salmon of the test fish 7.

次に、上述した麻酔工程と酸素過飽和工程とが麻酔限界時間に及ぼす影響を調査し、その調査結果を図2乃至図5により説明する。   Next, the influence of the above-described anesthesia process and oxygen supersaturation process on the anesthetic limit time will be investigated, and the results of the investigation will be described with reference to FIGS.

[イシダイ]
イシダイでは、15℃、20℃、25℃、30℃の各水温において、二酸化炭素ガスと酸素ガスを気泡として水中に噴出させ、このうちの二酸化炭素ガスによってイシダイに麻酔をかけると共に、外気または酸素ガスによって溶存酸素量DOを約5mg/lから約15mg/lまで変化させ、その際の麻酔限界時間を測定した。
[Ishidai]
In Ishidai, carbon dioxide gas and oxygen gas are jetted into water as bubbles at water temperatures of 15 ° C, 20 ° C, 25 ° C, and 30 ° C. The dissolved oxygen amount DO was changed from about 5 mg / l to about 15 mg / l by gas, and the anesthetic limit time at that time was measured.

ここで、麻酔限界時間とは、前述したように、麻酔にかかってから魚が斃死するまでの経過時間であるが、詳しくは、麻酔にかかってから、2時間までは5分間隔で、2時間を経過して3時間から12時間までは1時間間隔で、魚を運動させて活動状態を観察し、魚が呼吸を自発的に行っていると認められる場合を「生存」と判定し、魚の自発運動がなくなり、外部からの刺激にも反応しなくなった場合を「斃死」と判定し、この「斃死」に至るまでの経過時間を麻酔限界時間とした。   Here, as described above, the anesthesia limit time is an elapsed time from when the anesthesia is applied until the fish is drowned. From 3 hours to 12 hours after the passage of time, the fish is exercised and the activity state is observed, and the case where it is recognized that the fish is breathing spontaneously is determined as “survival”, When the spontaneous movement of the fish disappeared and it no longer responded to external stimuli, it was determined as “dead”, and the elapsed time until this “dead” was determined as the anesthetic limit time.

なお、各溶存酸素量DOにおける麻酔経過時間の測定は、12時間までとしているが、これは、魚が12時間経過しても「生存」していれば、更に長時間経過しても生存続けることが判明しているからである。   In addition, although the measurement of the anesthesia elapsed time in each dissolved oxygen amount DO is set to 12 hours, this means that if the fish is “alive” even if 12 hours have elapsed, it will continue to survive even if a longer time elapses. This is because it is known.

表1に、イシダイにおける麻酔限界時間の調査結果を示す。   Table 1 shows the investigation results of the limit time for anesthesia in the sea bream.

Figure 2017023023
Figure 2017023023

表1と図2によると、水温が15℃と30℃では、全ての溶存酸素量DOにおいて、麻酔限界時間は最長で1.3時間と短く、必要麻酔時間の5時間を大きく下回っている。   According to Table 1 and FIG. 2, when the water temperature is 15 ° C. and 30 ° C., the maximum anesthetic time is as short as 1.3 hours at all dissolved oxygen amounts DO, which is much shorter than the required 5 hours of anesthesia time.

これに対し、水温が20℃、25℃であってイシダイの適水温域17〜27℃にある場合は、溶存酸素量DOが約11mg/l以上または約12mg/l以上になると、海水中の酸素が高過飽和状態となり、麻酔にかかってから12時間経過してもイシダイは生存状態を維持できる。   On the other hand, when the water temperature is 20 ° C. and 25 ° C. and the appropriate water temperature range of the sea bream is 17 to 27 ° C., when the dissolved oxygen amount DO is about 11 mg / l or more or about 12 mg / l or more, Ishidai can maintain the survival state even when 12 hours have passed since the oxygen became highly supersaturated.

この際、たとえ水温が適水温域17〜27℃にあっても、従来のように、溶存酸素量DOが約5mg/lまたは約8mg/lのように少なくて海水中の酸素が未飽和状態では、麻酔限界時間が最長で0.8時間と短い   At this time, even if the water temperature is within a suitable water temperature range of 17 to 27 ° C., the dissolved oxygen amount DO is as small as about 5 mg / l or about 8 mg / l as in the conventional case, and the oxygen in the seawater is unsaturated. Then, the maximum anesthesia limit time is as short as 0.8 hours

[ブリ]
ブリでも、15℃、20℃、25℃、30℃の各水温において、イシダイと同様に、二酸化炭素ガスと酸素ガスを気泡として水中に噴出させ、このうちの二酸化炭素ガスによってブリに麻酔をかけると共に、外気または酸素ガスによって溶存酸素量DOを約5mg/lから約15mg/lまで変化させ、その際の麻酔限界時間を測定した。
[Buri]
Also in yellowtail, carbon dioxide gas and oxygen gas are jetted into water as bubbles at each water temperature of 15 ° C., 20 ° C., 25 ° C., and 30 ° C., and the yellowtail is anesthetized with carbon dioxide gas. In addition, the amount of dissolved oxygen DO was changed from about 5 mg / l to about 15 mg / l by outside air or oxygen gas, and the anesthetic limit time at that time was measured.

表2に、ブリにおける麻酔限界時間の調査結果を示す。   Table 2 shows the survey results of the anesthetic limit time in yellowtail.

Figure 2017023023
Figure 2017023023

表2と図3によると、水温が15℃と30℃では、全ての溶存酸素量DOにおいて、麻酔限界時間は最長で1.2時間と短く、必要麻酔時間の5時間を大きく下回っている。   According to Table 2 and FIG. 3, when the water temperature is 15 ° C. and 30 ° C., the maximum anesthetic limit time is as short as 1.2 hours at all dissolved oxygen amounts DO, which is much shorter than the required anesthetic time of 5 hours.

これに対し、水温が20℃、25℃であってブリの適水温域18〜28℃にある場合は、溶存酸素量DOが約11mg/l以上または約12mg/l以上になると、海水中の酸素が高過飽和状態となり、麻酔にかかってから12時間経過してもブリは生存状態を維持できる。   On the other hand, when the water temperature is 20 ° C. and 25 ° C. and the suitable water temperature range of the yellowtail is 18 to 28 ° C., when the dissolved oxygen amount DO is about 11 mg / l or more or about 12 mg / l or more, Oxygen is in a highly supersaturated state, and yellowtail can remain alive even after 12 hours have passed since anesthesia.

この際も、たとえ水温が適水温域18〜28℃にあっても、従来のように、溶存酸素量DOが約5mg/lまたは約8mg/lのように少なくて海水中の酸素が未飽和状態では、麻酔限界時間が最長で0.5時間と短い。   Even in this case, even if the water temperature is within a suitable water temperature range of 18 to 28 ° C., the dissolved oxygen amount DO is as low as about 5 mg / l or about 8 mg / l as in the conventional case, and oxygen in seawater is not saturated. In the state, the anesthesia limit time is as short as 0.5 hours at the longest.

[スズキ]
スズキでは、5℃、10℃、15℃、20℃、25℃、30℃の各水温において、イシダイと同様に、二酸化炭素ガスと酸素ガスを気泡として水中に噴出させ、このうちの二酸化炭素ガスによってスズキに麻酔をかけると共に、外気または酸素ガスによって溶存酸素量DOを約5mg/lから約15mg/lまで変化させ、その際の麻酔限界時間を測定した。
[Suzuki]
In Suzuki, at each water temperature of 5 ° C., 10 ° C., 15 ° C., 20 ° C., 25 ° C., and 30 ° C., carbon dioxide gas and oxygen gas are blown into water as bubbles, and carbon dioxide gas among them Suzuki was anesthetized and the amount of dissolved oxygen DO was changed from about 5 mg / l to about 15 mg / l by outside air or oxygen gas, and the anesthetic time limit was measured.

表3に、スズキにおける麻酔限界時間の調査結果を示す。   Table 3 shows the survey results of the limit time for anesthesia in Suzuki.

Figure 2017023023
Figure 2017023023

表3と図4によると、水温が5℃と30℃では、全ての溶存酸素量DOにおいて、麻酔限界時間は最長で1.3時間と短く、必要麻酔時間の5時間を大きく下回っている。   According to Table 3 and FIG. 4, when the water temperature is 5 ° C. and 30 ° C., the maximum anesthesia time is as short as 1.3 hours at all dissolved oxygen amounts DO, which is much shorter than the required anesthesia time of 5 hours.

これに対し、水温が10℃、15℃、20℃、25℃であってスズキの適水温域10〜28℃にある場合は、溶存酸素量DOが約11mg/l以上または約12mg/l以上になると、海水中の酸素が高過飽和状態となり、麻酔にかかってから12時間経過してもスズキは生存状態を維持できる。   On the other hand, when the water temperature is 10 ° C., 15 ° C., 20 ° C., 25 ° C. and the appropriate water temperature range of Suzuki is 10 to 28 ° C., the dissolved oxygen amount DO is about 11 mg / l or more or about 12 mg / l or more. Then, the oxygen in the seawater becomes highly supersaturated, and even if 12 hours have passed since anesthesia, Suzuki can maintain its survival state.

この際も、たとえ水温が適水温域10〜28℃にあっても、従来のように、溶存酸素量DOが約5mg/lまたは約8mg/lまたは約10mg/lのように少なくて海水中の酸素が未飽和状態では、麻酔限界時間が最長で1.1時間と短い。   Even in this case, even if the water temperature is within a suitable water temperature range of 10 to 28 ° C., the dissolved oxygen amount DO is as low as about 5 mg / l, about 8 mg / l, or about 10 mg / l as in the past, When the oxygen of the water is not saturated, the anesthetic limit time is a short 1.1 hours at the longest.

上記調査結果をまとめたものを図5に示す。
これによると、12時間以上の麻酔限界時間が認められるのに必要な最小限の溶存酸素量である下限溶存酸素量DOminは、魚の種類が異なり適水温域が変わっても、各適水温域において11mg/lまたは12mg/lであることがわかる。
A summary of the above survey results is shown in FIG.
According to this, the lower limit dissolved oxygen amount DOmin, which is the minimum amount of dissolved oxygen necessary for observing the anesthetic limit time of 12 hours or more, is different in the appropriate water temperature range even if the fish type is different and the appropriate water temperature range is changed. It can be seen that it is 11 mg / l or 12 mg / l.

従って、各適水温域の全範囲で12時間以上の麻酔限界時間を可能にするには、溶存酸素量DOを12mg/l以上(図5中の斜線部分で示す長時間麻酔可能範囲)に設定して保持すればよいことがわかる。この結果は、他の魚介類においても同様であった。   Therefore, in order to enable anesthesia limit time of 12 hours or more in the entire range of each appropriate water temperature range, the dissolved oxygen amount DO is set to 12 mg / l or more (the range in which long-term anesthesia is indicated by the hatched portion in FIG. 5). It can be seen that it should be held. This result was the same in other seafood.

以上のように、本発明を適用した魚介類の麻酔方法は、コンパクトで簡単な装置を使いながら、魚介類の品質を劣化させにくく、短時間で麻酔をかけ、長時間にわたって麻酔を安定して持続できるものとなっている。   As described above, the method for anesthesia of seafood to which the present invention is applied, while using a compact and simple device, hardly deteriorates the quality of seafood, anesthetizes in a short time, and stabilizes anesthesia for a long time. Sustainable.

23 第一散気管
23a1 気孔
24 第二散気管
24a1 気孔
23 1st air diffuser 23a1 pore 24 2nd air diffuser 24a1 pore

Claims (4)

魚介類の麻酔に要する所定量の二酸化炭素を水中に溶存させる麻酔工程と、
水中の溶存酸素を過飽和状態に維持する酸素過飽和工程とを備えた
魚介類の麻酔方法。
An anesthesia process in which a predetermined amount of carbon dioxide required for anesthesia of seafood is dissolved in water;
An anesthesia method for seafood comprising an oxygen supersaturation step for maintaining dissolved oxygen in water in a supersaturated state.
二酸化炭素が前記所定量に達した際の水中の溶存酸素を過飽和状態とする
請求項1に記載の魚介類の麻酔方法。
The method for anesthetizing fish and shellfish according to claim 1, wherein dissolved oxygen in water when carbon dioxide reaches the predetermined amount is supersaturated.
前記酸素過飽和工程では、
各魚介類の所定の適水温域にて、水中の溶存酸素量を12mg/l以上に保持する
請求項1または請求項2に記載の魚介類の麻酔方法。
In the oxygen supersaturation step,
The method for anesthetizing fish and shellfish according to claim 1 or 2, wherein the amount of dissolved oxygen in water is maintained at 12 mg / l or more in a predetermined appropriate water temperature range for each fish and shellfish.
二酸化炭素含有ガスを気孔から噴出する第一散気管と、酸素含有ガスを気孔から噴出する第二散気管とを別体に設けて前記水中に配置すると共に、
前記気孔の直径を2μm以上100μm以下に設定する
請求項1または請求項2または請求項3に記載の魚介類の麻酔方法。
A first air diffuser for ejecting carbon dioxide-containing gas from the pores and a second air diffuser for ejecting oxygen-containing gas from the pores are provided separately and disposed in the water,
The method for anesthetizing fish and shellfish according to claim 1, wherein the diameter of the pores is set to 2 μm or more and 100 μm or less.
JP2015143263A 2015-07-17 2015-07-17 Seafood anesthetization method Pending JP2017023023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015143263A JP2017023023A (en) 2015-07-17 2015-07-17 Seafood anesthetization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015143263A JP2017023023A (en) 2015-07-17 2015-07-17 Seafood anesthetization method

Publications (1)

Publication Number Publication Date
JP2017023023A true JP2017023023A (en) 2017-02-02

Family

ID=57944676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015143263A Pending JP2017023023A (en) 2015-07-17 2015-07-17 Seafood anesthetization method

Country Status (1)

Country Link
JP (1) JP2017023023A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6236575B1 (en) * 2017-06-15 2017-11-22 日建リース工業株式会社 Anesthesia maintenance system for seafood, anesthesia maintenance method and transport method
CN112693726A (en) * 2021-01-04 2021-04-23 哈尔滨铭川运输有限公司 Marine fresh food storage device and method
JP2022007500A (en) * 2020-06-26 2022-01-13 マルハニチロ株式会社 Anesthesia system and control device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6236575B1 (en) * 2017-06-15 2017-11-22 日建リース工業株式会社 Anesthesia maintenance system for seafood, anesthesia maintenance method and transport method
WO2018229940A1 (en) 2017-06-15 2018-12-20 日建リース工業株式会社 Method for managing fishes and shellfishes, anesthesia maintenance device, anesthesia maintenance system, anesthesia maintenance method and transportation method
KR20200008025A (en) 2017-06-15 2020-01-22 닛켄 리스 고교 가부시키가이샤 How to manage fish, anesthesia maintenance device, anesthesia maintenance system, anesthesia maintenance method and transportation method
CN110809400A (en) * 2017-06-15 2020-02-18 日商日建租赁工业株式会社 Aquatic animal management method, anesthesia maintenance device, anesthesia maintenance system, anesthesia maintenance method, and transportation method
AU2017418814B2 (en) * 2017-06-15 2020-03-05 Nikken Lease Kogyo Co., Ltd. Method for managing fishes and shellfishes, anesthesia maintenance device, anesthesia maintenance system, anesthesia maintenance method and transportation method
US10772306B2 (en) 2017-06-15 2020-09-15 Nikken Lease Kogyo Co., Ltd. System and method maintaining fish and shellfish in anesthetic state, and method of transporting fish and shellfish maintained in anesthetic state
JP2022007500A (en) * 2020-06-26 2022-01-13 マルハニチロ株式会社 Anesthesia system and control device
CN112693726A (en) * 2021-01-04 2021-04-23 哈尔滨铭川运输有限公司 Marine fresh food storage device and method
CN112693726B (en) * 2021-01-04 2022-08-30 浙江明辉蔬果配送股份有限公司 Marine fresh food storage device and method

Similar Documents

Publication Publication Date Title
AU2017418814B2 (en) Method for managing fishes and shellfishes, anesthesia maintenance device, anesthesia maintenance system, anesthesia maintenance method and transportation method
JP4951736B2 (en) Fish anesthesia equipment
KR101850530B1 (en) Method and device for anesthetizing fish
JP2017023023A (en) Seafood anesthetization method
WO2013051604A1 (en) Device for controlling dissolved oxygen amount
JP2017079628A (en) Method for controlling oxygen concentration dissolved in breeding water
CN205511612U (en) Fish live body is measured, inspection operation panel
JP2003333954A (en) Method and apparatus for raising fry
US20180206460A1 (en) Seafood shipping container
JP2014039514A5 (en)
JP2014039514A (en) Seafood anesthetization method and apparatus
FR3035298A1 (en) PROCESS FOR ANESTHESIATING FISH WITH CARBON DIOXIDE
JP2017099331A (en) Freshness maintaining device and freshness maintaining method
JP6052482B2 (en) Aquaculture device and culture method
CN202269277U (en) Circulating pool cultivation system
US20230249140A1 (en) High-flow, high-pressure inline saturator system and method thereof
RU73589U1 (en) Ozone Generator
CN216876707U (en) Operation panel is used in zebra fish operation
CN111096255A (en) Non-operative intervention fish artificial lung system and application thereof
RU147276U1 (en) DEVICE FOR MODELING NON-INVASIVE ADDITIONAL OXIGENATION OF RABBITS
JP6231780B2 (en) Oxygen water for fish and shellfish and its production system, fish and shellfish breeding device, fish and shellfish breeding method, fish and shellfish transport method and fish and shellfish oxygen ice
KR20240017503A (en) Carbon dioxide reducing apparatus for biofloc technology breeding water
Santilli et al. The effect of supplemental oxygen on the transarterial wall oxygen gradients at a prosthetic vascular graft to artery anastomosis in the rabbit
JP2007075054A (en) Hydroponic system
Malsin et al. Multiorgan Abnormalities Due to Beta-Catenin Stabilization in CD11c+ Myeloid Cells