JP2017022429A - Wireless antenna - Google Patents

Wireless antenna Download PDF

Info

Publication number
JP2017022429A
JP2017022429A JP2015135864A JP2015135864A JP2017022429A JP 2017022429 A JP2017022429 A JP 2017022429A JP 2015135864 A JP2015135864 A JP 2015135864A JP 2015135864 A JP2015135864 A JP 2015135864A JP 2017022429 A JP2017022429 A JP 2017022429A
Authority
JP
Japan
Prior art keywords
waveguide
signal
bending angle
antenna
direction changing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015135864A
Other languages
Japanese (ja)
Other versions
JP6517099B2 (en
Inventor
河合 邦浩
Kunihiro Kawai
邦浩 河合
浩司 岡崎
Koji Okazaki
浩司 岡崎
楢橋 祥一
Shoichi Narahashi
祥一 楢橋
福田 敦史
Atsushi Fukuda
敦史 福田
垂澤 芳明
Yoshiaki Taresawa
芳明 垂澤
卓馬 ▲高▼田
卓馬 ▲高▼田
Takuma Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Priority to JP2015135864A priority Critical patent/JP6517099B2/en
Publication of JP2017022429A publication Critical patent/JP2017022429A/en
Application granted granted Critical
Publication of JP6517099B2 publication Critical patent/JP6517099B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a wireless antenna that is not a slot antenna and capable of achieving a maximum gain of 10 dBi or more and a gain half-width of 50° or more.SOLUTION: A wireless antenna capable of transmitting and receiving a signal in millimeter-wave band or a sub-millimeter-wave band includes a cable-like wave guide 110. The wave guide 110 comprises a core 110a formed of a dielectric substance, and a coating part 110b formed of a dielectric substance so as to enclose the core 110a. A dielectric constant of the core 110a is higher than a dielectric constant of the coating part 110b. A part of the wave guide 110 has a bending angle of 90 degrees or more.SELECTED DRAWING: Figure 2

Description

本発明は、ミリ波帯または準ミリ波帯の信号の送受信に用いることのできる無線アンテナに関する。   The present invention relates to a wireless antenna that can be used for transmission / reception of a millimeter-wave band or quasi-millimeter-wave signal.

近時、広い帯域幅のチャネルを得るため、ミリ波(30GHz〜300GHz)や準ミリ波(明確な定義はないがおよそ20GHz〜30GHz)と呼ばれる高周波領域の移動体通信への適用が検討されている(非特許文献1)。   Recently, in order to obtain a wide bandwidth channel, application to high-frequency mobile communication called millimeter wave (30 GHz to 300 GHz) or quasi-millimeter wave (about 20 GHz to 30 GHz, although there is no clear definition) has been studied. (Non-Patent Document 1).

ところで、フリスの伝達公式(1)によれば、送信アンテナから距離Dだけ離れた地点に設けられた受信アンテナにおける電磁波の受信電力Pは周波数fの二乗に反比例する。cは光速、GSは送信側アンテナゲイン、GRは受信側アンテナゲイン、PSは送信電力である。
By the way, according to Friis' transmission formula (1), the received power P of the electromagnetic wave at the receiving antenna provided at the point away from the transmitting antenna by the distance D is inversely proportional to the square of the frequency f. c is the speed of light, G S is the transmission side antenna gain, G R is the reception side antenna gain, and P S is the transmission power.

このため、高周波領域において、できるだけ大きな信号を送受信するためには、アンテナゲインを大きくする必要がある。一般的に用いられるダイポールアンテナによると、最大利得は2.15dBi程度である。ミリ波帯で高利得を有するアンテナとして、テーパースロットアンテナ(TSA)が挙げられる(非特許文献2)。TSAは、スロットモードの伝送路において、地導体間隔を徐々に広がるような形状を有している。TSAが例えば図1(a)に示す形状を有する場合、図1(b)に示すように約10dBiの最大利得を得ることができ、XY平面上の利得半値幅は70°程度である。また、より広い利得半値幅を持つアンテナも提案されている(非特許文献3)。非特許文献3のアンテナによると利得半値幅は約120°であるが、最大利得が4〜7dBi程度である。   For this reason, in order to transmit and receive as large a signal as possible in the high frequency region, it is necessary to increase the antenna gain. According to a commonly used dipole antenna, the maximum gain is about 2.15 dBi. As an antenna having a high gain in the millimeter wave band, there is a tapered slot antenna (TSA) (Non-Patent Document 2). The TSA has a shape that gradually widens the ground conductor spacing in the slot mode transmission line. For example, when the TSA has the shape shown in FIG. 1A, a maximum gain of about 10 dBi can be obtained as shown in FIG. 1B, and the gain half-value width on the XY plane is about 70 °. An antenna having a wider gain half-value width has also been proposed (Non-patent Document 3). According to the antenna of Non-Patent Document 3, the half width of the gain is about 120 °, but the maximum gain is about 4 to 7 dBi.

「ドコモ5Gホワイトペーパー 2020年以降の5G無線アクセスにおける要求条件と技術コンセプト」、株式会社NTTドコモ、2014年9月“DOCOMO 5G White Paper Requirement and Technology Concept for 5G Wireless Access after 2020”, NTT DOCOMO, Inc., September 2014 K.S. Yngvesson, T.L. Korzeniowski,Y-S. Kim,E.L.Kollberg, et al., “The tapered slot antenna -a new integrated element for millimeter wave applications,” IEEE Trans. MTT, vol. 37, no. 2, pp. 365-374, Feb 1989K.S. Yngvesson, T.L. Korzeniowski, Y-S. Kim, E.L. Kollberg, et al., “The tapered slot antenna -a new integrated element for millimeter wave applications,” IEEE Trans. MTT, vol. 37, no. 2, pp. 365-374, Feb 1989 A. Kedar and K.S. Beenamole, “Wide beam tapered slot antenna for wide angle scanning phased array antenna”, Progress in electromagnetic research B, Vol. 27, pp.235-251, 2011A. Kedar and K.S. Beenamole, “Wide beam tapered slot antenna for wide angle scanning phased array antenna”, Progress in electromagnetic research B, Vol. 27, pp.235-251, 2011

本発明は、スロットアンテナ以外のアンテナであって、10dBi以上の最大利得と50°以上の利得半値幅を得ることができる無線アンテナを提供することを目的とする。   An object of the present invention is to provide a radio antenna that is an antenna other than a slot antenna and can obtain a maximum gain of 10 dBi or more and a gain half-value width of 50 ° or more.

本発明の無線アンテナは、ミリ波帯または準ミリ波帯の信号を送受信可能な無線アンテナであって、ケーブル状の導波路を含み、導波路は、誘電体で形成された芯部と、当該芯部を取り囲むように誘電体で形成された被覆部とで構成されており、芯部の誘電率は、被覆部の誘電率よりも大きく、導波路の一部が、90度以上の曲げ角度を有する。   The radio antenna of the present invention is a radio antenna capable of transmitting and receiving a millimeter-wave band or quasi-millimeter-wave band signal, including a cable-shaped waveguide, the waveguide including a core portion formed of a dielectric, It is composed of a coating part formed of a dielectric so as to surround the core part, and the dielectric constant of the core part is larger than the dielectric constant of the coating part, and a part of the waveguide has a bending angle of 90 degrees or more. Have

本発明によると、10dBi以上の最大利得と50°以上の利得半値幅を得ることができる。   According to the present invention, a maximum gain of 10 dBi or more and a gain half width of 50 ° or more can be obtained.

テーパースロットアンテナとその特性。(a)テーパースロットアンテナの平面図とその諸元。(c)テーパースロットアンテナのアンテナ特性。Tapered slot antenna and its characteristics. (A) Top view and specifications of tapered slot antenna. (C) Antenna characteristics of tapered slot antenna. 第1実施形態の無線アンテナの構成例。The structural example of the radio | wireless antenna of 1st Embodiment. 実施形態の無線アンテナの断面図。Sectional drawing of the radio | wireless antenna of embodiment. 曲げ角度を説明する図。The figure explaining a bending angle. 導波路が所定の曲げ角度(135°)の方向転換部を有する場合における、電磁界シミュレーションによるYZ平面上での曲率半径(45mm,55mm,75mm)と放射パターンとの関係を示したグラフ。The graph which showed the relationship between the curvature radius (45mm, 55mm, 75mm) on the YZ plane by electromagnetic field simulation, and a radiation pattern in case a waveguide has a direction change part of predetermined bending angle (135 degrees). 導波路が所定の曲げ角度(90°)と所定の曲率半径(45mm)の方向転換部を有する場合における、電磁界シミュレーションによるYZ平面上での放射パターンを示したグラフ。The graph which showed the radiation pattern on the YZ plane by an electromagnetic field simulation in case a waveguide has a direction change part of a predetermined | prescribed bending angle (90 degrees) and a predetermined curvature radius (45mm). 導波路が所定の曲げ角度(105°)と所定の曲率半径(45mm)の方向転換部を有する場合における、電磁界シミュレーションによるYZ平面上での放射パターンを示したグラフ。The graph which showed the radiation pattern on the YZ plane by an electromagnetic field simulation in case a waveguide has a direction change part of a predetermined | prescribed bending angle (105 degrees) and a predetermined curvature radius (45mm). 導波路が所定の曲げ角度(120°)と所定の曲率半径(45mm)の方向転換部を有する場合における、電磁界シミュレーションによるYZ平面上での放射パターンを示したグラフ。The graph which showed the radiation pattern on the YZ plane by an electromagnetic field simulation in case a waveguide has a direction change part of a predetermined | prescribed bending angle (120 degrees) and a predetermined curvature radius (45mm). 導波路が所定の曲げ角度(135°)と所定の曲率半径(45mm)の方向転換部を有する場合における、電磁界シミュレーションによるYZ平面上での放射パターンを示したグラフ。The graph which showed the radiation pattern on the YZ plane by an electromagnetic field simulation in case a waveguide has a direction change part of a predetermined | prescribed bending angle (135 degrees) and a predetermined curvature radius (45mm). 導波路が所定の曲げ角度(150°)と所定の曲率半径(45mm)の方向転換部を有する場合における、電磁界シミュレーションによるYZ平面上での放射パターンを示したグラフ。The graph which showed the radiation pattern on the YZ plane by an electromagnetic field simulation in case a waveguide has a direction change part of a predetermined | prescribed bending angle (150 degrees) and a predetermined curvature radius (45mm). 導波路が所定の曲げ角度(165°)と所定の曲率半径(45mm)の方向転換部を有する場合における、電磁界シミュレーションによるYZ平面上での放射パターンを示したグラフ。The graph which showed the radiation pattern on the YZ plane by an electromagnetic field simulation in case a waveguide has a direction change part of predetermined | prescribed bending angle (165 degrees) and predetermined curvature radius (45mm). 導波路が所定の曲げ角度(180°)と所定の曲率半径(45mm)の方向転換部を有する場合における、電磁界シミュレーションによるYZ平面上での放射パターンを示したグラフ。The graph which showed the radiation pattern on the YZ plane by an electromagnetic field simulation in case a waveguide has a direction change part of a predetermined | prescribed bending angle (180 degrees) and a predetermined curvature radius (45mm). 曲率半径が45mm,55mm,75mmのそれぞれの場合における、方向転換部の曲げ角度と10dBi角度幅との関係を示したグラフ。The graph which showed the relationship between the bending angle of a direction change part, and 10dBi angle width in each case where a curvature radius is 45mm, 55mm, and 75mm. 導波路が135°の曲げ角度と45mmの曲率半径の方向転換部を有する場合の無線アンテナの3次元放射パターン。A three-dimensional radiation pattern of a radio antenna when the waveguide has a turning portion with a bending angle of 135 ° and a radius of curvature of 45 mm. 第2実施形態の無線アンテナの構成例。The structural example of the radio | wireless antenna of 2nd Embodiment. 第2実施形態における放射パターンの例。(a)導波路が135°の曲げ角度と45mmの曲率半径の方向転換部を有する場合の無線アンテナの構成例。(b)放射パターン。The example of the radiation pattern in 2nd Embodiment. (A) A configuration example of a radio antenna in the case where the waveguide has a direction changing portion having a bending angle of 135 ° and a radius of curvature of 45 mm. (B) Radiation pattern. 第2実施形態の無線アンテナの変形例。The modification of the radio | wireless antenna of 2nd Embodiment. 第3実施形態における放射パターンの例。(a)導波路が180°の曲げ角度と35mmの曲率半径の方向転換部を有する場合の無線アンテナの構成例。(b)放射パターン。The example of the radiation pattern in 3rd Embodiment. (A) A configuration example of a radio antenna in the case where the waveguide has a turning portion with a bending angle of 180 ° and a curvature radius of 35 mm. (B) Radiation pattern. 第4実施形態の無線アンテナの構成例(其の壱)。The structural example (the 1) of the wireless antenna of 4th Embodiment. 第4実施形態の無線アンテナの構成例(其の弐)。The structural example (the 1) of the wireless antenna of 4th Embodiment.

<第1実施形態>
第1実施形態の無線アンテナ100は、図2に示すように、細長いケーブル状の導波路110を含む構成を持つ。第1実施形態では、導波路110の一端は、ミリ波(30GHz〜300GHz)あるいは準ミリ波(明確な定義はないがおよそ20GHz〜30GHz)の周波数を持つ信号を生成する信号生成装置800に接続されている。第1実施形態では、導波路110の他端は、ターミネーター870に接続されているが、導波路110の他端に何も接続されていない構成も許容される。この信号の種類に限定はなく、アナログ信号でも、デジタル信号でも、離散時間信号でも、連続時間信号でもよい。
<First Embodiment>
As shown in FIG. 2, the wireless antenna 100 of the first embodiment has a configuration including an elongated cable-shaped waveguide 110. In the first embodiment, one end of the waveguide 110 is connected to a signal generation device 800 that generates a signal having a frequency of millimeter wave (30 GHz to 300 GHz) or quasi-millimeter wave (about 20 GHz to 30 GHz although there is no clear definition). Has been. In the first embodiment, the other end of the waveguide 110 is connected to the terminator 870, but a configuration in which nothing is connected to the other end of the waveguide 110 is allowed. The type of the signal is not limited, and may be an analog signal, a digital signal, a discrete time signal, or a continuous time signal.

導波路110は、導波路110の長手方向の任意の位置における当該長手方向に垂直な断面図である図3に示すように、導波路110の長手方向に延びる、誘電体で形成された芯部110aと、芯部110aの外周に芯部110aを取り囲むように誘電体で形成された被覆部110bとで構成されている。芯部110aの断面形状は円であり、被覆部110bの断面形状は肉厚一定の中空円である。芯部110aの直径と被覆部110bの内円の直径は等しい。このように、実施形態の導波路110は、一様な構造、つまり、任意の位置での断面形状が一定であり、芯部110aと被覆部110bのそれぞれの材質が任意の位置で一定である構造を持っている。なお、図3では、導波路110の断面形状は同心円状であるが、このような構造に限定されず、例えば、同心矩形状であってもよい。   As shown in FIG. 3, which is a cross-sectional view perpendicular to the longitudinal direction at an arbitrary position in the longitudinal direction of the waveguide 110, the waveguide 110 is a core portion formed of a dielectric that extends in the longitudinal direction of the waveguide 110. 110a and a covering part 110b formed of a dielectric so as to surround the core part 110a on the outer periphery of the core part 110a. The cross-sectional shape of the core part 110a is a circle, and the cross-sectional shape of the covering part 110b is a hollow circle having a constant thickness. The diameter of the core part 110a is equal to the diameter of the inner circle of the covering part 110b. As described above, the waveguide 110 according to the embodiment has a uniform structure, that is, the cross-sectional shape at an arbitrary position is constant, and the materials of the core part 110a and the covering part 110b are constant at an arbitrary position. Have a structure. In FIG. 3, the cross-sectional shape of the waveguide 110 is concentric, but is not limited to such a structure, and may be a concentric rectangular shape, for example.

芯部110aの誘電率は、被覆部110bの誘電率よりも大きい。このため、導波路110の上記一端に入力された信号生成装置800からの入力信号の電磁界は、後述する方向転換部110cが存在しない場合、誘電率の大きい芯部110aに集中して、導波路110の上記他端に向かって低損失に伝搬し、導波路110の上記他端に接続されているターミネーター870によって吸収される。   The dielectric constant of the core part 110a is larger than the dielectric constant of the covering part 110b. For this reason, the electromagnetic field of the input signal from the signal generating device 800 input to the one end of the waveguide 110 is concentrated on the core 110a having a large dielectric constant when the direction changing unit 110c described later is not present. It propagates toward the other end of the waveguide 110 with a low loss and is absorbed by the terminator 870 connected to the other end of the waveguide 110.

導波路110の一部110cは、90度以上の曲げ角度を有する。以下、このような曲げ角度を有する導波路の一部(曲率が非ゼロの部分)を方向転換部110cと呼称する。この明細書では、図4に示すように、曲げ角度を、方向転換部110cに進入する信号の進入の向き(図4中、導波路の横の矢印で示す)と当該方向転換部110cを通過する信号の脱出の向き(図4中、導波路の横の矢印で示す)とがなす角度とする(図4にて、角度αを曲げ角度とする)。図4では、α=135[°]の例を示している。   A portion 110c of the waveguide 110 has a bending angle of 90 degrees or more. Hereinafter, a part of the waveguide having such a bending angle (a part where the curvature is non-zero) is referred to as a direction changing part 110c. In this specification, as shown in FIG. 4, the bending angle is determined based on the direction of entry of a signal entering the direction changing portion 110c (indicated by an arrow next to the waveguide in FIG. 4) and the direction changing portion 110c. The angle formed by the direction of signal escape (indicated by the arrow next to the waveguide in FIG. 4) (the angle α is the bending angle in FIG. 4). FIG. 4 shows an example of α = 135 [°].

方向転換部110cは、電磁波(帯域としては電波である)を放射する放射部として機能することができる。つまり、方向転換部110cが存在する場合、信号生成装置800からの入力信号は、この方向転換部110cで電磁波として放射される。なお、「放射」とは、方向転換部110cに到達した入力信号の電力のうち一部が方向転換部より誘電体の外部へと放出されることを言い、この外部へと放出された信号の電力の分だけ、当該方向転換部110cが放射部として機能しない場合(つまり、導波路として機能する場合)に実際には発生する伝送損失を超える損失が生ずる。方向転換部110cで電磁波の放射によって失われる電力は、通常、方向転換部110cに到達した入力信号の電力の一部であり、方向転換部110cは導波路としての機能を喪失していないので、残余の電力を持った入力信号は方向転換部110cを通過する。方向転換部110cを通過した入力信号は、放射部として機能しない部分、つまり、導波路として機能する部分の導波路110を伝搬し、導波路110の上記他端に向かって、低損失に伝搬する。方向転換部110cで放射された電磁波は、例えば、携帯電話などの通信端末(図示せず)が持つ無線アンテナによって受信される。   The direction changing unit 110c can function as a radiating unit that radiates electromagnetic waves (a radio wave as a band). That is, when the direction changing unit 110c exists, an input signal from the signal generating device 800 is radiated as an electromagnetic wave by the direction changing unit 110c. Note that “radiation” means that a part of the power of the input signal reaching the direction changing unit 110c is emitted from the direction changing unit to the outside of the dielectric, and the signal emitted to the outside is For the amount of electric power, a loss exceeding the transmission loss that actually occurs when the direction changing portion 110c does not function as a radiating portion (that is, when it functions as a waveguide) occurs. The power lost due to the radiation of electromagnetic waves in the direction changing unit 110c is usually a part of the power of the input signal that has reached the direction changing unit 110c, and the direction changing unit 110c has not lost its function as a waveguide. The input signal having the remaining power passes through the direction changing unit 110c. The input signal that has passed through the direction changing portion 110c propagates through the portion of the waveguide 110 that does not function as a radiating portion, that is, the portion that functions as a waveguide, and propagates toward the other end of the waveguide 110 with low loss. . The electromagnetic waves radiated from the direction changing unit 110c are received by a wireless antenna of a communication terminal (not shown) such as a mobile phone, for example.

方向転換部110cは、導波路110において一箇所だけしか存在しなくてもよいし二箇所以上存在してもよい。さらには、方向転換部110cは、導波路110の両端を除く導波路110の任意の部位であることが好ましい。導波路110は、単一の製品としての構成を持っていてもよいし、例えば同一の構造を持つ複数の導波路(以下、サブ導波路と呼称する)が一列に接続された構成を持っていてもよい。後者の場合、サブ導波路とサブ導波路との接続として、光ファイバーを参考に、融着による接続またはコネクタを用いる接続を採用できる。なお、当該後者の場合、サブ導波路とサブ導波路との接続部位は、通常、方向転換部110cとして機能できる部位にならない。   The direction changing part 110c may exist only in one place in the waveguide 110, or may exist in two or more places. Furthermore, the direction changing portion 110 c is preferably an arbitrary portion of the waveguide 110 excluding both ends of the waveguide 110. The waveguide 110 may have a configuration as a single product, for example, a configuration in which a plurality of waveguides having the same structure (hereinafter referred to as sub-waveguides) are connected in a row. May be. In the latter case, as a connection between the sub-waveguides, a connection by fusion or a connection using a connector can be adopted with reference to the optical fiber. In the latter case, the connection portion between the sub waveguide and the sub waveguide is not usually a portion that can function as the direction changing portion 110c.

方向転換部110cで電磁波の放射によって失われる電力は、導波路110の径、芯部110aと被覆部110bのそれぞれの材質、方向転換部110cの湾曲の程度などに依存する。湾曲の程度を表す指標は、例えば、曲率、曲率半径、曲げ角度、曲率と曲げ角度との組み合わせ、曲率半径と曲げ角度との組み合わせ、である。例示した指標を用いる場合には、例えば、導波路110の長手方向に延びる芯部110aの中心線(つまり、導波路110の任意の断面での芯部110aの円の中心を結んだ線)を曲線と看做せばよい。図4では、曲率半径が45[mm]の例を示している。   The power lost due to electromagnetic wave radiation in the direction changing portion 110c depends on the diameter of the waveguide 110, the respective materials of the core portion 110a and the covering portion 110b, the degree of curvature of the direction changing portion 110c, and the like. The index indicating the degree of curvature is, for example, a curvature, a radius of curvature, a bending angle, a combination of a curvature and a bending angle, and a combination of a curvature radius and a bending angle. In the case of using the exemplified index, for example, a center line of the core part 110a extending in the longitudinal direction of the waveguide 110 (that is, a line connecting the centers of the circles of the core part 110a in an arbitrary cross section of the waveguide 110) is used. Just think of it as a curve. FIG. 4 shows an example in which the radius of curvature is 45 [mm].

図5は、芯部110a(誘電率:2.2、直径:4mm)と被覆部110b(誘電率:1.5、直径:20mm)とで構成された導波路110が所定の曲げ角度(135°)の方向転換部110c(図4参照)を有する場合における、電磁界シミュレーションによるYZ平面上での曲率半径(45mm,55mm,75mm)と放射パターンとの関係を示したグラフである。入力信号の周波数は40GHzである。ただし、誘電体によって発生する損失は無いものとした。XYZ軸は図4に示すとおり、芯部110aの中心線がYZ平面上に在るように設定した。図5から、曲率半径が小さいほど大きいゲインを得られることが分かる。さらに、図5から、方向転換部110cでは電磁波が均等に放射されるのではなく、方向転換部110cの頂点よりも入力信号の伝搬方向(図4にて、進入の向きと脱出の向きを参照のこと)に関して後方に位置する方向転換部110cの部位から電磁波が強く放射されることがわかる。なお、「頂点」とは、方向転換部110cにて曲率が一定でなければ曲率が最も大きくなる位置であり、曲率が非ゼロで一定であれば曲率一定の区間の中間の位置である。   FIG. 5 shows a direction in which a waveguide 110 composed of a core part 110a (dielectric constant: 2.2, diameter: 4 mm) and a covering part 110b (dielectric constant: 1.5, diameter: 20 mm) has a predetermined bending angle (135 °). It is the graph which showed the relationship between the curvature radius (45mm, 55mm, 75mm) on the YZ plane by electromagnetic field simulation, and a radiation pattern in the case of having the conversion part 110c (refer FIG. 4). The frequency of the input signal is 40 GHz. However, there was no loss caused by the dielectric. As shown in FIG. 4, the XYZ axes were set so that the center line of the core part 110a was on the YZ plane. FIG. 5 shows that a larger gain can be obtained as the curvature radius is smaller. Further, from FIG. 5, electromagnetic waves are not evenly radiated at the direction changing unit 110 c, but the input signal propagation direction from the apex of the direction changing unit 110 c (see the direction of entry and the direction of exit in FIG. 4). It can be seen that electromagnetic waves are strongly radiated from the portion of the direction changing portion 110c located rearward. Note that the “vertex” is a position where the curvature is maximized when the curvature is not constant in the direction changing unit 110c, and is a middle position of the section where the curvature is constant if the curvature is non-zero and constant.

図6〜図12は、芯部110a(誘電率:2.2、直径:4mm)と被覆部110b(誘電率:1.5、直径:20mm)とで構成された導波路110が所定の曲率半径(45mm)の方向転換部110cを有する場合における、電磁界シミュレーションによるYZ平面上での曲げ角度(90°,105°,120°,135°,150°,165°,180°)と放射パターンとの関係を示したグラフである。入力信号の周波数は40GHzである。ただし、誘電体によって発生する損失は無いものとした。XYZ軸は図4に示すとおりに設定した。図6〜図12から、放射パターンにおいて10dBi以上のゲインが得られている角度幅(以下、「10dBi角度幅」と呼称する)は、曲げ角度が90°では60°幅、曲げ角度が105°では85°幅、曲げ角度が120°では95°幅、曲げ角度が135°では110°幅であり、曲げ角度がこの角度範囲では、10dBi角度幅が曲げ角度の増大に応じて広くなっていくことがわかる。しかし、曲げ角度が150°では10dBi角度幅は110°幅であるが当該角度幅の一部にて放射パターンはリップル状の変化を示し、曲げ角度が165°ではリップル状の変化が大きくなり10dBi角度幅は65°幅に減少し、曲げ角度が180°では10dBi角度幅と理解できる範囲の全域にて放射パターンはリップル状の変化を示し10dBi角度幅は凡そ45°幅に減少している。このように、曲げ角度が150°以上では10dBi角度幅が曲げ角度の増大に応じて狭くなることがわかる。この例では、曲げ角度が概ね135°以上150°以下の場合に、良好な10dBi角度幅と、当該角度幅の範囲でリップル状の変化が少ない良好な放射パターンとが得られる。   6 to 12 show that a waveguide 110 constituted by a core part 110a (dielectric constant: 2.2, diameter: 4 mm) and a covering part 110b (dielectric constant: 1.5, diameter: 20 mm) has a predetermined radius of curvature (45 mm). The relationship between the bending angle on the YZ plane (90 °, 105 °, 120 °, 135 °, 150 °, 165 °, 180 °) and the radiation pattern in the case of having the direction changing portion 110c of FIG. It is the shown graph. The frequency of the input signal is 40 GHz. However, there was no loss caused by the dielectric. The XYZ axes were set as shown in FIG. 6 to 12, the angle width (hereinafter referred to as “10 dBi angle width”) at which a gain of 10 dBi or more is obtained in the radiation pattern is 60 ° width when the bending angle is 90 °, and the bending angle is 105 °. The width is 85 °, the bending angle is 95 ° when the bending angle is 120 °, and the bending angle is 110 ° when the bending angle is 135 °. When the bending angle is within this angle range, the 10 dBi angle width increases as the bending angle increases. I understand that. However, when the bending angle is 150 °, the 10 dBi angular width is 110 ° width, but the radiation pattern shows a ripple-like change at a part of the angular width, and when the bending angle is 165 °, the ripple-like change becomes large and 10 dBi. The angle width is reduced to 65 °, and when the bending angle is 180 °, the radiation pattern shows a ripple-like change throughout the range that can be understood as 10 dBi, and the 10 dBi angle is reduced to about 45 °. Thus, it can be seen that when the bending angle is 150 ° or more, the 10 dBi angular width becomes narrower as the bending angle increases. In this example, when the bending angle is approximately 135 ° or more and 150 ° or less, a good 10 dBi angular width and a good radiation pattern with little ripple-like change in the angular width range can be obtained.

図13は、曲率半径が45mm,55mm,75mmのそれぞれの場合における、方向転換部110cの曲げ角度と10dBi角度幅との関係を示したグラフである。ただし、芯部110aの誘電率は2.2、直径は4mmであり、被覆部110bの誘電率は1.5、直径は20mmである。図13から、曲げ角度が少なくとも90°以上であれば10dBi角度幅がほぼ50°以上であることがわかる。   FIG. 13 is a graph showing the relationship between the bending angle of the direction changing portion 110c and the 10 dBi angular width when the curvature radii are 45 mm, 55 mm, and 75 mm, respectively. However, the core 110a has a dielectric constant of 2.2 and a diameter of 4 mm, and the cover 110b has a dielectric constant of 1.5 and a diameter of 20 mm. From FIG. 13, it can be seen that if the bending angle is at least 90 ° or more, the 10 dBi angular width is approximately 50 ° or more.

また、図14は、芯部110a(誘電率:2.2、直径:4mm)と被覆部110b(誘電率:1.5、直径:20mm)とで構成された導波路110が135°の曲げ角度と45mmの曲率半径の方向転換部110c(図4参照)を有する場合の無線アンテナ100の3次元放射パターンを示している。図14から、x軸方向のゲインが抑制されていることがわかる。   Further, FIG. 14 shows that a waveguide 110 composed of a core part 110a (dielectric constant: 2.2, diameter: 4 mm) and a covering part 110b (dielectric constant: 1.5, diameter: 20 mm) has a bending angle of 135 ° and 45 mm. A three-dimensional radiation pattern of the wireless antenna 100 in the case of including the direction changing portion 110c (see FIG. 4) having a radius of curvature is shown. FIG. 14 shows that the gain in the x-axis direction is suppressed.

第1実施形態の無線アンテナ100は、送信用のアンテナとしてではなく、受信用のアンテナとしても使用できる。この場合、例えば、導波路110の上記一端には、信号生成装置800に替えて受信装置が接続される。例えば携帯電話から発せられた電磁波は方向転換部110cで吸収され、少なくとも3dBの損失を伴って、導波路110によって受信装置に伝達される。3dBの損失は、方向転換部110cで吸収された電磁波が導波路110の上記一端と上記他端とに向かって分配されることによって発生する。   The radio antenna 100 according to the first embodiment can be used not only as a transmission antenna but also as a reception antenna. In this case, for example, a reception device is connected to the one end of the waveguide 110 instead of the signal generation device 800. For example, an electromagnetic wave emitted from a mobile phone is absorbed by the direction changing unit 110c and transmitted to the receiving device through the waveguide 110 with a loss of at least 3 dB. The loss of 3 dB occurs when the electromagnetic wave absorbed by the direction changing unit 110c is distributed toward the one end and the other end of the waveguide 110.

導波路110の上記一端には、信号生成装置800に替えて送信機能と受信機能の両方を持つ送受信装置が接続されてもよい。   A transmission / reception apparatus having both a transmission function and a reception function may be connected to the one end of the waveguide 110 instead of the signal generation apparatus 800.

この他、(1)上記一端に信号生成装置800が接続されている導波路110の上記他端にターミネーター870に替えて受信装置を接続する構成も採用できるし、(2)上記一端に送受信装置が接続されている導波路110の上記他端にターミネーター870に替えて受信装置を接続する構成も採用できるし、(3)無線アンテナ100の上記一端と上記他端のそれぞれに受信装置を接続する構成も採用できるし、(4)無線アンテナ100の上記一端と上記他端のそれぞれに送受信装置を接続する構成も採用できる。特に、(2),(3),(4)の構成によると、図示しない合成装置が導波路110の両端に接続された装置の受信機能で受信した電磁波を合成することによって、上述の3dBの損失を解消することができる。   Besides, (1) a configuration in which a receiving device is connected to the other end of the waveguide 110 to which the signal generating device 800 is connected to the one end instead of the terminator 870 can be adopted, and (2) a transmitting / receiving device is connected to the one end. It is possible to adopt a configuration in which a receiving device is connected to the other end of the waveguide 110 to which the signal is connected instead of the terminator 870, and (3) the receiving device is connected to each of the one end and the other end of the wireless antenna 100. A configuration can also be employed, and (4) a configuration in which a transmitting / receiving device is connected to each of the one end and the other end of the wireless antenna 100 can be employed. In particular, according to the configurations of (2), (3), and (4), the combining device (not shown) combines the electromagnetic waves received by the receiving function of the device connected to both ends of the waveguide 110, thereby the above-mentioned 3 dB. Loss can be eliminated.

<第2実施形態>
第2実施形態では、図15に示すように、アイソレータ900aの第1端子にミリ波あるいは準ミリ波の周波数を持つ信号Sを生成する信号生成装置800aが接続されており、アイソレータ900aの第2端子に第1実施形態の無線アンテナ100を構成する導波路110の一端が接続されており、アイソレータ900bの第1端子にミリ波あるいは準ミリ波の周波数を持つ信号Sを生成する信号生成装置800bが接続されており、アイソレータ900bの第2端子に当該導波路110の他端が接続されている。アイソレータを用いているのは、定在波を作らないようにするためである。両信号S,Sの種類に限定はなく、アナログ信号でも、デジタル信号でも、離散時間信号でも、連続時間信号でもよい。また、信号Sの信号特性(例えば、周波数、位相、変調方式など)は信号Sの信号特性と同じでも異なってもよい。
Second Embodiment
In the second embodiment, as shown in FIG. 15, and signal generator 800a for generating the signals S 1 having a frequency of a millimeter wave or submillimeter wave to a first terminal of the isolator 900a is connected, the isolator 900a the two terminals one end of the waveguide 110 constituting the wireless antenna 100 of the first embodiment is connected, the signal generator for generating a signal S 2 having the frequency of the millimeter wave or submillimeter wave to a first terminal of the isolator 900b The device 800b is connected, and the other end of the waveguide 110 is connected to the second terminal of the isolator 900b. The reason for using an isolator is to prevent standing waves. The type of both signals S 1 and S 2 is not limited and may be an analog signal, a digital signal, a discrete time signal, or a continuous time signal. The signal characteristics of the signal S 1 (e.g., frequency, phase, modulation scheme, etc.) may be the same as or different from the signal characteristics of the signal S 2.

第2実施形態では、同時に、導波路110の一端に信号Sが入力され、導波路110の他端に信号Sが入力される。図16(b)に、芯部110a(誘電率:2.2、直径:4mm)と被覆部110b(誘電率:1.5、直径:20mm)とで構成された導波路110が135°の曲げ角度と45mmの曲率半径の方向転換部110cを有する場合の無線アンテナ100(図16(a)参照)の放射パターンを示す。図16から、信号Sによる放射パターンと信号Sによる放射パターンがそれぞれ得られており、信号Sの信号特性が信号Sの信号特性と同じ場合、極めて広い10dBi角度幅(約220°)が得られることがわかる。 In the second embodiment, the signal S 1 is input to one end of the waveguide 110 and the signal S 2 is input to the other end of the waveguide 110 at the same time. In FIG. 16B, a waveguide 110 composed of a core part 110a (dielectric constant: 2.2, diameter: 4 mm) and a covering part 110b (dielectric constant: 1.5, diameter: 20 mm) has a bending angle of 135 ° and 45 mm. The radiation pattern of the radio | wireless antenna 100 (refer Fig.16 (a)) in the case of having the direction change part 110c of the curvature radius of is shown. From Figure 16, the radiation pattern by the radiation pattern and the signal S 2 according to signals S 1 are obtained, respectively, when the same as the signal characteristics of the signal characteristics signal S 2 of the signals S 1, very wide 10dBi angular width (about 220 ° ) Is obtained.

信号Sの信号特性が信号Sの信号特性と同じ場合、図17に示すように、アイソレータ900aの第1端子に分配器950の第1端子が接続されており、アイソレータ900aの第2端子に第1実施形態の無線アンテナ100を構成する導波路110の一端が接続されており、アイソレータ900bの第1端子に分配器950の第2端子が接続されており、アイソレータ900bの第2端子に当該導波路110の他端が接続されており、分配器950の第3端子がミリ波あるいは準ミリ波の周波数を持つ信号を生成する信号生成装置800に接続されている構成を採用することもできる。 The same if the signal characteristic of the signal S 1 is the signal characteristic of the signal S 2, as shown in FIG. 17, the first terminal of the isolator 900a is connected the first terminal of the distributor 950, the second terminal of the isolator 900a One end of the waveguide 110 constituting the wireless antenna 100 of the first embodiment is connected to the first terminal of the isolator 900b, and the second terminal of the distributor 950 is connected to the second terminal of the isolator 900b. A configuration in which the other end of the waveguide 110 is connected and the third terminal of the distributor 950 is connected to a signal generation device 800 that generates a signal having a millimeter wave or quasi-millimeter wave frequency may be employed. it can.

図15や図17に示す構成において、アイソレータをサーキュレータで実現する場合、サーキュレータの第3端子に受信装置を接続する構成も許容される。   In the configuration shown in FIGS. 15 and 17, when the isolator is realized by a circulator, a configuration in which a receiving device is connected to the third terminal of the circulator is allowed.

<第3実施形態>
第3実施形態では、図18(a)に示すように、第1実施形態の無線アンテナ100を構成する導波路110の一端が、ミリ波あるいは準ミリ波の周波数を持つ信号を生成する信号生成装置800に接続されており、導波路110の他端が反射部970に接続されている。反射部970として例えば反射率の高い金属を用いることができる。導波路110を伝播した信号は反射部970で全反射する。なお、多重反射を抑制するため、信号生成装置800と導波路110の上記一端との間にアイソレータを設けてもよい。
<Third Embodiment>
In the third embodiment, as shown in FIG. 18A, one end of the waveguide 110 constituting the wireless antenna 100 of the first embodiment generates a signal having a frequency of millimeter wave or quasi-millimeter wave. The other end of the waveguide 110 is connected to the reflection unit 970. For example, a metal having a high reflectance can be used as the reflecting portion 970. The signal propagated through the waveguide 110 is totally reflected by the reflection unit 970. In order to suppress multiple reflection, an isolator may be provided between the signal generation device 800 and the one end of the waveguide 110.

図18(b)は、芯部110a(誘電率:2.2、直径:4mm)と被覆部110b(誘電率:1.5、直径:20mm)とで構成された導波路110が180°の曲げ角度と35mmの曲率半径の方向転換部110cを有する場合の無線アンテナ100(図18(a)参照)の放射パターン(図18(b)中の破線)を示している。反射部970で全反射した反射信号によって、方向転換部110cの頂点よりも反射信号の伝搬方向に関して後方に位置する方向転換部110cの部位から電磁波が強く放射される。したがって、反射部970で入力信号を反射させない場合(図18(b)中の実線)と比較して、広い角度幅と高いゲインで信号を放射することができる。なお、方向転換部110cの頂点よりも反射信号の伝搬方向に関して後方に位置する方向転換部110cの部位から放射される電磁波のゲインが、方向転換部110cの頂点よりも入力信号の伝搬方向に関して後方に位置する方向転換部110cの部位から放射される電磁波のゲインよりも小さい理由は、誘電損失や反射部970による減衰などによって反射信号の電力が入力信号の電力よりも小さくなるからである。   FIG. 18B shows a waveguide 110 composed of a core part 110a (dielectric constant: 2.2, diameter: 4 mm) and a covering part 110b (dielectric constant: 1.5, diameter: 20 mm) with a bending angle of 180 ° and 35 mm. A radiation pattern (broken line in FIG. 18B) of the wireless antenna 100 (see FIG. 18A) in the case of having the direction changing portion 110c having the curvature radius of FIG. Due to the reflected signal totally reflected by the reflecting portion 970, electromagnetic waves are radiated more strongly from the portion of the direction changing portion 110c located behind the vertex of the direction changing portion 110c with respect to the propagation direction of the reflected signal. Therefore, as compared with the case where the input signal is not reflected by the reflection unit 970 (solid line in FIG. 18B), the signal can be radiated with a wide angular width and a high gain. It should be noted that the gain of the electromagnetic wave radiated from the portion of the direction changing unit 110c located behind the vertex of the direction changing unit 110c with respect to the propagation direction of the reflected signal is behind the point of propagation of the input signal from the vertex of the direction changing unit 110c The reason why the gain is smaller than the gain of the electromagnetic wave radiated from the portion of the direction changing portion 110c located at is that the power of the reflected signal becomes smaller than the power of the input signal due to dielectric loss, attenuation by the reflecting portion 970, and the like.

第3実施形態の無線アンテナ100は、送信用のアンテナとしてではなく、受信用のアンテナとしても使用できる。この場合、例えば、導波路110の上記一端には、信号生成装置800に替えて受信装置が接続される。例えば携帯電話から発せられた電磁波は方向転換部110cで吸収され、導波路110によって受信装置に伝達される。このとき、方向転換部110cで吸収された電磁波は導波路110の上記一端と上記他端とに向かって分配される。したがって、受信装置には、方向転換部110cで吸収された電磁波の直接伝搬と、方向転換部110cで吸収された電磁波が反射部970で反射した間接伝搬とが届く。   The radio antenna 100 according to the third embodiment can be used not only as a transmission antenna but also as a reception antenna. In this case, for example, a reception device is connected to the one end of the waveguide 110 instead of the signal generation device 800. For example, an electromagnetic wave emitted from a mobile phone is absorbed by the direction changing unit 110 c and transmitted to the receiving device through the waveguide 110. At this time, the electromagnetic wave absorbed by the direction changing portion 110c is distributed toward the one end and the other end of the waveguide 110. Therefore, the direct propagation of the electromagnetic wave absorbed by the direction changing unit 110c and the indirect propagation of the electromagnetic wave absorbed by the direction changing unit 110c reflected by the reflecting unit 970 reach the receiving device.

導波路110の上記一端には、信号生成装置800に替えて送信機能と受信機能の両方を持つ送受信装置が接続されてもよい。   A transmission / reception apparatus having both a transmission function and a reception function may be connected to the one end of the waveguide 110 instead of the signal generation apparatus 800.

<第4実施形態>
第4実施形態では、導波路110が、方向転換部110cの湾曲の程度に依るが、柔軟性、あるいは可撓性、あるいは弾性という性質を持つ。この性質と上述の誘電率の特徴を満たし、さらに好ましくは低誘電損失も満たす材料が芯部110aと被覆部110bのそれぞれの誘電体として選定される。
<Fourth embodiment>
In the fourth embodiment, the waveguide 110 has a property of flexibility, flexibility, or elasticity depending on the degree of curvature of the direction changing portion 110c. A material that satisfies this characteristic and the above-described characteristics of the dielectric constant, and more preferably satisfies the low dielectric loss is selected as the dielectric of each of the core portion 110a and the covering portion 110b.

第4実施形態では、第1〜第3のいずれかの実施形態に記載の無線アンテナ100が、方向転換部110cの少なくとも曲げ角度を90度以上の範囲で変更する曲げ角度変更機構を備えている。この曲げ角度変更機構は曲率半径も変更するものであってもよい。   In the fourth embodiment, the wireless antenna 100 described in any one of the first to third embodiments includes a bending angle changing mechanism that changes at least the bending angle of the direction changing portion 110c within a range of 90 degrees or more. . This bending angle changing mechanism may also change the radius of curvature.

このような曲げ角度変更機構は入力されたエネルギーを物理的運動に変換するものであれば何ら限定は無く、例えば、アクチュエータ、人工筋肉、圧電素子、形状記憶合金が挙げられる。   Such a bending angle changing mechanism is not particularly limited as long as the input energy is converted into physical motion, and examples thereof include an actuator, an artificial muscle, a piezoelectric element, and a shape memory alloy.

曲げ角度変更機構としてアクチュエータ500を用いる場合、図19に示すように、導波路110の一端の近傍部から方向転換部110cの近傍部に至るまでの導波路110の部分はアンテナ支持体600によって固定されており、導波路110の他端はアクチュエータ500に接続されている。アクチュエータ500の器械運動にしたがって導波路110の他端の位置が変わり、これに応じて方向転換部110cの曲げ角度や曲率半径が変更される。   When the actuator 500 is used as the bending angle changing mechanism, the portion of the waveguide 110 from the vicinity of one end of the waveguide 110 to the vicinity of the direction changing portion 110c is fixed by the antenna support 600 as shown in FIG. The other end of the waveguide 110 is connected to the actuator 500. The position of the other end of the waveguide 110 is changed according to the instrument movement of the actuator 500, and the bending angle and the radius of curvature of the direction changing portion 110c are changed accordingly.

曲げ角度変更機構として人工筋肉550を用いる場合、図20に示すように、人工筋肉550は、方向転換部110cの全部または一部の側面に貼付されている。人工筋肉550は、入力された電圧に応じて変形し、これに応じて方向転換部110cの曲げ角度や曲率半径が変更される。曲げ角度変更機構として圧電素子または形状記憶合金を用いる場合も同様である。   When the artificial muscle 550 is used as the bending angle changing mechanism, as shown in FIG. 20, the artificial muscle 550 is affixed to all or a part of the side surface of the direction changing portion 110c. The artificial muscle 550 is deformed according to the input voltage, and the bending angle and the radius of curvature of the direction changing portion 110c are changed accordingly. The same applies when a piezoelectric element or a shape memory alloy is used as the bending angle changing mechanism.

なお、無線アンテナ100によると、放射パターンのメインビームは方向転換部110cの曲げの外側を向くので、無線アンテナ100の放射特性に影響を与えないためには、アクチュエータ500や人工筋肉550は曲げの内側に在ることが望ましい。特に金属製のアクチュエータを用いる場合はアクチュエータが無線アンテナ100の放射特性に与える影響が大であるため曲げの内側に配置することが求められる。   According to the wireless antenna 100, since the main beam of the radiation pattern faces the outside of the bending of the direction changing portion 110c, the actuator 500 and the artificial muscle 550 are bent in order not to affect the radiation characteristics of the wireless antenna 100. It is desirable to be inside. In particular, when a metal actuator is used, the actuator has a great influence on the radiation characteristics of the wireless antenna 100, so that it is required to be disposed inside the bend.

<第5実施形態>
第5実施形態では、第1〜第4のいずれかの実施形態に記載の無線アンテナがアレーアンテナのアンテナ素子として使用される。この場合、隣り合う無線アンテナ間の距離は、各無線アンテナに入力される信号の周波数で定まる波長の1倍以内とすることが好ましい。また、各無線アンテナと信号生成装置800との間に可変移相器を設けることによって当該アレーアンテナを所謂アダプティブアレーアンテナとして構成することができる。このようなアダプティブアレーアンテナは、個々の無線アンテナは広い10dBi角度幅を持っているので、指向性をスキャンする角度が広いという特徴を持つ。
<Fifth Embodiment>
In the fifth embodiment, the radio antenna described in any one of the first to fourth embodiments is used as an antenna element of an array antenna. In this case, it is preferable that the distance between adjacent radio antennas be within one time the wavelength determined by the frequency of the signal input to each radio antenna. Further, by providing a variable phase shifter between each radio antenna and the signal generation device 800, the array antenna can be configured as a so-called adaptive array antenna. Such an adaptive array antenna is characterized by a wide angle for scanning directivity because each wireless antenna has a wide 10 dBi angular width.

この他、本発明は上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更が可能である。   In addition, the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit of the present invention.

Claims (5)

ミリ波帯または準ミリ波帯の信号を送受信可能な無線アンテナであって、
ケーブル状の導波路を含み、
上記導波路は、誘電体で形成された芯部と、当該芯部を取り囲むように誘電体で形成された被覆部とで構成されており、
上記芯部の誘電率は、上記被覆部の誘電率よりも大きく、
上記導波路の一部が、90度以上の曲げ角度を有する
ことを特徴とする無線アンテナ。
A wireless antenna capable of transmitting and receiving millimeter-wave or quasi-millimeter-wave signals,
Including a cable-shaped waveguide,
The waveguide is composed of a core portion formed of a dielectric and a covering portion formed of a dielectric so as to surround the core portion.
The dielectric constant of the core part is larger than the dielectric constant of the covering part,
A wireless antenna, wherein a part of the waveguide has a bending angle of 90 degrees or more.
請求項1に記載の無線アンテナにおいて、
上記導波路の両端のそれぞれにアイソレータを介して上記信号が入力される
ことを特徴とする無線アンテナ。
The wireless antenna according to claim 1, wherein
The wireless antenna, wherein the signal is input to both ends of the waveguide via an isolator.
請求項1に記載の無線アンテナにおいて、
上記導波路の一方の端部に上記信号が入力され、
上記導波路の他方の端部に反射部が設けられている
ことを特徴とする無線アンテナ。
The wireless antenna according to claim 1, wherein
The signal is input to one end of the waveguide,
A radio antenna, wherein a reflection portion is provided at the other end of the waveguide.
請求項1に記載の無線アンテナにおいて、
上記導波路の一方の端部に上記信号が入力され、
上記導波路の他方の端部にターミネーターが設けられている
ことを特徴とする無線アンテナ。
The wireless antenna according to claim 1, wherein
The signal is input to one end of the waveguide,
A radio antenna, wherein a terminator is provided at the other end of the waveguide.
請求項1から請求項4のいずれかに記載の無線アンテナにおいて、
上記曲げ角度を90度以上の範囲で変更する曲げ角度変更機構を有する
ことを特徴とする無線アンテナ。
The radio antenna according to any one of claims 1 to 4,
A wireless antenna comprising a bending angle changing mechanism for changing the bending angle in a range of 90 degrees or more.
JP2015135864A 2015-07-07 2015-07-07 Wireless antenna Active JP6517099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015135864A JP6517099B2 (en) 2015-07-07 2015-07-07 Wireless antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015135864A JP6517099B2 (en) 2015-07-07 2015-07-07 Wireless antenna

Publications (2)

Publication Number Publication Date
JP2017022429A true JP2017022429A (en) 2017-01-26
JP6517099B2 JP6517099B2 (en) 2019-05-22

Family

ID=57889909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015135864A Active JP6517099B2 (en) 2015-07-07 2015-07-07 Wireless antenna

Country Status (1)

Country Link
JP (1) JP6517099B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7312091B2 (en) 2019-11-18 2023-07-20 株式会社Nttドコモ multibeam antenna

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4293833A (en) * 1979-11-01 1981-10-06 Hughes Aircraft Company Millimeter wave transmission line using thallium bromo-iodide fiber
US7109940B1 (en) * 2004-08-04 2006-09-19 Lockheed Martin Corporation Antenna element with curved dielectric member and array of such elements
JP2008206144A (en) * 2007-01-25 2008-09-04 Japan Agengy For Marine-Earth Science & Technology Self-deformable antenna assembly
JP2008295099A (en) * 2008-08-29 2008-12-04 Nippon Hoso Kyokai <Nhk> Closed-space transmission apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4293833A (en) * 1979-11-01 1981-10-06 Hughes Aircraft Company Millimeter wave transmission line using thallium bromo-iodide fiber
US7109940B1 (en) * 2004-08-04 2006-09-19 Lockheed Martin Corporation Antenna element with curved dielectric member and array of such elements
JP2008206144A (en) * 2007-01-25 2008-09-04 Japan Agengy For Marine-Earth Science & Technology Self-deformable antenna assembly
JP2008295099A (en) * 2008-08-29 2008-12-04 Nippon Hoso Kyokai <Nhk> Closed-space transmission apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERNST-GEORG NEUMANN, HANS-DIETER RUDOLPH: "Radiation from Bends in Dielectric Rod Transmission Lines", IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, vol. 23, no. 1, JPN6018050998, 1975, US, pages 142 - 149, XP001368969, ISSN: 0003947310 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7312091B2 (en) 2019-11-18 2023-07-20 株式会社Nttドコモ multibeam antenna

Also Published As

Publication number Publication date
JP6517099B2 (en) 2019-05-22

Similar Documents

Publication Publication Date Title
Alibakhshikenari et al. Beam‐scanning leaky‐wave antenna based on CRLH‐metamaterial for millimetre‐wave applications
Bai et al. Modified compact antipodal Vivaldi antenna for 4–50-GHz UWB application
JP6446547B2 (en) Stripline coupled antenna with periodic slots for wireless electronic devices
US20090315794A1 (en) Millimeter-wave chip-lens array antenna systems for wireless networks
US20190131701A1 (en) Array antenna device
JP2004015408A (en) Slot array antenna
Makar et al. Compact antennas with reduced self interference for simultaneous transmit and receive
CN211455960U (en) High-gain radio frequency front-end device
JP6387314B2 (en) Wireless antenna, wireless communication system
JP6517099B2 (en) Wireless antenna
KR102377589B1 (en) Linear slot array antenna for broadly scanning frequency
JP2021114766A (en) Wireless antenna and wireless communication system
JP2021141360A (en) Wireless antenna and wireless communication system
CN111509392B (en) High scanning rate antenna of wave beam based on microstrip line structure
CN114284752A (en) High-precision beam forming method for non-uniform phased array antenna
Esmail et al. Dual beam Yagi antenna using novel metamaterial structure at 5G band of 28 GHz
JP7312091B2 (en) multibeam antenna
Siddiqui et al. Leaky coaxial cable with enhanced radiation performance for indoor communication systems
Selvam et al. Optically Reconfigurable Slotted Waveguide Antenna Array for 5G Applications
Chauhan et al. Millimeter Wave Fixed Beam End-fire Antenna for Body Area Networks
George et al. Spilt ring resonator-based THz massive MIMO antenna array modelling for future wireless network
WO2023248881A1 (en) Radio wave relay
Gong et al. Leaky Wave Antenna Based on Substrate Integrated Coaxial Line with Spatial Harmonic Suppression
CN113097724B (en) Dielectric resonant antenna
US11936112B1 (en) Aperture antenna structures with concurrent transmit and receive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190417

R150 Certificate of patent or registration of utility model

Ref document number: 6517099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250