WO2023248881A1 - Radio wave relay - Google Patents

Radio wave relay Download PDF

Info

Publication number
WO2023248881A1
WO2023248881A1 PCT/JP2023/022022 JP2023022022W WO2023248881A1 WO 2023248881 A1 WO2023248881 A1 WO 2023248881A1 JP 2023022022 W JP2023022022 W JP 2023022022W WO 2023248881 A1 WO2023248881 A1 WO 2023248881A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio wave
coat layer
waveguide
lens
radio
Prior art date
Application number
PCT/JP2023/022022
Other languages
French (fr)
Japanese (ja)
Inventor
遼 上杉
裕太 岡西
隆史 西宮
芳雄 青木
恭 白方
Original Assignee
日本電気硝子株式会社
株式会社ヨコオ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社, 株式会社ヨコオ filed Critical 日本電気硝子株式会社
Publication of WO2023248881A1 publication Critical patent/WO2023248881A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • H01P3/14Hollow waveguides flexible
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/08Refracting or diffracting devices, e.g. lens, prism formed of solid dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems

Definitions

  • the present disclosure relates to a radio wave repeater.
  • MIMO Multiple-Input/Multiple-Output
  • polarized MIMO technology is used that creates multiple paths using multiple polarized waves.
  • Patent Document 1 discloses a repeater that relays microwaves from a base station and includes a high-gain antenna, a transmission line, and a low-gain antenna.
  • a radio wave repeater includes a waveguide having a circular or square cross section, a first horn provided at one end of the waveguide, and an opening of the first horn. , a first radio wave lens that converges and transmits radio waves including at least one of microwaves and millimeter waves incident thereon and guides them to the waveguide.
  • FIG. 1 is a schematic diagram of a radio repeater according to Embodiment 1 of the present disclosure.
  • FIG. 3 is a diagram illustrating the transmission of radio waves through a radio lens with respect to the dielectric loss tangent of the radio lens.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of a radio wave dielectric component according to Embodiment 2 of the present disclosure. It is an explanatory diagram of ⁇ c, ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4, tc, t1, t2, t3, and t4. It is a graph showing simulation results of reflection and transmission characteristics of ceramics (thickness 10 mm) with a dielectric constant of 12.
  • It is a graph showing the reflection and transmission characteristics of PTFE (thickness 3.3 mm) in the case of vertical incidence of radio waves. It is a graph showing the reflection and transmission characteristics of a glass plate having a dielectric constant of 5 and a thickness of 10 mm. 8 is a graph showing reflection and transmission characteristics of the glass plate of FIG. 7 with PTFE (relative dielectric constant ⁇ r 2.3, thickness 1.65 mm (corresponding to ⁇ a/4)) attached to both sides. It is a graph showing the characteristics of two layers of only the first coat layer. It is a graph showing the characteristics when the first coat layer and the second coat layer are stacked and there is no core material.
  • 1 is a graph showing reflection and transmission characteristics of a member including a first coat layer, a second coat layer, and a core material.
  • 10 is a graph showing reflection and transmission characteristics in the case of vertical incidence of radio waves when the thickness of the first coat layer is 1 mm with respect to the characteristics shown in FIG. 9. It is a graph showing the characteristics when a second coat layer and a first coat layer having a thickness of 1 mm are stacked. It is a graph showing reflection and transmission characteristics in the case of vertical incidence of radio waves when the first coat layer (relative dielectric constant 6.0, thickness 1.02 mm) is two layers.
  • 15 is a graph showing reflection and transmission characteristics in the case of vertical incidence of radio waves when a second coat layer is stacked on the first coat layer according to FIG. 14.
  • FIG. 16 is a graph showing reflection and transmission characteristics in the case of vertical incidence of radio waves when the core material is sandwiched between the coating layers according to FIG. 15.
  • FIG. It is a graph showing the reflection and transmission characteristics in the case of vertical incidence of radio waves when the first coat layer (relative dielectric constant 10.8, thickness 0.77 mm) is two layers.
  • 18 is a graph showing reflection and transmission characteristics in the case of vertical incidence of radio waves when a second coat layer is stacked on the first coat layer according to FIG. 17.
  • FIG. 19 is a graph showing reflection and transmission characteristics in the case of vertical incidence of radio waves when the core material is sandwiched between the coating layers according to FIG. 18.
  • FIG. 3 is a graph showing reflection and transmission spectra. 3 is a graph showing reflection and transmission spectra.
  • FIG. 1 is a reflection and transmission spectrum of a combination of a first coat layer and a second coat layer according to Example 1.
  • 2 is a reflection and transmission spectrum of a radio wave dielectric component according to Example 1.
  • 2 is a reflection and transmission spectrum of a combination of a first coat layer and a second coat layer according to Example 2.
  • 3 is a reflection and transmission spectrum of a combination of a first coat layer and a second coat layer according to Example 3.
  • 3 is a reflection and transmission spectrum of a dielectric component for radio waves according to Example 3.
  • 3 is a reflection and transmission spectrum of a combination of a first coat layer and a second coat layer according to Example 4.
  • 3 is a reflection and transmission spectrum of a dielectric component for radio waves according to Example 4.
  • FIG. 2 is a schematic diagram of a fan beam lens.
  • FIG. 30 is a sectional view taken along line AA of the fan beam lens shown in FIG. 29.
  • FIG. 30 is a cross-sectional view taken along line BB of the fan beam lens shown in FIG. 29.
  • FIG. FIG. 3 is a schematic diagram of a radio wave repeater according to Embodiment 3 of the present disclosure.
  • FIG. 2 is a schematic diagram of a reflector.
  • FIG. 1 is a schematic diagram of a radio repeater 101 according to Embodiment 1 of the present disclosure.
  • the radio wave repeater 101 includes a waveguide 1, a first horn 2, a first radio lens 3, a second horn 4, and a second radio lens 5.
  • the base station 6 emits radio waves 7.
  • the radio waves 7 include at least one of microwaves and millimeter waves.
  • the radio wave repeater 101 relays the radio waves 7. By relaying the radio waves 7 by the radio wave repeater 101, communication using the radio waves 7 is possible between the base station 6 and the terminal 9, which are separated from each other by a shield 8 such as a wall or window.
  • the radio wave repeater 101 according to Embodiment 1 of the present disclosure also has a function of bending the radio waves 7. Therefore, even if the terminal 9 is placed in a non-line-of-sight (NLOS) location with respect to the base station 6, the radio waves 7 can be communicated without being blocked.
  • NLOS non-line-of-sight
  • the waveguide 1 is provided in a through hole 8a formed in the shield 8.
  • the waveguide 1 has a circular or square cross section. Thereby, the polarization information of the radio wave 7 incident from one end 1a of the waveguide 1 can be maintained and the radio wave 7 can be emitted to the other end 1b of the waveguide 1.
  • the first horn 2 is provided at one end 1a of the waveguide 1.
  • the first horn 2 is provided so that the opening 2a of the first horn 2 faces the direction in which the radio waves 7 are incident.
  • the first radio lens 3 is provided in the opening 2a of the first horn 2.
  • the first radio wave lens 3 converges and transmits the radio waves 7 that have entered the first radio wave lens 3 itself, and guides them to the waveguide 1 .
  • the second horn 4 is provided at the other end 1b of the waveguide 1.
  • the second horn 4 is provided such that the opening 4a of the second horn 4 faces the terminal 9.
  • the second radio wave lens 5 is provided in the opening 4a of the second horn 4.
  • the second radio wave lens 5 converges and transmits the radio waves 7 that have passed through the waveguide 1.
  • the effect of increasing the gain can be obtained even if the size of the first horn 2 is reduced. Thereby, it is possible to provide the radio wave repeater 101 that is not noticeable even when installed on a wall.
  • the radio waves 7 can be uniformly propagated from the radio wave repeater 101 into the area where the plurality of terminals 9 are placed. According to the radio wave repeater 101, it is easy to relay a plurality of polarized waves while maintaining them accurately. Moreover, depending on the selection of the material, shape, etc. of the second radio wave lens 5, the radio wave repeater 101 can emit the radio waves 7 over a wide range or a long distance.
  • the waveguide 1 may be a waveguide. Thereby, loss of the radio waves 7 passing through the waveguide 1 can be suppressed.
  • the waveguide 1 may be a flexible waveguide.
  • the direction of the first horn 2 can be freely changed, for example, the direction with respect to the base station 6 can be easily changed, and the directional gain of the first radio wave lens 3 can be utilized to the maximum. Can be done.
  • An example of "flexibility" is the ability to bend when an external force is applied and return to its original shape when the external force is removed.
  • the waveguide 1 may be a curved waveguide.
  • the direction of the first horn 2 can be freely changed, for example, the direction with respect to the base station 6 can be easily changed, and the directional gain of the first radio lens 3 can be utilized to the maximum. Can be done.
  • the directivity gain of the first radio wave lens 3 is high. By increasing the height, radio waves from the base station 6 can be received more strongly, and communication quality can be improved.
  • the directivity gain of the first radio wave lens 3 is preferably 10 dBi or more, more preferably 15 dBi or more, even more preferably 20 dBi or more, even more preferably 25 dBi or more, and even more preferably 30 dBi or more.
  • the directional gain of the first radio wave lens 3 may be 10 dBi or more.
  • the first radio wave lens 3 may have a core material made of glass, glass ceramics, or ceramics.
  • the dielectric loss tangent of the first radio wave lens 3 may be 10 ⁇ 2 or less.
  • FIG. 2 is a diagram showing an image of transmission of the radio wave 7 through the radio wave lens 10 with respect to the dielectric loss tangent of the radio wave lens 10.
  • the radio lens 10 refers to either the first radio lens 3 or the second radio lens 5.
  • the directional gain of the radio wave lens 10 may be 10 dBi or more, 15 dBi or more, 20 dBi or more, 25 dBi or more, or 30 dBi or more.
  • the radio wave lens 10 has a high directivity gain, radio waves from the base station 6 can be received more strongly, and communication quality can be improved.
  • the directional gain of the radio lens 10 may be 30 dBi or less, 25 dBi or less, 20 dBi or less, or 15 dBi or less. It may be 10 dBi or less.
  • the dielectric loss tangent of the radio wave lens 10 may be 10 ⁇ 2 or less, 10 ⁇ 3 or less, or 10 ⁇ 4 or less.
  • power loss inside the radio wave lens 10 becomes small. If the dielectric loss tangent of the radio wave lens 10 is large, the loss becomes large, which may adversely affect communication between the base station 6 and the terminal 9 using the radio waves 7.
  • the relative dielectric constant of the radio wave lens 10 may be 4 or more, 7 or more, 10 or more, or 13 or more.
  • the relative dielectric constant of the radio wave lens 10 is high, the ability to refract the radio waves 7 becomes high, the radio waves can be largely refracted with a low lens height, and the thickness of the radio wave lens 10 and the horn can be made thin.
  • the radio wave lens 10 has a dielectric material, and may absorb and scatter the radio waves 7 inside the dielectric material.
  • the difference between the maximum value and the minimum value may be 0.1 or less. This increases the gain in the radio wave repeater 101.
  • the heating rate of the atmosphere when heating the material of the radio wave lens 10 is slowed,
  • the shrinkage time associated with sintering of the material may be lengthened. These may be performed in accordance with the crystallization temperature range of the material. Thereby, a radio wave lens 10 can be obtained in which the difference between the maximum value and the minimum value of the density (in other words, relative dielectric constant) of the material within the radio wave lens 10 is small.
  • the temperature increase rate may be set such that the difference between the maximum value and the minimum value of the temperature distribution within the material is 0.5° C. or less.
  • the temperature increase rate may be 10° C. or less per hour.
  • the radio wave repeater 101 does not require a power source. Therefore, the radio wave repeater 101 has a high degree of freedom in installation, that is, it can be installed in more locations. Further, by using an inorganic dielectric material for the radio wave lens 10, deterioration in the outside environment can be reduced, and maintainability can be improved.
  • the radio wave repeater 101 does not need to include the second radio lens 5. Thereby, only the second horn 4 is on the indoor side, and radio waves can be emitted over a wider range.
  • FIG. 29 is a schematic diagram of the fan beam lens 27.
  • FIG. 30 is a cross-sectional view of the fan beam lens 27 taken along the line AA.
  • FIG. 31 is a BB cross-sectional view of the fan beam lens 27.
  • the fan beam lens 27 can be used as the second radio wave lens 5.
  • FIG. 29 includes an illustration of mainly the front surface of the fan beam lens 27, designated by the reference numeral 1001, and an illustration of the back surface of the fan beam lens 27, designated by the reference numeral 1002.
  • the fan beam lens 27 is a lens that narrows down radio waves in the direction perpendicular to the ground and emits radio waves over a wide range in the horizontal direction. This suppresses the radiation of radio waves near the ceiling and the ground where they are not needed, and allows the radio waves to be radiated over a wide range in the horizontal direction where they are needed. By suppressing radiation in the vertical direction, gain in the horizontal direction is improved.
  • the thickness of the lens becomes thinner from the center to the ends.
  • the radio waves passing through the lens are bent inward as the radio waves pass through the edges, so that the radiation of the radio waves can be narrowed down.
  • the thickness of the lens is constant from the center to the end in a horizontal section passing through the center of the lens corresponding to the BB section.
  • the radio waves pass through the lens without being bent, so that the radio waves can be spread over a wide range.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of a radio wave dielectric component 102 according to Embodiment 2 of the present disclosure.
  • the radio wave dielectric component 102 can be suitably used as a radio wave lens, and in particular can be used as a radio wave lens 10 of the radio wave repeater 101 (more specifically, either the first radio wave lens 3 or the second radio wave lens 5). ) can be suitably used.
  • the usage example of the radio wave dielectric component 102 is not limited to this.
  • An example of the use of the radio wave dielectric component 102 other than a radio wave lens is a member that allows radio waves 25 to pass through, such as a window.
  • the radio wave dielectric component 102 includes a core material 21, a first coat layer 22, and a second coat layer 23.
  • the antenna 24 emits radio waves 25.
  • the radio waves 25 include at least one of microwaves and millimeter waves.
  • the radio wave dielectric component 102 transmits the radio waves 25 and guides them to the radio wave receiving target 26 .
  • the core material 21 is made of a dielectric material.
  • the core material 21 has a first surface 21a and a second surface 21b.
  • the first surface 21a and the second surface 21b face each other.
  • the first coat layer 22 includes a first region 22a and a third region 22b.
  • the first region 22a is provided on the first surface 21a.
  • the third region 22b is provided on the second surface 21b.
  • the core material 21 is at the lowest position, and the farther from the core material 21 along the normal direction of the surface of the core material 21, the higher the position is.
  • the second coat layer 23 includes a second region 23a and a fourth region 23b.
  • the second region 23a is provided on the first region 22a.
  • the fourth region 23b is provided above the third region 22b.
  • FIG. 4 is an explanatory diagram of ⁇ c, ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4, tc, t1, t2, t3, and t4.
  • tc is the thickness of the core material 21.
  • the dielectric constant of the core material 21 is ⁇ c
  • the dielectric constant of the first region 22a is ⁇ 1
  • the dielectric constant of the second region 23a is ⁇ 2
  • the thickness of the first region 22a is t1
  • the dielectric constant of the second region 23a is ⁇ 2.
  • the transmission center wavelength of the radio wave dielectric component 102 is assumed to be ⁇ . At this time, the radio wave dielectric component 102 satisfies Equation (1), Equation (2), and Equation (3).
  • the notation " ⁇ (number)" means the square root of the number in parentheses.
  • the transmission center wavelength of the dielectric component 102 for radio waves is the center wavelength of the wavelength range of the radio waves 25 that can be transmitted through the dielectric component 102 for radio waves.
  • the wavelengths mentioned here are all wavelengths in vacuum.
  • the dielectric component 102 for radio waves even if the dielectric constant of the dielectric component 102 for radio waves is high, the amount of reflection of the radio waves 25 in the dielectric component 102 for radio waves is small. can be led to high efficiency. Furthermore, since the amount of reflection is small, side lobes are small and ghosts are less likely to occur.
  • the dielectric constant of the third region 22b is ⁇ 3, the dielectric constant of the fourth region 23b is ⁇ 4, the thickness of the third region 22b is t3, and the thickness of the fourth region 23b is t4.
  • the radio wave dielectric component 102 may satisfy Formula (4), Formula (5), and Formula (6).
  • the value of ⁇ 1 and the value of ⁇ 3 may be the same.
  • the value of ⁇ 2 and the value of ⁇ 4 may be the same.
  • the value of t1 and the value of t3 may be the same.
  • the value of t2 and the value of t4 may be the same. All of these may be satisfied.
  • the first region 22a and the third region 22b may have the same dielectric constant, the same thickness, or both.
  • the second region 23a and the fourth region 23b may have the same dielectric constant, the same thickness, or both.
  • ⁇ 1 may be 0.5 times or more and 0.9 times or less of ⁇ c.
  • ⁇ 2 may be 3.5 or less.
  • the values of ⁇ c, ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4, tc, t1, t2, t3, and t4 may vary depending on the position within the radio wave dielectric component 102.
  • Each of ⁇ c, ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4, tc, t1, t2, t3, and t4 may be an average value of values obtained at each of a plurality of positions.
  • the core material 21 may be a radio wave lens.
  • Core material 21 may be made of glass, glass ceramics, or ceramics.
  • the first coat layer 22 may be made of glass, glass ceramics, or ceramics.
  • the second coat layer 23 may be made of PTFE (polytetrafluoroethylene) or other resin.
  • the coat layer provided on the core material 21 may consist of two layers, the first coat layer 22 and the second coat layer 23. In other words, the core material 21 may not be coated with any coating other than the first coat layer 22 and the second coat layer 23 .
  • the frequency will be 30.0 GHz ⁇ 3 GHz (fractional bandwidth: 20%), keeping in mind the 5G millimeter wave band (27 to 30 GHz) in Japan. This is not intended to limit this disclosure. Rather, by setting the length or thickness as exemplified below to 1/n, it is possible to correspond to the use of the (30 ⁇ n) GHz band, which is expected to appear in the future.
  • FIG. 5 is a graph showing simulation results of reflection and transmission characteristics of ceramics (thickness 10 mm) with a dielectric constant of 12.
  • the material itself is assumed to be lossless. Even if the material itself is lossless, the transmission loss can be as high as 5 dB depending on the frequency due to surface reflection. It can be said that surface reflection greatly contributes to the loss.
  • One of the objects and advantages of the present disclosure is to provide a coating structure that suppresses reflection and reduces transmission loss.
  • reflection at a dielectric interface only needs to have a small refractive index ratio.
  • the index of refraction is the square root of the dielectric constant, so the lower the dielectric constant (ie, the closer it is to 1), the lower the reflection.
  • the design method is known.
  • the radio wave is a combination of multiple reflections: reflection at the interface entering the dielectric from the air and reflection at the interface exiting the dielectric layer.
  • FIG. 6 is a graph showing the reflection and transmission characteristics of PTFE (3.3 mm thick) when the radio wave 25 is vertically incident.
  • the thickness of 3.3 mm is the thinnest thickness at which the reflection valley reaches the desired 30 GHz.
  • the electrical length of the dielectric multiplied by the wavelength shortening rate ⁇ ( ⁇ r) of radio waves in the dielectric becomes 1/2 of the wavelength of 10 mm at 30 GHz. That is, Equation (7) holds true, where ⁇ a is the wavelength in vacuum of the center frequency of the desired frequency band, ⁇ r is the dielectric constant, and t is the thickness.
  • FIG. 7 is a graph showing the reflection and transmission characteristics of a glass plate with a dielectric constant of 5 and a thickness of 10 mm.
  • reflection at the desired frequency is suppressed to -20 dB or less.
  • the reflection characteristics shown in FIG. 6 are approximately the envelope of the reflection characteristics shown in FIG.
  • a coating layer configuration in which two dielectric layers are stacked that is, a configuration including a first coating layer 22 and a second coating layer 23.
  • the present disclosure provides the relative permittivity and thickness of each of the first coat layer 22 and the second coat layer 23, thereby suppressing reflection of radio waves 25 in a desired frequency band and obtaining good transmission characteristics.
  • first coat layer 22 and second coat layer 23 that suppress reflection in the core material 21 will be described using a core material 21 made of ceramics (thickness 10 mm) with a dielectric constant of 12 shown in FIG.
  • the first coat layer 22 is made of, for example, glass, glass ceramics, or ceramics, and has a value that satisfies Equation (8), Equation (9), and Equation (11).
  • PTFE a material with a small dielectric constant is used, and here PTFE is used.
  • FIG. 6 shows the characteristics when only the second coat layer 23 is stacked in two layers.
  • FIG. 9 shows the characteristics when only two first coat layers 22 are stacked.
  • FIG. 10 shows the characteristics when the first coat layer 22 and the second coat layer 23 are stacked and there is no core material 21. The reflection and transmission characteristics of the member including the first coat layer 22, the second coat layer 23, and the core material 21 are shown in FIG.
  • the reflection characteristics shown in FIG. 10 are approximately the envelope of the entire reflection characteristics including the core material 21, and have low reflection and low loss at a fractional bandwidth of 20% centered on the desired frequency (30 GHz).
  • the transmission characteristics are significantly improved as shown in FIG. 11.
  • Equation (8) The relative permittivity of the first coat layer 22 and the second coat layer 23 is increased from the outside toward the inside. By reducing the difference in dielectric constant at the interface between each dielectric layer, overall reflection is suppressed.
  • Equations (9) and (10). The electrical length of each of the first coat layer 22 and the second coat layer 23 is set to 1/4 wavelength of the center frequency of the desired frequency band. The frequencies at which the respective reflections of the first coat layer 22 and the second coat layer 23 are minimized are matched.
  • Equation (11) defines the dielectric constant of the first coat layer 22. Due to reflection at the interface between the first coat layer 22 and the second coat layer 23, two reflection minima appear above and below the desired center frequency. The frequency of this sideband low reflection is determined by the dielectric constant. In order to obtain the practically required bandwidth and reflection amount, it is within the range of Equation (11).
  • Equation (12) defines the dielectric constant of the second coat layer 23. This is a practical condition that a practical low dielectric constant material has a dielectric constant of approximately 3.5 or less.
  • Each of the first coat layer 22 and the second coat layer 23 has a dielectric constant and a thickness that minimize reflection at a desired frequency.
  • the layer obtained by laminating the first coat layer 22 and the second coat layer 23 has the same reflection minimum value.
  • each of the first coat layer 22 and the second coat layer 23 has a lower dielectric constant than the core material 21, the reflection characteristics of the first coat layer 22 and the second coat layer 23 become an envelope, and the reflection characteristics of the core material 21 Reflection characteristics are superimposed.
  • the present disclosure provides a broadband low-reflection coating layer by mixing reflected waves between the first coating layer 22 and the second coating layer 23, and uses a novel idea of mixing reflected waves. There is.
  • the present disclosure is generally used when the core material 21 is a high dielectric material with a dielectric constant of 6 or more.
  • the dielectric constant may be less than 6, the effect is not much different from that of a single layer coating. Practically, it is effective to use it for glass, ceramics (including LTCC and HTCC), etc., which have a dielectric constant of 8 or more.
  • first coat layer 22 and the second coat layer 23 of the present disclosure By attaching the first coat layer 22 and the second coat layer 23 of the present disclosure to a plate material such as glass or ceramics having a relatively high dielectric constant, reflection can be suppressed and the transmission characteristics of the radio waves 25 can be improved. can. It can be applied to windows or walls of houses. Further, by bonding the first coat layer 22 and the second coat layer 23 of the present disclosure on both sides of the core material 21, the directivity gain of the radio wave dielectric component 102 as a radio wave lens can be increased.
  • FIG. 12 shows the reflection and transmission characteristics when the radio wave 25 is vertically incident when the thickness t1 of the first coat layer 22 is increased from 0.92 mm to 1 mm (approximately 10% increase) with respect to the characteristics shown in FIG. 9. .
  • the frequency at which low reflection occurs is shifted to the lower frequency side by approximately 10%, and low reflection occurs at 27 GHz.
  • FIG. 13 shows the characteristics when the second coat layer 23 and the first coat layer 22 having a thickness t1 of 1 mm are stacked. This characteristic is caused by the fact that the characteristic shown in FIG. 10 is broken down because the thickness of the first coat layer 22 is 10% larger. Because the low reflection valley on the side has shifted to the lower frequency side, the 30 GHz valley and 37 GHz valley in Figure 10 are combined into the 33 GHz valley in Figure 13, and the valley that was at 23 GHz in Figure 10 has shifted to 21 GHz, and the 37 GHz valley in Figure 10 has shifted to 25 GHz. The peak of is getting bigger and is below -20dB. This is one basis for the limit value of the present disclosure. When the first coat layer 22 becomes thinner, the frequency shifts to the higher frequency side, but the situation remains the same.
  • the characteristics of the core material 21 sandwiched between the coat layers (first coat layer 22 and second coat layer 23) according to FIG. 18 are shown in FIG.
  • the point of the present disclosure is to create a sideband of the reflection valley, which is the limit state.
  • the reflection at the desired frequency is about -10 dB. This is the practical limit.
  • FIG. 20 is a graph showing reflection and transmission spectra under the following conditions.
  • FIG. 21 is a graph showing reflection and transmission spectra under the following conditions.
  • FIG. 22 shows reflection and transmission spectra of the combination of the first coat layer 22 and the second coat layer 23 according to Example 1.
  • FIG. 23 shows reflection and transmission spectra of the radio wave dielectric component 102 according to Example 1.
  • FIG. 24 shows the reflection and transmission spectra of the combination of the first coat layer 22 and the second coat layer 23 according to Example 2.
  • FIG. 25 shows the reflection and transmission spectra of the combination of the first coat layer 22 and the second coat layer 23 according to Example 3.
  • FIG. 26 shows reflection and transmission spectra of the radio wave dielectric component 102 according to Example 3.
  • FIG. 27 shows the reflection and transmission spectra of the combination of the first coat layer 22 and the second coat layer 23 according to Example 4.
  • FIG. 28 shows reflection and transmission spectra of the radio wave dielectric component 102 according to Example 4.
  • ⁇ c, ⁇ 1, ⁇ 2, tc, t1, t2, and ⁇ are as follows.
  • Example 2 at the upper limit of the range defined by Equation (2), the band in which reflection is suppressed is narrower than in Example 1, but is still sufficiently wide.
  • FIG. 32 is a schematic diagram of a radio repeater 101 according to Embodiment 3 of the present disclosure.
  • FIG. 33 is a schematic diagram of reflector 28.
  • a radio wave repeater 101 according to Embodiment 3 of the present disclosure includes a waveguide 1 having a circular or square cross section and a reflector 28 provided at one end of the waveguide 1. It includes a reflector 28 that reflects and converges the radio waves 7 containing at least one of the millimeter waves and guides them to the waveguide 1.
  • the reflector 28 has a main reflecting mirror 29, a sub-reflecting mirror 30, and a third horn 31.
  • the main reflecting mirror 29 has a parabolic surface
  • the sub-reflecting mirror 30 has an ellipsoidal surface. These curved surfaces can reduce the phase difference of radio waves at the focal point and increase the gain.
  • the reflector 28 is used in place of the first horn 2 and first radio lens 3 in the radio wave repeater 101 according to the first embodiment of the present disclosure.
  • the third horn 31 and the waveguide 1 are connected to form a radio wave repeater 101 according to the third embodiment of the present disclosure.
  • the reflector 28 reflects the radio waves 7 from the base station 6 on the main reflector 29, converges the radio waves 7 on the sub-reflector 30, further reflects the radio waves 7 on the sub-reflector 30, and focuses the radio waves 7 on the center of the main reflector 29.
  • the radio waves 7 are converged on the third horn 31 located at the third horn 31, and the radio waves 7 are relayed.
  • the reflector 28 can be utilized when it is difficult to fabricate a large lens using a dielectric material.
  • a radio wave repeater includes a waveguide having a circular or square cross section, a first horn provided at one end of the waveguide, and an opening of the first horn. , a first radio wave lens that converges and transmits radio waves including at least one of microwaves and millimeter waves incident thereon and guides them to the waveguide.
  • a radio wave repeater according to Aspect 2 of the present disclosure is provided in Aspect 1, including a second horn provided at the other end of the waveguide and an opening of the second horn, so that the waveguide passes through the waveguide. and a second radio wave lens that converges and transmits the radio waves.
  • the first radio wave lens has a core material made of glass, glass ceramics, or ceramics.
  • the dielectric loss tangent of the first radio wave lens is 10 ⁇ 2 or less.
  • the relative dielectric constant of the first radio wave lens is 7 or more.
  • the waveguide is a flexible waveguide.
  • the waveguide is a curved waveguide.
  • the second radio wave lens is a fan beam lens.
  • a radio wave repeater includes a waveguide having a circular or square cross section, and a reflector provided at one end of the waveguide, and includes at least a microwave and a millimeter wave incident on the radio wave repeater. and a reflector that reflects and converges the radio waves containing one of the waves and guides them to the waveguide.
  • Waveguide 1a One end of the waveguide 1b The other end of the waveguide 2 First horn 2a Opening of the first horn 3 First radio wave lens 4 Second horn 4a Opening of the second horn 5 Second radio lens 6 Base station 7 Radio wave 8 Shielding object 8a Through hole 9 Terminal 10 Radio wave lens 21 Core material 21a 1st surface 21b 2nd surface 22 1st coat layer 22a 1st region 22b 3rd region 23 2nd coat layer 23a 2nd region 23b 4th region 24 Antenna 25 Radio waves 26 Radio wave reception target 27 Fan beam lens 28 Reflector 29 Main reflector 30 Sub-reflector 31 Third horn 101 Radio wave repeater 102 Dielectric parts for radio waves

Abstract

The present invention facilitates relaying while accurately maintaining a plurality of polarized waves. This radio wave relay comprises: a waveguide (1) having a circular or square cross-sectional surface; a first horn (2) provided to one end (1a) of the waveguide (1); and a first radio wave lens (3) which is provided to an opening (2a) of the first horn (2), causes a radio wave (7), including at least one among a microwave and a millimeter wave which are incident to the first radio wave lens, to converge and pass therethrough, and guides the radio wave (7) to the waveguide (1).

Description

電波中継器radio repeater
 本開示は、電波中継器に関する。 The present disclosure relates to a radio wave repeater.
 近年、レーダやセンサーの高分解能化、あるいは第5世代移動通信システムに代表される大容量高速通信の要求から、マイクロ波帯やミリ波帯の高周波を用いた民生機器が急速に普及している。しかし、高周波の電波は回折しにくいこともあり、遮蔽物の裏側などには電波が届きにくく、高速通信に問題が生じることが懸念されている。 In recent years, consumer equipment that uses high frequencies in the microwave and millimeter wave bands has rapidly become popular due to the demand for higher resolution radars and sensors, and high-capacity, high-speed communications represented by fifth-generation mobile communication systems. . However, because high-frequency radio waves are difficult to diffract, it is difficult for radio waves to reach behind objects that are shielded, leading to concerns that this may cause problems with high-speed communications.
 また、現状のマイクロ波・ミリ波通信はMIMO(Multiple-Input Multiple-Output)技術を用いた送信側受信側共に複数のアンテナを用いて高いスループットや高い信頼性の通信が実用化されている。ミリ波においては見通し通信が前提となるため、通常のMIMOが使用できず複数の偏波を用いて複数の経路を作り出す偏波MIMO技術が用いられる。 In addition, current microwave/millimeter wave communication uses multiple antennas on both the transmitting and receiving sides using MIMO (Multiple-Input/Multiple-Output) technology to achieve high throughput and highly reliable communication. Since line-of-sight communication is a prerequisite for millimeter waves, normal MIMO cannot be used, so polarized MIMO technology is used that creates multiple paths using multiple polarized waves.
 特許文献1には、基地局からのマイクロ波を中継する中継器であって、高利得アンテナ、伝送線路、および低利得アンテナを備えた中継器が開示されている。 Patent Document 1 discloses a repeater that relays microwaves from a base station and includes a high-gain antenna, a transmission line, and a low-gain antenna.
日本国公開特許公報「特開平8-84106号公報」Japanese Patent Publication “Unexamined Patent Publication No. 8-84106”
 特許文献1に開示されている技術においては、中継器の基地局側アンテナの利得を上げることにより中継距離を延ばすことが示されているが、水平・垂直偏波だけではなく、複数の偏波を正確に維持した状態で中継することは考慮されていない。 In the technology disclosed in Patent Document 1, it is shown that the relay distance can be extended by increasing the gain of the base station side antenna of the repeater, but it is possible to extend the relay distance by increasing the gain of the antenna on the base station side of the repeater. No consideration is given to relaying the data while maintaining accuracy.
 本開示の一態様に係る電波中継器は、円形または正方形の横断面を有する導波路と、前記導波路の一端に設けられた第1ホーンと、前記第1ホーンの開口部に設けられており、自身に入射したマイクロ波およびミリ波の少なくとも一方を含んでいる電波を収斂および透過させて前記導波路へと導く第1電波レンズとを備えている。 A radio wave repeater according to an aspect of the present disclosure includes a waveguide having a circular or square cross section, a first horn provided at one end of the waveguide, and an opening of the first horn. , a first radio wave lens that converges and transmits radio waves including at least one of microwaves and millimeter waves incident thereon and guides them to the waveguide.
 本開示の一態様によれば、複数の偏波を正確に維持した状態で中継することが容易である。 According to one aspect of the present disclosure, it is easy to relay multiple polarized waves while accurately maintaining them.
本開示の実施形態1に係る電波中継器の概略図である。FIG. 1 is a schematic diagram of a radio repeater according to Embodiment 1 of the present disclosure. 電波レンズの誘電正接に対する、電波レンズの電波の透過のイメージを示す図である。FIG. 3 is a diagram illustrating the transmission of radio waves through a radio lens with respect to the dielectric loss tangent of the radio lens. 本開示の実施形態2に係る電波用誘電体部品の概略構成を示す断面図である。FIG. 2 is a cross-sectional view showing a schematic configuration of a radio wave dielectric component according to Embodiment 2 of the present disclosure. εc、ε1、ε2、ε3、ε4、tc、t1、t2、t3、およびt4の説明図である。It is an explanatory diagram of εc, ε1, ε2, ε3, ε4, tc, t1, t2, t3, and t4. 比誘電率12のセラミックス(厚さ10mm)の、反射および透過特性のシミュレーション結果を示すグラフである。It is a graph showing simulation results of reflection and transmission characteristics of ceramics (thickness 10 mm) with a dielectric constant of 12. PTFE(厚さ3.3mm)の、電波の垂直入射の場合の反射および透過特性を示すグラフである。It is a graph showing the reflection and transmission characteristics of PTFE (thickness 3.3 mm) in the case of vertical incidence of radio waves. 比誘電率5、厚さ10mmのガラス板の、反射および透過特性を示すグラフである。It is a graph showing the reflection and transmission characteristics of a glass plate having a dielectric constant of 5 and a thickness of 10 mm. 図7のガラス板に、PTFE(比誘電率εr=2.3、厚さ1.65mm(λa/4に相当))を両側に付けたものの、反射および透過特性を示すグラフである。8 is a graph showing reflection and transmission characteristics of the glass plate of FIG. 7 with PTFE (relative dielectric constant εr=2.3, thickness 1.65 mm (corresponding to λa/4)) attached to both sides. 第1コート層のみを2層重ねた特性を示すグラフである。It is a graph showing the characteristics of two layers of only the first coat layer. 第1コート層と第2コート層とを重ね、コア材が無い場合の特性を示すグラフである。It is a graph showing the characteristics when the first coat layer and the second coat layer are stacked and there is no core material. 第1コート層、第2コート層、およびコア材を含んだ部材の、反射および透過特性を示すグラフである。1 is a graph showing reflection and transmission characteristics of a member including a first coat layer, a second coat layer, and a core material. 図9の特性に対して、第1コート層の厚みを1mmとしたときの、電波の垂直入射の場合の反射および透過特性を示すグラフである。10 is a graph showing reflection and transmission characteristics in the case of vertical incidence of radio waves when the thickness of the first coat layer is 1 mm with respect to the characteristics shown in FIG. 9. 第2コート層と厚みが1mmの第1コート層とを重ねた場合の特性を示すグラフである。It is a graph showing the characteristics when a second coat layer and a first coat layer having a thickness of 1 mm are stacked. 第1コート層(比誘電率6.0、厚さ1.02mm)が2層の場合の、電波の垂直入射の場合の反射および透過特性を示すグラフである。It is a graph showing reflection and transmission characteristics in the case of vertical incidence of radio waves when the first coat layer (relative dielectric constant 6.0, thickness 1.02 mm) is two layers. 図14に係る第1コート層に第2コート層を重ねた場合の、電波の垂直入射の場合の反射および透過特性を示すグラフである。15 is a graph showing reflection and transmission characteristics in the case of vertical incidence of radio waves when a second coat layer is stacked on the first coat layer according to FIG. 14. FIG. コア材を図15に係るコート層で挟んだときの、電波の垂直入射の場合の反射および透過特性を示すグラフである。16 is a graph showing reflection and transmission characteristics in the case of vertical incidence of radio waves when the core material is sandwiched between the coating layers according to FIG. 15. FIG. 第1コート層(比誘電率10.8、厚さ0.77mm)が2層の場合の、電波の垂直入射の場合の反射および透過特性を示すグラフである。It is a graph showing the reflection and transmission characteristics in the case of vertical incidence of radio waves when the first coat layer (relative dielectric constant 10.8, thickness 0.77 mm) is two layers. 図17に係る第1コート層に第2コート層を重ねた場合の、電波の垂直入射の場合の反射および透過特性を示すグラフである。18 is a graph showing reflection and transmission characteristics in the case of vertical incidence of radio waves when a second coat layer is stacked on the first coat layer according to FIG. 17. FIG. コア材を図18に係るコート層で挟んだときの、電波の垂直入射の場合の反射および透過特性を示すグラフである。19 is a graph showing reflection and transmission characteristics in the case of vertical incidence of radio waves when the core material is sandwiched between the coating layers according to FIG. 18. FIG. 反射および透過スペクトルを示すグラフである。3 is a graph showing reflection and transmission spectra. 反射および透過スペクトルを示すグラフである。3 is a graph showing reflection and transmission spectra. 実施例1に係る、第1コート層および第2コート層の組み合わせの反射および透過スペクトルである。1 is a reflection and transmission spectrum of a combination of a first coat layer and a second coat layer according to Example 1. 実施例1に係る、電波用誘電体部品の反射および透過スペクトルである。2 is a reflection and transmission spectrum of a radio wave dielectric component according to Example 1. 実施例2に係る、第1コート層および第2コート層の組み合わせの反射および透過スペクトルである。2 is a reflection and transmission spectrum of a combination of a first coat layer and a second coat layer according to Example 2. 実施例3に係る、第1コート層および第2コート層の組み合わせの反射および透過スペクトルである。3 is a reflection and transmission spectrum of a combination of a first coat layer and a second coat layer according to Example 3. 実施例3に係る、電波用誘電体部品の反射および透過スペクトルである。3 is a reflection and transmission spectrum of a dielectric component for radio waves according to Example 3. 実施例4に係る、第1コート層および第2コート層の組み合わせの反射および透過スペクトルである。3 is a reflection and transmission spectrum of a combination of a first coat layer and a second coat layer according to Example 4. 実施例4に係る、電波用誘電体部品の反射および透過スペクトルである。3 is a reflection and transmission spectrum of a dielectric component for radio waves according to Example 4. ファンビームレンズの概略図である。FIG. 2 is a schematic diagram of a fan beam lens. 図29に示したファンビームレンズのA-A断面図である。30 is a sectional view taken along line AA of the fan beam lens shown in FIG. 29. FIG. 図29に示したファンビームレンズのB-B断面図である。30 is a cross-sectional view taken along line BB of the fan beam lens shown in FIG. 29. FIG. 本開示の実施形態3に係る電波中継器の概略図である。FIG. 3 is a schematic diagram of a radio wave repeater according to Embodiment 3 of the present disclosure. 反射器の概略図である。FIG. 2 is a schematic diagram of a reflector.
 本開示を実施するための形態について説明する。説明の便宜上、先に説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない場合がある。 A mode for implementing the present disclosure will be described. For convenience of explanation, members having the same functions as previously described members are given the same reference numerals, and the description thereof may not be repeated.
 〔実施形態1〕
 図1は、本開示の実施形態1に係る電波中継器101の概略図である。電波中継器101は、導波路1、第1ホーン2、第1電波レンズ3、第2ホーン4、および第2電波レンズ5を備えている。
[Embodiment 1]
FIG. 1 is a schematic diagram of a radio repeater 101 according to Embodiment 1 of the present disclosure. The radio wave repeater 101 includes a waveguide 1, a first horn 2, a first radio lens 3, a second horn 4, and a second radio lens 5.
 基地局6は、電波7を発する。電波7は、マイクロ波およびミリ波の少なくとも一方を含んでいる。電波中継器101は、電波7を中継する。電波中継器101が電波7を中継することによって、壁や窓等の遮蔽物8によって互いに隔てられた基地局6と端末9との、電波7を用いた通信が可能である。 The base station 6 emits radio waves 7. The radio waves 7 include at least one of microwaves and millimeter waves. The radio wave repeater 101 relays the radio waves 7. By relaying the radio waves 7 by the radio wave repeater 101, communication using the radio waves 7 is possible between the base station 6 and the terminal 9, which are separated from each other by a shield 8 such as a wall or window.
 また、本開示の実施形態1に係る電波中継器101は、電波7を曲げる機能も有する。よって、基地局6に対し端末9が見通し外の場所(NLOS:Non Line of Sight)に置かれた場合でも、電波7は遮蔽されずに通信することが可能となる。 Furthermore, the radio wave repeater 101 according to Embodiment 1 of the present disclosure also has a function of bending the radio waves 7. Therefore, even if the terminal 9 is placed in a non-line-of-sight (NLOS) location with respect to the base station 6, the radio waves 7 can be communicated without being blocked.
 導波路1は、遮蔽物8に形成された貫通孔8aに設けられている。導波路1は、円形または正方形の横断面を有する。これにより、導波路1の一端1aから入射された電波7の偏波情報を維持した状態で導波路1の他端1bに出射する事ができる。第1ホーン2は、導波路1の一端1aに設けられている。第1ホーン2は、第1ホーン2の開口部2aが電波7の入射する方向を向くように設けられている。第1電波レンズ3は、第1ホーン2の開口部2aに設けられている。第1電波レンズ3は、第1電波レンズ3自身に入射した電波7を収斂および透過させて導波路1へと導く。 The waveguide 1 is provided in a through hole 8a formed in the shield 8. The waveguide 1 has a circular or square cross section. Thereby, the polarization information of the radio wave 7 incident from one end 1a of the waveguide 1 can be maintained and the radio wave 7 can be emitted to the other end 1b of the waveguide 1. The first horn 2 is provided at one end 1a of the waveguide 1. The first horn 2 is provided so that the opening 2a of the first horn 2 faces the direction in which the radio waves 7 are incident. The first radio lens 3 is provided in the opening 2a of the first horn 2. The first radio wave lens 3 converges and transmits the radio waves 7 that have entered the first radio wave lens 3 itself, and guides them to the waveguide 1 .
 第2ホーン4は、導波路1の他端1bに設けられている。第2ホーン4は、第2ホーン4の開口部4aが端末9の方向を向くように設けられている。第2電波レンズ5は、第2ホーン4の開口部4aに設けられている。第2電波レンズ5は、導波路1を通過した電波7を収斂および透過させる。 The second horn 4 is provided at the other end 1b of the waveguide 1. The second horn 4 is provided such that the opening 4a of the second horn 4 faces the terminal 9. The second radio wave lens 5 is provided in the opening 4a of the second horn 4. The second radio wave lens 5 converges and transmits the radio waves 7 that have passed through the waveguide 1.
 第1電波レンズ3を用いることで、第1ホーン2のサイズを小さくしても利得を高める効果が得られる。これにより壁に設置しても目立たない電波中継器101を提供できる。 By using the first radio wave lens 3, the effect of increasing the gain can be obtained even if the size of the first horn 2 is reduced. Thereby, it is possible to provide the radio wave repeater 101 that is not noticeable even when installed on a wall.
 第2電波レンズ5を用いることで、電波中継器101から複数の端末9が置かれているエリア内に電波7を遍く伝搬させることができる。電波中継器101によれば、複数の偏波を正確に維持した状態で中継することが容易である。また、第2電波レンズ5の材料または形状等の選択如何で、電波中継器101は、広範囲または遠距離に、電波7を射出可能となる。 By using the second radio wave lens 5, the radio waves 7 can be uniformly propagated from the radio wave repeater 101 into the area where the plurality of terminals 9 are placed. According to the radio wave repeater 101, it is easy to relay a plurality of polarized waves while maintaining them accurately. Moreover, depending on the selection of the material, shape, etc. of the second radio wave lens 5, the radio wave repeater 101 can emit the radio waves 7 over a wide range or a long distance.
 導波路1は、導波管であってもよい。これにより、導波路1内を通る電波7の損失を抑えることができる。 The waveguide 1 may be a waveguide. Thereby, loss of the radio waves 7 passing through the waveguide 1 can be suppressed.
 導波路1は、可撓性導波路であってもよい。これにより、第1ホーン2の方向を自由に変える事ができ、例えば、基地局6との方向を容易に変更する事ができ、第1電波レンズ3の指向性利得を最大限に利用することができる。「可撓性」の一例として、外力を加えると曲がり、外力がなくなると元に戻る性能が挙げられる。 The waveguide 1 may be a flexible waveguide. Thereby, the direction of the first horn 2 can be freely changed, for example, the direction with respect to the base station 6 can be easily changed, and the directional gain of the first radio wave lens 3 can be utilized to the maximum. Can be done. An example of "flexibility" is the ability to bend when an external force is applied and return to its original shape when the external force is removed.
 導波路1は、湾曲した導波管であってもよい。これにより、第1ホーン2の方向を自由に変えることができ、例えば、基地局6との方向を容易に変更する事ができ、第1電波レンズ3の指向性利得を最大限に利用することができる。 The waveguide 1 may be a curved waveguide. Thereby, the direction of the first horn 2 can be freely changed, for example, the direction with respect to the base station 6 can be easily changed, and the directional gain of the first radio lens 3 can be utilized to the maximum. Can be done.
 第1電波レンズ3の指向性利得は高い方が好ましい。高いことにより基地局6からの電波をより強く受信することができ、通信品質を向上する事ができる。第1電波レンズ3の指向性利得は10dBi以上が好ましく15dBi以上がより好ましく、20dBi以上がさらに好ましく、25dBi以上がさらにより好ましく、30dBi以上がいっそう好ましい。 It is preferable that the directivity gain of the first radio wave lens 3 is high. By increasing the height, radio waves from the base station 6 can be received more strongly, and communication quality can be improved. The directivity gain of the first radio wave lens 3 is preferably 10 dBi or more, more preferably 15 dBi or more, even more preferably 20 dBi or more, even more preferably 25 dBi or more, and even more preferably 30 dBi or more.
 第1電波レンズ3の指向性利得は、10dBi以上であってもよい。第1電波レンズ3は、ガラス、ガラスセラミックス、またはセラミックスからなるコア材を有していてもよい。第1電波レンズ3の誘電正接は、10-2以下であってもよい。 The directional gain of the first radio wave lens 3 may be 10 dBi or more. The first radio wave lens 3 may have a core material made of glass, glass ceramics, or ceramics. The dielectric loss tangent of the first radio wave lens 3 may be 10 −2 or less.
 図2は、電波レンズ10の誘電正接に対する、電波レンズ10の電波7の透過のイメージを示す図である。電波レンズ10とは、第1電波レンズ3および第2電波レンズ5のいずれかを指す。 FIG. 2 is a diagram showing an image of transmission of the radio wave 7 through the radio wave lens 10 with respect to the dielectric loss tangent of the radio wave lens 10. The radio lens 10 refers to either the first radio lens 3 or the second radio lens 5.
 電波レンズ10の指向性利得は、10dBi以上であってもよく、15dBi以上であってもよく、20dBi以上であってもよく、25dBi以上であってもよく、30dBi以上であってもよい。電波レンズ10の指向性利得が高いと、基地局6からの電波をより強く受信することができ、通信品質を向上させることができる。一方、電波7を広範囲に遍く伝搬させたい場合は、電波レンズ10の指向性利得は、30dBi以下であってもよく、25dBi以下であってもよく、20dBi以下であってもよく、15dBi以下であってもよく、10dBi以下であってもよい。 The directional gain of the radio wave lens 10 may be 10 dBi or more, 15 dBi or more, 20 dBi or more, 25 dBi or more, or 30 dBi or more. When the radio wave lens 10 has a high directivity gain, radio waves from the base station 6 can be received more strongly, and communication quality can be improved. On the other hand, when it is desired to propagate the radio waves 7 over a wide range, the directional gain of the radio lens 10 may be 30 dBi or less, 25 dBi or less, 20 dBi or less, or 15 dBi or less. It may be 10 dBi or less.
 電波レンズ10の誘電正接は、10-2以下であってもよく、10-3以下であってもよく、10-4以下であってもよい。電波レンズ10の誘電正接が小さいと、電波レンズ10内部での電力の損失が小さくなる。電波レンズ10の誘電正接が大きいと、当該損失が大きくなり、基地局6と端末9との電波7を用いた通信に悪影響を及ぼし得る。 The dielectric loss tangent of the radio wave lens 10 may be 10 −2 or less, 10 −3 or less, or 10 −4 or less. When the dielectric loss tangent of the radio wave lens 10 is small, power loss inside the radio wave lens 10 becomes small. If the dielectric loss tangent of the radio wave lens 10 is large, the loss becomes large, which may adversely affect communication between the base station 6 and the terminal 9 using the radio waves 7.
 電波レンズ10の比誘電率は、4以上であってもよく、7以上であってもよく、10以上であってもよく、13以上であってもよい。電波レンズ10の比誘電率が高いと、電波7を屈折させる能力が高くなり、低いレンズ高さで大きく電波を屈折させることができ、電波レンズ10とホーンの厚みを薄くすることができる。 The relative dielectric constant of the radio wave lens 10 may be 4 or more, 7 or more, 10 or more, or 13 or more. When the relative dielectric constant of the radio wave lens 10 is high, the ability to refract the radio waves 7 becomes high, the radio waves can be largely refracted with a low lens height, and the thickness of the radio wave lens 10 and the horn can be made thin.
 電波レンズ10は、誘電体材料を有しており、当該誘電体材料の内部で電波7を吸収および散乱させてもよい。 The radio wave lens 10 has a dielectric material, and may absorb and scatter the radio waves 7 inside the dielectric material.
 電波レンズ10内の比誘電率の分布において、その最大値とその最小値との差が0.1以下であってもよい。これにより、電波中継器101における利得が上がる。 In the distribution of relative dielectric constant within the radio wave lens 10, the difference between the maximum value and the minimum value may be 0.1 or less. This increases the gain in the radio wave repeater 101.
 電波レンズ10がガラス、ガラスセラミックス、またはセラミックスからなるコア材を有している場合、電波レンズ10の製造時において、電波レンズ10の材料の昇温時における雰囲気の昇温速度を遅くして、当該材料の焼結に伴う収縮時間を長くしてもよい。これらは、当該材料の結晶化温度域に対応付けて行ってもよい。これにより、電波レンズ10内の材料の密度(換言すれば、比誘電率)の最大値と最小値との差が小さい電波レンズ10が得られる。当該昇温速度は、当該材料内の温度の分布において、その最大値とその最小値との差が0.5℃以下となるように設定してもよい。当該昇温速度は、1時間あたり10℃以下であってもよい。 When the radio wave lens 10 has a core material made of glass, glass ceramics, or ceramics, during the manufacture of the radio wave lens 10, the heating rate of the atmosphere when heating the material of the radio wave lens 10 is slowed, The shrinkage time associated with sintering of the material may be lengthened. These may be performed in accordance with the crystallization temperature range of the material. Thereby, a radio wave lens 10 can be obtained in which the difference between the maximum value and the minimum value of the density (in other words, relative dielectric constant) of the material within the radio wave lens 10 is small. The temperature increase rate may be set such that the difference between the maximum value and the minimum value of the temperature distribution within the material is 0.5° C. or less. The temperature increase rate may be 10° C. or less per hour.
 電波中継器101は、電源を必要としない。このため、電波中継器101は、設置の自由度が高い、つまり、より多くの箇所に設置可能である。また、電波レンズ10に無機誘電体材料を用いることで、外環境での劣化が少なくでき、メンテナンス性を向上させることが可能となる。 The radio wave repeater 101 does not require a power source. Therefore, the radio wave repeater 101 has a high degree of freedom in installation, that is, it can be installed in more locations. Further, by using an inorganic dielectric material for the radio wave lens 10, deterioration in the outside environment can be reduced, and maintainability can be improved.
 電波中継器101は、第2電波レンズ5を備えていなくてもよい。これにより、屋内側は、第2ホーン4のみとなり、より広範囲に電波を放射できる。 The radio wave repeater 101 does not need to include the second radio lens 5. Thereby, only the second horn 4 is on the indoor side, and radio waves can be emitted over a wider range.
 図29は、ファンビームレンズ27の概略図である。図30は、ファンビームレンズ27のA-A断面図である。図31は、ファンビームレンズ27のB-B断面図である。ファンビームレンズ27は、第2電波レンズ5として使用され得る。図29は、符号1001を付した主にファンビームレンズ27の表面の図示と、符号1002を付した主にファンビームレンズ27の裏面の図示とを含んでいる。 FIG. 29 is a schematic diagram of the fan beam lens 27. FIG. 30 is a cross-sectional view of the fan beam lens 27 taken along the line AA. FIG. 31 is a BB cross-sectional view of the fan beam lens 27. The fan beam lens 27 can be used as the second radio wave lens 5. FIG. 29 includes an illustration of mainly the front surface of the fan beam lens 27, designated by the reference numeral 1001, and an illustration of the back surface of the fan beam lens 27, designated by the reference numeral 1002.
 ファンビームレンズ27は、地面に垂直な方向には電波を絞り、水平な方向には広範囲に電波を放射するレンズである。これにより、電波が不要な天井付近と地面付近への放射を抑え、電波が必要な水平方向に広範囲に放射することができる。垂直方向への放射を抑えることで、水平方向の利得が向上される。 The fan beam lens 27 is a lens that narrows down radio waves in the direction perpendicular to the ground and emits radio waves over a wide range in the horizontal direction. This suppresses the radiation of radio waves near the ceiling and the ground where they are not needed, and allows the radio waves to be radiated over a wide range in the horizontal direction where they are needed. By suppressing radiation in the vertical direction, gain in the horizontal direction is improved.
 ファンビームレンズ27は、そのA-A断面に対応するレンズ中央を通る垂直方向の断面において、レンズの厚みが中央から端にかけて薄くなっている。これにより、該垂直方向において、レンズを通過する電波は端を通過する電波ほど内側に屈曲するため、電波の放射を絞ることができる。一方、ファンビームレンズ27は、そのB-B断面に対応するレンズ中央を通る水平方向の断面において、レンズの厚みは中央から端まで一定である。これにより、該水平方向において、電波は屈曲せずにレンズを通過するため、電波を広範囲に広げることができる。 In the fan beam lens 27, in a vertical cross section passing through the center of the lens corresponding to the AA cross section, the thickness of the lens becomes thinner from the center to the ends. Thereby, in the vertical direction, the radio waves passing through the lens are bent inward as the radio waves pass through the edges, so that the radiation of the radio waves can be narrowed down. On the other hand, in the fan beam lens 27, the thickness of the lens is constant from the center to the end in a horizontal section passing through the center of the lens corresponding to the BB section. Thereby, in the horizontal direction, the radio waves pass through the lens without being bent, so that the radio waves can be spread over a wide range.
 〔実施形態2〕
 (特徴的構成)
 図3は、本開示の実施形態2に係る電波用誘電体部品102の概略構成を示す断面図である。電波用誘電体部品102は、電波レンズとして好適に利用できるものであり、特に、電波中継器101の電波レンズ10(より具体的には、第1電波レンズ3および第2電波レンズ5のいずれか)として好適に利用できるものである。電波用誘電体部品102の利用例は、これに限定されない。電波レンズ以外の電波用誘電体部品102の利用例として、窓等の、電波25を透過させる部材が挙げられる。電波用誘電体部品102は、コア材21、第1コート層22、および第2コート層23を備えている。
[Embodiment 2]
(Characteristic configuration)
FIG. 3 is a cross-sectional view showing a schematic configuration of a radio wave dielectric component 102 according to Embodiment 2 of the present disclosure. The radio wave dielectric component 102 can be suitably used as a radio wave lens, and in particular can be used as a radio wave lens 10 of the radio wave repeater 101 (more specifically, either the first radio wave lens 3 or the second radio wave lens 5). ) can be suitably used. The usage example of the radio wave dielectric component 102 is not limited to this. An example of the use of the radio wave dielectric component 102 other than a radio wave lens is a member that allows radio waves 25 to pass through, such as a window. The radio wave dielectric component 102 includes a core material 21, a first coat layer 22, and a second coat layer 23.
 アンテナ24は、電波25を放射する。電波25は、マイクロ波およびミリ波の少なくとも一方を含んでいる。電波用誘電体部品102は、電波25を透過させて、電波受信対象26へと導く。 The antenna 24 emits radio waves 25. The radio waves 25 include at least one of microwaves and millimeter waves. The radio wave dielectric component 102 transmits the radio waves 25 and guides them to the radio wave receiving target 26 .
 コア材21は、誘電体からなる。コア材21は、第1面21aおよび第2面21bを有している。第1面21aおよび第2面21bは互いに対向する。 The core material 21 is made of a dielectric material. The core material 21 has a first surface 21a and a second surface 21b. The first surface 21a and the second surface 21b face each other.
 第1コート層22は、第1領域22aおよび第3領域22bを含んでいる。第1領域22aは、第1面21aの上に設けられている。第3領域22bは、第2面21bの上に設けられている。 The first coat layer 22 includes a first region 22a and a third region 22b. The first region 22a is provided on the first surface 21a. The third region 22b is provided on the second surface 21b.
 なお、本実施形態においては、コア材21を最下部として、コア材21の表面の法線方向に沿ってコア材21から遠いほど、その位置が上であるものとする。 In this embodiment, it is assumed that the core material 21 is at the lowest position, and the farther from the core material 21 along the normal direction of the surface of the core material 21, the higher the position is.
 第2コート層23は、第2領域23aおよび第4領域23bを含んでいる。第2領域23aは、第1領域22aの上に設けられている。第4領域23bは、第3領域22bの上に設けられている。 The second coat layer 23 includes a second region 23a and a fourth region 23b. The second region 23a is provided on the first region 22a. The fourth region 23b is provided above the third region 22b.
 図4は、εc、ε1、ε2、ε3、ε4、tc、t1、t2、t3、およびt4の説明図である。tcは、コア材21の厚みである。 FIG. 4 is an explanatory diagram of εc, ε1, ε2, ε3, ε4, tc, t1, t2, t3, and t4. tc is the thickness of the core material 21.
 コア材21の比誘電率をεcとし、第1領域22aの比誘電率をε1とし、第2領域23aの比誘電率をε2とし、第1領域22aの厚みをt1とし、第2領域23aの厚みをt2とする。電波用誘電体部品102の透過中心波長をλとする。このとき、電波用誘電体部品102は、数式(1)、数式(2)、および数式(3)を満足する。「√(数)」の表記は、小かっこ内の数値の平方根を意味している。 The dielectric constant of the core material 21 is εc, the dielectric constant of the first region 22a is ε1, the dielectric constant of the second region 23a is ε2, the thickness of the first region 22a is t1, and the dielectric constant of the second region 23a is ε2. Let the thickness be t2. The transmission center wavelength of the radio wave dielectric component 102 is assumed to be λ. At this time, the radio wave dielectric component 102 satisfies Equation (1), Equation (2), and Equation (3). The notation "√ (number)" means the square root of the number in parentheses.
  ε2<ε1<εc  ・・・(1)
  0.9×λ/4≦√(ε1)×t1≦1.1×λ/4  ・・・(2)
  0.9×λ/4≦√(ε2)×t2≦1.1×λ/4  ・・・(3)
 電波用誘電体部品102の透過中心波長とは、電波用誘電体部品102が透過可能な電波25の波長範囲のうち、その中心の波長であり、「(電波用誘電体部品102における透過可能波長範囲の最大波長値+電波用誘電体部品102における透過可能波長範囲の最小波長値)の半分」で表される。ここで言う波長は、全て真空中の波長である。
ε2<ε1<εc...(1)
0.9×λ/4≦√(ε1)×t1≦1.1×λ/4 (2)
0.9×λ/4≦√(ε2)×t2≦1.1×λ/4 (3)
The transmission center wavelength of the dielectric component 102 for radio waves is the center wavelength of the wavelength range of the radio waves 25 that can be transmitted through the dielectric component 102 for radio waves. The maximum wavelength value of the range + the minimum wavelength value of the transmittable wavelength range in the radio wave dielectric component 102). The wavelengths mentioned here are all wavelengths in vacuum.
 電波用誘電体部品102によれば、電波用誘電体部品102の比誘電率が高くても、電波用誘電体部品102における電波25の反射量が少ないため、電波受信対象26に対して電波25を高効率に導くことができる。また、当該反射量が少ないため、サイドローブが小さくなり、ゴーストが発生し難くなる。 According to the dielectric component 102 for radio waves, even if the dielectric constant of the dielectric component 102 for radio waves is high, the amount of reflection of the radio waves 25 in the dielectric component 102 for radio waves is small. can be led to high efficiency. Furthermore, since the amount of reflection is small, side lobes are small and ghosts are less likely to occur.
 第3領域22bの比誘電率をε3とし、第4領域23bの比誘電率をε4とし、第3領域22bの厚みをt3とし、第4領域23bの厚みをt4とする。このとき、電波用誘電体部品102は、数式(4)、数式(5)、および数式(6)を満足してもよい。 The dielectric constant of the third region 22b is ε3, the dielectric constant of the fourth region 23b is ε4, the thickness of the third region 22b is t3, and the thickness of the fourth region 23b is t4. At this time, the radio wave dielectric component 102 may satisfy Formula (4), Formula (5), and Formula (6).
  ε4<ε3<εc  ・・・(4)
  0.9×λ/4≦√(ε3)×t3≦1.1×λ/4  ・・・(5)
  0.9×λ/4≦√(ε4)×t4≦1.1×λ/4  ・・・(6)
 ε1の値とε3の値とが同一であってもよい。ε2の値とε4の値とが同一であってもよい。t1の値とt3の値とが同一であってもよい。t2の値とt4の値とが同一であってもよい。これらの全てを満足してもよい。
ε4<ε3<εc...(4)
0.9×λ/4≦√(ε3)×t3≦1.1×λ/4 (5)
0.9×λ/4≦√(ε4)×t4≦1.1×λ/4 (6)
The value of ε1 and the value of ε3 may be the same. The value of ε2 and the value of ε4 may be the same. The value of t1 and the value of t3 may be the same. The value of t2 and the value of t4 may be the same. All of these may be satisfied.
 第1コート層22において、第1領域22aと第3領域22bとが、互いに同一の比誘電率、互いに同一の厚み、またはこれらの両方であってもよい。第2コート層23において、第2領域23aと第4領域23bとが、互いに同一の比誘電率、互いに同一の厚み、またはこれらの両方であってもよい。 In the first coat layer 22, the first region 22a and the third region 22b may have the same dielectric constant, the same thickness, or both. In the second coat layer 23, the second region 23a and the fourth region 23b may have the same dielectric constant, the same thickness, or both.
 ε1は、εcの0.5倍以上かつ0.9倍以下であってもよい。ε2は、3.5以下であってもよい。 ε1 may be 0.5 times or more and 0.9 times or less of εc. ε2 may be 3.5 or less.
 εc、ε1、ε2、ε3、ε4、tc、t1、t2、t3、およびt4それぞれは、電波用誘電体部品102内の位置によって、その値が異なり得る。εc、ε1、ε2、ε3、ε4、tc、t1、t2、t3、およびt4それぞれは、複数の位置それぞれで取得した値の平均値であってもよい。 The values of εc, ε1, ε2, ε3, ε4, tc, t1, t2, t3, and t4 may vary depending on the position within the radio wave dielectric component 102. Each of εc, ε1, ε2, ε3, ε4, tc, t1, t2, t3, and t4 may be an average value of values obtained at each of a plurality of positions.
 コア材21は、電波レンズであってもよい。コア材21は、ガラス、ガラスセラミックス、またはセラミックスからなっていてもよい。第1コート層22は、ガラス、ガラスセラミックス、またはセラミックスからなっていてもよい。第2コート層23は、PTFE(ポリテトラフルオロエチレン)またはその他の樹脂からなっていてもよい。 The core material 21 may be a radio wave lens. Core material 21 may be made of glass, glass ceramics, or ceramics. The first coat layer 22 may be made of glass, glass ceramics, or ceramics. The second coat layer 23 may be made of PTFE (polytetrafluoroethylene) or other resin.
 コア材21の上に設けられたコート層は、第1コート層22および第2コート層23の2層からなっていてもよい。換言すれば、コア材21の上に、第1コート層22および第2コート層23以外のコーティングが施されていなくてもよい。 The coat layer provided on the core material 21 may consist of two layers, the first coat layer 22 and the second coat layer 23. In other words, the core material 21 may not be coated with any coating other than the first coat layer 22 and the second coat layer 23 .
 (考察)
 以下の説明では原則、第1コート層22および第2コート層23の概念が有る一方、第1領域22a、第2領域23a、第3領域22b、および第4領域23bの概念が無い。説明の簡潔化を目的として、ε1およびε3をε1と総称し、ε2およびε4をε2と総称し、t1およびt3をt1と総称し、t2およびt4をt2と総称する。
(Consideration)
In the following explanation, in principle, there is a concept of the first coat layer 22 and the second coat layer 23, but there is no concept of the first region 22a, the second region 23a, the third region 22b, and the fourth region 23b. For the purpose of simplifying the description, ε1 and ε3 are collectively referred to as ε1, ε2 and ε4 are collectively referred to as ε2, t1 and t3 are collectively referred to as t1, and t2 and t4 are collectively referred to as t2.
 以下、シミュレーションを交えて具体例で説明する。周波数は日本国内5Gミリ波帯(27~30GHz)を念頭に、30.0GHz±3GHz(比帯域幅:20%)を例とする。これは、本開示を限定するものではない。むしろ、以降で例示する長さまたは厚みを1/nにすることで、さらに将来登場が予想される(30×n)GHz帯の用途に対応させることもできる。 A specific example will be explained below along with a simulation. The frequency will be 30.0 GHz ± 3 GHz (fractional bandwidth: 20%), keeping in mind the 5G millimeter wave band (27 to 30 GHz) in Japan. This is not intended to limit this disclosure. Rather, by setting the length or thickness as exemplified below to 1/n, it is possible to correspond to the use of the (30×n) GHz band, which is expected to appear in the future.
 図5は、比誘電率12のセラミックス(厚さ10mm)の、反射および透過特性のシミュレーション結果を示すグラフである。材料自体は無損失としている。材料自体が無損失であっても、表面反射のため周波数によっては透過損失が5dBにもなる。表面反射が損失に大きく寄与していると言える。 FIG. 5 is a graph showing simulation results of reflection and transmission characteristics of ceramics (thickness 10 mm) with a dielectric constant of 12. The material itself is assumed to be lossless. Even if the material itself is lossless, the transmission loss can be as high as 5 dB depending on the frequency due to surface reflection. It can be said that surface reflection greatly contributes to the loss.
 本開示の目的および効果の1つは、反射を抑えて、透過損失を少なくするコーティング構造を提供することにある。誘電体界面の反射はスネルの法則で明らかなように、光学的には屈折率比が小さければよい。電磁気学的には、屈折率は比誘電率の平方根であり、したがって比誘電率が小さいほど(すなわち、1に近いほど)反射が小さい。 One of the objects and advantages of the present disclosure is to provide a coating structure that suppresses reflection and reduces transmission loss. As is clear from Snell's law, reflection at a dielectric interface only needs to have a small refractive index ratio. Electromagnetically, the index of refraction is the square root of the dielectric constant, so the lower the dielectric constant (ie, the closer it is to 1), the lower the reflection.
 単層のコート層の場合には、設計方法は知られている。一例としてPTFE(比誘電率εr=2.3)の場合を示す。電波は、空気中から誘電体に入る界面での反射および誘電体層から出る界面での反射の多重反射の合成となる。 In the case of a single coat layer, the design method is known. As an example, the case of PTFE (relative dielectric constant εr=2.3) is shown. The radio wave is a combination of multiple reflections: reflection at the interface entering the dielectric from the air and reflection at the interface exiting the dielectric layer.
 図6は、PTFE(厚さ3.3mm)の、電波25の垂直入射の場合の反射および透過特性を示すグラフである。 FIG. 6 is a graph showing the reflection and transmission characteristics of PTFE (3.3 mm thick) when the radio wave 25 is vertically incident.
 厚み3.3mmは、反射の谷が所望の30GHzとなる最も薄い厚さである。この厚みにおいて、誘電体中の電波の波長短縮率√(εr)を乗じた、誘電体の電気長が30GHzの波長10mmの1/2となる。すなわち、所望周波数帯の中心周波数の真空中の波長をλa、誘電体の比誘電率をεr、厚みをtとして、数式(7)が成り立つ。 The thickness of 3.3 mm is the thinnest thickness at which the reflection valley reaches the desired 30 GHz. At this thickness, the electrical length of the dielectric multiplied by the wavelength shortening rate √(εr) of radio waves in the dielectric becomes 1/2 of the wavelength of 10 mm at 30 GHz. That is, Equation (7) holds true, where λa is the wavelength in vacuum of the center frequency of the desired frequency band, εr is the dielectric constant, and t is the thickness.
  √(εr)×t=λa/2  ・・・(7)
 図7は、比誘電率5、厚さ10mmのガラス板の、反射および透過特性を示すグラフである。図8は、当該ガラス板に、PTFE(比誘電率εr=2.3、厚さ1.65mm(λa/4に相当))を両側に付けたものの、反射および透過特性を示すグラフである。
√(εr)×t=λa/2...(7)
FIG. 7 is a graph showing the reflection and transmission characteristics of a glass plate with a dielectric constant of 5 and a thickness of 10 mm. FIG. 8 is a graph showing the reflection and transmission characteristics of the glass plate with PTFE (relative dielectric constant εr=2.3, thickness 1.65 mm (corresponding to λa/4)) attached to both sides.
 図8に示すように、所望周波数での反射が-20dB以下に抑えられる。図8と図6とを比べてわかるように、図6に示した反射特性が、図8に示した反射特性の、概ね包絡線となる。 As shown in FIG. 8, reflection at the desired frequency is suppressed to -20 dB or less. As can be seen by comparing FIG. 8 and FIG. 6, the reflection characteristics shown in FIG. 6 are approximately the envelope of the reflection characteristics shown in FIG.
 コア材21となる誘電体の比誘電率が大きくなると、1層のコート層では十分に反射を抑えることができない。そこで、誘電体層を2層重ねるコート層の構成(すなわち、第1コート層22および第2コート層23を備えた構成)とする。 When the relative dielectric constant of the dielectric material that becomes the core material 21 becomes large, reflection cannot be sufficiently suppressed with one coating layer. Therefore, a coating layer configuration in which two dielectric layers are stacked (that is, a configuration including a first coating layer 22 and a second coating layer 23) is adopted.
 本開示は、第1コート層22および第2コート層23それぞれの比誘電率および厚みを与えるものであり、これによって所望周波数帯域の電波25の反射を抑えられ、良好な透過特性が得られる。 The present disclosure provides the relative permittivity and thickness of each of the first coat layer 22 and the second coat layer 23, thereby suppressing reflection of radio waves 25 in a desired frequency band and obtaining good transmission characteristics.
 具体例として、図5の比誘電率12のセラミックス(厚さ10mm)をコア材21として、当該コア材21における反射を抑える第1コート層22および第2コート層23について説明する。 As a specific example, the first coat layer 22 and second coat layer 23 that suppress reflection in the core material 21 will be described using a core material 21 made of ceramics (thickness 10 mm) with a dielectric constant of 12 shown in FIG.
 第1コート層22および第2コート層23それぞれの構成要件は、数式(8)~(12)のようにまとめられる。 The constituent requirements of each of the first coat layer 22 and the second coat layer 23 can be summarized as shown in formulas (8) to (12).
  ε2<ε1<εc  ・・・(8)
  √(ε1)×t1=λ/4  ・・・(9)
  √(ε2)×t2=λ/4  ・・・(10)
  0.5×εc≦ε1≦0.9×εc  ・・・(11)
  ε2≦3.5  ・・・(12)
 コア材21は、εc=12.0、tc=12mmとする。第1コート層22は、例えばガラス、ガラスセラミックス、またはセラミックスにより構成し、数式(8)、数式(9)、および数式(11)を満足する値とする。ここでは、ε1=7.3、t1=0.92mmとする。第2コート層23としては、比誘電率の小さい材料を用い、ここではPTFEとする。ここでは、ε2=2.3、t2=1.65mmとする。
ε2<ε1<εc...(8)
√(ε1)×t1=λ/4...(9)
√(ε2)×t2=λ/4...(10)
0.5×εc≦ε1≦0.9×εc (11)
ε2≦3.5 (12)
The core material 21 has εc=12.0 and tc=12 mm. The first coat layer 22 is made of, for example, glass, glass ceramics, or ceramics, and has a value that satisfies Equation (8), Equation (9), and Equation (11). Here, it is assumed that ε1=7.3 and t1=0.92 mm. As the second coat layer 23, a material with a small dielectric constant is used, and here PTFE is used. Here, it is assumed that ε2=2.3 and t2=1.65 mm.
 第2コート層23のみを2層重ねた特性が図6となる。第1コート層22のみを2層重ねた特性が図9となる。第1コート層22と第2コート層23とを重ね、コア材21が無い場合の特性が図10となる。第1コート層22、第2コート層23、およびコア材21を含んだ部材の、反射および透過特性は図11となる。 FIG. 6 shows the characteristics when only the second coat layer 23 is stacked in two layers. FIG. 9 shows the characteristics when only two first coat layers 22 are stacked. FIG. 10 shows the characteristics when the first coat layer 22 and the second coat layer 23 are stacked and there is no core material 21. The reflection and transmission characteristics of the member including the first coat layer 22, the second coat layer 23, and the core material 21 are shown in FIG.
 図10に示す反射特性が、コア材21を含む全体の反射特性の概ね包絡線となり、所望周波数(30GHz)を中心とする比帯域幅20%において、低反射かつ低損失となる。図5に示す反射透過特性を持つコア材21に、図10で示される第1コート層22および第2コート層23を貼り合わせることで、図11に示すように透過特性が著しく改善される。 The reflection characteristics shown in FIG. 10 are approximately the envelope of the entire reflection characteristics including the core material 21, and have low reflection and low loss at a fractional bandwidth of 20% centered on the desired frequency (30 GHz). By bonding the first coat layer 22 and second coat layer 23 shown in FIG. 10 to the core material 21 having the reflection-transmission characteristics shown in FIG. 5, the transmission characteristics are significantly improved as shown in FIG. 11.
 本開示の要点として、下記の4点が挙げられる。 The following four points are listed as key points of the present disclosure.
 数式(8)・・・第1コート層22および第2コート層23の比誘電率を、外側から内側に向かって大きくする。各誘電体層間界面での比誘電率の差を小さくすることで、全体の反射を抑える。 Equation (8): The relative permittivity of the first coat layer 22 and the second coat layer 23 is increased from the outside toward the inside. By reducing the difference in dielectric constant at the interface between each dielectric layer, overall reflection is suppressed.
 数式(9)および(10)・・・第1コート層22および第2コート層23それぞれの電気長を、所望周波数帯域の中心周波数の1/4波長とする。第1コート層22および第2コート層23それぞれの反射が最小となる周波数を一致させる。 Equations (9) and (10)...The electrical length of each of the first coat layer 22 and the second coat layer 23 is set to 1/4 wavelength of the center frequency of the desired frequency band. The frequencies at which the respective reflections of the first coat layer 22 and the second coat layer 23 are minimized are matched.
 数式(11)・・・第1コート層22の比誘電率を規定する。第1コート層22と第2コート層23との界面の反射により、所望中心周波数の上下に2つの反射極小が現れる。この側帯低反射の周波数は比誘電率によって決まる。実用的に要求される帯域幅および反射量を得るには、数式(11)の範囲内となる。 Equation (11) defines the dielectric constant of the first coat layer 22. Due to reflection at the interface between the first coat layer 22 and the second coat layer 23, two reflection minima appear above and below the desired center frequency. The frequency of this sideband low reflection is determined by the dielectric constant. In order to obtain the practically required bandwidth and reflection amount, it is within the range of Equation (11).
 数式(12)・・・第2コート層23の比誘電率を規定する。実用的な低誘電率材料が概ね3.5以下の比誘電率を持つことによる実用条件である。 Equation (12) defines the dielectric constant of the second coat layer 23. This is a practical condition that a practical low dielectric constant material has a dielectric constant of approximately 3.5 or less.
 本開示の本質は、次のように説明できる。 The essence of the present disclosure can be explained as follows.
 ・第1コート層22および第2コート層23それぞれは、所望周波数で反射が極小となる比誘電率および厚みを持つ。 - Each of the first coat layer 22 and the second coat layer 23 has a dielectric constant and a thickness that minimize reflection at a desired frequency.
 ・第1コート層22と第2コート層23とを貼り合わせた層でも同一の反射極小値を持つ。 - Even the layer obtained by laminating the first coat layer 22 and the second coat layer 23 has the same reflection minimum value.
 ・第1コート層22と第2コート層23とを貼り合わせたとき、これらの界面での多重反射により、さらに反射極小値が現れる。周波数混成(ミキシング)の場合と同様に、下側極小値および上側極小値の2つが現れる。 - When the first coat layer 22 and the second coat layer 23 are bonded together, a minimum reflection value appears due to multiple reflections at these interfaces. As in the case of frequency mixing, two minimum values appear: a lower minimum value and an upper minimum value.
 ・2つの側帯極小値の周波数は誘電率によって決まる。 ・The frequencies of the two sideband minimum values are determined by the dielectric constant.
 ・第1コート層22および第2コート層23それぞれはコア材21よりも低誘電率であるので、第1コート層22および第2コート層23の反射特性が包絡線となり、それにコア材21の反射特性が重畳される。 - Since each of the first coat layer 22 and the second coat layer 23 has a lower dielectric constant than the core material 21, the reflection characteristics of the first coat layer 22 and the second coat layer 23 become an envelope, and the reflection characteristics of the core material 21 Reflection characteristics are superimposed.
 数学的な記述をすると、通信等における周波数変換器または混成器(ミキサー)と類似であり、本開示は、第1コート層22および第2コート層23の低反射極値をミキシングすることで、側帯低反射極値を出現させ、低反射周波数帯域を拡げるものである。 Mathematically speaking, it is similar to a frequency converter or a mixer in communications etc., and the present disclosure mixes the low reflection extremes of the first coat layer 22 and the second coat layer 23. This makes the side band low reflection extreme value appear and widens the low reflection frequency band.
 第1コート層22と第2コート層23との間の反射波をミキシングすることで、広帯域低反射コート層を提供するのが本開示であり、反射波をミキシングするという新規なアイデアを用いている。 The present disclosure provides a broadband low-reflection coating layer by mixing reflected waves between the first coating layer 22 and the second coating layer 23, and uses a novel idea of mixing reflected waves. There is.
 本開示は概ね、比誘電率が6以上の高誘電体をコア材21とする場合に用いる。比誘電率が6未満であっても良いが、効果において1層コートと大差無い。実用的には比誘電率が8以上の、ガラスおよびセラミックス(LTCCおよびHTCCを含む)等に用いると効果的である。 The present disclosure is generally used when the core material 21 is a high dielectric material with a dielectric constant of 6 or more. Although the dielectric constant may be less than 6, the effect is not much different from that of a single layer coating. Practically, it is effective to use it for glass, ceramics (including LTCC and HTCC), etc., which have a dielectric constant of 8 or more.
 コート層を3層以上に重ねる場合においても、本開示が基礎としているコート層間反射のミキシングの技術を適用できる。しかしながら、層の組み合わせの分だけ設計自由度が増えるため、適用は実用的ではない。 Even when three or more coat layers are stacked, the technique of mixing reflection between coat layers, which the present disclosure is based on, can be applied. However, since the degree of freedom in design increases by the combination of layers, its application is not practical.
 比較的高い誘電率を有する、ガラスまたはセラミックス等の板材に、本開示の第1コート層22および第2コート層23を貼り付けることで、反射を抑え、電波25の透過特性を改善することができる。家屋の窓または壁等に適用できる。また、コア材21の両側に本開示の第1コート層22および第2コート層23を貼り合わせることで、電波用誘電体部品102の電波レンズとしての指向性利得を高めることができる。 By attaching the first coat layer 22 and the second coat layer 23 of the present disclosure to a plate material such as glass or ceramics having a relatively high dielectric constant, reflection can be suppressed and the transmission characteristics of the radio waves 25 can be improved. can. It can be applied to windows or walls of houses. Further, by bonding the first coat layer 22 and the second coat layer 23 of the present disclosure on both sides of the core material 21, the directivity gain of the radio wave dielectric component 102 as a radio wave lens can be increased.
 図9の特性に対して、第1コート層22の厚みt1を0.92mmから1mm(およそ10%増)としたときの、電波25の垂直入射の場合の反射および透過特性を図12に示す。低反射となる周波数がおよそ10%低周波側にシフトし、27GHzで低反射となる。 FIG. 12 shows the reflection and transmission characteristics when the radio wave 25 is vertically incident when the thickness t1 of the first coat layer 22 is increased from 0.92 mm to 1 mm (approximately 10% increase) with respect to the characteristics shown in FIG. 9. . The frequency at which low reflection occurs is shifted to the lower frequency side by approximately 10%, and low reflection occurs at 27 GHz.
 第2コート層23と厚みt1が1mmの第1コート層22とを重ねた場合の特性が図13となる。この特性は、図10であるべき特性が、第1コート層22の厚みが10%大きいために崩れたものである。サイドの低反射の谷が低周波側にシフトしたため、図10における30GHzの谷および37GHzの谷が図13では33GHzの谷にまとまって、図10で23GHzにあった谷が21GHzにシフトし、25GHzの山が大きくなり-20dBを切っている。これが、本開示の限界値の一根拠となる。第1コート層22が薄くなる場合は、高周波側にシフトするが状況は同じである。 FIG. 13 shows the characteristics when the second coat layer 23 and the first coat layer 22 having a thickness t1 of 1 mm are stacked. This characteristic is caused by the fact that the characteristic shown in FIG. 10 is broken down because the thickness of the first coat layer 22 is 10% larger. Because the low reflection valley on the side has shifted to the lower frequency side, the 30 GHz valley and 37 GHz valley in Figure 10 are combined into the 33 GHz valley in Figure 13, and the valley that was at 23 GHz in Figure 10 has shifted to 21 GHz, and the 37 GHz valley in Figure 10 has shifted to 25 GHz. The peak of is getting bigger and is below -20dB. This is one basis for the limit value of the present disclosure. When the first coat layer 22 becomes thinner, the frequency shifts to the higher frequency side, but the situation remains the same.
 ε2=2.3、t2=1.65mm、εc=12.0、tc=10mmとし、ε1の限界値について述べる。ε1=6(0.5×εc)およびε1=10.8(0.9×εc)の2つの場合を示す。 Assuming that ε2=2.3, t2=1.65 mm, εc=12.0, and tc=10 mm, the limit value of ε1 will be described. Two cases are shown: ε1=6 (0.5×εc) and ε1=10.8 (0.9×εc).
 ・ε1=6(0.5×εc)の場合
 数式(9)より、第1コート層22の厚みt1は1.02mmとなる。この特性は、図14のようになる。当該第1コート層22に第2コート層23を重ねると、図15の特性になる。反射は-20dBよりも大きくなる。
- In the case of ε1=6 (0.5×εc) From equation (9), the thickness t1 of the first coat layer 22 is 1.02 mm. This characteristic is as shown in FIG. When the second coat layer 23 is superimposed on the first coat layer 22, the characteristics shown in FIG. 15 are obtained. The reflection will be greater than -20dB.
 コア材21を図15に係るコート層(第1コート層22および第2コート層23)で挟んだ特性が、図16になる。30GHzでの反射が-20dBを超える。 The characteristics of the core material 21 sandwiched between the coat layers (first coat layer 22 and second coat layer 23) according to FIG. 15 are shown in FIG. Reflection at 30GHz exceeds -20dB.
 ・ε1=10.8(0.9×εc)の場合
 数式(9)より、第1コート層22の厚みt1は0.77mmとなる。この特性は、図17のようになる。当該第1コート層22に第2コート層23を重ねると、図18の特性になる。
- In the case of ε1=10.8 (0.9×εc) From equation (9), the thickness t1 of the first coat layer 22 is 0.77 mm. This characteristic is as shown in FIG. When the second coat layer 23 is superimposed on the first coat layer 22, the characteristics shown in FIG. 18 are obtained.
 コア材21を図18に係るコート層(第1コート層22および第2コート層23)で挟んだ特性が、図19になる。第1コート層22および第2コート層23を用いて、反射の谷のサイドバンドを作るという本開示のポイントが生じる限界状態となっている。所望周波数での反射が-10dB程度になる。これが、実用上の限界である。 The characteristics of the core material 21 sandwiched between the coat layers (first coat layer 22 and second coat layer 23) according to FIG. 18 are shown in FIG. Using the first coat layer 22 and the second coat layer 23, the point of the present disclosure is to create a sideband of the reflection valley, which is the limit state. The reflection at the desired frequency is about -10 dB. This is the practical limit.
 図20は、以下の条件における反射および透過スペクトルを示すグラフである。 FIG. 20 is a graph showing reflection and transmission spectra under the following conditions.
 ・コア材21:εc=12.0、tc=12mm
 ・第1コート層22:ε1=7.3、t1=1.1mm
 ・第2コート層23:ε2=2.3、t2=1.65mm
 ・透過中心波長:λ=10mm(周波数:30GHzに相当)
 図21は、以下の条件における反射および透過スペクトルを示すグラフである。
・Core material 21: εc=12.0, tc=12mm
・First coat layer 22: ε1=7.3, t1=1.1mm
・Second coat layer 23: ε2=2.3, t2=1.65mm
・Transmission center wavelength: λ = 10mm (equivalent to frequency: 30GHz)
FIG. 21 is a graph showing reflection and transmission spectra under the following conditions.
 ・コア材21:εc=12.0、tc=12mm
 ・第1コート層22:ε1=7.3、t1=0.74mm
 ・第2コート層23:ε2=2.3、t2=1.65mm
 ・透過中心波長:λ=10mm(周波数:30GHzに相当)
 図20および図21に示す特性それぞれは、図11に示す特性より悪化していると言える。
・Core material 21: εc=12.0, tc=12mm
・First coat layer 22: ε1=7.3, t1=0.74mm
・Second coat layer 23: ε2=2.3, t2=1.65mm
・Transmission center wavelength: λ = 10mm (equivalent to frequency: 30GHz)
It can be said that the characteristics shown in FIGS. 20 and 21 are each worse than the characteristics shown in FIG. 11.
 (実施例)
 図22は、実施例1に係る、第1コート層22および第2コート層23の組み合わせの反射および透過スペクトルである。図23は、実施例1に係る、電波用誘電体部品102の反射および透過スペクトルである。
(Example)
FIG. 22 shows reflection and transmission spectra of the combination of the first coat layer 22 and the second coat layer 23 according to Example 1. FIG. 23 shows reflection and transmission spectra of the radio wave dielectric component 102 according to Example 1.
 図24は、実施例2に係る、第1コート層22および第2コート層23の組み合わせの反射および透過スペクトルである。 FIG. 24 shows the reflection and transmission spectra of the combination of the first coat layer 22 and the second coat layer 23 according to Example 2.
 図25は、実施例3に係る、第1コート層22および第2コート層23の組み合わせの反射および透過スペクトルである。図26は、実施例3に係る、電波用誘電体部品102の反射および透過スペクトルである。 FIG. 25 shows the reflection and transmission spectra of the combination of the first coat layer 22 and the second coat layer 23 according to Example 3. FIG. 26 shows reflection and transmission spectra of the radio wave dielectric component 102 according to Example 3.
 図27は、実施例4に係る、第1コート層22および第2コート層23の組み合わせの反射および透過スペクトルである。図28は、実施例4に係る、電波用誘電体部品102の反射および透過スペクトルである。 FIG. 27 shows the reflection and transmission spectra of the combination of the first coat layer 22 and the second coat layer 23 according to Example 4. FIG. 28 shows reflection and transmission spectra of the radio wave dielectric component 102 according to Example 4.
 実施例1~4における、εc、ε1、ε2、tc、t1、t2、およびλは以下のとおりである。 In Examples 1 to 4, εc, ε1, ε2, tc, t1, t2, and λ are as follows.
  εc=12.0
  ε1=7.3(実施例1および2)、6.0(実施例3)、10.8(実施例4)
  ε2=2.3
  tc=12mm
  t1=0.92mm(実施例1)、1mm(実施例2)、1.02mm(実施例3)、0.77mm(実施例4)
  t2=1.65mm
  λ=10mm(周波数:30GHzに相当)
 実施例1によれば、ターゲット波長(ここでは、30GHz)を中心に、広帯域に亘って反射が-20dB以下に抑えられている。
εc=12.0
ε1=7.3 (Examples 1 and 2), 6.0 (Example 3), 10.8 (Example 4)
ε2=2.3
tc=12mm
t1=0.92mm (Example 1), 1mm (Example 2), 1.02mm (Example 3), 0.77mm (Example 4)
t2=1.65mm
λ=10mm (equivalent to frequency: 30GHz)
According to Example 1, reflection is suppressed to -20 dB or less over a wide band centered on the target wavelength (here, 30 GHz).
 実施例2によれば、数式(2)によって規定される範囲の上限では、反射が抑えられる帯域が、実施例1に比べると狭くなるがまだ十分に広い。 According to Example 2, at the upper limit of the range defined by Equation (2), the band in which reflection is suppressed is narrower than in Example 1, but is still sufficiently wide.
 実施例3によれば、ε1=6.0(0.5×εc)では、抑えられる反射強度が、実施例1に比べると小さくなるがまだ十分に大きい。 According to Example 3, when ε1=6.0 (0.5×εc), the suppressed reflection intensity is smaller than in Example 1, but is still sufficiently large.
 実施例4によれば、ε1=10.8(0.9×εc)では、反射が抑えられる帯域が、実施例1に比べると狭くなるがまだ十分に広い。実施例4によれば、ε1=10.8(0.9×εc)では、抑えられる反射強度が、実施例1に比べると小さくなるがまだ十分に大きい。 According to Example 4, when ε1=10.8 (0.9×εc), the band in which reflection is suppressed is narrower than in Example 1, but is still sufficiently wide. According to Example 4, when ε1=10.8 (0.9×εc), the suppressed reflection intensity is smaller than in Example 1, but is still sufficiently large.
 〔実施形態3〕
 図32は、本開示の実施形態3に係る電波中継器101の概略図である。図33は、反射器28の概略図である。本開示の実施形態3に係る電波中継器101は、円形または正方形の横断面を有する導波路1と、導波路1の一端に設けられた反射器28であって、自身に入射したマイクロ波およびミリ波の少なくとも一方を含んでいる電波7を反射および収斂させて導波路1へと導く反射器28とを備えている。反射器28は、主反射鏡29、副反射鏡30、および第3ホーン31を有している。
[Embodiment 3]
FIG. 32 is a schematic diagram of a radio repeater 101 according to Embodiment 3 of the present disclosure. FIG. 33 is a schematic diagram of reflector 28. A radio wave repeater 101 according to Embodiment 3 of the present disclosure includes a waveguide 1 having a circular or square cross section and a reflector 28 provided at one end of the waveguide 1. It includes a reflector 28 that reflects and converges the radio waves 7 containing at least one of the millimeter waves and guides them to the waveguide 1. The reflector 28 has a main reflecting mirror 29, a sub-reflecting mirror 30, and a third horn 31.
 主反射鏡29は、放物面を有し、副反射鏡30は、楕円面を有する。これらの曲面により、焦点における電波の位相差を小さくし、利得を上げることができる。 The main reflecting mirror 29 has a parabolic surface, and the sub-reflecting mirror 30 has an ellipsoidal surface. These curved surfaces can reduce the phase difference of radio waves at the focal point and increase the gain.
 反射器28は、本開示の実施形態1に係る電波中継器101における第1ホーン2および第1電波レンズ3と付け替えて使用する。第3ホーン31と導波路1とを繋げて、本開示の実施形態3に係る電波中継器101として構成する。 The reflector 28 is used in place of the first horn 2 and first radio lens 3 in the radio wave repeater 101 according to the first embodiment of the present disclosure. The third horn 31 and the waveguide 1 are connected to form a radio wave repeater 101 according to the third embodiment of the present disclosure.
 反射器28は、主反射鏡29で基地局6からの電波7を反射させ、副反射鏡30へ電波7を収斂し、副反射鏡30でさらに電波7を反射し、主反射鏡29の中心に位置する第3ホーン31に電波7を収斂し、電波7を中継する。 The reflector 28 reflects the radio waves 7 from the base station 6 on the main reflector 29, converges the radio waves 7 on the sub-reflector 30, further reflects the radio waves 7 on the sub-reflector 30, and focuses the radio waves 7 on the center of the main reflector 29. The radio waves 7 are converged on the third horn 31 located at the third horn 31, and the radio waves 7 are relayed.
 主反射鏡29の径が大きいほど、利得を上げることができる。主反射鏡29は、曲面を持った金属製板のため、大口径の作製が容易である。反射器28は、誘電体材料を用いた大型レンズの作製が難しい場合に活用できる。 The larger the diameter of the main reflecting mirror 29, the higher the gain can be. Since the main reflecting mirror 29 is a metal plate with a curved surface, it is easy to manufacture it with a large diameter. The reflector 28 can be utilized when it is difficult to fabricate a large lens using a dielectric material.
 (まとめ)
 本開示の態様1に係る電波中継器は、円形または正方形の横断面を有する導波路と、前記導波路の一端に設けられた第1ホーンと、前記第1ホーンの開口部に設けられており、自身に入射したマイクロ波およびミリ波の少なくとも一方を含んでいる電波を収斂および透過させて前記導波路へと導く第1電波レンズとを備えている。
(summary)
A radio wave repeater according to aspect 1 of the present disclosure includes a waveguide having a circular or square cross section, a first horn provided at one end of the waveguide, and an opening of the first horn. , a first radio wave lens that converges and transmits radio waves including at least one of microwaves and millimeter waves incident thereon and guides them to the waveguide.
 本開示の態様2に係る電波中継器は、前記態様1において、前記導波路の他端に設けられた第2ホーンと、前記第2ホーンの開口部に設けられており、前記導波路を通過した前記電波を収斂および透過させる第2電波レンズとを備えている。 A radio wave repeater according to Aspect 2 of the present disclosure is provided in Aspect 1, including a second horn provided at the other end of the waveguide and an opening of the second horn, so that the waveguide passes through the waveguide. and a second radio wave lens that converges and transmits the radio waves.
 本開示の態様3に係る電波中継器は、前記態様1または2において、前記第1電波レンズは、ガラス、ガラスセラミックス、またはセラミックスからなるコア材を有している。 In the radio wave repeater according to Aspect 3 of the present disclosure, in Aspect 1 or 2, the first radio wave lens has a core material made of glass, glass ceramics, or ceramics.
 本開示の態様4に係る電波中継器は、前記態様1から3のいずれかにおいて、前記第1電波レンズの誘電正接は、10-2以下である。 In the radio wave repeater according to aspect 4 of the present disclosure, in any one of aspects 1 to 3, the dielectric loss tangent of the first radio wave lens is 10 −2 or less.
 本開示の態様5に係る電波中継器は、前記態様1から4のいずれかにおいて、前記第1電波レンズの比誘電率は、7以上である。 In the radio wave repeater according to aspect 5 of the present disclosure, in any one of aspects 1 to 4, the relative dielectric constant of the first radio wave lens is 7 or more.
 本開示の態様6に係る電波中継器は、前記態様1から5のいずれかにおいて、前記導波路は、可撓性導波路である。 In the radio wave repeater according to aspect 6 of the present disclosure, in any one of aspects 1 to 5, the waveguide is a flexible waveguide.
 本開示の態様7に係る電波中継器は、前記態様1から6のいずれかにおいて、前記導波路は、湾曲した導波管である。 In the radio wave repeater according to aspect 7 of the present disclosure, in any one of aspects 1 to 6, the waveguide is a curved waveguide.
 本開示の態様8に係る電波中継器は、前記態様2において、前記第2電波レンズは、ファンビームレンズである。 In the radio wave repeater according to Aspect 8 of the present disclosure, in Aspect 2, the second radio wave lens is a fan beam lens.
 本開示の態様9に係る電波中継器は、円形または正方形の横断面を有する導波路と、前記導波路の一端に設けられた反射器であって、自身に入射したマイクロ波およびミリ波の少なくとも一方を含んでいる電波を反射および収斂させて前記導波路へと導く反射器とを備えている。 A radio wave repeater according to aspect 9 of the present disclosure includes a waveguide having a circular or square cross section, and a reflector provided at one end of the waveguide, and includes at least a microwave and a millimeter wave incident on the radio wave repeater. and a reflector that reflects and converges the radio waves containing one of the waves and guides them to the waveguide.
 本開示は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本開示の技術的範囲に含まれる。 The present disclosure is not limited to the embodiments described above, and various changes can be made within the scope of the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. are also included within the technical scope of the present disclosure.
1 導波路
1a 導波路の一端
1b 導波路の他端
2 第1ホーン
2a 第1ホーンの開口部
3 第1電波レンズ
4 第2ホーン
4a 第2ホーンの開口部
5 第2電波レンズ
6 基地局
7 電波
8 遮蔽物
8a 貫通孔
9 端末
10 電波レンズ
21 コア材
21a 第1面
21b 第2面
22 第1コート層
22a 第1領域
22b 第3領域
23 第2コート層
23a 第2領域
23b 第4領域
24 アンテナ
25 電波
26 電波受信対象
27 ファンビームレンズ
28 反射器
29 主反射鏡
30 副反射鏡
31 第3ホーン
101 電波中継器
102 電波用誘電体部品
1 Waveguide 1a One end of the waveguide 1b The other end of the waveguide 2 First horn 2a Opening of the first horn 3 First radio wave lens 4 Second horn 4a Opening of the second horn 5 Second radio lens 6 Base station 7 Radio wave 8 Shielding object 8a Through hole 9 Terminal 10 Radio wave lens 21 Core material 21a 1st surface 21b 2nd surface 22 1st coat layer 22a 1st region 22b 3rd region 23 2nd coat layer 23a 2nd region 23b 4th region 24 Antenna 25 Radio waves 26 Radio wave reception target 27 Fan beam lens 28 Reflector 29 Main reflector 30 Sub-reflector 31 Third horn 101 Radio wave repeater 102 Dielectric parts for radio waves

Claims (9)

  1.  円形または正方形の横断面を有する導波路と、
     前記導波路の一端に設けられた第1ホーンと、
     前記第1ホーンの開口部に設けられており、自身に入射したマイクロ波およびミリ波の少なくとも一方を含んでいる電波を収斂および透過させて前記導波路へと導く第1電波レンズとを備えている、電波中継器。
    a waveguide with a circular or square cross section;
    a first horn provided at one end of the waveguide;
    a first radio wave lens provided at the opening of the first horn, which converges and transmits radio waves including at least one of microwaves and millimeter waves incident thereon, and guides them to the waveguide; Yes, there is a radio repeater.
  2.  前記導波路の他端に設けられた第2ホーンと、
     前記第2ホーンの開口部に設けられており、前記導波路を通過した前記電波を収斂および透過させる第2電波レンズとを備えている、請求項1に記載の電波中継器。
    a second horn provided at the other end of the waveguide;
    The radio wave repeater according to claim 1, further comprising a second radio wave lens that is provided at an opening of the second horn and that converges and transmits the radio waves that have passed through the waveguide.
  3.  前記第1電波レンズは、ガラス、ガラスセラミックス、またはセラミックスからなるコア材を有している、請求項1に記載の電波中継器。 The radio wave repeater according to claim 1, wherein the first radio wave lens has a core material made of glass, glass ceramics, or ceramics.
  4.  前記第1電波レンズの誘電正接は、10-2以下である、請求項1に記載の電波中継器。 The radio wave repeater according to claim 1, wherein the first radio wave lens has a dielectric loss tangent of 10 −2 or less.
  5.  前記第1電波レンズの比誘電率は、7以上である、請求項1に記載の電波中継器。 The radio wave repeater according to claim 1, wherein the first radio lens has a dielectric constant of 7 or more.
  6.  前記導波路は、可撓性導波路である、請求項1に記載の電波中継器。 The radio wave repeater according to claim 1, wherein the waveguide is a flexible waveguide.
  7.  前記導波路は、湾曲した導波管である、請求項1から6のいずれか1項に記載の電波中継器。 The radio wave repeater according to any one of claims 1 to 6, wherein the waveguide is a curved waveguide.
  8.  前記第2電波レンズは、ファンビームレンズである、請求項2に記載の電波中継器。 The radio wave repeater according to claim 2, wherein the second radio wave lens is a fan beam lens.
  9.  円形または正方形の横断面を有する導波路と、
     前記導波路の一端に設けられた反射器であって、自身に入射したマイクロ波およびミリ波の少なくとも一方を含んでいる電波を反射および収斂させて前記導波路へと導く反射器とを備えている、電波中継器。

     
    a waveguide with a circular or square cross section;
    a reflector provided at one end of the waveguide, the reflector reflects and converges radio waves including at least one of microwaves and millimeter waves incident thereon, and guides the waves to the waveguide. Yes, there is a radio repeater.

PCT/JP2023/022022 2022-06-22 2023-06-14 Radio wave relay WO2023248881A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-100697 2022-06-22
JP2022100697 2022-06-22

Publications (1)

Publication Number Publication Date
WO2023248881A1 true WO2023248881A1 (en) 2023-12-28

Family

ID=89379772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022022 WO2023248881A1 (en) 2022-06-22 2023-06-14 Radio wave relay

Country Status (1)

Country Link
WO (1) WO2023248881A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11313022A (en) * 1998-04-30 1999-11-09 Hitachi Electronics Service Co Ltd Indoor non-volatile radio wave repeater
JP2004056457A (en) * 2002-07-19 2004-02-19 Communication Research Laboratory Wireless transmission system, radio transmission method, and antenna assembly
JP2013110503A (en) * 2011-11-18 2013-06-06 New Japan Radio Co Ltd Microwave antenna

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11313022A (en) * 1998-04-30 1999-11-09 Hitachi Electronics Service Co Ltd Indoor non-volatile radio wave repeater
JP2004056457A (en) * 2002-07-19 2004-02-19 Communication Research Laboratory Wireless transmission system, radio transmission method, and antenna assembly
JP2013110503A (en) * 2011-11-18 2013-06-06 New Japan Radio Co Ltd Microwave antenna

Similar Documents

Publication Publication Date Title
RU2652169C1 (en) Antenna unit for a telecommunication device and a telecommunication device
US10727607B2 (en) Horn antenna
US10224638B2 (en) Lens antenna
RU2494506C1 (en) Electronic beam scanning lens antenna
US7889137B2 (en) Antenna structure with antenna radome and method for rising gain thereof
US10741930B2 (en) Enhanced directivity feed and feed array
CA2371708A1 (en) Transreflector antenna for wireless communication system
US11329391B2 (en) Enhanced directivity feed and feed array
CN113555697A (en) Circular polarization high-gain antenna based on folding plane reflective array technology
US5717411A (en) Radiating waveguide and radio communication system using same
Hussein et al. Performance optimization of microstrip patch antenna using frequency selective surfaces for 60 GHz
WO2023248881A1 (en) Radio wave relay
WO2023248882A1 (en) Dielectric component for electric waves
KR20180052071A (en) Antenna device including parabolic-hyperbolic reflector
KR102332501B1 (en) Circularly polarized window and antenna includnig the same
US11217885B2 (en) Shell and wireless device using the same
Hernandez et al. High-directivity beam-steerable lens antenna for simultaneous transmit and receive
JP6517099B2 (en) Wireless antenna
JP2021141360A (en) Wireless antenna and wireless communication system
JP2001127537A (en) Lens antenna system
Chen Introduction to millimeter wave antennas
RU2659303C1 (en) Satellite multi-band antenna unit
Dastkhosh et al. Wide Angle Scanning Leaky Wave Substrate Integrated Waveguide Antenna for Satellite Communications
Chauhan et al. Millimeter Wave Fixed Beam End-fire Antenna for Body Area Networks
TWI732453B (en) A structure of dish antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23827067

Country of ref document: EP

Kind code of ref document: A1