JP2017020938A - Monitoring device, steam turbine facility including the same, and method for monitoring steam turbine facility - Google Patents

Monitoring device, steam turbine facility including the same, and method for monitoring steam turbine facility Download PDF

Info

Publication number
JP2017020938A
JP2017020938A JP2015139740A JP2015139740A JP2017020938A JP 2017020938 A JP2017020938 A JP 2017020938A JP 2015139740 A JP2015139740 A JP 2015139740A JP 2015139740 A JP2015139740 A JP 2015139740A JP 2017020938 A JP2017020938 A JP 2017020938A
Authority
JP
Japan
Prior art keywords
steam
steam turbine
water
electrical conductivity
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015139740A
Other languages
Japanese (ja)
Other versions
JP6578612B2 (en
Inventor
濱崎 彰弘
Akihiro Hamazaki
彰弘 濱崎
遥 木戸
Haruka Kido
遥 木戸
任善 岩藤
Takayoshi Iwato
任善 岩藤
仙市 椿▲崎▼
Senichi Tsubakisaki
仙市 椿▲崎▼
雅幸 村上
Masayuki Murakami
雅幸 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2015139740A priority Critical patent/JP6578612B2/en
Publication of JP2017020938A publication Critical patent/JP2017020938A/en
Application granted granted Critical
Publication of JP6578612B2 publication Critical patent/JP6578612B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a monitoring device of highly-reliable steam turbine facility.SOLUTION: Steam turbine facility comprises a steam turbine 2 driven by steam, a steam system B including a boiler 3 which generates steam and a steam line 7 which supplies steam from the boiler 3 to the steam turbine 2, and a water supply system A including a condenser 4 which condenses the exhaust of the steam turbine 2 and a water supply line 6 which supplies water from the condenser 4 to the boiler 3. A monitoring device 1 comprises: an input unit 101 which accepts a detection value of electric conductivity of water and a detection value of electric conductivity of steam; a comparison unit 102 which compares the detection value of electric conductivity of water and the detection value of electric conductivity of steam accepted by the input unit 101; and an output unit 104 which outputs information based on the comparison results of the comparison unit 102.SELECTED DRAWING: Figure 1

Description

本発明は、蒸気タービン設備の水及び蒸気の電気伝導率の監視装置及び方法に関する。   The present invention relates to an apparatus and a method for monitoring electrical conductivity of water and steam in a steam turbine facility.

ボイラを有する火力等の発電プラントは、ボイラから出力された蒸気を、蒸気ラインを経由して蒸気タービンに導入して発電する。蒸気は、蒸気タービンの駆動に用いられた後、復水器において冷却管を流れる海水等により冷却されて水(復水)に戻される。復水器の水は、復水ポンプにより給水ラインを経由してボイラに送られる。ボイラに送られた水は再び蒸気に変換され、蒸気タービンに供給されることによって循環させる。以上のように、蒸気タービン設備は、全体として循環系統を形成している。   A power plant such as a thermal power plant having a boiler generates power by introducing steam output from the boiler into a steam turbine via a steam line. After the steam is used to drive the steam turbine, it is cooled by seawater or the like flowing through a cooling pipe in a condenser and returned to water (condensate). The condenser water is sent to the boiler by a condensate pump via a water supply line. The water sent to the boiler is converted again into steam and circulated by being supplied to the steam turbine. As described above, the steam turbine equipment forms a circulation system as a whole.

このような蒸気タービン設備では純水が用いられるが、この純水の水質を監視するために、復水器又は復水ポンプ等からサンプル液を採取し、採取したサンプル液を陽イオン交換樹脂に通過させた後の電気伝導率(以下、「酸電気伝導率」という。)を検出する水質監視装置が給水ラインに設置されている。
ここで、循環する水に冷却用の海水が漏洩すると、水質監視装置により検出された酸電気伝導率が上昇する。このため、酸電気伝導率を監視することで、海水の漏洩を検知することができ、漏洩した海水による循環系統の配管や機器の腐食を防ぐことができる。
In such a steam turbine facility, pure water is used. In order to monitor the quality of the pure water, a sample solution is collected from a condenser or a condensate pump, and the collected sample solution is used as a cation exchange resin. A water quality monitoring device for detecting the electrical conductivity after passing (hereinafter referred to as “acid electrical conductivity”) is installed in the water supply line.
Here, when the seawater for cooling leaks into the circulating water, the acid electrical conductivity detected by the water quality monitoring device increases. For this reason, by monitoring the acid electrical conductivity, leakage of seawater can be detected, and corrosion of piping and equipment in the circulation system due to the leaked seawater can be prevented.

従来の水質監視装置は、復水器等の水を採取するだけではなく、給水ラインの途中やドラム内といった様々な場所からサンプル液を採取することで、各場所における水質を監視している(特許文献1)。   Conventional water quality monitoring devices not only collect water from condensers and the like, but also monitor the water quality at each location by collecting sample liquid from various locations such as in the middle of a water supply line or in a drum ( Patent Document 1).

特開2009−243972号公報JP 2009-243972 A

ここで、空気中の炭酸ガスが循環する水に溶解すると、溶解した炭酸ガス成分が陽イオン交換樹脂を通過し、水質監視装置に到達することによって、検出される酸電気伝導率が上昇する。溶解した炭酸ガス成分は腐食物質と異なるため、炭酸ガス成分が存在すると監視対象となる腐食物質の酸電気伝導率を正確に測定することができない。特許文献1のように、給水ラインの途中やボイラのドラム内のような様々な場所の水を採取しても、溶解した炭酸ガス成分はあらゆる場所に存在するから、水質監視装置は、海水漏洩を誤検出する問題点がある。よって、溶解した炭酸ガス成分の影響を抑え、信頼性の高い蒸気タービン設備の監視装置が切望されている。   Here, when the carbon dioxide gas in the air dissolves in the circulating water, the dissolved carbon dioxide component passes through the cation exchange resin and reaches the water quality monitoring device, thereby increasing the detected acid electrical conductivity. Since the dissolved carbon dioxide component is different from the corrosive substance, the acid electrical conductivity of the corrosive substance to be monitored cannot be accurately measured if the carbon dioxide component is present. As in Patent Document 1, even if water is collected in various places such as in the middle of a water supply line or in the drum of a boiler, the dissolved carbon dioxide component is present everywhere. There is a problem of misdetecting. Therefore, there is a strong demand for a highly reliable monitoring apparatus for steam turbine equipment that suppresses the influence of the dissolved carbon dioxide component.

本発明は、前記問題点に鑑み、信頼性の高い蒸気タービン設備の監視装置を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a highly reliable steam turbine equipment monitoring apparatus.

第1の態様は、蒸気により駆動する蒸気タービンと、蒸気を発生させるボイラ及び蒸気を前記ボイラから前記蒸気タービンに供給する蒸気ラインを含む蒸気系統と、前記蒸気タービンの排気を水に戻す復水器及び水を前記復水器から前記ボイラに供給する給水ラインを含む給水系統とを有する蒸気タービン設備の監視装置であって、前記水の電気伝導率の検出値と前記蒸気の電気伝導率の検出値を受け付ける入力部と、前記入力部が受け付けた前記水の電気伝導率の検出値と前記蒸気の電気伝導率の検出値を比較する比較部と、前記比較部の比較結果に基づく情報を出力する出力部と、を備える。   A first aspect includes a steam turbine driven by steam, a steam generating steam and a steam system including a steam line supplying steam from the boiler to the steam turbine, and condensate for returning the exhaust of the steam turbine to water. And a water supply system including a water supply system for supplying water from the condenser to the boiler, the steam turbine equipment monitoring device, the detected value of the electrical conductivity of the water and the electrical conductivity of the steam An input unit that receives a detection value, a comparison unit that compares the detection value of the electrical conductivity of the water received by the input unit and the detection value of the electrical conductivity of the steam, and information based on the comparison result of the comparison unit An output unit for outputting.

当該監視装置では、水の電気伝導率の検出値と蒸気の電気伝導率の検出値とを比較することで、給水系統及び蒸気系統等を循環する炭酸ガスの影響を排除した監視値を得ることができるから、信頼性の高い水及び蒸気の蒸気タービン設備の監視装置が実現できる。   In the monitoring device, by comparing the detected value of the electrical conductivity of water and the detected value of the electrical conductivity of steam, a monitored value that eliminates the influence of carbon dioxide circulating in the water supply system and the steam system is obtained. Therefore, a highly reliable monitoring device for water and steam steam turbine equipment can be realized.

また、第2の態様は、第1の態様の蒸気タービン設備の監視装置において、前記比較部の比較結果から前記給水系統又は前記蒸気系統の異常を判定する判定部を備え、前記出力部は、前記判定部における判定結果を情報として出力する。   Moreover, the 2nd aspect is a monitoring apparatus of the steam turbine equipment of a 1st aspect, It is provided with the determination part which determines the abnormality of the said water supply system or the said steam system from the comparison result of the said comparison part, The said output part is The determination result in the determination unit is output as information.

当該監視装置では、前記比較結果から、監視者の評価を待たずに、迅速且つ的確に異常判定を行うことができるから、迅速で的確な異常判定が可能な且つ信頼性の高い水及び蒸気の蒸気タービン設備の監視装置が実現できる。   In the monitoring device, from the comparison result, it is possible to quickly and accurately determine the abnormality without waiting for the observer's evaluation. Therefore, it is possible to quickly and accurately determine the abnormality and the highly reliable water and steam. A monitoring device for steam turbine equipment can be realized.

また、第3の態様は、第1又は第2の様態の電気伝導率監視装置において、前記比較部は、比較結果として前記水の電気伝導率の検出値と前記蒸気の電気伝導率の検出値との差の二乗の平方根又は差の絶対値を求める。   Further, according to a third aspect, in the electrical conductivity monitoring device according to the first or second aspect, the comparison unit includes a detected value of the electrical conductivity of the water and a detected value of the electrical conductivity of the steam as a comparison result. Find the square root of the difference between and the absolute value of the difference.

当該監視装置では、前記水の電気伝導率の検出値と前記蒸気の電気伝導率の検出値との差の二乗の平方根又は差の絶対値を演算することによって、比較的簡単な演算及び判定で確実に異常を判定できるから、簡単な且つ信頼性の高い水及び蒸気の蒸気タービン設備の監視装置が実現できる。   In the monitoring device, by calculating the square root of the difference between the detected value of the electrical conductivity of the water and the detected value of the electrical conductivity of the steam or the absolute value of the difference, it is possible to calculate and judge relatively easily. Since it is possible to reliably determine an abnormality, a simple and reliable monitoring device for water and steam steam turbine equipment can be realized.

また、第4の態様は、第1から第3のいずれかの様態の監視装置において、前記比較部は、比較結果として前記水の電気伝導率の検出値と前記蒸気の電気伝導率の検出値との大小関係を示すパラメータを求める。   Further, a fourth aspect is the monitoring device according to any one of the first to third aspects, wherein the comparison unit includes a detection value of the electrical conductivity of the water and a detection value of the electrical conductivity of the steam as a comparison result. A parameter indicating the magnitude relationship between and is obtained.

当該監視装置では、海水の漏洩と、蒸気への電解質の混入とを判別できるパラメータを求めるから、高機能な且つ信頼性の高い水及び蒸気の蒸気タービン設備の監視装置が実現できる。   Since the monitoring device obtains parameters capable of discriminating leakage of seawater and mixing of electrolytes into steam, a highly functional and highly reliable monitoring device for steam turbine equipment for water and steam can be realized.

また、第5の態様は、第4の態様の監視装置において、前記パラメータは、前記水の電気伝導率の検出値と前記蒸気の電気伝導率の検出値との差又は比である。   According to a fifth aspect, in the monitoring device according to the fourth aspect, the parameter is a difference or a ratio between a detected value of the electrical conductivity of the water and a detected value of the electrical conductivity of the steam.

当該監視装置では、海水の漏洩か、蒸気への電解質の混入か、を簡単な演算の結果を用いて判定できるから、簡便ながら高機能且つ信頼性の高い水及び蒸気の蒸気タービン設備の監視装置が実現できる。   In this monitoring device, since it is possible to determine whether seawater leaks or the electrolyte is mixed into the steam using the result of a simple calculation, the monitoring device for water and steam steam turbine equipment is simple but highly functional and reliable. Can be realized.

また、第6の態様は、第4又は第5の態様の蒸気タービン設備の監視装置において、前記水の電気伝導率の検出値が前記蒸気の電気伝導率の検出値より大きいときは前記給水系統の異常と判定し、前記蒸気の電気伝導率の検出値が前記水の電気伝導率の検出値より大きいときは前記蒸気系統の異常と判定する判定部を備える。   In addition, according to a sixth aspect, in the monitoring apparatus for steam turbine equipment of the fourth or fifth aspect, when the detected value of the electrical conductivity of the water is larger than the detected value of the electrical conductivity of the steam, the water supply system When the detected value of the electrical conductivity of the steam is larger than the detected value of the electrical conductivity of the water, a determination unit that determines that the steam system is abnormal is provided.

当該監視装置では、給水系統の異常か、蒸気系統の異常かを判定できるから、より高機能且つ信頼性の高い水及び蒸気の蒸気タービン設備の監視装置が実現できる。   Since the monitoring device can determine whether the water supply system is abnormal or the steam system is abnormal, a highly functional and highly reliable monitoring device for water and steam steam turbine equipment can be realized.

また、第7の態様は、第1から第6の様態のいずれかの蒸気タービン設備の監視装置において、前記蒸気タービン設備の出力変動時の、前記比較部の比較結果をマスクする。   In a seventh aspect, in the steam turbine equipment monitoring apparatus according to any one of the first to sixth aspects, the comparison result of the comparison section when the output of the steam turbine equipment changes is masked.

当該監視装置では、前記蒸気タービン設備の出力変動時において異常を誤検出しないから、より信頼性の高い水及び蒸気の蒸気タービン設備の監視装置が実現できる。   In the monitoring apparatus, since abnormality is not erroneously detected when the output of the steam turbine equipment is fluctuated, a more reliable monitoring apparatus for water and steam steam turbine equipment can be realized.

また、第8の態様は、第1から第7の様態のいずれかの蒸気タービン設備の監視装置であって、前記給水系統中の水の電気伝導率の値を検出する第一検出部と、前記蒸気系統中の蒸気の電気伝導率の値を検出する第二検出部と、を備え、前記入力部は、前記第一検出部で検出された前記水の電気伝導率の検出値と前記第二検出部で検出された前記蒸気の電気伝導率の検出値とを受け付ける。   The eighth aspect is a monitoring device for steam turbine equipment according to any one of the first to seventh aspects, wherein the first detection unit detects the value of the electrical conductivity of water in the water supply system, A second detection unit that detects a value of electrical conductivity of steam in the steam system, and the input unit detects the detected value of electrical conductivity of the water detected by the first detection unit and the second value. The detected value of the electrical conductivity of the vapor detected by the two detectors is received.

当該監視装置では、前記水の電気伝導率の検出値を検出する第一検出部と、前記蒸気の電気伝導率の検出値を検出する第二検出部とを備えることによって、検出部を別途設ける必要がないから、取り扱いが簡便で信頼性の高い水及び蒸気の蒸気タービン設備の監視装置が実現できる。   In the monitoring device, a detection unit is separately provided by including a first detection unit that detects a detection value of the electrical conductivity of the water and a second detection unit that detects a detection value of the electrical conductivity of the steam. Since there is no need, it is possible to realize a water and steam steam turbine equipment monitoring device that is easy to handle and highly reliable.

また、第9の態様は、第8の態様の蒸気タービン設備の監視装置において、前記第一検出部及び前記第二検出部は、それぞれ炭酸ガスを脱気する脱気ユニットを含む。   According to a ninth aspect, in the steam turbine facility monitoring apparatus according to the eighth aspect, each of the first detection unit and the second detection unit includes a deaeration unit for deaerating carbon dioxide gas.

当該監視装置では、前処理で炭酸ガスを脱気して検出することによって、監視不要な炭酸ガスを検出時に排除した上で、完全に排除できなかった炭酸ガスの影響を相殺できるから、ノイズの少ない検出が可能であり、より信頼性の高い水及び蒸気の蒸気タービン設備の監視装置が実現できる。   In this monitoring device, carbon dioxide gas is degassed and detected in the pretreatment, so that the influence of carbon dioxide gas that could not be completely eliminated can be offset after eliminating unnecessary carbon dioxide gas at the time of detection. Less detection is possible, and a more reliable monitoring device for steam turbine equipment for water and steam can be realized.

また、第10の態様は、第1から第9のいずれかの態様の蒸気タービン設備の監視装置と、前記蒸気タービンと、前記給水系統と、前記蒸気系統と、を有する。   The tenth aspect includes the steam turbine equipment monitoring apparatus according to any one of the first to ninth aspects, the steam turbine, the water supply system, and the steam system.

また、第11の態様は、蒸気により駆動する蒸気タービンと、蒸気を発生させるボイラ及び蒸気を前記ボイラから前記蒸気タービンに供給する蒸気ラインを含む蒸気系統と、前記蒸気タービンの排気を水に戻す復水器及び水を前記復水器から前記ボイラに供給する給水ラインを含む給水系統とを有する蒸気タービン設備の監視方法であって、前記給水系統中の水の電気伝導率の値を検出する第一検出工程と、前記蒸気系統中の蒸気の電気伝導率の値を検出する第二検出工程と、前記第一検出工程で検出された前記水の電気伝導率の検出値と前記第二検出工程で検出された前記蒸気の電気伝導率の検出値とを受け付ける入力工程と、前記入力工程で受け付けた前記水の電気伝導率の検出値と前記電気伝導率の検出値とを比較する比較工程と、前記比較工程の比較結果に基づく情報を出力する出力工程と、を含む。   Moreover, an eleventh aspect is a steam turbine driven by steam, a steam generating steam, a steam system including a steam line supplying steam from the boiler to the steam turbine, and returning the exhaust of the steam turbine to water. A steam turbine facility monitoring method comprising a condenser and a water supply system including a water supply line for supplying water from the condenser to the boiler, wherein the value of electric conductivity of water in the water supply system is detected. A first detection step, a second detection step for detecting a value of electrical conductivity of the steam in the steam system, a detected value of the electrical conductivity of the water detected in the first detection step, and the second detection An input step for receiving the detected value of the electrical conductivity of the vapor detected in the step, and a comparison step of comparing the detected value of the electrical conductivity of the water received in the input step with the detected value of the electrical conductivity And before Including an output step of outputting information based on the comparison result of the comparing step.

また、第12の態様は、第11の態様の蒸気タービン設備の監視方法において、前記比較工程の比較結果から前記給水系統又は前記蒸気系統の異常を判定する判定工程を含み、前記出力工程では、前記判定工程における判定結果を情報として出力する。   A twelfth aspect includes a determination step of determining an abnormality of the water supply system or the steam system from a comparison result of the comparison step in the steam turbine facility monitoring method of the eleventh aspect, and in the output step, The determination result in the determination step is output as information.

また、第13の態様は、第11又は第12の態様の電気伝導率監視方法において、前記比較工程では、比較結果として前記水の電気伝導率の検出値と前記蒸気の電気伝導率の検出値との差の二乗の平方根又は差の絶対値を求める。   The thirteenth aspect is the electrical conductivity monitoring method according to the eleventh or twelfth aspect, in the comparison step, the detected value of the electrical conductivity of the water and the detected value of the electrical conductivity of the steam as a comparison result. Find the square root of the difference between and the absolute value of the difference.

また、第14の態様は、第11から第13の態様の監視方法において、前記比較工程では、比較結果として前記水の電気伝導率の検出値と前記蒸気の電気伝導率の検出値との大小関係を示すパラメータを求める。   In a fourteenth aspect, in the monitoring method according to the eleventh to thirteenth aspects, in the comparison step, the detected value of the electrical conductivity of the water and the detected value of the electrical conductivity of the steam are compared in magnitude. A parameter indicating the relationship is obtained.

また、第15の態様は、第14の態様の蒸気タービン設備の監視方法において、前記水の電気伝導率の検出値が前記蒸気の電気伝導率の検出値より大きいときは前記給水系統の異常と判定し、前記蒸気の電気伝導率の検出値が前記水の電気伝導率の検出値より大きいときは前記蒸気系統の異常と判定する判定工程を含む。   According to a fifteenth aspect, in the steam turbine equipment monitoring method according to the fourteenth aspect, when the detected value of the electric conductivity of the water is larger than the detected value of the electric conductivity of the steam, the water supply system is abnormal. And determining when the detected value of the electrical conductivity of the steam is greater than the detected value of the electrical conductivity of the water, and determining that the steam system is abnormal.

本発明の一態様では、水の電気伝導率の検出値と蒸気の電気伝導率の検出値とを比較することで、給水系統及び蒸気系統等を循環する炭酸ガスの影響を排除した出力を得ることができる。このため、本発明の一態様によれば、信頼性の高い水及び蒸気の蒸気タービン設備の監視を実現できる。   In one embodiment of the present invention, by comparing the detected value of the electrical conductivity of water and the detected value of the electrical conductivity of steam, an output that eliminates the influence of carbon dioxide circulating in the water supply system and the steam system is obtained. be able to. For this reason, according to one aspect of the present invention, highly reliable monitoring of water and steam steam turbine equipment can be realized.

本発明に係る第一実施形態における蒸気タービン設備の系統図である。It is a distribution diagram of steam turbine equipment in a first embodiment concerning the present invention. 本発明に係る第一実施形態における処理部の系統図である。It is a systematic diagram of the process part in 1st embodiment which concerns on this invention. 本発明に係る第一実施形態におけるフローチャートである。It is a flowchart in 1st embodiment which concerns on this invention. 本発明に係る第一実施形態における変形例の蒸気タービン設備の系統図である。It is a systematic diagram of the steam turbine equipment of the modification in 1st embodiment which concerns on this invention. 本発明に係る第二実施形態におけるフローチャートである。It is a flowchart in 2nd embodiment which concerns on this invention. 本発明に係る第二実施形態における変形例のフローチャートである。It is a flowchart of the modification in 2nd embodiment which concerns on this invention. 本発明に係る実施形態における実際の監視結果のグラフである。It is a graph of the actual monitoring result in embodiment which concerns on this invention. 本発明に係る実施形態における実際の監視結果のグラフである。It is a graph of the actual monitoring result in embodiment which concerns on this invention.

以下、本発明に係る各種実施形態について、図面を用いて説明する。   Hereinafter, various embodiments according to the present invention will be described with reference to the drawings.

「第一実施形態」
本発明に係る監視装置及びこれを備える蒸気タービン設備の第一実施形態について、図1〜図3を参照して説明する。
"First embodiment"
1st Embodiment of the monitoring apparatus which concerns on this invention, and a steam turbine equipment provided with the same is described with reference to FIGS.

本実施形態の蒸気タービン設備は、図1に示すように、蒸気により駆動する蒸気タービン2と、蒸気を発生させるボイラ3と、蒸気タービン2の排気を水(復水)に戻す復水器4と、水を復水器4から復水ポンプ5を介してボイラ3に供給する給水ライン6と、蒸気をボイラ3から蒸気タービン2に供給する蒸気ライン7と、監視装置1とを備える。   As shown in FIG. 1, the steam turbine equipment of this embodiment includes a steam turbine 2 driven by steam, a boiler 3 that generates steam, and a condenser 4 that returns exhaust gas from the steam turbine 2 to water (condensate). A water supply line 6 for supplying water from the condenser 4 to the boiler 3 via the condensate pump 5, a steam line 7 for supplying steam from the boiler 3 to the steam turbine 2, and the monitoring device 1.

本実施形態の給水系統Aは、復水器4と、復水ポンプ5と、給水ライン6とを備える。また、本実施形態の蒸気系統Bは、ボイラ3及び蒸気ライン7を備える。   The water supply system A of this embodiment includes a condenser 4, a condensate pump 5, and a water supply line 6. Further, the steam system B of the present embodiment includes a boiler 3 and a steam line 7.

給水系統Aの水を監視するために、給水ライン6の途中でサンプル管を分岐させることによって、給水ライン6を流れる水の一部がサンプリングされる。監視装置1は、サンプリングされた水の酸電気伝導率を検出する。サンプリングされる水は、給水系統Aのいずれから採取してもよく、給水ライン6の水に限らず、復水器4における復水を採取してもよい。   In order to monitor the water in the water supply system A, a part of the water flowing through the water supply line 6 is sampled by branching the sample pipe in the middle of the water supply line 6. The monitoring device 1 detects the acid electrical conductivity of the sampled water. The sampled water may be collected from any of the water supply systems A, and the condensate in the condenser 4 may be collected without being limited to the water in the water supply line 6.

さらに、監視装置1は、蒸気系統Bの蒸気を監視するために、蒸気ライン7の途中でサンプル管を分岐させることによって、蒸気ライン7を流れる蒸気の一部がサンプリングされる。監視装置1は、サンプリングされた蒸気を水に戻して、サンプリングされた蒸気の酸電気伝導率を検出する。サンプリングする蒸気は、蒸気系統Bのいずれから採取してもよく、蒸気ライン7の蒸気に限らず、ボイラ3内で発生した蒸気を採取してもよい。   Furthermore, in order to monitor the steam of the steam system B, the monitoring device 1 branches a sample pipe in the middle of the steam line 7, thereby sampling a part of the steam flowing through the steam line 7. The monitoring device 1 returns the sampled steam to water and detects the acid electrical conductivity of the sampled steam. The steam to be sampled may be collected from any of the steam systems B, and is not limited to the steam in the steam line 7 but may be collected from the steam generated in the boiler 3.

監視装置1は、第一検出部8と、第二検出部9と、処理部10とを有する。監視装置1は、水質の監視だけではなく、後で説明するように、蒸気タービン側へ電解質が混入してしまう、いわゆるキャリーオーバー(飛沫同伴)が生じる場合があるので、蒸気の監視も必要となる。   The monitoring device 1 includes a first detection unit 8, a second detection unit 9, and a processing unit 10. The monitoring device 1 not only monitors the water quality, but also needs to monitor the steam because so-called carryover (spray entrainment) may occur in which the electrolyte is mixed into the steam turbine side, as will be described later. Become.

第一検出部8は、少なくともサンプリングされた水の酸電気伝導率を検出する検出器8aで構成されている。第二検出部9は、少なくともサンプリングされた蒸気の酸電気伝導率を検出する検出器9aで構成されている。さらに、第一検出部8及び第二検出部9には、陽イオン交換樹脂を設けられている。陽イオン交換樹脂を設け、酸電気伝導率を検出することによって、第一検出部8及び第二検出部9は、陽イオンを高感度で検出している。薬剤(例えば、アンモニアやヒドラジン)や漏洩した海水を含む水やキャリーオーバー物質を含む蒸気から得た水を、水素イオン形の強酸性陽イオン交換樹脂等の陽イオン交換樹脂を通過させると、水に含まれるNa、Ca2+、NH 、N 等の陽イオンはH+に交換される。H+は、Na、Ca2+、NH 、N 等と比較して極限モル伝導率が大きいため、漏洩した海水の検出やキャリーオーバー物質の検出には、水素イオン形の強酸性陽イオン樹脂を通過させることによって、検出感度が増幅され、感度良く検出することができる。 The 1st detection part 8 is comprised with the detector 8a which detects the acid electrical conductivity of the sampled water at least. The 2nd detection part 9 is comprised by the detector 9a which detects the acid electrical conductivity of the sampled vapor | steam at least. Further, the first detection unit 8 and the second detection unit 9 are provided with a cation exchange resin. By providing a cation exchange resin and detecting the acid electrical conductivity, the first detection unit 8 and the second detection unit 9 detect cations with high sensitivity. When water obtained from chemicals (for example, ammonia or hydrazine), water containing leaked seawater, or steam containing carryover substances is passed through a cation exchange resin such as a hydrogen ion type strongly acidic cation exchange resin, Cations such as Na + , Ca 2+ , NH 4 + , N 2 H 5 +, etc. contained in are replaced with H + . H + has a higher ultimate molar conductivity than Na + , Ca 2+ , NH 4 + , N 2 H 5 +, etc., so it is difficult to detect leaked seawater or carryover substances. By passing a strongly acidic cation resin, the detection sensitivity is amplified, and detection can be performed with high sensitivity.

しかし、酸電気伝導率を検出しなくても、高感度にイオンを検出できる場合は、第一検出部8及び第二検出部9に陽イオン交換樹脂を設けなくてもよい。   However, if ions can be detected with high sensitivity without detecting acid electrical conductivity, the first detection unit 8 and the second detection unit 9 do not have to be provided with a cation exchange resin.

第一検出部8は検出値D1を処理部10へ出力し、第二検出部9は検出値D2を処理部10へ出力する。第一検出部8は、検出値D1を検出値D1に相関した信号で送信し、第二検出部9は、検出値D2を検出値D2に相関した信号で送信する。これらの信号は、電気信号、光信号、電波信号等どのような通信形態の信号でもよく、検出値D1及び検出値D2に相関した信号を送信するものであれば、アナログ方式でも、デジタル方式でも、どのような方式でもよい。   The first detection unit 8 outputs the detection value D1 to the processing unit 10, and the second detection unit 9 outputs the detection value D2 to the processing unit 10. The first detection unit 8 transmits the detection value D1 as a signal correlated with the detection value D1, and the second detection unit 9 transmits the detection value D2 as a signal correlated with the detection value D2. These signals may be signals of any communication form such as electric signals, optical signals, radio signals, and the like, as long as they transmit signals correlated with the detection value D1 and the detection value D2. Any method may be used.

処理部10は、図2に示すように、水の酸電気伝導率の検出値と蒸気の酸電気伝導率の検出値とを受け付ける入力部101と、入力部101が受け付けた検出値D1及び検出値D2を比較する比較部102と、比較部102の比較結果を判定する判定部103と、比較部102の比較結果や判定部103の判定結果を出力する出力部104で構成されている。また、処理部10は、図3に示すような処理を行う。   As illustrated in FIG. 2, the processing unit 10 includes an input unit 101 that receives a detection value of acid electrical conductivity of water and a detection value of acid conductivity of steam, and a detection value D <b> 1 and detection detected by the input unit 101. The comparison unit 102 compares the value D2, the determination unit 103 that determines the comparison result of the comparison unit 102, and the output unit 104 that outputs the comparison result of the comparison unit 102 and the determination result of the determination unit 103. Further, the processing unit 10 performs processing as shown in FIG.

なお、処理部10は、CPU、記憶部、I/O部等を有するコンピュータシステムからなり、入力部101、比較部102、判定部103及び出力部104を構成している。そして、各処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしてもよい。   The processing unit 10 includes a computer system having a CPU, a storage unit, an I / O unit, and the like, and includes an input unit 101, a comparison unit 102, a determination unit 103, and an output unit 104. Each process is stored in a computer-readable recording medium in the form of a program, and the above process is performed by the computer reading and executing the program. Here, the computer-readable recording medium means a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like. Alternatively, the computer program may be distributed to the computer via a communication line, and the computer that has received the distribution may execute the program.

また、処理部10は、入力部101、比較部102、判定部103及び出力部104を、それぞれ個別に電気回路や電子回路で構成してもよい。   In addition, the processing unit 10 may individually configure the input unit 101, the comparison unit 102, the determination unit 103, and the output unit 104 with an electric circuit or an electronic circuit, respectively.

本実施形態の蒸気タービン設備では、図1に示すように、ボイラ3で発生させた蒸気は、蒸気ライン7を経由して蒸気タービン2に供給される。蒸気は、蒸気タービン2の駆動に用いられた後、復水器4において冷却管を流れる海水等により冷却されて水(復水)に戻される。復水器4の水は、復水ポンプ5により給水ライン6を経由してボイラ3に送られる。ボイラ3に送られた水は再び蒸気に変換され、蒸気タービン2に供給される。このように、蒸気及び水の流れによって、全体として循環系統が形成される。   In the steam turbine equipment of this embodiment, as shown in FIG. 1, the steam generated in the boiler 3 is supplied to the steam turbine 2 via the steam line 7. The steam is used to drive the steam turbine 2 and then cooled by seawater or the like flowing through the cooling pipe in the condenser 4 to be returned to water (condensate). The water in the condenser 4 is sent to the boiler 3 by the condensate pump 5 via the water supply line 6. The water sent to the boiler 3 is converted again into steam and supplied to the steam turbine 2. Thus, a circulation system is formed as a whole by the flow of steam and water.

ここで、蒸気タービン側へのキャリーオーバーについて説明する。
ボイラ3は、給水ライン6から送られる水を加熱することによって、蒸気を得ている。そして、蒸気タービン設備は、蒸気を蒸気ライン7によって蒸気タービン2へ供給している。ここで、給水ライン6から送られる水に漏洩した海水や薬剤が含まれる、すなわち電解質が含まれていたとしても、この水を沸騰させることにより得た蒸気には、通常、水分(HO)しか基本的に含まれない。しかし、ボイラ3内のドラムの水面レベルの上昇、デミスターの劣化、ドラム内の電解質の過剰濃縮によって、ボイラ3内の電解質が含まれる水滴やミストが蒸気ライン7へ流れる蒸気に随伴し、蒸気タービン2側へ電解質が混入してしまい、電解質のキャリーオーバーが生じることがある。
Here, carry over to the steam turbine side will be described.
The boiler 3 obtains steam by heating the water sent from the water supply line 6. The steam turbine equipment supplies steam to the steam turbine 2 through the steam line 7. Here, even if the seawater and chemicals leaked in the water sent from the water supply line 6 are contained, that is, if the electrolyte is contained, the steam obtained by boiling the water usually contains moisture (H 2 O ) Is basically included. However, due to an increase in the water level of the drum in the boiler 3, deterioration of the demister, and excessive concentration of the electrolyte in the drum, water droplets and mist containing the electrolyte in the boiler 3 accompany the steam flowing into the steam line 7, and the steam turbine The electrolyte may be mixed into the second side, and electrolyte carry-over may occur.

給水系統Aから蒸気系統Bへキャリーオーバーされる物質は、蒸気タービンの腐食やスケールの原因となる物質を含んでいる。したがって、給水系統Aの水の水質監視だけではなく、蒸気系統Bの蒸気に含まれ得るキャリーオーバー物質の監視も必要となる。   The material carried over from the water supply system A to the steam system B includes a substance that causes corrosion and scale of the steam turbine. Therefore, it is necessary to monitor not only the water quality of the water supply system A but also the carry-over substance that can be contained in the steam of the steam system B.

以下、本実施例の処理部10の処理について、図3のフローチャートに従って説明する。   Hereinafter, the processing of the processing unit 10 of the present embodiment will be described with reference to the flowchart of FIG.

処理部10が処理を開始(S1)すると、入力部101は、第一検出部8及び第二検出部9から信号として、検出値D1及びD2を受け付ける(S2:入力工程)。ここで、第一検出部8は水の酸電気導電率を検出値D1として検出し(第一検出工程)、第二検出部9は検出値D2として蒸気の酸電気導電率を検出する(第二検出工程)。入力部101は、検出値D1及びD2を比較部102に出力する。図2において、入力部101は、受け付けた検出値D1に関する信号及び検出値D2に関する信号を個別に比較部102へ送信するが、送信後に比較部102において分離可能であるなら、検出値D1及びD2を一括した信号で送信してもよい。   When the processing unit 10 starts processing (S1), the input unit 101 receives detection values D1 and D2 as signals from the first detection unit 8 and the second detection unit 9 (S2: input step). Here, the first detection unit 8 detects the acid electrical conductivity of water as the detection value D1 (first detection step), and the second detection unit 9 detects the acid electrical conductivity of the steam as the detection value D2 (first detection step). Two detection steps). The input unit 101 outputs the detection values D1 and D2 to the comparison unit 102. In FIG. 2, the input unit 101 individually transmits a signal related to the received detection value D1 and a signal related to the detection value D2 to the comparison unit 102. If the comparison unit 102 can separate the signals after transmission, the detection values D1 and D2 are transmitted. May be transmitted as a batch signal.

比較部102は、入力部101から検出値D1及びD2を受け付け、検出値D1と検出値D2とを比較する演算を行い、比較結果を求める。比較部102は、検出値D1と検出値D2の比較結果を求めるものであれば、どのような演算を行うものであってもよい。   The comparison unit 102 receives the detection values D1 and D2 from the input unit 101, performs an operation for comparing the detection value D1 and the detection value D2, and obtains a comparison result. The comparison unit 102 may perform any calculation as long as it obtains a comparison result between the detection value D1 and the detection value D2.

ここで、比較部102についての作用・効果を説明する。
蒸気タービン設備の運転中においては、復水器4内は真空に保たれているが、蒸気タービン設備の検査による運転停止時は、復水器4内は真空破壊により真空が保たれない状態となる。このため、復水器4の復水の中や給水ライン6の水の中に、空気中に含まれる炭酸ガスが混入する。酸電気伝導率を検出する上で、循環系統の蒸気や水に空気中の炭酸ガスが混入すると、炭酸イオンの影響によって、蒸気や水の酸電気伝導率が上昇することとなる。たとえ、陽イオン交換樹脂を通過させて酸電気伝導率を検出したとしても、水や蒸気に空気中の炭酸ガスが含まれていると、背景技術の欄で説明したように、炭酸ガス成分は、当該陽イオン交換樹脂を通過してしまい、酸電気伝導率の検出に影響を与える。
Here, the operation and effect of the comparison unit 102 will be described.
During operation of the steam turbine equipment, the condenser 4 is kept in a vacuum, but when the operation is stopped by inspection of the steam turbine equipment, the condenser 4 is not kept in a vacuum due to vacuum breakage. Become. For this reason, carbon dioxide contained in the air is mixed into the condensate of the condenser 4 and the water of the water supply line 6. In detecting the acid electrical conductivity, if carbon dioxide in the air is mixed into the steam or water of the circulation system, the acid electrical conductivity of the steam or water increases due to the influence of carbonate ions. Even if acid conductivity is detected by passing through a cation exchange resin, if carbon dioxide in the air is contained in water or steam, as explained in the background section, the carbon dioxide component is , It will pass through the cation exchange resin, affecting the detection of acid conductivity.

炭酸ガス成分は、酸電気伝導率の監視対象である電解質とは異なり、蒸気タービン2において、スケールや腐食物質の原因とはならず、海水の漏洩でもないから監視不要である。しかし、炭酸ガス成分は、酸電気伝導率の検出に影響を及ぼすから、炭酸ガスが混入すると、スケールや腐食物質の原因となる物質の電解質の酸電気伝導率や漏洩した海水の酸電気伝導率を正確に検出できない。   Unlike the electrolyte which is the monitoring target of the acid electrical conductivity, the carbon dioxide component does not cause scale and corrosive substances in the steam turbine 2 and does not leak seawater, so monitoring is unnecessary. However, the carbon dioxide component affects the detection of acid electrical conductivity, so when carbon dioxide is mixed, the acid electrical conductivity of the electrolyte of the substance that causes scale and corrosive substances and the acid electrical conductivity of leaked seawater Cannot be detected accurately.

そこで、比較部102は、水の酸電気伝導率の検出値D1と蒸気の酸電気伝導率の検出値D2とを比較する(S3:比較工程)。
蒸気や水に混入した炭酸ガスは、スケールや腐食物質のように蒸気タービン2、循環系統の配管や機器等に付着したり、海水や薬剤のようにボイラ内に蓄積したりしない。言い換えると、蒸気や水に混入した炭酸ガスは、水や蒸気への混入量が維持されたまま蒸気タービン設備を水や蒸気と共に循環する。よって、循環する炭酸ガスは、第一検出部8及び第二検出部9にいずれにおいても同程度に検出されることになる。
Therefore, the comparison unit 102 compares the detection value D1 of the acid electrical conductivity of water with the detection value D2 of the acid conductivity of the steam (S3: comparison step).
Carbon dioxide mixed in steam or water does not adhere to the steam turbine 2, circulation system piping or equipment like scales or corrosive substances, or accumulate in the boiler like seawater or chemicals. In other words, the carbon dioxide mixed in the steam and water circulates with the water and steam through the steam turbine equipment while maintaining the amount of water and steam mixed. Accordingly, the circulating carbon dioxide gas is detected to the same extent by both the first detection unit 8 and the second detection unit 9.

逆に、給水系統Aの水に混入した海水に溶解する電解質は、ボイラ3内へ混入するものの、ボイラ3では蒸発しないから、蒸気系統Bでは検出されない。また、蒸気系統Bへキャリーオーバーした電解質のうち、蒸気タービン2にスケールや腐食を形成する物質は、蒸気タービン2に付着してスケールや腐食物質を形成するから、給水系統Aに戻るときには少なからず減少する。そして、蒸気タービン2にスケールや腐食を形成する物質は、蒸気系統Bに比べて、給水系統Aにおいて低レベルで検出される。   On the contrary, the electrolyte dissolved in the seawater mixed in the water of the water supply system A is mixed in the boiler 3 but is not detected in the steam system B because it does not evaporate in the boiler 3. Further, among the electrolytes that have carried over to the steam system B, substances that form scales and corrosion on the steam turbine 2 adhere to the steam turbine 2 and form scales and corrosive substances. Decrease. A substance that forms scale or corrosion in the steam turbine 2 is detected at a lower level in the water supply system A than in the steam system B.

よって、給水系統Aに海水が混入した場合や、蒸気系統Bに当該スケールや腐食物質を形成する物質が混入した場合は、第一検出部8と第二検出部9とでは、異なる値が検出されることになる。   Therefore, when seawater is mixed into the water supply system A, or when a substance that forms the scale or corrosive substance is mixed into the steam system B, the first detection unit 8 and the second detection unit 9 detect different values. Will be.

したがって、水の酸電気伝導率の検出値D1と蒸気の酸電気伝導率の検出値D2とを比較すれば、第一検出部8及び第二検出部9の両方で検出された酸電気伝導率のうち、炭酸ガスに対応する酸電気伝導率を相殺して評価することができ、監視装置1は、監視不要な炭酸ガスの影響を低減した監視を行うことができる。   Therefore, if the detected value D1 of the acid conductivity of water and the detected value D2 of the acid conductivity of the steam are compared, the acid conductivity detected by both the first detector 8 and the second detector 9 Among them, the acid electrical conductivity corresponding to the carbon dioxide gas can be canceled and evaluated, and the monitoring device 1 can perform the monitoring while reducing the influence of the carbon dioxide gas that does not require monitoring.

なお、海水に溶解する電解質としては、Na、Cl、Ca2+等があり、スケールや腐食物質を形成する電解質としては、Na、Cl、Ca2+に加え、PO 3−がある。 As the electrolyte to be dissolved in the seawater, Na +, Cl -, there is Ca 2+ and the like, as the electrolyte to form scale and corrosion substances, Na +, Cl -, in addition to Ca 2+, there is PO 4 3- .

さらに、炭酸ガスの影響が大きい場合には、変形例として、第一検出部8を検出器8a及び脱気ユニット8bで構成し、第二検出部9を検出器9a及び脱気ユニット9bで構成してもよい。具体的には、図4に示すように、検出器8aの上流に脱気ユニット8b、検出器9aの上流に脱気ユニット9bを設けることによって、第一検出部8及び第二検出部9は、炭酸ガスを脱気するという前処理を行う。監視装置1は、この前処理を行って得た検出値D1と検出値D2とを比較することによって、監視不要な炭酸ガスを検出時に排除した上で、完全に排除できなかった炭酸ガスの影響を相殺する。そして、脱気ユニット8b,9bを設けることによって、ノイズの少ない環境での監視が可能となり、脱気ユニット8b,9bを設けた監視装置1は、脱気ユニット8b,9bを設けない場合に比べてより微妙な量の電解質を検出することができる。   Furthermore, when the influence of carbon dioxide gas is large, as a modification, the first detection unit 8 is configured by a detector 8a and a deaeration unit 8b, and the second detection unit 9 is configured by a detector 9a and a deaeration unit 9b. May be. Specifically, as shown in FIG. 4, by providing a deaeration unit 8b upstream of the detector 8a and a deaeration unit 9b upstream of the detector 9a, the first detection unit 8 and the second detection unit 9 are The pretreatment of degassing the carbon dioxide gas is performed. The monitoring apparatus 1 compares the detection value D1 obtained by performing this pre-processing with the detection value D2, thereby eliminating carbon dioxide that is not required for monitoring at the time of detection and the influence of carbon dioxide that could not be completely eliminated. Offset. And by providing the deaeration units 8b and 9b, it becomes possible to monitor in an environment with less noise, and the monitoring device 1 provided with the deaeration units 8b and 9b is compared with the case where the deaeration units 8b and 9b are not provided. A more subtle amount of electrolyte can be detected.

検出値D1と検出値D2との差又は比を評価できる演算の例としては、検出値D1と検出値D2の差又は比だけではなく、検出値D1と検出値D2との差の二乗の平方根、検出値D1と検出値D2の差の絶対値、検出値D1と検出値D2との比の二乗、検出値D1と検出値D2との比の平方根などが考えられる。すなわち、検出値D1とD2との差又は比を評価できる比較結果を求めるものであれば、どのような演算であってもよい。   Examples of operations that can evaluate the difference or ratio between the detection value D1 and the detection value D2 include not only the difference or ratio between the detection value D1 and the detection value D2, but also the square root of the square of the difference between the detection value D1 and the detection value D2. The absolute value of the difference between the detection value D1 and the detection value D2, the square of the ratio between the detection value D1 and the detection value D2, the square root of the ratio between the detection value D1 and the detection value D2, and the like can be considered. That is, any calculation may be used as long as it obtains a comparison result that can evaluate the difference or ratio between the detection values D1 and D2.

一例として、検出値D1と検出値D2の差の二乗の平方根を算出する演算を、以下の式(1)に示す。   As an example, the following formula (1) shows an operation for calculating the square root of the square of the difference between the detected value D1 and the detected value D2.

M=√((D1−D2)) ・・・(1) M = √ ((D1-D2) 2 ) (1)

比較部102は、当該演算を行い、演算結果を監視値M(比較結果)として、判定部103又は出力部104に出力する(図2)。   The comparison unit 102 performs the calculation and outputs the calculation result as a monitoring value M (comparison result) to the determination unit 103 or the output unit 104 (FIG. 2).

判定部103は、比較結果が異常かどうかを判定する(S4:判定工程)。異常かどうかの判定は、例えば監視値Mをしきい値M1と比較し、上記判定を行う。異常かどうかの判定は、上記演算のうち、どのような演算結果を用いてもよいが、式(1)の演算結果を用いれば、比較的簡単な演算及び判定で確実に異常を判定できる。この判定を行うことによって、監視者の評価を待たずに、迅速且つ的確に異常判定を行うことができる。   The determination unit 103 determines whether the comparison result is abnormal (S4: determination step). For example, the determination is made by comparing the monitoring value M with the threshold value M1, for example. The determination of whether or not there is an abnormality may use any of the above-described calculations, but if the calculation result of Expression (1) is used, the abnormality can be reliably determined with relatively simple calculations and determinations. By making this determination, it is possible to make an abnormality determination quickly and accurately without waiting for the evaluation of the supervisor.

判定部103は、異常かどうかの判定の結果、異常でない(NO)と判定されたなら、次の検出値D1と検出値D2とを受け付ける。判定部103が、異常かどうかの判定の結果、異常(YES)と判定したら、出力部104は異常出力を行い(S6)、処理部10は処理を終了する(S7)。異常出力は、表示装置や記録紙等の表示媒体への出力、記憶装置への出力、警報灯や警報音等の警報器への出力等、監視者がリアルタイムに又は後に異常を確認できるものであればどのようなものであってもよい。   If it is determined that there is no abnormality (NO) as a result of the determination as to whether there is an abnormality, the determination unit 103 receives the next detection value D1 and the detection value D2. If the determination unit 103 determines that the result is abnormal (YES), the output unit 104 outputs an abnormality (S6), and the processing unit 10 ends the process (S7). Abnormal output can be monitored in real time or later, such as output to display media such as display devices and recording paper, output to storage devices, output to alarm devices such as warning lights and alarm sounds, etc. Anything is acceptable.

「第二実施形態」
本発明に係る蒸気タービン設備の監視装置の第二実施形態について、図5のフローチャートに従って説明する。
"Second embodiment"
A second embodiment of the monitoring apparatus for steam turbine equipment according to the present invention will be described with reference to the flowchart of FIG.

本実施形態の監視装置1は、第一実施形態の判定部103の処理が異なるだけで、基本的な装置構成は第一実施形態の装置構成と同一である。   The monitoring device 1 of the present embodiment is the same as the device configuration of the first embodiment except that the processing of the determination unit 103 of the first embodiment is different.

本実施形態では、処理部10が処理を開始(S1)すると、比較工程(S3)まで、第一実施形態と同様な処理が行われる。
ただし、本実施形態の場合、比較部102は、監視値Mとして、検出値D1と検出値D2との大小関係を評価できるパラメータを算出する。大小関係を評価できるパラメータとして、検出値D1と検出値D2の差(M=(D1−D2))や、検出値D1と検出値D2の比(M=D1/D2)や、検出値D1と検出値D2との比の二乗や、検出値D1と検出値D2との比の平方根などがある。
In the present embodiment, when the processing unit 10 starts processing (S1), the same processing as in the first embodiment is performed until the comparison step (S3).
However, in the present embodiment, the comparison unit 102 calculates a parameter that can evaluate the magnitude relationship between the detection value D1 and the detection value D2 as the monitoring value M. As parameters for evaluating the magnitude relationship, the difference between the detection value D1 and the detection value D2 (M = (D1−D2)), the ratio of the detection value D1 to the detection value D2 (M = D1 / D2), the detection value D1 and There are the square of the ratio between the detection value D2 and the square root of the ratio between the detection value D1 and the detection value D2.

判定部は、S4:判定工程において、まずは第一実施例と同様に、比較結果が異常かどうかを判定する(S4−1:第一判定工程)。続いて、検出値D1と検出値D2との大小関係の判定を行う(S4−2:第二判定工程)。   In S4: determination process, the determination unit first determines whether or not the comparison result is abnormal (S4-1: first determination process), as in the first embodiment. Subsequently, the magnitude relationship between the detection value D1 and the detection value D2 is determined (S4-2: second determination step).

なお、以下大小関係の判定において、検出値D1と検出値D2とが大小関係にない場合、すなわち検出値D1と検出値D2とが実質的に等しい場合は、給水系統A、蒸気系統Bどちらの異常としてもよいし、異常なしと判定してもよい。以下は、説明を簡単にするために検出値D1と検出値D2とが等しくない場合について説明する。   In the following determination of the magnitude relationship, when the detected value D1 and the detected value D2 are not in a magnitude relationship, that is, when the detected value D1 and the detected value D2 are substantially equal, either the water supply system A or the steam system B An abnormality may be determined, or it may be determined that there is no abnormality. In the following, a case where the detection value D1 and the detection value D2 are not equal will be described in order to simplify the description.

検出値D1と検出値D2とが同じ酸電気伝導率に対して同じ値を示すように調整されているなら、検出値D1が検出値D2より大きい場合は、酸電気伝導率の上昇の原因が給水系統Aにあることとを意味するし、検出値D2が検出値D1より大きい場合は、酸電気伝導率の上昇の原因が蒸気系統Bにあることを意味する。   If the detection value D1 and the detection value D2 are adjusted to show the same value for the same acid electrical conductivity, if the detection value D1 is larger than the detection value D2, the cause of the increase in the acid electrical conductivity is It means that it is in the water supply system A, and when the detected value D2 is larger than the detected value D1, it means that the cause of the increase in the acid electrical conductivity is in the steam system B.

そこで、上記大小関係の判定を行い、検出値D1が検出値D2より大きい(YES)と判定した場合は、給水系統Aの異常と判定し、検出値D1が検出値D2より大きくない(NO)と判定した場合は、蒸気系統Bの異常と判定し、出力部104は判定結果を出力し(S5:出力工程)、処理を終了する(S6)。   Therefore, if the magnitude relationship is determined and it is determined that the detected value D1 is greater than the detected value D2 (YES), it is determined that the water supply system A is abnormal, and the detected value D1 is not greater than the detected value D2 (NO). Is determined as an abnormality in the steam system B, the output unit 104 outputs a determination result (S5: output step), and the process ends (S6).

判定部103における前記大小関係の判定は、様々な形態がある。例えば、比較部102が、M=D1−D2を演算するものであるなら、判定部103は、監視値Mの正負を判定する。もし、検出値D1と検出値D2とが同じ酸電気伝導率に対して同じ値を示すように調整されているなら、監視値Mが正の場合、給水系統Aの水の酸電気伝導率が蒸気系統Bの酸電気伝導率より高いことになる。したがって、判定部103は、監視値Mが正の場合、海水の漏洩が起きていると判定する。逆に、監視値Mが負の場合、判定部103は、キャリーオーバーした物質が蒸気に混入していると判定する。   The determination of the magnitude relationship in the determination unit 103 has various forms. For example, if the comparison unit 102 calculates M = D1-D2, the determination unit 103 determines whether the monitoring value M is positive or negative. If the detected value D1 and the detected value D2 are adjusted so as to show the same value for the same acid electrical conductivity, if the monitored value M is positive, the acid electrical conductivity of the water in the water supply system A is It will be higher than the acid electrical conductivity of the steam system B. Therefore, when the monitoring value M is positive, the determination unit 103 determines that seawater is leaking. Conversely, when the monitoring value M is negative, the determination unit 103 determines that the carry-over substance is mixed in the vapor.

変形例として、比較部102が、M=D1/D2を演算するものであるなら、判定部103は、監視値Mの1より大きいか小さいかを判定する。もし、検出値D1と検出値D2とが同じ酸電気伝導率に対して同じ値を示すように調整されているなら、監視値Mが1より大きい場合(D1>D2の場合)、給水系統Aの水の酸電気伝導率が蒸気系統Bの酸電気伝導率より高いことになる。したがって、判定部103は、監視値Mが1より大きい場合、海水の漏洩が起きていると判定する。逆に、監視値Mが1より小さい場合、判定部103は、キャリーオーバーした物質が、蒸気に混入していると判定する。   As a modification, if the comparison unit 102 calculates M = D1 / D2, the determination unit 103 determines whether the monitoring value M is larger or smaller than 1. If the detected value D1 and the detected value D2 are adjusted so as to show the same value for the same acid electrical conductivity, when the monitored value M is larger than 1 (when D1> D2), the water supply system A The acid electrical conductivity of water is higher than that of the steam system B. Therefore, when the monitoring value M is greater than 1, the determination unit 103 determines that seawater is leaking. On the other hand, when the monitoring value M is smaller than 1, the determination unit 103 determines that the carry-over substance is mixed in the vapor.

当該実施形態では、判定部103は、上記異常かどうかを判定の後に大小関係を判定しているが、変形例として、上記異常かどうかを判定の前に大小関係を判定してもよい。上記異常かどうかを判定の前に大小関係を判定する場合は、判定部103は、図6のフローチャートに従って処理する。図6のフローチャートでは、検出値D1と検出値D2との大小関係の判定(S4−1´:第一判定工程)を行った後で、比較結果が異常かどうかの判定(S4−2´:第一判定工程)を行っている。   In this embodiment, the determination unit 103 determines the magnitude relationship after determining whether or not the abnormality is present, but as a modification, the determination unit 103 may determine the magnitude relationship before determining whether or not the abnormality is present. When determining the magnitude relationship before the determination as to whether or not it is abnormal, the determination unit 103 performs processing according to the flowchart of FIG. In the flowchart of FIG. 6, after determining the magnitude relationship between the detected value D1 and the detected value D2 (S4-1 ′: first determination step), it is determined whether the comparison result is abnormal (S4-2 ′: The first determination step) is performed.

当該実施形態では、上記異常かどうかを判定の前又は後に大小関係を判定(上記異常かどうかの判定に対して直列に大小関係を判定)しているが、変形例として、上記異常かどうかを判定する判定部103と別に、大小関係を判定する判定部103´とを処理部10に設けて、上記異常かどうかの判定に対して並列に大小関係を判定してもよい。   In the present embodiment, the magnitude relationship is determined before or after the determination as to whether or not the abnormality is present (the magnitude relationship is determined in series with respect to the determination as to whether or not the abnormality is present). In addition to the determination unit 103, a determination unit 103 ′ that determines the magnitude relationship may be provided in the processing unit 10, and the magnitude relationship may be determined in parallel with the determination as to whether the abnormality is present.

また、監視者が海水の漏洩、蒸気の混入を判定する場合、処理部10に判定部103を設けず、又は判定部103を設けると共に、比較部102が、監視値Mを出力部104に直接送信(図2)するように構成する。そして、出力部104は、監視値Mに基づく情報を直接出力する。出力部104の出力は、監視値Mの直接出力はもちろん、監視値Mを並べたテーブルや監視値Mの時間変化のグラフといった、監視値Mを監視者が評価できる出力であれば、どのようなものであってもよい。   In addition, when the monitor determines leakage of seawater or mixing of steam, the determination unit 103 is not provided in the processing unit 10 or the determination unit 103 is provided, and the comparison unit 102 directly inputs the monitoring value M to the output unit 104. It is configured to transmit (FIG. 2). The output unit 104 directly outputs information based on the monitoring value M. The output of the output unit 104 is not limited to the direct output of the monitoring value M, but any output that allows the monitoring person to evaluate the monitoring value M, such as a table in which the monitoring values M are arranged or a graph of temporal changes of the monitoring values M. It may be anything.

例えば、出力部104が、表示部や記録紙といった表示媒体に当該出力を表示すれば、監視者は海水の漏洩、蒸気の混入の判定が可能となるから、出力部104は、熟練者による総合的判定や微妙な判定を支援できる。また、出力部104とすることによって、判定部103をなくして処理部10を簡素化することができる。または、出力部104が、判定部103の判定結果と共に監視値Mに基づく情報とを出力することによって、監視者は二重の監視を行うことが可能となる。   For example, if the output unit 104 displays the output on a display medium such as a display unit or recording paper, the monitor can determine whether seawater has leaked or steam has been mixed. It can support manual judgment and delicate judgment. Further, by using the output unit 104, the determination unit 103 can be eliminated and the processing unit 10 can be simplified. Alternatively, the output unit 104 outputs information based on the monitoring value M together with the determination result of the determination unit 103, so that the monitor can perform double monitoring.

図7及び図8には、実際の監視結果を示す。
図7及び図8の上のグラフは、蒸気タービン2の出力(電力)を示す波形であって、運転途中でタービン設備を停止させ、その後再起動させた時の出力状態を示している。図7及び図8の中央のグラフは、検出値D1(点線)及び検出値D2(実線)の波形であって、蒸気タービン2の出力波形と同期させて示してある。図7及び図8の下のグラフは、検出値D1と検出値D2とから演算された監視値Mの波形であって、蒸気タービン2の出力波形と同期させて示してある。M1は、監視値Mの異常を判定するためのしきい値を示す。
7 and 8 show actual monitoring results.
The upper graphs in FIGS. 7 and 8 are waveforms showing the output (electric power) of the steam turbine 2, and show the output state when the turbine equipment is stopped during the operation and then restarted. 7 and 8 are waveforms of the detection value D1 (dotted line) and the detection value D2 (solid line), and are shown in synchronization with the output waveform of the steam turbine 2. The lower graphs of FIGS. 7 and 8 are waveforms of the monitoring value M calculated from the detection value D1 and the detection value D2, and are shown in synchronization with the output waveform of the steam turbine 2. M1 indicates a threshold value for determining an abnormality of the monitoring value M.

図7において、タービン設備の再起動(蒸気タービン2の出力上昇)直後までは給水系統A及び蒸気系統Bに異常がないため、蒸気タービン2の出力下降時X1及び出力上昇時X2以外は、監視値Mに変化が見られない。   In FIG. 7, since there is no abnormality in the water supply system A and the steam system B until immediately after the restart of the turbine equipment (the output of the steam turbine 2 is increased), monitoring is performed except when the output of the steam turbine 2 is decreased X1 and when the output is increased X2. There is no change in the value M.

ここで、蒸気タービン2の出力上昇時及び出力下降時の監視値Mの変化は、タービン設備の停止時、起動時を含む出力変動時における復水器4内の空気の脱気や給水ライン6や蒸気ライン7の切り替えに伴う、炭酸ガスや残留物の時間変化のタイムラグといった、蒸気タービン設備の特性によるものであって、海水の漏洩、蒸気の混入に由来するものではない。したがって、蒸気タービン設備の起動時又は遮断時を含む出力変動時の一定の期間(X1、X2)は、監視値Mをマスクすることによって、蒸気タービン2の出力上昇時及び出力下降時といった出力変動時の監視値Mの変化を異常と検出されないようにすることができる。   Here, the change in the monitoring value M when the output of the steam turbine 2 is increased and when the output is decreased is that the air in the condenser 4 is degassed and the water supply line 6 is changed when the turbine equipment is stopped and when the output fluctuates including when it starts. This is due to the characteristics of the steam turbine equipment such as the time lag of the time change of the carbon dioxide gas and the residue accompanying the switching of the steam line 7, and is not due to the leakage of seawater or the mixing of steam. Therefore, during a certain period (X1, X2) when the output fluctuates including when the steam turbine equipment is started or shut off, the output fluctuation such as when the output of the steam turbine 2 is increased and when the output is decreased by masking the monitoring value M. It is possible to prevent a change in the monitoring value M from being detected as abnormal.

当該マスクは、蒸気タービン設備の仕様や運転プログラムで予め決まる時刻を用いてマスクするものであってもよいし、蒸気タービン設備のポンプ起動やボイラ起動等の制御信号や応答信号(完了信号)に同期してマスクするものであってもよい。さらには、上記マスクは、蒸気タービン2の出力の変化や各種系統の弁の開閉信号等を検出し、当該検出から算出したマスク時刻を用いてマスクするものであってもよい。   The mask may be masked using a time determined in advance by the specifications and operation program of the steam turbine equipment, or may be used as a control signal or a response signal (completion signal) such as pump start or boiler start of the steam turbine equipment. It may be masked synchronously. Further, the mask may be a mask that detects a change in the output of the steam turbine 2 or an open / close signal of a valve of various systems and masks it using the mask time calculated from the detection.

一方、図7のグラフには、蒸気タービン2の出力上昇後から少し経過した段階(図7のグラフの最終時刻段階)で、海水の漏洩が起こった時の波形が示される。図7の下のグラフの監視値Mは、検出値D1と検出値D2との差の二乗の平方根(式(1))によって演算された波形である。海水の漏洩によって、蒸気系統Bの蒸気の酸電気伝導率はほとんど変化しないのに対して、給水系統Aの水の酸電気伝導率が変化して高くなる。そして、検出値D2はほとんど変化しないのに対して、検出値D1は変化して高くなる。その結果、検出値D1の変化によって、監視値Mの値は変化して高くなる。監視値Mの変化は、しきい値M1によって判定され、異常として検出される。   On the other hand, the graph of FIG. 7 shows a waveform when seawater leaks at a stage after a slight increase in the output of the steam turbine 2 (final time stage of the graph of FIG. 7). The monitored value M in the lower graph of FIG. 7 is a waveform calculated by the square root of the difference between the detected value D1 and the detected value D2 (equation (1)). Due to the leakage of seawater, the acid electrical conductivity of the steam in the steam system B hardly changes, whereas the acid electrical conductivity of the water in the water supply system A changes and becomes high. And while the detection value D2 hardly changes, the detection value D1 changes and becomes high. As a result, the value of the monitoring value M changes and becomes higher due to the change of the detection value D1. The change in the monitoring value M is determined by the threshold value M1 and detected as an abnormality.

変形例を図8のグラフに示す。図8のグラフには、タービン設備の出力上昇後から少し経過した段階(図8のグラフの最終時刻段階)で、キャリーオーバーが起こった時の波形が示される。図8の下のグラフの監視値Mは、検出値D1から検出値D2を引いた値(監視値M=D1−D2)の波形である。水の酸電気伝導率はほとんど変化しないのに対して、キャリーオーバーした物質が蒸気に混入することによって、蒸気の酸電気伝導率が変化して高くなる。そして、検出値D1はほとんど変化しないのに対して、検出値D2は変化して高くなり、検出値D2の変化によって、監視値Mの値も変化して逆に低くなる。監視値Mの変化は、しきい値M1及びM2によって判定され、異常として検出される。   A modification is shown in the graph of FIG. The graph of FIG. 8 shows a waveform when a carry-over has occurred at a stage after a slight increase in the output of the turbine equipment (final time stage of the graph of FIG. 8). The monitored value M in the lower graph of FIG. 8 is a waveform of a value obtained by subtracting the detected value D2 from the detected value D1 (monitored value M = D1-D2). While the acid electrical conductivity of water hardly changes, the acid electrical conductivity of the steam changes and becomes high when the carry-over substance is mixed into the steam. The detection value D1 hardly changes, whereas the detection value D2 changes and becomes high, and the change of the detection value D2 also changes the value of the monitoring value M and becomes low. The change in the monitoring value M is determined by the threshold values M1 and M2, and is detected as an abnormality.

さらに、図8の例では、監視値Mの正負を判定する。図8の波形の場合、監視値Mは、異常と検出された時刻において、負の値を示しているから、この異常は、蒸気系統Bの異常と判定される。   Furthermore, in the example of FIG. 8, the sign of the monitoring value M is determined. In the case of the waveform in FIG. 8, the monitoring value M indicates a negative value at the time when the abnormality is detected. Therefore, this abnormality is determined as an abnormality in the steam system B.

以上説明した蒸気タービン設備の水及び蒸気の酸電気伝導率の監視装置は、火力発電プラントに適用できることはもちろん、原子力発電プラントや地熱発電プラント等にも適用できる。さらには、発電プラントに限らず、ポンプや船舶等といった蒸気タービン設備を利用するものであれば、どのような適用できる。   The above-described monitoring device for water and steam acid electrical conductivity of steam turbine equipment can be applied not only to thermal power plants, but also to nuclear power plants, geothermal power plants, and the like. Furthermore, the present invention is not limited to a power plant, and any application is possible as long as it uses steam turbine equipment such as a pump or a ship.

1: 監視装置、2:蒸気タービン、3:ボイラ、4:復水器、5:復水ポンプ、6:給水ライン、7:蒸気ライン、A:給水系統、B:蒸気系統、8:第一検出部、8a:検出器、8b:脱気ユニット、9:第二検出部、9a:検出器、9b:脱気ユニット、10:処理部、101:入力部、102:比較部、103:判定部、103´:判定部、104:出力部 1: monitoring device, 2: steam turbine, 3: boiler, 4: condenser, 5: condensate pump, 6: water supply line, 7: steam line, A: water supply system, B: steam system, 8: first Detection unit, 8a: detector, 8b: deaeration unit, 9: second detection unit, 9a: detector, 9b: deaeration unit, 10: processing unit, 101: input unit, 102: comparison unit, 103: determination Part, 103 ′: determination part, 104: output part

Claims (15)

蒸気により駆動する蒸気タービンと、蒸気を発生させるボイラ及び蒸気を前記ボイラから前記蒸気タービンに供給する蒸気ラインを含む蒸気系統と、前記蒸気タービンの排気を水に戻す復水器及び水を前記復水器から前記ボイラに供給する給水ラインを含む給水系統とを有する蒸気タービン設備の監視装置であって、
前記水の電気伝導率の検出値と前記蒸気の電気伝導率の検出値を受け付ける入力部と、
前記入力部が受け付けた前記水の電気伝導率の検出値と前記蒸気の電気伝導率の検出値を比較する比較部と、
前記比較部の比較結果に基づく情報を出力する出力部と、を備える
ことを特徴とする蒸気タービン設備の監視装置。
A steam turbine driven by steam; a steam system including a steam generating steam and a steam line supplying steam from the boiler to the steam turbine; and a condenser and water for returning the exhaust of the steam turbine to water. A steam turbine facility monitoring device having a water supply system including a water supply line for supplying water from the water tank to the boiler,
An input unit for receiving the detected value of the electrical conductivity of the water and the detected value of the electrical conductivity of the vapor;
A comparison unit for comparing the detected value of the electrical conductivity of the water received by the input unit with the detected value of the electrical conductivity of the steam;
An output unit that outputs information based on a comparison result of the comparison unit. A monitoring apparatus for steam turbine equipment, comprising:
請求項1に記載の蒸気タービン設備の監視装置において、
前記比較部の比較結果から前記給水系統又は前記蒸気系統の異常を判定する判定部を備え、
前記出力部は、前記判定部における判定結果を情報として出力する
ことを特徴とする蒸気タービン設備の監視装置。
In the steam turbine equipment monitoring device according to claim 1,
A determination unit for determining an abnormality of the water supply system or the steam system from a comparison result of the comparison unit;
The said output part outputs the determination result in the said determination part as information. The monitoring apparatus of the steam turbine equipment characterized by the above-mentioned.
請求項1又は請求項2に記載の蒸気タービン設備の監視装置において、
前記比較部は、比較結果として前記水の電気伝導率の検出値と前記蒸気の電気伝導率の検出値との差の二乗の平方根又は差の絶対値を求める
ことを特徴とする蒸気タービン設備の監視装置。
In the monitoring device of the steam turbine equipment according to claim 1 or 2,
The comparison unit obtains the square root of the difference between the detected value of the electric conductivity of the water and the detected value of the electric conductivity of the steam or the absolute value of the difference as a comparison result. Monitoring device.
請求項1から請求項3のいずれか一項に記載の蒸気タービン設備の監視装置において、
前記比較部は、比較結果として前記水の電気伝導率の検出値と前記蒸気の電気伝導率の検出値との大小関係を示すパラメータを求める
ことを特徴とする蒸気タービン設備の監視装置。
In the monitoring apparatus of the steam turbine equipment as described in any one of Claims 1-3,
The said comparison part calculates | requires the parameter which shows the magnitude relationship between the detected value of the electrical conductivity of the said water, and the detected value of the electrical conductivity of the steam as a comparison result. The monitoring apparatus of the steam turbine equipment characterized by the above-mentioned.
請求項4に記載の蒸気タービン設備の監視装置において、
前記パラメータは、前記水の電気伝導率の検出値と前記蒸気の電気伝導率の検出値との差又は比である
ことを特徴とする蒸気タービン設備の監視装置。
In the monitoring apparatus of the steam turbine equipment according to claim 4,
The said parameter is the difference or ratio of the detected value of the electrical conductivity of the said water, and the detected value of the electrical conductivity of the said steam. The monitoring apparatus of the steam turbine equipment characterized by the above-mentioned.
請求項4又は請求項5に記載の蒸気タービン設備の監視装置において、
前記水の電気伝導率の検出値が前記蒸気の電気伝導率の検出値より大きいときは前記給水系統の異常と判定し、前記蒸気の電気伝導率の検出値が前記水の電気伝導率の検出値より大きいときは前記蒸気系統の異常と判定する判定部を備える
ことを特徴とする蒸気タービン設備の監視装置。
In the monitoring apparatus of the steam turbine equipment according to claim 4 or 5,
When the detected value of the electrical conductivity of the water is larger than the detected value of the electrical conductivity of the steam, it is determined that the water supply system is abnormal, and the detected value of the electrical conductivity of the steam is detected as the electrical conductivity of the water. A steam turbine equipment monitoring apparatus, comprising: a determination unit that determines that the steam system is abnormal when the value is greater than the value.
請求項1から請求項6のいずれか一項に記載の蒸気タービン設備の監視装置において、
前記蒸気タービン設備の出力変動時の前記比較部の比較結果をマスクする
ことを特徴とする蒸気タービン設備の監視装置。
In the monitoring apparatus of the steam turbine equipment as described in any one of Claims 1-6,
The comparison result of the comparison part at the time of output fluctuation of the steam turbine equipment is masked.
請求項1から請求項7のいずれか一項に記載の蒸気タービン設備の監視装置であって、
前記給水系統中の水の電気伝導率の値を検出する第一検出部と、
前記蒸気系統中の蒸気の電気伝導率の値を検出する第二検出部と、
を備え、
前記入力部は、前記第一検出部で検出された前記水の電気伝導率の検出値と前記第二検出部で検出された前記蒸気の電気伝導率の検出値とを受け付ける
ことを特徴とする蒸気タービン設備の監視装置。
A steam turbine equipment monitoring device according to any one of claims 1 to 7,
A first detection unit for detecting a value of electrical conductivity of water in the water supply system;
A second detector for detecting a value of electrical conductivity of the steam in the steam system;
With
The input unit receives a detection value of the electrical conductivity of the water detected by the first detection unit and a detection value of the electrical conductivity of the vapor detected by the second detection unit. Monitoring equipment for steam turbine equipment.
請求項8に記載の蒸気タービン設備の監視装置において、
前記第一検出部及び前記第二検出部は、それぞれ炭酸ガスを脱気する脱気ユニットを含む
ことを特徴とする蒸気タービン設備の監視装置。
In the monitoring apparatus of the steam turbine equipment according to claim 8,
The first detection unit and the second detection unit each include a degassing unit for degassing carbon dioxide gas.
請求項1から請求項9のいずれか一項に記載の蒸気タービン設備の監視装置と、
前記蒸気タービンと、前記給水系統と、前記蒸気系統と、を有する
ことを特徴とする蒸気タービン設備。
The steam turbine equipment monitoring device according to any one of claims 1 to 9,
The steam turbine equipment comprising the steam turbine, the water supply system, and the steam system.
蒸気により駆動する蒸気タービンと、蒸気を発生させるボイラ及び蒸気を前記ボイラから前記蒸気タービンに供給する蒸気ラインを含む蒸気系統と、前記蒸気タービンの排気を水に戻す復水器及び水を前記復水器から前記ボイラに供給する給水ラインを含む給水系統とを有する蒸気タービン設備の監視方法であって、
前記給水系統中の水の電気伝導率の値を検出する第一検出工程と、
前記蒸気系統中の蒸気の電気伝導率の値を検出する第二検出工程と、
前記第一検出工程で検出された前記水の電気伝導率の検出値と前記第二検出工程で検出された前記蒸気の電気伝導率の検出値とを受け付ける入力工程と、
前記入力工程で受け付けた前記水の電気伝導率の検出値と前記蒸気の電気伝導率の検出値とを比較する比較工程と、
前記比較工程の比較結果に基づく情報を出力する出力工程と、を含む
ことを特徴とする蒸気タービン設備の監視方法。
A steam turbine driven by steam; a steam system including a steam generating steam and a steam line supplying steam from the boiler to the steam turbine; and a condenser and water for returning the exhaust of the steam turbine to water. A steam turbine facility monitoring method comprising a water supply system including a water supply line for supplying water from a water supply to the boiler,
A first detection step of detecting a value of electrical conductivity of water in the water supply system;
A second detection step for detecting a value of electrical conductivity of the steam in the steam system;
An input step for receiving the detected value of the electrical conductivity of the water detected in the first detection step and the detected value of the electrical conductivity of the vapor detected in the second detection step;
A comparison step of comparing the detected value of the electrical conductivity of the water received in the input step with the detected value of the electrical conductivity of the steam;
An output step of outputting information based on a comparison result of the comparison step. A method for monitoring a steam turbine facility, comprising:
請求項11に記載の蒸気タービン設備の監視方法において、
前記比較工程の比較結果から前記給水系統又は前記蒸気系統の異常を判定する判定工程を含み、
前記出力工程では、前記判定工程における判定結果を情報として出力する
ことを特徴とする蒸気タービン設備の監視方法。
In the steam turbine equipment monitoring method according to claim 11,
A determination step of determining an abnormality of the water supply system or the steam system from the comparison result of the comparison step,
In the output step, the determination result in the determination step is output as information. A method for monitoring steam turbine equipment, comprising:
請求項11又は請求項12に記載の蒸気タービン設備の監視方法において、
前記比較工程では、比較結果として前記水の電気伝導率の検出値と前記蒸気の電気伝導率の検出値との差の二乗の平方根又は差の絶対値を求める
ことを特徴とする蒸気タービン設備の監視方法。
In the monitoring method of the steam turbine equipment according to claim 11 or 12,
In the comparison step, as a comparison result, the square root of the difference between the detected value of the electrical conductivity of the water and the detected value of the electrical conductivity of the steam or the absolute value of the difference is obtained. Monitoring method.
請求項11から請求項13のいずれか一項に記載の蒸気タービン設備の監視方法において、
前記比較工程では、比較結果として前記水の電気伝導率の検出値と前記蒸気の電気伝導率の検出値との大小関係を示すパラメータを求める
ことを特徴とする蒸気タービン設備の監視方法。
In the monitoring method of the steam turbine equipment according to any one of claims 11 to 13,
In the comparison step, a parameter indicating a magnitude relationship between the detected value of the electrical conductivity of the water and the detected value of the electrical conductivity of the steam is obtained as a comparison result.
請求項14に記載の蒸気タービン設備の監視方法において、
前記水の電気伝導率の検出値が前記蒸気の電気伝導率の検出値より大きいときは前記給水系統の異常と判定し、前記蒸気の電気伝導率の検出値が前記水の電気伝導率の検出値より大きいときは前記蒸気系統の異常と判定する判定工程を含む
ことを特徴とする蒸気タービン設備の監視方法。
In the monitoring method of the steam turbine equipment according to claim 14,
When the detected value of the electrical conductivity of the water is larger than the detected value of the electrical conductivity of the steam, it is determined that the water supply system is abnormal, and the detected value of the electrical conductivity of the steam is detected as the electrical conductivity of the water. A steam turbine equipment monitoring method, comprising: a determination step of determining that the steam system is abnormal when the value is larger.
JP2015139740A 2015-07-13 2015-07-13 MONITORING DEVICE, STEAM TURBINE EQUIPMENT HAVING THE SAME, AND METHOD FOR MONITORING STEAM TURBINE EQUIPMENT Active JP6578612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015139740A JP6578612B2 (en) 2015-07-13 2015-07-13 MONITORING DEVICE, STEAM TURBINE EQUIPMENT HAVING THE SAME, AND METHOD FOR MONITORING STEAM TURBINE EQUIPMENT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015139740A JP6578612B2 (en) 2015-07-13 2015-07-13 MONITORING DEVICE, STEAM TURBINE EQUIPMENT HAVING THE SAME, AND METHOD FOR MONITORING STEAM TURBINE EQUIPMENT

Publications (2)

Publication Number Publication Date
JP2017020938A true JP2017020938A (en) 2017-01-26
JP6578612B2 JP6578612B2 (en) 2019-09-25

Family

ID=57888093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015139740A Active JP6578612B2 (en) 2015-07-13 2015-07-13 MONITORING DEVICE, STEAM TURBINE EQUIPMENT HAVING THE SAME, AND METHOD FOR MONITORING STEAM TURBINE EQUIPMENT

Country Status (1)

Country Link
JP (1) JP6578612B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020031667A1 (en) * 2018-08-06 2020-02-13 三菱日立パワーシステムズ株式会社 Acid electrical conductivity measurement device and method, and steam turbine plant

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4636292A (en) * 1984-05-03 1987-01-13 Ab Asea-Atom Electrode for electrochemical measurements in aqueous solutions of high temperatures
JPH03128496A (en) * 1989-10-13 1991-05-31 Hitachi Ltd Water quality diagnosing system for power plant
JPH1130564A (en) * 1997-07-10 1999-02-02 Kansai Electric Power Co Inc:The Seawater-leakage detector
JP2001032701A (en) * 1999-05-17 2001-02-06 Hitachi Ltd Condenser, power generation plant equipment and operating method therefor
JP2005240588A (en) * 2004-02-24 2005-09-08 Mitsubishi Heavy Ind Ltd Power generation device and method and device for monitoring water quality of the power generation device
JP2005283528A (en) * 2004-03-31 2005-10-13 Hitachi Ltd Reductive nitrogen compound injecting operation method for atomic power plant
US20070205160A1 (en) * 2006-03-01 2007-09-06 Savage Jason R Water conductivity monitoring circuit for use with a steam generator
JP2008064393A (en) * 2006-09-08 2008-03-21 Chugoku Electric Power Co Inc:The Water quality management method and system for boiler water
JP2013170544A (en) * 2012-02-22 2013-09-02 Mitsubishi Heavy Ind Ltd Power plant and operation method therefor
JP2013170992A (en) * 2012-02-22 2013-09-02 Mitsubishi Heavy Ind Ltd Water quality management method and water quality management system
JP2015148411A (en) * 2014-02-07 2015-08-20 富士電機株式会社 Cooling water leakage diagnostic system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4636292A (en) * 1984-05-03 1987-01-13 Ab Asea-Atom Electrode for electrochemical measurements in aqueous solutions of high temperatures
JPH03128496A (en) * 1989-10-13 1991-05-31 Hitachi Ltd Water quality diagnosing system for power plant
JPH1130564A (en) * 1997-07-10 1999-02-02 Kansai Electric Power Co Inc:The Seawater-leakage detector
JP2001032701A (en) * 1999-05-17 2001-02-06 Hitachi Ltd Condenser, power generation plant equipment and operating method therefor
JP2005240588A (en) * 2004-02-24 2005-09-08 Mitsubishi Heavy Ind Ltd Power generation device and method and device for monitoring water quality of the power generation device
JP2005283528A (en) * 2004-03-31 2005-10-13 Hitachi Ltd Reductive nitrogen compound injecting operation method for atomic power plant
US20070205160A1 (en) * 2006-03-01 2007-09-06 Savage Jason R Water conductivity monitoring circuit for use with a steam generator
JP2008064393A (en) * 2006-09-08 2008-03-21 Chugoku Electric Power Co Inc:The Water quality management method and system for boiler water
JP2013170544A (en) * 2012-02-22 2013-09-02 Mitsubishi Heavy Ind Ltd Power plant and operation method therefor
JP2013170992A (en) * 2012-02-22 2013-09-02 Mitsubishi Heavy Ind Ltd Water quality management method and water quality management system
JP2015148411A (en) * 2014-02-07 2015-08-20 富士電機株式会社 Cooling water leakage diagnostic system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020031667A1 (en) * 2018-08-06 2020-02-13 三菱日立パワーシステムズ株式会社 Acid electrical conductivity measurement device and method, and steam turbine plant
JPWO2020031667A1 (en) * 2018-08-06 2021-08-12 三菱パワー株式会社 Acid electrical conductivity measuring device and method and steam turbine plant

Also Published As

Publication number Publication date
JP6578612B2 (en) 2019-09-25

Similar Documents

Publication Publication Date Title
CN111033253B (en) Water quality diagnosis system, power station, and water quality diagnosis method
CN103383296A (en) Leakage detecting system for condensers
JP6258721B2 (en) Cooling water leak diagnosis system
JP6578612B2 (en) MONITORING DEVICE, STEAM TURBINE EQUIPMENT HAVING THE SAME, AND METHOD FOR MONITORING STEAM TURBINE EQUIPMENT
JP2013170992A (en) Water quality management method and water quality management system
CN111951988A (en) Method and device for detecting abnormity of main water supply flow and computer equipment
JP2010135704A (en) Cooling system of semiconductor laser package
US10345251B2 (en) Portable NMR device for detecting an oil concentration in water
JP2011196962A (en) Method and apparatus for monitoring hydrogen concentration
CN114976150B (en) Method, device, equipment and medium for detecting single cell leakage in fuel cell stack
KR20070079695A (en) Equipment for cleaning semiconductor wafer
JP2002117468A (en) Plant operation diagnosis and support system
JP7225025B2 (en) Corrosion control system, water treatment equipment and power plant, and corrosion control method and corrosion control program
CN203132798U (en) Leakage monitoring device for direct inserting type condenser
JP5922190B2 (en) Intake and discharge water temperature difference management device and intake and discharge water temperature difference management method
JP6349635B2 (en) Calcium hardness measuring device and measuring method
JP3974732B2 (en) Seawater leak detection device
CN104088675B (en) Monitoring method for vacuum leakage points of steam turbine
Bae Study on Early Leak Detection of PCS Coolant Using Integrated System by means of Multi-Sensors Technique
JP2012013621A (en) Quantitative determination method for dissolved carbonic acid component
JPH05264500A (en) Detecting device for abnormality of ph meter
JPH05264492A (en) Method and device for compensating acid conductivity
JP4417546B2 (en) Salt inspection equipment
JP2015219009A (en) Continuous detection method and detection device of seawater leak
CN118032870A (en) Abnormal diagnosis device for water vapor hydrogen conductivity

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150714

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20180326

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190809

R150 Certificate of patent or registration of utility model

Ref document number: 6578612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350