JP2017020787A - Inflow evaluation formula derivation method and inflow evaluation formula derivation device, inflow derivation method and inflow derivation device, apparatus fragility evaluation method and apparatus fragility evaluation device, and tsunami stochastic risk evaluation method and tsunami stochastic risk evaluation device - Google Patents

Inflow evaluation formula derivation method and inflow evaluation formula derivation device, inflow derivation method and inflow derivation device, apparatus fragility evaluation method and apparatus fragility evaluation device, and tsunami stochastic risk evaluation method and tsunami stochastic risk evaluation device Download PDF

Info

Publication number
JP2017020787A
JP2017020787A JP2015135828A JP2015135828A JP2017020787A JP 2017020787 A JP2017020787 A JP 2017020787A JP 2015135828 A JP2015135828 A JP 2015135828A JP 2015135828 A JP2015135828 A JP 2015135828A JP 2017020787 A JP2017020787 A JP 2017020787A
Authority
JP
Japan
Prior art keywords
inflow
evaluation formula
building
per unit
unit time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015135828A
Other languages
Japanese (ja)
Other versions
JP6430338B2 (en
Inventor
正樹 池田
Masaki Ikeda
正樹 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2015135828A priority Critical patent/JP6430338B2/en
Publication of JP2017020787A publication Critical patent/JP2017020787A/en
Application granted granted Critical
Publication of JP6430338B2 publication Critical patent/JP6430338B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inflow evaluation formula derivation method improved in accuracy.SOLUTION: A method of deriving an inflow evaluation formula for calculating an inflow of a fluid per unit time into a building is characterized in that when the inflow evaluation formula, by which an inflow per unit time can be calculated from parameters relating to the inflow evaluation formula and a flood depth outside and in the vicinity of the building, is employed as a first inflow evaluation formula, the inflow per unit time is calculated by the first inflow evaluation formula using at least one parameter selected from among a width of an opening of the building, the flood depth outside and in the vicinity of the building, a height from the ground to a lower part of the opening of the building, a radius of the opening of the building, a flow coefficient, and a gravity acceleration, and a second inflow evaluation formula is derived from a relationship between the inflow per unit time measured by an inflow measurement device that is installed at the opening of the building or in the vicinity of the opening of the building, and the inflow per unit time calculated by the first inflow evaluation formula.SELECTED DRAWING: Figure 3

Description

本発明は、流入量の評価、及び津波の確率論的リスク評価に関する。   The present invention relates to evaluation of inflow and probabilistic risk evaluation of tsunami.

東日本大震災時の大津波の襲来以来、津波の確率論的リスク評価(津波PRA:Probabilistic−Risk−Assessment)は、日本原子力学会において津波PRA分科会が設立されるなど日本でも注目を浴びるようになってきた。   Probabilistic risk assessment (tsunami PRA: Tsunami PRA) has been gaining attention in Japan since the tsunami PRA subcommittee was established at the Atomic Energy Society of Japan since the tsunami hit the Great East Japan Earthquake. I came.

津波PRAは、津波ハザード評価、機器の損傷確率評価(フラジリティ評価)、事故シーケンス評価に分類され、原子力発電所における原子炉の炉心損傷頻度に関する情報の取得を目的としている。   Tsunami PRAs are classified into tsunami hazard assessment, equipment damage probability assessment (fragility assessment), and accident sequence assessment, and are intended to obtain information on the frequency of reactor core damage at nuclear power plants.

津波PRAでは、評価精度を向上させること、つまり津波ハザード評価、機器のフラジリティ評価、事故シーケンス評価の各々の評価精度を向上させることが課題となっている。これらのうち機器のフラジリティ評価では、建屋内へ流入する津波の流入量の計算精度の向上により、評価精度を向上させることが可能である。   In the tsunami PRA, it is an issue to improve evaluation accuracy, that is, to improve each evaluation accuracy of tsunami hazard evaluation, equipment fragility evaluation, and accident sequence evaluation. Among these, in the equipment fragility evaluation, it is possible to improve the evaluation accuracy by improving the calculation accuracy of the inflow amount of the tsunami flowing into the building.

これまでの多量の水の流入量評価においては、例えば、特許文献1のような技術がある。特許文献1には「今後の雨量を予測することにより、ダムの放流時刻について長時間にわたり予測するダム放流時刻予測システム」が開示されている。   In the evaluation of the amount of inflow of a large amount of water so far, for example, there is a technique as described in Patent Document 1. Patent Document 1 discloses a “dam discharge time prediction system that predicts a dam discharge time over a long period of time by predicting future rainfall”.

特開平10−83490号公報Japanese Patent Laid-Open No. 10-83490

上記特許文献1は、ダムの水量や流入量の予測に関するものであり、上記のような建屋内へ流入する津波の流入量予測に適用するのは困難である。   The above-mentioned patent document 1 relates to the prediction of the amount of dam water and the amount of inflow, and is difficult to apply to the prediction of the amount of inflow of tsunami flowing into the building as described above.

また、特許文献1では流入量の計算精度の向上については考慮されておらず、既知の流入量評価式の利用にとどまっていた。したがって、機器のフラジリティ評価の評価精度を向上させるためにも、流入量の計算精度を向上させることが必要とされている。   Further, Patent Document 1 does not consider improvement of the calculation accuracy of the inflow amount, and only uses a known inflow amount evaluation formula. Therefore, in order to improve the evaluation accuracy of the fragility evaluation of equipment, it is necessary to improve the calculation accuracy of the inflow amount.

そこで、本発明の目的は、より精度の高い流入量評価式導出方法及び流入量評価式導出装置を提供することにある。   Accordingly, an object of the present invention is to provide an inflow amount evaluation formula deriving method and an inflow amount evaluation formula deriving device with higher accuracy.

また、本発明の別の目的は、より精度の高い流入量導出方法及び流入量導出装置を提供することにある。   Another object of the present invention is to provide a more accurate inflow amount deriving method and inflow amount deriving device.

また、本発明の他の目的は、より精度の高い機器のフラジリティ評価方法及び機器のフラジリティ評価装置を提供することにある。   Another object of the present invention is to provide a more accurate apparatus fragility evaluation method and apparatus fragility evaluation apparatus.

また、本発明の他の目的は、より精度の高い津波の確率論的リスク評価方法及び津波の確率論的リスク評価装置を提供することにある。   Another object of the present invention is to provide a more accurate tsunami probabilistic risk evaluation method and tsunami probabilistic risk evaluation apparatus.

上記課題を解決するために、本発明は、建屋内への流体の単位時間当たりの流入量を算出する流入量評価式の導出方法であって、流入量評価式に関連するパラメータと建屋近傍の建屋外の浸水深とから単位時間当たりの流入量を算出することが可能な流入量評価式を第1の流入量評価式とした場合、前記建屋開口の幅、前記建屋近傍の建屋外の浸水深、前記建屋開口の下部までの高さ、前記建屋開口の半径、流量係数、重力加速度のうち、少なくとも一つ以上のパラメータを用いて、前記第1の流入量評価式により単位時間当たりの流入量を算出し、前記建屋開口もしくは前記建屋開口の近傍に設置された流入量計測装置により計測した単位時間当たりの流入量と、前記第1の流入量評価式により算出した単位時間当たりの流入量との関係から第2の流入量評価式を導出することを特徴とする。   In order to solve the above problems, the present invention is a method for deriving an inflow rate evaluation formula for calculating the inflow rate per unit time of fluid into a building, and includes parameters related to the inflow rate evaluation formula and the vicinity of the building. When the inflow rate evaluation formula capable of calculating the inflow rate per unit time from the inundation depth of the building is the first inflow rate evaluation formula, the width of the building opening, the inundation of the building outdoor in the vicinity of the building Inflow per unit time according to the first inflow rate evaluation formula using at least one parameter among depth, height to the bottom of the building opening, radius of the building opening, flow coefficient, gravity acceleration The amount of inflow per unit time calculated by the first inflow amount evaluation formula and the inflow amount per unit time measured by the inflow amount measuring device installed in the building opening or in the vicinity of the building opening Relationship with Wherein the deriving a second inflow evaluation formula.

また、本発明は、第1の流入量評価式および前記第1の流入量評価式に必要なパラメータ、繰り返し条件を入力する入力部と、前記第1の流入量評価式および前記パラメータを用いて、単位時間当たりの流入量を算出する単位時間当たりの流入量導出部と、単位時間当たりの流入量を計測する流入量計測装置および流速を計測する流速計測装置のうち、少なくともいずれか一方と、前記流入量導出部で算出した単位時間当たりの流入量、および前記流入量計測装置により計測した単位時間当たりの流入量または前記流速計測装置により計測した流速から算出した単位時間当たりの流入量に基づき、第2の流入量評価式を導出する流入量評価式導出部と、前記繰り返し条件に基づき、前記流入量評価式導出部を制御する制御部と、を備え、前記流入量評価式導出部は、前記流入量計測装置により計測した単位時間当たりの流入量または前記流速計測装置により計測した流速に基づき算出した単位時間当たりの流入量と、前記第1の流入量評価式および前記パラメータを用いて算出した単位時間当たりの流入量との関係から第2の流入量評価式を導出し、前記繰り返し条件において、前記流入量評価式導出部で逐次繰り返し行われる処理の回数を指定することを特徴とする。   In addition, the present invention uses the first inflow rate evaluation formula and the input unit for inputting parameters necessary for the first inflow rate evaluation formula and the repetition condition, the first inflow rate evaluation formula and the parameter. , At least one of an inflow amount deriving unit for calculating an inflow amount per unit time, an inflow amount measuring device for measuring the inflow amount per unit time, and a flow velocity measuring device for measuring a flow rate; Based on the inflow per unit time calculated by the inflow amount deriving unit, the inflow per unit time measured by the inflow amount measuring device, or the inflow per unit time calculated from the flow velocity measured by the flow velocity measuring device An inflow rate evaluation formula deriving unit for deriving a second inflow rate evaluation formula, and a control unit for controlling the inflow rate evaluation formula deriving unit based on the repetition condition, The input amount evaluation formula deriving unit includes the inflow amount per unit time measured by the inflow amount measurement device or the inflow amount per unit time calculated based on the flow velocity measured by the flow velocity measurement device, and the first inflow amount evaluation. The second inflow rate evaluation formula is derived from the relationship between the formula and the inflow rate per unit time calculated using the parameters, and the number of processes that are sequentially repeated in the inflow rate evaluation formula deriving unit under the repetition condition Is specified.

本発明によれば、流入量の計算精度を向上させ、機器のフラジリティ評価の評価精度を向上させること、そして最終的には津波PRAの評価精度を向上させることが可能となる。   According to the present invention, it is possible to improve the calculation accuracy of the inflow amount, improve the evaluation accuracy of the fragility evaluation of the device, and finally improve the evaluation accuracy of the tsunami PRA.

上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。   Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

建屋の開口の形状が四角形の時、建屋の開口の正面方向から見た図の例である。It is the example of the figure seen from the front direction of the opening of a building when the shape of the opening of a building is a rectangle. 建屋の開口の形状が四角形の時、建屋の開口の断面方向(図1AのA−A’断面)から見た図の例である。When the shape of the opening of a building is a rectangle, it is the example of the figure seen from the cross-sectional direction (A-A 'cross section of FIG. 1A) of the opening of a building. 建屋の開口の形状が円形の時、建屋の開口の正面方向から見た図の例である。It is the example of the figure seen from the front direction of the opening of a building when the shape of the opening of a building is circular. 建屋の開口の形状が円形の時、建屋の開口の断面方向(図2AのB−B’断面)から見た図の例である。When the shape of the opening of a building is circular, it is the example of the figure seen from the cross-sectional direction (B-B 'cross section of FIG. 2A) of the opening of a building. 本発明の一実施形態に係る流入量評価式を導出する方法を示すフローチャートである。(比Rを利用)It is a flowchart which shows the method to derive | lead-out the inflow amount evaluation type | formula which concerns on one Embodiment of this invention. (Use ratio R) 本発明の一実施形態に係る流入量評価式から得た単位時間当たりの流入量理論値と単位時間当たりの流入量実測値との比、及び建屋外の浸水深Hとの関係を示す図である。It is a figure which shows the ratio of the inflow amount theoretical value per unit time obtained from the inflow amount evaluation formula which concerns on one Embodiment of this invention, and the ratio of the inflow amount measured value per unit time, and the inundation depth H of a building outdoor. is there. 本発明の一実施形態に係る流入量評価式から得た単位時間当たりの流入量理論値と単位時間当たりの流入量実測値との比、及び建屋外の浸水深Hとの関係を示す図である。It is a figure which shows the ratio of the inflow amount theoretical value per unit time obtained from the inflow amount evaluation formula which concerns on one Embodiment of this invention, and the ratio of the inflow amount measured value per unit time, and the inundation depth H of a building outdoor. is there. 本発明の一実施形態に係る流入量評価式から得た単位時間当たりの流入量理論値と単位時間当たりの流入量実測値との比、及び建屋外の浸水深Hとの関係を示す図である。It is a figure which shows the ratio of the inflow amount theoretical value per unit time obtained from the inflow amount evaluation formula which concerns on one Embodiment of this invention, and the ratio of the inflow amount measured value per unit time, and the inundation depth H of a building outdoor. is there. 本発明の一実施形態に係る流入量評価式から得た単位時間当たりの流入量理論値と単位時間当たりの流入量実測値との比、及び建屋外の浸水深Hとの関係を示す図である。It is a figure which shows the ratio of the inflow amount theoretical value per unit time obtained from the inflow amount evaluation formula which concerns on one Embodiment of this invention, and the ratio of the inflow amount measured value per unit time, and the inundation depth H of a building outdoor. is there. 本発明の一実施形態に係る流入量評価式を導出する方法を示すフローチャートである。(差Dを利用)It is a flowchart which shows the method to derive | lead-out the inflow amount evaluation type | formula which concerns on one Embodiment of this invention. (Use difference D) 本発明の一実施形態に係る流入量評価式から得た単位時間当たりの流入量理論値と単位時間当たりの流入量実測値との差、及び建屋外の浸水深Hとの関係を示す図である。It is a figure which shows the relationship between the inflow amount theoretical value per unit time obtained from the inflow amount evaluation formula which concerns on one Embodiment of this invention, and the inflow amount actual measurement value per unit time, and the inundation depth H of a building outdoor. is there. 本発明の一実施形態に係る流入量評価式から得た単位時間当たりの流入量理論値と単位時間当たりの流入量実測値との差、及び建屋外の浸水深Hとの関係を示す図である。It is a figure which shows the relationship between the inflow amount theoretical value per unit time obtained from the inflow amount evaluation formula which concerns on one Embodiment of this invention, and the inflow amount actual measurement value per unit time, and the inundation depth H of a building outdoor. is there. 本発明の一実施形態に係る流入量評価式から得た単位時間当たりの流入量理論値と単位時間当たりの流入量実測値との差、及び建屋外の浸水深Hとの関係を示す図である。It is a figure which shows the relationship between the inflow amount theoretical value per unit time obtained from the inflow amount evaluation formula which concerns on one Embodiment of this invention, and the inflow amount actual measurement value per unit time, and the inundation depth H of a building outdoor. is there. 本発明の一実施形態に係る流入量評価式から得た単位時間当たりの流入量理論値と単位時間当たりの流入量実測値との差、及び建屋外の浸水深Hとの関係を示す図である。It is a figure which shows the relationship between the inflow amount theoretical value per unit time obtained from the inflow amount evaluation formula which concerns on one Embodiment of this invention, and the inflow amount actual measurement value per unit time, and the inundation depth H of a building outdoor. is there. 本発明の一実施形態に係る流入量評価式を導出する方法を示すフローチャートである。It is a flowchart which shows the method to derive | lead-out the inflow amount evaluation type | formula which concerns on one Embodiment of this invention. 本発明の一実施形態に係る流入量評価式を導出する方法を示すフローチャートである。(比Rを利用)。It is a flowchart which shows the method to derive | lead-out the inflow amount evaluation type | formula which concerns on one Embodiment of this invention. (Use ratio R). 本発明の一実施形態に係る流入量評価式から得た単位時間当たりの流入量理論値と単位時間当たりの流入量実測値との比、及び建屋外の浸水深Hとの関係を示す図である。It is a figure which shows the ratio of the inflow amount theoretical value per unit time obtained from the inflow amount evaluation formula which concerns on one Embodiment of this invention, and the ratio of the inflow amount measured value per unit time, and the inundation depth H of a building outdoor. is there. 本発明の一実施形態に係る流入量評価式から得た単位時間当たりの流入量理論値と単位時間当たりの流入量実測値との比、及び建屋外の浸水深Hとの関係を示す図である。It is a figure which shows the ratio of the inflow amount theoretical value per unit time obtained from the inflow amount evaluation formula which concerns on one Embodiment of this invention, and the ratio of the inflow amount measured value per unit time, and the inundation depth H of a building outdoor. is there. 本発明の一実施形態に係る流入量評価式から得た単位時間当たりの流入量理論値と単位時間当たりの流入量実測値との比、及び建屋外の浸水深Hとの関係を示す図である。It is a figure which shows the ratio of the inflow amount theoretical value per unit time obtained from the inflow amount evaluation formula which concerns on one Embodiment of this invention, and the ratio of the inflow amount measured value per unit time, and the inundation depth H of a building outdoor. is there. 本発明の一実施形態に係る流入量評価式から得た単位時間当たりの流入量理論値と単位時間当たりの流入量実測値との比、及び建屋外の浸水深Hとの関係を示す図である。It is a figure which shows the ratio of the inflow amount theoretical value per unit time obtained from the inflow amount evaluation formula which concerns on one Embodiment of this invention, and the ratio of the inflow amount measured value per unit time, and the inundation depth H of a building outdoor. is there. 流速計測装置により計測した流速vの利用により、単位時間当たりの流入量を求める方法の例を示すフローチャートである。The use of the flow velocity v m measured by a flow rate measuring device is a flow chart illustrating an example of a method for determining the flow rate per unit time. 高さの座標を示す図の例である。It is an example of the figure which shows the coordinate of height. 本発明の一実施形態に係る流入量評価式を導出する装置の全体概要を示す図である。It is a figure which shows the whole outline | summary of the apparatus which derives | leads-out the inflow amount evaluation type | formula based on one Embodiment of this invention. 本発明の一実施形態に係る流入量を導出する装置の全体概要を示す図である。It is a figure which shows the whole outline | summary of the apparatus which derives | leads-out the inflow which concerns on one Embodiment of this invention. 本発明の一実施形態に係るフラジリティ評価方法を示すフローチャートである。It is a flowchart which shows the fragility evaluation method which concerns on one Embodiment of this invention. 建屋内に設置された機器の位置の例を示すである。It is an example of the position of the apparatus installed in the building. 本発明の一実施形態に係るフラジリティ評価装置の全体概要を示す図である。It is a figure which shows the whole outline | summary of the fragility evaluation apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る流入量評価式導出装置及び流入量導出装置を含む、フラジリティ評価装置の全体概要を示す図である。It is a figure which shows the whole outline | summary of the fragility evaluation apparatus containing the inflow amount evaluation type | formula derivation | leading-out apparatus and inflow amount derivation | leading-out apparatus which concern on one Embodiment of this invention. 本発明の一実施形態に係る津波の確率論的リスク評価を行う装置の全体概要を示す図である。It is a figure which shows the whole outline | summary of the apparatus which performs the probabilistic risk evaluation of the tsunami which concerns on one Embodiment of this invention.

本発明の実施例について図面を参照しながら説明する。なお、各図面および各実施例において同一又は類似の構成要素については同じ符号を付し、重複する部分についてはその詳細な説明を省略する。   Embodiments of the present invention will be described with reference to the drawings. In each drawing and each embodiment, the same or similar components are denoted by the same reference numerals, and detailed description of overlapping portions is omitted.

本実施例では、第1の流入量評価式から得られる単位時間当たりの流入量Qと建屋10の開口もしくは開口近傍に設置された流入量計測装置11で計測した建屋内へ流入する単位時間当たりの流入量Qとの比Rを用い、第1の流入量評価式よりも建屋内へ流入する単位時間当たりの流入量を精度良く評価できる第2の流入量評価式を導出する方法の例を説明する。なお第1の流入量評価式とは既知の流入量評価式のことであり、単位時間当たりの流入量Qと建屋近傍の建屋外の浸水深Hとを関係づける式である。 In this embodiment, the unit time flowing into the first inflow evaluation formula per unit time obtained from the inflow amount Q t and building 10 for opening or inflow placed near the opening measuring device in the building measured in 11 using the ratio R between the flow rate Q m per, the method of deriving the second inflow evaluation equation the inflow per unit time than the first inflow evaluation formula to flow into the building can be accurately evaluated An example will be described. Note the first inflow evaluation formula is that of the known inflow evaluation formula is an equation that relates the building outside immersion depth H of the inflow Q t and near buildings per unit time.

図1A及び図1Bは、建屋10、建屋10の開口もしくは開口近傍に設置された流入量計測装置11、及び建屋10の外部に設置された浸水深計測装置21の配置の例である。図1Aは建屋の開口の正面方向から見た図の例であり、図1Bは建屋の開口の断面方向から見た図の例である。図1AのA−A’断面が図1Bに対応する。建屋10の外部の流体は、建屋10の開口から建屋内へ流入する。本実施例では、建屋内へ流体が流入することを想定するため、建屋近傍の建屋外の浸水深Hは建屋開口の下部までの高さLよりも大きいものとする。   1A and 1B are examples of the arrangement of the building 10, the inflow amount measuring device 11 installed in or near the opening of the building 10, and the inundation depth measuring device 21 installed outside the building 10. FIG. FIG. 1A is an example of a view seen from the front direction of the opening of the building, and FIG. 1B is an example of a view seen from the cross-sectional direction of the opening of the building. 1A corresponds to FIG. 1B. The fluid outside the building 10 flows into the building through the opening of the building 10. In this embodiment, since it is assumed that the fluid flows into the building, the inundation depth H in the vicinity of the building is larger than the height L to the lower part of the building opening.

建屋内へ流入する単位時間当たりの流入量は、流入量計測装置11を用いた計測から求めることができるが、建屋近傍の建屋外の浸水深Hを既知の流入量評価式に代入することでも評価可能である。本実施例では、この既知の流入量評価式を第1の流入量評価式と定義する。   The inflow amount per unit time flowing into the building can be obtained from the measurement using the inflow amount measuring device 11, but it is also possible to substitute the inundation depth H outside the building near the building into a known inflow amount evaluation formula. It can be evaluated. In the present embodiment, this known inflow rate evaluation formula is defined as a first inflow rate evaluation formula.

図1A及び図1Bのように、建屋の開口の形状を四角形と仮定し、建屋近傍の建屋外の浸水深Hが建屋開口の下部までの高さLと建屋開口の鉛直方向の長さdとの和より小さい場合は、第1の流入量評価式として、数1、数2などがある。数1、数2において、bは建屋開口の水平方向の長さ、Hは建屋近傍の建屋外の浸水深、Lは建屋開口の下部までの高さである。また、第1の流入量評価式から得られる単位時間当たりの流入量をQと定義し、特に、数1から得られる単位時間当たりの流入量をQt1、数2から得られる単位時間当たりの流入量をQt2と定義する。 As shown in FIGS. 1A and 1B, assuming that the shape of the opening of the building is a quadrangle, the inundation depth H in the vicinity of the building is the height L to the lower part of the building opening and the vertical length d of the building opening. In the case where the sum is less than the sum of the above, there are Equation 1, Equation 2, etc. as the first inflow amount evaluation formula. In Equations 1 and 2, b is the length of the building opening in the horizontal direction, H is the depth of flooding outside the building near the building, and L is the height to the bottom of the building opening. Further, the flow amount per a first unit derived from the inflow amount evaluation formula time is defined as Q t, in particular, per the amount of inflow per unit time obtained from the number 1 Q t1, units derived from equation 2 Time Is defined as Qt2 .

Figure 2017020787
Figure 2017020787

Figure 2017020787
Figure 2017020787

一方で、例えば図2A及び図2Bのように、建屋開口の形状を円形と仮定し、建屋近傍の建屋外の浸水深Hが建屋開口の下部までの高さLと建屋開口の直径2rとの和より大きい場合は、第1の流入量評価式として数3などがある。ここで図2Aは建屋開口の正面方向から見た図の例であり、図2Bは建屋開口の断面方向から見た図の例である。図2AのB−B’断面が図2Bに対応する。数3において、rは建屋開口の半径、Cは流量係数、gは重力加速度、Hは建屋近傍の建屋外の浸水深、Lは建屋開口の下部までの高さである。特に、数3から得られる単位時間当たりの流入量をQt3と定義する。 On the other hand, for example, as shown in FIGS. 2A and 2B, the shape of the building opening is assumed to be circular, and the inundation depth H in the vicinity of the building is the height L to the lower part of the building opening and the diameter 2r of the building opening. If it is greater than the sum, the first inflow rate evaluation formula includes Equation 3. Here, FIG. 2A is an example of a diagram viewed from the front direction of the building opening, and FIG. 2B is an example of a diagram viewed from the cross-sectional direction of the building opening. 2B corresponds to FIG. 2B. In Equation 3, r is the radius of the building opening, C is the flow coefficient, g is the gravitational acceleration, H is the depth of inundation outside the building near the building, and L is the height to the lower part of the building opening. In particular, the inflow per unit time obtained from Equation 3 is defined as Qt3 .

Figure 2017020787
Figure 2017020787

本実施例では、これらの第1の流入量評価式よりも単位時間当たりの流入量を精度良く評価できる第2の流入量評価式を導出する。   In the present embodiment, a second inflow rate evaluation formula that can accurately evaluate the inflow rate per unit time is derived from these first inflow rate evaluation formulas.

図3に、本実施例における第2の流入量評価式の導出方法を示す。まず第1の流入量評価式からQを求める。例えば、数1、数2、数3のような第1の流入量評価式では、建屋開口の水平方向の長さb、建屋近傍の建屋外の浸水深H、建屋開口の下部までの高さL、建屋開口の半径r、流量係数C、重力加速度gのうち必要なものを数1、数2、数3に代入し、Qt1、Qt2、Qt3を求める。 FIG. 3 shows a method for deriving the second inflow rate evaluation formula in this embodiment. First determine the Q t from the first inflow evaluation formula. For example, in the first inflow amount evaluation formulas such as Equation 1, Equation 2, and Equation 3, the horizontal length b of the building opening, the inundation depth H in the vicinity of the building, and the height to the lower portion of the building opening Substituting necessary values among L, building opening radius r, flow coefficient C, and gravitational acceleration g into Equations 1, 2, and 3 to obtain Q t1 , Q t2 , and Q t3 .

次に、Qと流入量計測装置11で計測した単位時間当たりの流入量Qとの比Rを求め、HとRとの関係を表す近似曲線fを導出する。例えば、数1に対しては、Qt1とQとの比Rを求め、HとRとの関係を表す近似曲線fを導出する。また、数2に対しては、Qt2とQとの比Rを求め、HとRとの関係を表す近似曲線fを導出する。同様に、数3に対しては、Qt3とQとの比Rを求め、HとRとの関係を表す近似曲線fを導出する。 Next, determine the ratio R between the flow rate Q m per unit time measured by Q t and the inflow amount measuring device 11, we derive an approximate curve f representing the relationship between H and R. For example, for Equation 1, a ratio R 1 between Q t1 and Q m is obtained, and an approximate curve f 1 representing the relationship between H and R 1 is derived. For Equation 2 , a ratio R 2 between Q t2 and Q m is obtained, and an approximate curve f 2 representing the relationship between H and R 2 is derived. Similarly, for Equation 3, the ratio R 3 between Q t3 and Q m is obtained, and an approximate curve f 3 representing the relationship between H and R 3 is derived.

例として、HとRとの関係、HとRとの関係を図4Aのように与え、HとRとの関係を図4Bのように与えると、近似曲線f、f、fは、それぞれ数4、数5、数6のように与えられる。なおここでは、HとRとの関係、HとRとの関係、HとRとの関係は、それぞれ1次式で近似を行っている。 As an example, when the relationship between H and R 1 , the relationship between H and R 2 is given as shown in FIG. 4A, and the relationship between H and R 3 is given as shown in FIG. 4B, approximate curves f 1 , f 2 , f 3 is given by Equation 4, Equation 5, and Equation 6, respectively. Here, the relationship between H and R 1 , the relationship between H and R 2, and the relationship between H and R 3 are approximated by linear equations, respectively.

Figure 2017020787
Figure 2017020787

Figure 2017020787
Figure 2017020787

Figure 2017020787
Figure 2017020787

近似曲線fはQとQとの比であるRを近似しているため、Qを近似曲線fで割った式は、Qよりも単位時間当たりの流入量を精度良く表すことになる。したがって、第1の流入量評価式よりも単位時間当たりの流入量を精度良く評価できる第2の流入量評価式は、数7のように導出できる。例えば、数1のような第1の流入量評価式に対しては、RがQt1とQとの比であることよりQt1をfで割った数8が第2の流入量評価式として導出できる。また、数2のような第1の流入量評価式に対しては、RがQt2とQとの比であることよりQt2をfで割った数9が第2の流入量評価式として導出できる。同様に、数3のような第1の流入量評価式に対しては、RがQt3とQとの比であることよりQt3をfで割った数10が第2の流入量評価式として導出できる。 Since the approximate curve f approximates R, which is the ratio of Q t to Q m , the formula obtained by dividing Q t by the approximate curve f represents the inflow per unit time more accurately than Q t. Become. Therefore, the second inflow rate evaluation formula that can evaluate the inflow rate per unit time more accurately than the first inflow rate evaluation formula can be derived as shown in Equation 7. For example, for the first inflow rate evaluation formula as shown in Equation 1 , since R 1 is the ratio of Q t1 and Q m , the number 8 obtained by dividing Q t1 by f 1 is the second inflow rate. It can be derived as an evaluation formula. Further, with respect to the first inflow evaluation formula such as the number 2, number 9 a second inflow obtained by dividing Q t2 at f 2 than R 2 is the ratio of the Q t2 and Q m It can be derived as an evaluation formula. Similarly, for the first inflow rate evaluation formula as shown in Equation 3 , since R 3 is the ratio of Q t3 and Q m , Equation 10 obtained by dividing Q t3 by f 3 is the second inflow amount. It can be derived as a quantity evaluation formula.

また、第2の流入量評価式から得られる単位時間当たりの流入量をQtnと定義し、特に、数8から得られる単位時間当たりの流入量をQtn1、数9から得られる単位時間当たりの流入量をQtn2、数10から得られる単位時間当たりの流入量をQtn3と定義する。なお数8から数10では、分子(数1から数3に相当する部分)のHと分母(数4から数6に相当する部分)のHとには同じ値が入るが、次元が異なることに注意する必要がある。分子(数1から数3に相当する部分)のHは浸水深であるため、次元が長さであるが、分母(数4から数6に相当する部分)のHは近似曲線のパラメータであるため、無次元である。 Further, the inflow per unit time obtained from the second inflow rate evaluation formula is defined as Q tn, and in particular, the inflow per unit time obtained from Equation 8 is defined as Q tn1 and per unit time obtained from Equation 9. Is defined as Q tn2 and the inflow per unit time obtained from Equation 10 is defined as Q tn3 . In equations 8 to 10, the same value is entered for H of the numerator (portion corresponding to equations 1 to 3) and H of the denominator (portion corresponding to equations 4 to 6), but the dimensions are different. It is necessary to pay attention to. Since H of the numerator (part corresponding to Equation 1 to Equation 3) is the depth of water immersion, the dimension is length, but H of the denominator (portion corresponding to Equation 4 to Equation 6) is a parameter of the approximate curve. Therefore, it is dimensionless.

Figure 2017020787
Figure 2017020787

Figure 2017020787
Figure 2017020787

Figure 2017020787
Figure 2017020787

Figure 2017020787
Figure 2017020787

最後に確認のために、第1の流入量評価式から得られる単位時間当たりの流入量Qと第2の流入量評価式から得られる単位時間当たりの流入量Qtnとの精度を比較する。図5AにHと、Qtn1とQとの比であるRn1、Qtn2とQとの比であるRn2、R、Rとの関係を示す。また、図5BにHと、Qtn3とQとの比であるRn3、Rとの関係を示す。なおR及びRの定義より、縦軸の値が1に近いほど単位時間当たりの流入量を精度良く表していることになる。Rn1とRとの比較、Rn2とRとの比較、Rn3とRとの比較では、それぞれRn1、Rn2、Rn3の方が1に近い値をとるため、第2の流入量評価式は、第1の流入量評価式よりも単位時間当たりの流入量を精度良く評価していることが確認できる。 Finally for confirmation, to compare the accuracy of the inflow amount Q tn per unit time obtained from the inflow amount per unit time obtained from the first inflow evaluation formula Q t and the second inflow evaluation formula . And H in Figure 5A, illustrating the relationship between R n2, R 1, R 2 is the ratio of the R n1, Q tn2 and Q m is the ratio of the Q tn1 and Q m. FIG. 5B shows the relationship between H and R n3 and R 3 , which are ratios between Q tn3 and Q m . Note the definition of R and R n, the value of the vertical axis so that it represents accurately the flow amount per about unit time close to 1. In the comparison between R n1 and R 1 , the comparison between R n2 and R 2, and the comparison between R n3 and R 3 , R n1 , R n2 , and R n3 take values closer to 1, respectively. It can be confirmed that the inflow rate evaluation formula evaluates the inflow rate per unit time more accurately than the first inflow rate evaluation formula.

したがって、本実施例で導出した第2の流入量評価式を用いることで、流入量の計算精度を向上させ、機器のフラジリティ評価の評価精度を向上させること、そして最終的には津波の確率論的リスク評価(津波PRA)の評価精度を向上させることが可能となる。   Therefore, by using the second inflow amount evaluation formula derived in the present embodiment, the inflow amount calculation accuracy is improved, the evaluation accuracy of the equipment fragility evaluation is improved, and finally the tsunami probability theory It becomes possible to improve the evaluation accuracy of the risk assessment (tsunami PRA).

本実施例では、数1、数2、数3のような第1の流入量評価式の利用により、数8、数9、数10のような第2の流入量評価式を導出する例を示したが、他の第1の流入量評価式の利用により、他の第2の流入量評価式を本実施例の方法で導出する例も本実施例に含まれる。   In the present embodiment, an example in which the second inflow rate evaluation formulas such as Formula 8, Formula 9, and Formula 10 are derived by using the first inflow rate formulas such as Formula 1, Formula 2, and Formula 3. Although shown, the example which derives other 2nd inflow quantity evaluation formulas by the method of this example by using other 1st inflow quantity evaluation formulas is also included in this example.

また本実施例では、HとRとの関係を1次式で近似した例を示したが、HとRとの関係を他の式で近似した例も本実施例に含まれる。   In the present embodiment, an example in which the relationship between H and R is approximated by a linear expression is shown, but an example in which the relationship between H and R is approximated by another expression is also included in the present embodiment.

本実施例では、第1の流入量評価式から得られる単位時間当たりの流入量Qと建屋10の開口もしくは開口近傍に設置された流入量計測装置11で計測した建屋内へ流入する単位時間当たりの流入量Qとの差Dを用い、第1の流入量評価式よりも建屋内へ流入する単位時間当たりの流入量を精度良く評価できる第2の流入量評価式を導出する方法の例を説明する。なお第1の流入量評価式とは既知の流入量評価式のことであり、単位時間当たりの流入量Qと建屋近傍の建屋外の浸水深Hとを関係づける式である。 In this embodiment, the unit time flowing into the first inflow evaluation formula per unit time obtained from the inflow amount Q t and building 10 for opening or inflow placed near the opening measuring device in the building measured in 11 using the difference D between the inflow Q m per, the method of deriving the second inflow evaluation equation the inflow per unit time than the first inflow evaluation formula to flow into the building can be accurately evaluated An example will be described. Note the first inflow evaluation formula is that of the known inflow evaluation formula is an equation that relates the building outside immersion depth H of the inflow Q t and near buildings per unit time.

建屋10、建屋10の開口もしくは開口近傍に設置された流入量計測装置11、及び建屋10の外部に設置された浸水深計測装置21の配置に関しては、実施例1と同様であるため説明を省略する。また第1の流入量評価式、及び第1の流入量評価式の例である数1、数2、数3に関しても実施例1と同様であるため説明を省略する。   Since the arrangement of the building 10, the inflow measuring device 11 installed in or near the opening of the building 10, and the infiltration depth measuring device 21 installed outside the building 10 is the same as that of the first embodiment, the description thereof is omitted. To do. Since the first inflow rate evaluation formula and the formulas 1, 2, and 3 that are examples of the first inflow rate evaluation formula are the same as those in the first embodiment, the description thereof is omitted.

本実施例では、第1の流入量評価式よりも単位時間当たりの流入量を精度良く評価できる第2の流入量評価式を導出する。   In the present embodiment, a second inflow rate evaluation formula that can accurately evaluate the inflow rate per unit time is derived from the first inflow rate evaluation formula.

図6に、本実施例における第2の流入量評価式の導出方法を示す。まず第1の流入量評価式からQを求める。例えば、数1、数2、数3のような第1の流入量評価式では、建屋開口の水平方向の長さb、建屋近傍の建屋外の浸水深H、建屋開口の下部までの高さL、建屋開口の半径r、流量係数C、重力加速度gのうち必要なものを数1、数2、数3に代入し、Qt1、Qt2、Qt3を求める。 FIG. 6 shows a method for deriving the second inflow rate evaluation formula in this embodiment. First determine the Q t from the first inflow evaluation formula. For example, in the first inflow amount evaluation formulas such as Equation 1, Equation 2, and Equation 3, the horizontal length b of the building opening, the inundation depth H in the vicinity of the building, and the height to the lower portion of the building opening Substituting necessary values among L, building opening radius r, flow coefficient C, and gravitational acceleration g into Equations 1, 2, and 3 to obtain Q t1 , Q t2 , and Q t3 .

次に、Qと流入量計測装置11で計測した単位時間当たりの流入量Qとの差Dを求め、HとDとの関係を表す近似曲線hを導出する。例えば、数1に対しては、Qt1とQとの差Dを求め、HとDとの関係を表す近似曲線hを導出する。また、数2に対しては、Qt2とQとの差Dを求め、HとDとの関係を表す近似曲線hを導出する。同様に、数3に対しては、Qt3とQとの差Dを求め、HとDとの関係を表す近似曲線hを導出する。 Next, determine the difference D between the inflow Q m per unit time measured by Q t and the inflow amount measuring device 11, we derive an approximate curve h representing the relationship between H and D. For example, for Equation 1, a difference D 1 between Q t1 and Q m is obtained, and an approximate curve h 1 representing the relationship between H and D 1 is derived. Further, for the number 2, it calculates the difference D 2 between Q t2 and Q m, derives an approximate curve h 2 representing the relationship between H and D 2. Similarly, for Equation 3, the difference D 3 between Q t3 and Q m is obtained, and an approximate curve h 3 representing the relationship between H and D 3 is derived.

例として、HとDとの関係、HとDとの関係を図7Aのように与え、HとDとの関係を図7Bのように与えると、近似曲線h、h、hは、それぞれ数11、数12、数13のように与えられる。なおここでは、HとDとの関係、HとDとの関係、HとDとの関係は、それぞれ2次式で近似を行っている。 As an example, when the relationship between H and D 1 , the relationship between H and D 2 is given as shown in FIG. 7A, and the relationship between H and D 3 is given as shown in FIG. 7B, approximate curves h 1 , h 2 , h 3 is given by Equation 11, Equation 12, and Equation 13, respectively. Note here, the relationship between H and D 1, the relationship between H and D 2, the relationship between H and D 3 is performing approximation at each quadratic equation.

Figure 2017020787
Figure 2017020787

Figure 2017020787
Figure 2017020787

Figure 2017020787
Figure 2017020787

近似曲線hはQとQとの差であるDを近似しているため、Qから近似曲線hを引いた式は、Qよりも単位時間当たりの流入量を精度良く表すことになる。したがって、第1の流入量評価式よりも単位時間当たりの流入量を精度良く評価できる第2の流入量評価式は、数14のように導出できる。例えば、数1のような第1の流入量評価式に対しては、DがQt1とQとの差であることよりQt1からhを引いた数15が第2の流入量評価式として導出できる。また、数2のような第1の流入量評価式に対しては、DがQt2とQとの差であることよりQt2からhを引いた数16が第2の流入量評価式として導出できる。同様に、数3のような第1の流入量評価式に対しては、DがQt3とQとの差であることよりQt3からhを引いた数17が第2の流入量評価式として導出できる。 Since the approximate curve h approximates D, which is the difference between Q t and Q m , the formula obtained by subtracting the approximate curve h from Q t represents the inflow per unit time more accurately than Q t. Become. Therefore, the second inflow rate evaluation formula that can evaluate the inflow rate per unit time more accurately than the first inflow rate evaluation formula can be derived as shown in Equation 14. For example, for the first inflow evaluation formula such as the number 1, the number 15 minus h 1 from Q t1 than that D 1 is the difference between Q t1 and Q m is the second inflow It can be derived as an evaluation formula. Further, with respect to the first inflow evaluation formula such as the number 2, number 16 is the second inflow minus h 2 from the Q t2 than that D 2 is the difference between Q t2 and Q m It can be derived as an evaluation formula. Similarly, for the first inflow amount evaluation formula as shown in Equation 3 , since D 3 is the difference between Q t3 and Q m , Equation 17 obtained by subtracting h 3 from Q t3 is the second inflow amount. It can be derived as a quantity evaluation formula.

また、第2の流入量評価式から得られる単位時間当たりの流入量をQtnと定義し、特に、数15から得られる単位時間当たりの流入量をQtn4、数16から得られる単位時間当たりの流入量をQtn5、数17から得られる単位時間当たりの流入量をQtn6と定義する。なお数15から数17では、第1項(数1から数3に相当する部分)に含まれるHと第2項以降(数11から数13に相当する部分)に含まれるHとには、同じ値が入るが次元が異なることに注意する必要がある。第1項(数1から数3に相当する部分)に含まれるHは浸水深であるため、次元が長さであるが、第2項以降(数11から数13に相当する部分)に含まれるHは近似曲線のパラメータであるため、無次元である。 Further, the inflow per unit time obtained from the second inflow rate evaluation formula is defined as Q tn, and in particular, the inflow per unit time obtained from Equation 15 is defined as Q tn4 and per unit time obtained from Equation 16. Is defined as Q tn5, and the inflow per unit time obtained from Equation 17 is defined as Q tn6 . In Equations 15 to 17, H included in the first term (portion corresponding to Equation 1 to Equation 3) and H included in the second term and thereafter (portion corresponding to Equation 11 to Equation 13) are: Note that the same value is entered, but the dimensions are different. Since H included in the first term (the portion corresponding to Equation 1 to Equation 3) is the depth of inundation, the dimension is length, but included in the second term and thereafter (the portion corresponding to Equation 11 to Equation 13). Since H is a parameter of the approximate curve, it is dimensionless.

Figure 2017020787
Figure 2017020787

Figure 2017020787
Figure 2017020787

Figure 2017020787
Figure 2017020787

Figure 2017020787
Figure 2017020787

最後に確認のために、第1の流入量評価式から得られる単位時間当たりの流入量Qと第2の流入量評価式から得られる単位時間当たりの流入量Qtnとの精度を比較する。図8AにHと、Qtn4とQとの差であるDn1、Qtn5とQとの差であるDn2、D、Dとの関係を示す。また、図8BにHと、Qtn6とQとの差であるDn3、Dとの関係を示す。なおDの定義より、縦軸の値が0に近いほど単位時間当たりの流入量を精度良く表していることになる。Dn1とDとの比較、Dn2とDとの比較、Dn3とDとの比較では、それぞれDn1、Dn2、Dn3の方が0に近い値をとるため、第2の流入量評価式は、第1の流入量評価式よりも単位時間当たりの流入量を精度良く評価していることが確認できる。 Finally for confirmation, to compare the accuracy of the inflow amount Q tn per unit time obtained from the inflow amount per unit time obtained from the first inflow evaluation formula Q t and the second inflow evaluation formula . And H in FIG. 8A, showing the relationship between the D n2, D 1, D 2 is the difference between a difference between Q tn4 and Q m D n1, Q tn5 and Q m. FIG. 8B shows the relationship between H and D n3 and D 3 which are differences between Q tn6 and Q m . From the definition of D, the closer the value on the vertical axis is to 0, the more accurately represents the inflow per unit time. In the comparison between D n1 and D 1 , the comparison between D n2 and D 2, and the comparison between D n3 and D 3 , D n1 , D n2 , and D n3 take values closer to 0, respectively. It can be confirmed that the inflow rate evaluation formula evaluates the inflow rate per unit time more accurately than the first inflow rate evaluation formula.

したがって、本実施例で導出した第2の流入量評価式を用いることで、流入量の計算精度を向上させ、機器のフラジリティ評価の評価精度を向上させること、そして最終的には津波の確率論的リスク評価(津波PRA)の評価精度を向上させることが可能となる。   Therefore, by using the second inflow amount evaluation formula derived in the present embodiment, the inflow amount calculation accuracy is improved, the evaluation accuracy of the equipment fragility evaluation is improved, and finally the tsunami probability theory It becomes possible to improve the evaluation accuracy of the risk assessment (tsunami PRA).

本実施例では、数1、数2、数3のような第1の流入量評価式の利用により、数15、数16、数17のような第2の流入量評価式を導出する例を示したが、他の第1の流入量評価式の利用により、他の第2の流入量評価式を本実施例の方法で導出する例も本実施例に含まれる。   In the present embodiment, an example in which the second inflow rate evaluation formulas such as Formula 15, Formula 16, and Formula 17 are derived by using the first inflow rate formulas such as Formula 1, Formula 2, and Formula 3. Although shown, the example which derives other 2nd inflow quantity evaluation formulas by the method of this example by using other 1st inflow quantity evaluation formulas is also included in this example.

また本実施例では、HとDとの関係を2次式で近似した例を示したが、HとDとの関係を他の式で近似した例も本実施例に含まれる。   Further, in this embodiment, an example in which the relationship between H and D is approximated by a quadratic expression is shown, but an example in which the relationship between H and D is approximated by another expression is also included in this embodiment.

本実施例では、第1の流入量評価式の利用により第2の流入量評価式を導出する方法の例として示した実施例1や実施例2と同様な方法を逐次的に用い、第2の流入量評価式よりも建屋内へ流入する単位時間当たりの流入量を精度良く評価できる流入量評価式を導出する方法の例を説明する。   In the present embodiment, a method similar to the first embodiment or the second embodiment shown as an example of the method for deriving the second inflow amount evaluation formula by using the first inflow amount evaluation formula is used sequentially. An example of a method for deriving an inflow amount evaluation formula that can accurately evaluate the inflow amount per unit time flowing into the building rather than the inflow amount evaluation formula will be described.

図9に本実施例における流入量評価式の導出方法の例を示す。まず実施例1もしくは実施例2の方法で第2の流入量評価式を導出する。次に実施例1もしくは実施例2と同様な方法で第3の流入量評価式を導出する。ここで、第3の流入量評価式を導出する際の実施例1もしくは実施例2と同様な方法とは、実施例1もしくは実施例2で説明した第1の流入量評価式を第2の流入量評価式で置き換え、実施例1もしくは実施例2で説明した第2の流入量評価式を第3の流入量評価式で置き換えた方法のことである。したがって一般には、Nを2以上の整数とした場合、第N−1の流入量評価式の利用により第Nの流入量評価式を導出する際の実施例1もしくは実施例2と同様な方法とは、実施例1もしくは実施例2で説明した第1の流入量評価式を第N−1の流入量評価式で置き換え、実施例1もしくは実施例2で説明した第2の流入量評価式を第Nの流入量評価式で置き換えた方法のことである。このような実施例1もしくは実施例2と同様な方法による流入量評価式の導出は、図9に示すように目的とする第Nの流入量評価式が得られるまで行う。   FIG. 9 shows an example of a method for deriving the inflow rate evaluation formula in this embodiment. First, the second inflow amount evaluation formula is derived by the method of the first embodiment or the second embodiment. Next, a third inflow rate evaluation formula is derived in the same manner as in the first or second embodiment. Here, the same method as in the first or second embodiment when deriving the third inflow amount evaluation formula is the same as the first inflow amount evaluation formula described in the first or second embodiment. This is a method in which the second inflow amount evaluation formula described in the first embodiment or the second embodiment is replaced with the third inflow amount evaluation formula by replacing with the inflow amount evaluation formula. Therefore, in general, when N is an integer equal to or larger than 2, the same method as in the first or second embodiment when deriving the Nth inflow rate evaluation formula by using the N-1th inflow rate evaluation formula, Replaces the first inflow rate evaluation formula described in Example 1 or Example 2 with the N-1th inflow rate evaluation formula, and replaces the second inflow rate evaluation formula described in Example 1 or Example 2. It is the method replaced with the Nth inflow rate evaluation formula. The derivation of the inflow rate evaluation formula by the same method as in the first or second embodiment is performed until the target Nth inflow rate evaluation formula is obtained as shown in FIG.

ここでは例として、実施例1と同様な方法で、実施例1に示した第2の流入量評価式の利用により、第3の流入量評価式を導出する方法について説明する。   Here, as an example, a method for deriving the third inflow amount evaluation formula by using the second inflow amount evaluation formula shown in the first embodiment in the same manner as in the first embodiment will be described.

建屋10、建屋10の開口もしくは開口近傍に設置された流入量計測装置11、及び建屋10の外部に設置された浸水深計測装置21の配置に関しては、実施例1と同様であるため説明を省略する。また、第2の流入量評価式、及び第2の流入量評価式の例である数8、数9、数10に関しても実施例1と同様であるため説明を省略する。   Since the arrangement of the building 10, the inflow measuring device 11 installed in or near the opening of the building 10, and the infiltration depth measuring device 21 installed outside the building 10 is the same as that of the first embodiment, the description thereof is omitted. To do. Since the second inflow rate evaluation formula and the formulas 8, 9, and 10 that are examples of the second inflow rate evaluation formula are the same as those in the first embodiment, the description thereof is omitted.

図10に、第2の流入量評価式の利用により第3の流入量評価式を実施例1と同様な方法で導出する方法の例を示す。まず、第2の流入量評価式からQtnを求める。例えば、数8、数9、数10のような第2の流入量評価式では、建屋開口の水平方向の長さb、建屋近傍の建屋外の浸水深H、建屋開口の下部までの高さL、建屋開口の半径r、流量係数C、重力加速度gのうち必要なものを数8、数9、数10に代入し、Qtn1、Qtn2、Qtn3を求める。 FIG. 10 shows an example of a method for deriving the third inflow rate evaluation formula by the same method as in the first embodiment by using the second inflow rate evaluation formula. First, Q tn is obtained from the second inflow rate evaluation formula. For example, in the second inflow rate evaluation formulas such as Equation 8, Equation 9, and Equation 10, the horizontal length b of the building opening, the inundation depth H in the vicinity of the building, and the height to the lower portion of the building opening. Substituting necessary values among L, building opening radius r, flow coefficient C, and gravitational acceleration g into Equations 8, 9, and 10 to obtain Q tn1 , Q tn2 , and Q tn3 .

次に、Qtnと流入量計測装置11で計測した単位時間当たりの流入量Qとの比Rを求め、HとRとの関係を表す近似曲線fを求める。例えば、数8に対しては、Qtn1とQとの比Rn1を求め、HとRn1との関係を表す近似曲線fn1を導出する。数9に対しては、Qtn2とQとの比Rn2を求め、HとRn2との関係を表す近似曲線fn2を導出する。同様に、数10に対しては、Qtn3とQとの比Rn3を求め、HとRn3との関係を表す近似曲線fn3を導出する。 Next, a ratio R n between Q tn and the inflow amount Q m per unit time measured by the inflow amount measuring device 11 is obtained, and an approximate curve f n representing the relationship between H and R n is obtained. For example, for Equation 8, a ratio R n1 between Q tn1 and Q m is obtained, and an approximate curve f n1 representing the relationship between H and R n1 is derived. For Equation 9, a ratio R n2 between Q tn2 and Q m is obtained, and an approximate curve f n2 representing the relationship between H and R n2 is derived. Similarly, for Equation 10, a ratio R n3 between Q tn3 and Q m is obtained, and an approximate curve f n3 representing the relationship between H and R n3 is derived.

例として、HとRn1との関係、HとRn2との関係を図11Aのように与え、HとRn3との関係を図11Bのように与えると、近似曲線fn1、fn2、fn3は、それぞれ数18、数19、数20のように与えられる。なおここでは、HとRn1との関係、HとRn2との関係、HとRn3との関係はそれぞれ3次式で近似を行っている。 As an example, when the relationship between H and R n1 and the relationship between H and R n2 are given as shown in FIG. 11A and the relationship between H and R n3 is given as shown in FIG. 11B, approximate curves f n1 , f n2 , f n3 is given by Equation 18, Equation 19, and Equation 20, respectively. Here, the relationship between H and R n1 , the relationship between H and R n2, and the relationship between H and R n3 are approximated by cubic equations, respectively.

Figure 2017020787
Figure 2017020787

Figure 2017020787
Figure 2017020787

Figure 2017020787
Figure 2017020787

近似曲線fはQtnとQとの比であるRを近似しているため、Qtnを近似曲線fで割った式は、Qtnよりも単位時間当たりの流入量を精度良く表すことになる。したがって、第2の流入量評価式よりも単位時間当たりの流入量を精度良く評価できる第3の流入量評価式は、数21のように導出できる。 Since the approximate curve f n approximates R n , which is the ratio of Q tn to Q m , the formula obtained by dividing Q tn by the approximate curve f n is more accurate for the inflow per unit time than Q tn. Will represent. Therefore, the third inflow rate evaluation formula that can evaluate the inflow rate per unit time more accurately than the second inflow rate evaluation formula can be derived as shown in Equation 21.

例えば、数8のような第2の流入量評価式に対しては、Rn1がQtn1とQとの比であることよりQtn1をfn1で割った数22が第3の流入量評価式として導出できる。また、数9のような第2の流入量評価式に対しては、Rn2がQtn2とQとの比であることよりQtn2をfn2で割った数23が第3の流入量評価式として導出できる。同様に、数10のような第2の流入量評価式に対しては、Rn3がQtn3とQとの比であることよりQtn3をfn3で割った数24が第3の流入量評価式として導出できる。 For example, for the second inflow rate evaluation formula as shown in Equation 8, since R n1 is the ratio of Q tn1 and Q m , the number 22 obtained by dividing Q tn1 by f n1 is the third inflow rate. It can be derived as an evaluation formula. Further, for the second inflow rate evaluation formula as shown in Equation 9, since R n2 is the ratio of Q tn2 and Q m , the number 23 obtained by dividing Q tn2 by f n2 is the third inflow rate. It can be derived as an evaluation formula. Similarly, with respect to the second inflow amount evaluation formula as shown in Equation 10, since R n3 is the ratio of Q tn3 and Q m , the number 24 obtained by dividing Q tn3 by f n3 is the third inflow amount. It can be derived as a quantity evaluation formula.

また、第3の流入量評価式から得られる単位時間当たりの流入量をQtnnと定義し、特に、数22から得られる単位時間当たりの流入量をQtnn1、数23から得られる単位時間当たりの流入量をQtnn2、数24から得られる単位時間当たりの流入量をQtnn3と定義する。なお数22から数24では、数1から数3に相当する部分に含まれるH、数4から数6に相当する部分に含まれるH、数18から数20に相当する部分に含まれるHには、同じ値が入るが次元が異なることに注意する必要がある。数1から数3に相当する部分に含まれるHは浸水深であるため、次元が長さであるが、数4から数6に相当する部分に含まれるHと数18から数20に相当する部分に含まれるHとは近似曲線のパラメータであるため、無次元である。 Further, the inflow per unit time obtained from the third inflow rate evaluation formula is defined as Q tnn, and in particular, the inflow per unit time obtained from Equation 22 is defined as Q tnn1 and per unit time obtained from Equation 23. Is defined as Q tnn2, and the inflow per unit time obtained from Equation 24 is defined as Q tnn3 . In Expressions 22 to 24, H is included in a part corresponding to Expressions 1 to 3, H is included in a part corresponding to Expressions 4 to 6, and H is included in a part corresponding to Expressions 18 to 20. Note that the same value is entered, but the dimensions are different. Since H included in the portion corresponding to Equation 1 to Equation 3 is the depth of inundation, the dimension is length, but it corresponds to H included in the portion corresponding to Equation 4 to Equation 6 and Equation 18 to Equation 20. Since H included in the portion is a parameter of the approximate curve, it is dimensionless.

Figure 2017020787
Figure 2017020787

Figure 2017020787
Figure 2017020787

Figure 2017020787
Figure 2017020787

Figure 2017020787
Figure 2017020787

最後に確認のために、第2の流入量評価式から得られる単位時間当たりの流入量Qtnと第3の流入量評価式から得られる単位時間当たりの流入量Qtnnとの精度を比較する。図12AにHと、Qtnn1とQとの比であるRnn1、Qtnn2とQとの比であるRnn2、Rn1、Rn2との関係を示し、図12BにHと、Qtnn3とQとの比であるRnn3、Rn3との関係を示す。なおR及びRnnの定義より、縦軸の値が1に近いほど単位時間当たりの流入量を精度良く表していることになる。Rnn1とRn1との比較、Rnn2とRn2との比較、Rnn3とRn3との比較では、それぞれRnn1、Rnn2、Rnn3の方が1に近い値をとるため、第3の流入量評価式は、第2の流入量評価式よりも単位時間当たりの流入量を精度良く評価していることが確認できる。 Finally, for confirmation, the accuracy of the inflow rate Q tn per unit time obtained from the second inflow rate evaluation formula and the inflow rate Q tnn per unit time obtained from the third inflow rate evaluation formula is compared. . And H in FIG. 12A, showing the relationship between Q Tnn1 and Q R nn1 which is the ratio of the m, Q tnn2 and R nn2 which is the ratio of the Q m, R n1, R n2 , and H in FIG. 12B, Q the ratio of the tnn3 and Q m shows the relationship between R nn3, R n3. From the definition of R n and R nn , the closer the value on the vertical axis is to 1, the more accurately represents the inflow per unit time. In the comparison between R nn1 and R n1 , the comparison between R nn2 and R n2, and the comparison between R nn3 and R n3 , R nn1 , R nn2 , and R nn3 have values closer to 1, respectively. It can be confirmed that the inflow rate evaluation formula evaluates the inflow rate per unit time more accurately than the second inflow rate evaluation formula.

したがって、本実施例で導出した流入量評価式を用いることで、流入量の計算精度を向上させ、機器のフラジリティ評価の評価精度を向上させること、そして最終的には津波の確率論的リスク評価(津波PRA)の評価精度を向上させることが可能となる。   Therefore, by using the inflow rate evaluation formula derived in the present embodiment, the calculation accuracy of the inflow rate is improved, the evaluation accuracy of the fragility evaluation of the equipment is improved, and finally the probabilistic risk evaluation of the tsunami It becomes possible to improve the evaluation accuracy of (tsunami PRA).

本実施例では、例として、数8、数9、数10のような第2の流入量評価式の利用により、数22、数23、数24のような第3の流入量評価式を導出したが、他の第2の流入量評価式の利用により、他の第3の流入量評価式を本実施例の方法で導出する例も本実施例に含まれる。   In the present embodiment, as an example, the third inflow rate evaluation formulas such as Formula 22, Formula 23, and Formula 24 are derived by using the second inflow rate formulas such as Formula 8, Formula 9, and Formula 10. However, an example in which another third inflow rate evaluation formula is derived by the method of the present embodiment by using another second inflow rate evaluation formula is also included in the present embodiment.

なお本実施例では、HとRとの関係を3次式で近似した例を示したが、HとRとの関係を他の式で近似した例も本実施例に含まれる。 In this embodiment, an example in which the relationship between H and R n is approximated by a cubic equation is shown, but an example in which the relationship between H and R n is approximated by another equation is also included in this embodiment.

また本実施例では、実施例1と同様な方法で、第2の流入量評価式の利用により、第3の流入量評価式を導出する例を示したが、実施例2と同様な方法で、第2の流入量評価式の利用により第3の流入量評価式を導出する例も本実施例に含まれる。   In the present embodiment, an example in which the third inflow amount evaluation formula is derived by using the second inflow amount evaluation formula in the same manner as in the first embodiment is shown. However, in the same manner as in the second embodiment, An example in which the third inflow rate evaluation formula is derived by using the second inflow rate evaluation formula is also included in this embodiment.

さらに本実施例には、実施例1に示した第1の流入量評価式の利用により第2の流入量評価式を導出する方法と同様な方法を繰り返して流入量評価式を導出する例、実施例2に示した第1の流入量評価式の利用により第2の流入量評価式を導出する方法と同様な方法を繰り返して流入量評価式を導出する例、実施例1に示した第1の流入量評価式の利用により第2の流入量評価式を導出する方法と同様な方法を繰り返す際に、実施例2に示した第1の流入量評価式の利用により第2の流入量評価式を導出する方法と同様な方法を繰り返しのプロセスの中に入れて流入量評価式を導出する例も含まれる。   Furthermore, in this embodiment, an example of deriving the inflow rate evaluation formula by repeating the same method as the method of deriving the second inflow rate evaluation formula by using the first inflow rate evaluation formula shown in the first embodiment, An example of deriving the inflow rate evaluation formula by repeating the same method as the method of deriving the second inflow rate evaluation formula by using the first inflow rate evaluation formula shown in the second embodiment, the first shown in the first embodiment When the same method as the method for deriving the second inflow rate evaluation formula by using the first inflow rate evaluation formula is repeated, the second inflow rate is obtained by using the first inflow rate evaluation formula shown in the second embodiment. An example is also included in which a method similar to the method of deriving the evaluation formula is put in an iterative process to derive the inflow rate evaluation formula.

つまり、図9に示すように、第1の流入量評価式から第Nの流入量評価式を導出する際、その過程において実施例1の方法と実施例2の方法を適宜選択して利用することも可能である。   That is, as shown in FIG. 9, when the Nth inflow rate evaluation formula is derived from the first inflow rate evaluation formula, the method of the first embodiment and the method of the second embodiment are appropriately selected and used in the process. It is also possible.

本実施例では、建屋内へ流入する単位時間当たりの流入量を計測する際に、実施例1から実施例3において示した流入量計測装置11により単位時間当たりの流入量を計測できない場合、流速計測装置により計測した流速を用いることで、流入量計測装置で計測した単位時間当たりの流入量の代わりとなる単位時間当たりの流入量を導出する方法の例を説明する。   In this embodiment, when measuring the inflow per unit time flowing into the building, the inflow per unit time cannot be measured by the inflow measuring device 11 shown in the first to third embodiments. An example of a method for deriving the inflow rate per unit time, which replaces the inflow rate per unit time measured by the inflow rate measurement device, by using the flow velocity measured by the measurement device will be described.

図13は、流速計測装置により計測した流速から単位時間当たりの流入量を導出する方法を示したフローチャートの例である。まず、建屋開口の形状及び建屋開口の大きさなどを入力データとし、流体が建屋開口を通過する時の流速分布Uを計算により求める。一方で、建屋10の開口もしくは開口近傍に設置された流速計測装置により流速vを計測する。次に計算により求めた流速分布Uに、流速計測装置により計測した流速vを代入し、流体が建屋開口を通過する時の流速分布Uを求める。一般に、流体が建屋開口を通過する時の流速分布Uは、流速vの計測点が多いほど、つまり流速計測装置の設置場所が多いほど、精度が向上する。最後に求めた流速分布Uを建屋開口における流体の通過領域全体について積分し、単位時間当たりの流入量Qmvを導出する。このような方法で単位時間当たりの流入量を求める理由は、流体が建屋開口を通過する位置により流速が異なる時の単位時間当たりの流入量が、建屋開口の各々の位置における流速と微小面積との積をとることで求めた微小面積を通過する単位時間当たりの流入量を建屋開口における流体の通過領域全体について足し合わせたものとなるからである。 FIG. 13 is an example of a flowchart showing a method for deriving the inflow rate per unit time from the flow velocity measured by the flow velocity measuring device. First, such as the size of the shape of the building opening and building opening as input data, obtained by calculating the flow velocity distribution U s when the fluid passes through the building aperture. On the other hand, measures the flow velocity v m by the installed flow rate measuring device in the opening or openings near the building 10. Next the flow velocity distribution U s obtained by calculation, by substituting the flow velocity v m measured by a flow rate measuring device to determine the flow velocity distribution U when the fluid passes through the building aperture. In general, the flow velocity distribution U when the fluid passes through the building aperture, the more the measurement points of the flow velocity v m is large, i.e. the greater the installation location of the flow rate measuring apparatus, the accuracy is improved. Finally, the obtained flow velocity distribution U is integrated over the entire fluid passage region in the building opening to derive the inflow amount Q mv per unit time. The reason for obtaining the inflow rate per unit time by such a method is that the inflow rate per unit time when the flow rate differs depending on the position where the fluid passes through the building opening is the flow rate and micro area at each position of the building opening. This is because the inflow amount per unit time passing through the minute area obtained by taking the product of the above is added to the entire fluid passage region in the building opening.

例として、図1A及び図1Bのように建屋開口の形状が四角形の時に、図13に示したフローチャートの方法で単位時間当たりの流入量を導出する。なお実施例1と同様に、建屋近傍の建屋外の浸水深Hは、建屋開口の下部までの高さLと建屋開口の鉛直方向の長さdとの和より小さいものとする。また流速計測装置は建屋開口の2ヶ所に設置するものとし、計算により求めた流速分布Uは数25のように与えられるものとする。数25において、vとvとは速度の次元をもつ定数であり、流速計測装置により計測した流速から定まる値である。yは、図14に示すように高さの座標であり、L以上H以下の変数である。 As an example, when the shape of the building opening is a square as shown in FIGS. 1A and 1B, the inflow amount per unit time is derived by the method of the flowchart shown in FIG. As in the first embodiment, the depth H of the outdoor building near the building is smaller than the sum of the height L to the lower part of the building opening and the vertical length d of the building opening. The flow velocity measuring device shall be installed at two positions of the building opening, the flow velocity distribution U s obtained by calculation is assumed to be given as Expression 25. In Equation 25, v 0 and v 1 are constants having a dimension of velocity, and are values determined from the flow velocity measured by the flow velocity measuring device. As shown in FIG. 14, y is a coordinate of height, and is a variable between L and H.

Figure 2017020787
Figure 2017020787

流速計測装置をyがLの位置とyがHの位置とに設置し、流速計測装置により計測した流速が、yがLの位置でvmL、yがHの位置でvmHの場合、v及びvはそれぞれ数26及び数27のように定まる。 When a flow velocity measuring device is installed at a position where y is L and a position where y is H, the flow velocity measured by the flow velocity measuring device is v mL when y is L, and v mH when y is H. 0 and v 1 are determined as in Expression 26 and Expression 27, respectively.

Figure 2017020787
Figure 2017020787

Figure 2017020787
Figure 2017020787

数26及び数27のv及びvを数25に代入すると、流速分布Uは数28のように求まる。 Substituting v 0 and v 1 of Equations 26 and 27 into Equation 25, the flow velocity distribution U is obtained as shown in Equation 28.

Figure 2017020787
Figure 2017020787

数28のように、流速が高さのみに依存する流速分布から単位時間当たりの流入量を求める場合は、流速を高さ方向に積分し、建屋開口の水平方向の長さとの積をとる。したがって数28のような流速分布の場合、建屋開口を通過する単位時間当たりの流入量は数29のように導出できる。数29において、Qmvは、流速vの利用により求めた単位時間当たりの流入量である。 When the flow rate per unit time is obtained from the flow velocity distribution in which the flow velocity depends only on the height as in Equation 28, the flow velocity is integrated in the height direction, and the product is multiplied by the horizontal length of the building opening. Therefore, in the case of the flow velocity distribution as shown in Equation 28, the inflow amount per unit time passing through the building opening can be derived as shown in Equation 29. In Equation 29, Q mv is an inflow per unit time obtained by using the flow velocity v m .

Figure 2017020787
Figure 2017020787

以上のように、流速計測装置により計測した流速から単位時間当たりの流入量が導出できる。したがって、実施例1から実施例3において単位時間当たりの流入量を直接計測できない状況においても、流速計測装置の利用により単位時間当たりの流入量を導出することが可能となる。   As described above, the amount of inflow per unit time can be derived from the flow velocity measured by the flow velocity measuring device. Therefore, even in a situation where the inflow per unit time cannot be directly measured in the first to third embodiments, the inflow per unit time can be derived by using the flow velocity measuring device.

なお上記の例では、建屋開口の2ヶ所に流速計測装置を設置した例を示したが、建屋開口の任意の1ヶ所に流速計測装置を設置した例、建屋開口の任意の複数ヶ所に流速計測装置を設置した例でも、適切な条件を与えることで単位時間当たりの流入量を導出することが可能である。   In the above example, the flow velocity measuring device was installed at two locations in the building opening. However, the flow velocity measuring device was installed at any one location in the building opening, and the flow velocity measurement was performed at any multiple locations in the building opening. Even in an example in which an apparatus is installed, it is possible to derive the inflow per unit time by giving an appropriate condition.

また上記の例では、建屋開口に設置された流速計測装置により流体が建屋開口を通過する時の流速を計測する例を示したが、建屋開口から離れた位置に設置された流速計測装置により計測した流速からも、計測した流速を流体が建屋開口を通過する時の流速に補正することで、流体が建屋開口を通過する時の流速分布を求め、単位時間当たりの流入量を導出することが可能である。   In the above example, an example is shown in which the flow velocity when the fluid passes through the building opening is measured by the flow velocity measuring device installed at the building opening, but the measurement is performed by the flow velocity measuring device installed at a position away from the building opening. By correcting the measured flow velocity to the flow velocity when the fluid passes through the building opening, the flow velocity distribution when the fluid passes through the building opening can be obtained and the inflow per unit time can be derived. Is possible.

以上より本実施例では、建屋開口の2ヶ所に流速計測装置を設置した例を示したが、建屋開口の任意の1ヶ所に流速計測装置を設置した例、建屋開口の任意の複数ヶ所に流速計測装置を設置した例、及び建屋開口から離れた場所に流速計測装置を設置した例も本実施例に含まれる。   As described above, in this embodiment, an example is shown in which flow velocity measuring devices are installed at two locations in the building opening. However, an example in which a flow velocity measuring device is installed at any one location in the building opening, and flow velocity measuring devices at any multiple locations in the building opening. An example in which a measuring device is installed and an example in which a flow velocity measuring device is installed in a place away from the building opening are also included in this embodiment.

本実施例では、実施例1から実施例3のいずれかにおいて説明した方法で流入量評価式を導出する際の具体的な装置の構成例について説明する。なお、流入量評価式、及び流入量評価式の導出方法に関しては、実施例1から実施例3と説明が重複するため、本実施例では説明を省略する。また本実施例では、実施例1から実施例3で示した流入量計測装置11により単位時間当たりの流入量Qが計測できない場合、実施例4のように、流速計測装置で計測した流速vから導出した単位時間当たりの流入量Qmvを利用するものとする。 In the present embodiment, a specific configuration example of the apparatus when the inflow amount evaluation formula is derived by the method described in any one of the first to third embodiments will be described. Note that the description of the inflow amount evaluation formula and the method for deriving the inflow amount evaluation formula is the same as in the first to third embodiments, and thus the description thereof is omitted in this embodiment. In the present embodiment, if the inflow Q m per unit time by the inflow amount measuring apparatus 11 shown in Example 3 from Example 1 can not be measured, as in Example 4, the flow rate measured by the flow rate measuring device v Assume that the inflow amount Q mv per unit time derived from m is used.

図15は、実施例1から実施例3において説明した流入量評価式を導出する装置の全体概要を示した図の例である。   FIG. 15 is an example of a diagram illustrating an overall outline of an apparatus for deriving the inflow amount evaluation formula described in the first to third embodiments.

入力部分には、入力パラメータ、つまり、第1の流入量評価式、第1の流入量評価式に必要なパラメータ、繰り返し条件などが入力される。ここで第1の流入量評価式に必要なパラメータとは、例えば実施例1のように、数1から数3を第1の流入量評価式とした場合、b、H、L、r、C、gに相当する。また繰り返し条件とは、実施例1か実施例2かの方法を指定する条件、及び実施例1か実施例2かのいずれかと同様な方法により流入量評価式を導出する過程の繰り返し回数を指定する条件のことである。   Input parameters such as the first inflow rate evaluation formula, parameters necessary for the first inflow rate evaluation formula, and repetition conditions are input to the input portion. Here, the parameters necessary for the first inflow rate evaluation formula are b, H, L, r, and C when the formula 1 to the formula 3 are used as the first inflow rate evaluation formula as in the first embodiment, for example. , G. The repetition condition is a condition for designating the method according to the first embodiment or the second embodiment, and the number of repetitions of the process of deriving the inflow evaluation formula by the same method as either the first embodiment or the second embodiment. It is a condition to do.

例えば、実施例1のように、第1の流入量評価式から第2の流入量評価式の導出までを行う場合は、繰り返し条件は「1」であり、実施例2のように、第1の流入量評価式から第2の流入量評価式の導出までを行う場合は、繰り返し条件は「2」であり、実施例1と同様な方法で、第1の流入量評価式から第3の流入量評価式の導出までを行う場合は、繰り返し条件は「11」であり、実施例2と同様な方法で、第1の流入量評価式から第4の流入量評価式の導出までを行う場合は、繰り返し条件は「222」である。入力部分では、入力されたパラメータをQ導出部分やQtn導出部分などの単位時間当たりの流入量を導出する部分、及び制御装置に伝送する。 For example, when the process from the first inflow rate evaluation formula to the derivation of the second inflow rate evaluation formula is performed as in the first embodiment, the repetition condition is “1”. When the process from the inflow rate evaluation formula to the derivation of the second inflow rate evaluation formula is performed, the repetition condition is “2”. When performing the derivation of the inflow rate evaluation formula, the repetition condition is “11”, and the first inflow rate evaluation formula to the derivation of the fourth inflow rate evaluation formula are performed in the same manner as in the second embodiment. In this case, the repetition condition is “222”. In the input part, the input parameters are transmitted to a part for deriving an inflow per unit time, such as a Q t derivation part or a Q tn derivation part, and a control device.

導出部分では、入力部分から伝送された第1の流入量評価式に、入力部分から伝送された流入量評価式に必要なパラメータを代入し、単位時間当たりの流入量Qを求める。例えば数1から数3のいずれかを第1の流入量評価式とした場合は、b、H、L、r、C、gのうち必要なパラメータを数1から数3のいずれかに代入し、単位時間当たりの流入量を求めることに相当する。そして求めた単位時間当たりの流入量Qを第2の流入量評価式導出部分に伝送する。 In the Q t derivation part, necessary parameters are substituted into the inflow rate evaluation formula transmitted from the input part to the first inflow rate evaluation formula transmitted from the input part, and the inflow rate Q t per unit time is obtained. For example, when any one of Equation 1 to Equation 3 is used as the first inflow rate evaluation formula, necessary parameters among b, H, L, r, C, and g are substituted into any one of Equation 1 to Equation 3. This corresponds to obtaining the inflow per unit time. And transmitting the inflow Q t per unit time calculated in the second inflow evaluation formula derived moiety.

制御装置では、入力部分から伝送された繰り返し条件を制御信号に変換する。ここで変換した制御信号には、流入量評価式の導出条件、つまり流入量評価式を導出する方法、及び流入量評価式を導出する過程の繰り返し回数が含まれている。そして、変換した制御信号を、第2の流入量評価式導出部分、第3の流入量評価式導出部分、第Nの流入量評価式導出部分などの流入量評価式導出部分に伝送する。   In the control device, the repetition condition transmitted from the input part is converted into a control signal. The control signal converted here includes the condition for deriving the inflow rate evaluation formula, that is, the method for deriving the inflow rate evaluation formula, and the number of repetitions of the process of deriving the inflow rate evaluation formula. The converted control signal is transmitted to an inflow rate evaluation formula deriving part such as a second inflow rate evaluation formula deriving part, a third inflow rate evaluation formula deriving part, and an Nth inflow rate evaluation formula deriving part.

流入量計測装置もしくは流速計測装置では、単位時間当たりの流入量Qもしくは流速vを計測する。ここで流速vは、流速計測装置に取り付けられた装置により、単位時間当たりの流入量Qmvに変換されるものとする。なお流速計測装置により計測した流速vから単位時間当たりの流入量Qmvを導出する方法は、実施例4において説明したため、説明を省略する。そして、ここで計測したQもしくはQmvを、第2の流入量評価式導出部分、第3の流入量評価式導出部分、第Nの流入量評価式導出部分などの流入量評価式導出部分に伝送する。 In the inflow amount measuring device or flow rate measuring device measures the flow rate Q m or flow velocity v m per unit time. Here, it is assumed that the flow velocity v m is converted into an inflow amount Q mv per unit time by a device attached to the flow velocity measuring device. Note method of deriving the inflow Q mv per unit time flow rate v m measured by a flow rate measuring apparatus, as described in Example 4, the description thereof is omitted. Then, Q m or Q mv measured here is used as an inflow rate evaluation formula derivation part such as a second inflow rate evaluation formula derivation part, a third inflow rate evaluation formula derivation part, and an Nth inflow rate evaluation formula derivation part. Transmit to.

第2の流入量評価式導出部分では、Q導出部分から伝送されたQと流入量計測装置もしくは流速計測装置から伝送されたQもしくはQmvとから第2の流入量評価式を導出する。第1の流入量評価式から第2の流入量評価式を導出する方法に関しては、実施例1及び実施例2において説明したため、説明を省略する。また第2の流入量評価式導出部分では、制御装置から伝送された制御信号に従い、第3の流入量評価式を導出する必要性について判断する。第3の流入量評価式を導出する必要がないと判断した場合は、第2の流入量評価式を出力部分に伝送する。これは図15でNが2の場合に相当する。第3の流入量評価式を導出する必要があると判断した場合は、第2の流入量評価式をQtn導出部分に伝送する。 In the second inflow evaluation formula derived moiety, derived from the Q m or Q mv transmitted from the inflow amount measuring device or flow rate measuring device and transmitted Q t from Q t derivation portion second inflow evaluation formula To do. Since the method for deriving the second inflow rate evaluation formula from the first inflow rate evaluation formula has been described in the first and second embodiments, the description thereof is omitted. In the second inflow rate evaluation formula deriving part, the necessity for deriving the third inflow rate evaluation formula is determined according to the control signal transmitted from the control device. If it is determined that it is not necessary to derive the third inflow rate evaluation formula, the second inflow rate evaluation formula is transmitted to the output portion. This corresponds to the case where N is 2 in FIG. When it is determined that the third inflow rate evaluation formula needs to be derived, the second inflow rate evaluation formula is transmitted to the Q tn derivation portion.

tn導出部分では、第2の流入量評価式導出部分から伝送された第2の流入量評価式に、入力部分から伝送された流入量評価式に必要なパラメータを代入し、単位時間当たりの流入量Qtnを求める。例えば数8から数10のいずれかを第2の流入量評価式とした場合は、b、H、L、r、C、gのうち必要なパラメータを数8から数10のいずれかに代入し、単位時間当たりの流入量を求めることに相当する。そして求めた単位時間当たりの流入量Qtnを第3の流入量評価式導出部分に伝送する。 In the Q tn derivation part, the parameters necessary for the inflow rate evaluation formula transmitted from the input part are substituted into the second inflow rate evaluation formula transmitted from the second inflow rate evaluation formula derivation unit, and the per unit time An inflow amount Q tn is obtained. For example, when any one of Equation 8 to Equation 10 is used as the second inflow rate evaluation formula, necessary parameters of b, H, L, r, C, and g are substituted into any one of Equation 8 to Equation 10. This corresponds to obtaining the inflow per unit time. Then, the obtained inflow amount Q tn per unit time is transmitted to the third inflow amount evaluation formula deriving part.

第3の流入量評価式導出部分では、Qtn導出部分から伝送されたQtnと流入量計測装置もしくは流速計測装置から伝送されたQもしくはQmvとから第3の流入量評価式を導出する。第2の流入量評価式から第3の流入量評価式を導出する方法に関しては、実施例3において説明したため、説明を省略する。また第3の流入量評価式導出部分では、制御装置から伝送された制御信号に従い、第4の流入量評価式を導出する必要性について判断する。第4の流入量評価式を導出する必要がないと判断した場合は、第3の流入量評価式を出力部分に伝送する。これは図15でNが3の場合に相当する。第4の流入量評価式を導出する必要があると判断した場合は、第3の流入量評価式をQtnn導出部分に伝送する。 In the third inflow evaluation formula deriving portion, Q tn deriving a third inflow evaluation formula and a Q m or Q mv transmitted from the inflow amount measuring device or flow rate measuring device and transmitted Q tn from the outlet portion To do. Since the method for deriving the third inflow amount evaluation formula from the second inflow amount evaluation formula has been described in the third embodiment, the description thereof will be omitted. In the third inflow rate evaluation formula deriving part, the necessity of deriving the fourth inflow rate evaluation formula is determined according to the control signal transmitted from the control device. If it is determined that it is not necessary to derive the fourth inflow rate evaluation formula, the third inflow rate evaluation formula is transmitted to the output portion. This corresponds to the case where N is 3 in FIG. When it is determined that it is necessary to derive the fourth inflow rate evaluation formula, the third inflow rate evaluation formula is transmitted to the Q tnn derivation portion.

本実施例の流入量評価式導出装置では、上記のように制御装置から伝送された制御信号に従い、目的とする第Nの流入量評価式が得られるまで、単位時間当たりの流入量導出部分による単位時間当たりの流入量の導出と流入量評価式導出部分による流入量評価式の導出とを繰り返し行う。そして目的とする第Nの流入量評価式が得られたら、第Nの流入量評価式を出力部分に伝送する。   In the inflow rate evaluation formula deriving device of the present embodiment, the inflow rate deriving unit per unit time is obtained according to the control signal transmitted from the control device as described above until the target Nth inflow rate evaluation formula is obtained. The derivation of the inflow rate per unit time and the derivation of the inflow rate evaluation formula by the inflow rate evaluation formula derivation part are repeated. When the target Nth inflow rate evaluation formula is obtained, the Nth inflow rate evaluation formula is transmitted to the output portion.

出力部分では、第Nの流入量評価式導出部分から伝送された第Nの流入量評価式を流入量評価式として出力する。   The output part outputs the Nth inflow rate evaluation formula transmitted from the Nth inflow rate evaluation formula deriving part as the inflow rate evaluation formula.

したがって本装置により、目的とする第Nの流入量評価式を導出することが可能となる。   Therefore, it is possible to derive a target Nth inflow evaluation formula by this apparatus.

本実施例では、実施例5において導出した流入量評価式を用いて、流入量を導出する具体的な装置の構成例について説明する。なお、流入量評価式の説明に関しては、実施例1から実施例3と説明が重複するため、本実施例では説明を省略する。   In this embodiment, a specific configuration example of the apparatus for deriving the inflow amount using the inflow amount evaluation formula derived in the fifth embodiment will be described. In addition, regarding the description of the inflow amount evaluation formula, since the description overlaps with the first to third embodiments, the description is omitted in the present embodiment.

図16は、流入量を導出する装置の全体概要を示した図の例である。   FIG. 16 is an example of a diagram showing an overall outline of an apparatus for deriving the inflow amount.

入力部分には、入力パラメータ、つまり、実施例5のような流入量評価式導出装置から導出した流入量評価式、流入量評価式に必要なパラメータ、流入時間などが入力される。ここで流入量評価式に必要なパラメータとは、例えば実施例1に示した数8から数10を入力する流入量評価式とした場合、b、H、L、r、C、gに相当する。また流入時間とは、建屋内へ流体が流入している時間のことであり、流入開始時刻と流入終了時刻との間の時間である。入力部分では、上記の入力パラメータを流入量導出部分に伝送する。   In the input portion, input parameters, that is, an inflow amount evaluation formula derived from the inflow amount evaluation formula deriving device as in the fifth embodiment, parameters necessary for the inflow amount evaluation formula, inflow time, and the like are input. Here, the parameters necessary for the inflow rate evaluation formula correspond to b, H, L, r, C, and g, for example, when the inflow rate evaluation formula that inputs Formula 8 to Formula 10 shown in the first embodiment is input. . The inflow time is the time during which fluid flows into the building, and is the time between the inflow start time and the inflow end time. In the input part, the above input parameters are transmitted to the inflow amount deriving part.

流入量導出部分では、入力部分から伝送された流入量評価式、流入量評価式に必要なパラメータ、流入時間などから流入量を導出する。流入量Qは、流入時間に建屋内へ流入した流体の量であるため、流入開始時刻をt、流入終了時刻をtとした場合、単位時間当たりの流入量Qtgをtからtまで積分したものとなる。したがって流入量Qは、数30のように表せる。 In the inflow amount deriving portion, the inflow amount is derived from the inflow amount evaluation formula transmitted from the input portion, parameters necessary for the inflow amount evaluation formula, inflow time, and the like. Since the inflow amount Q is the amount of fluid flowing into the building during the inflow time, when the inflow start time is t 1 and the inflow end time is t 2 , the inflow amount Q tg per unit time is changed from t 1 to t Integrated to 2 . Therefore, the inflow amount Q can be expressed as in Equation 30.

Figure 2017020787
Figure 2017020787

例えば、単位時間当たりの流入量を表す流入量評価式が数8の場合、流入量Qは数31のように表せる。なお数31のように浸水深Hが被積分関数に含まれる場合、浸水深Hが時刻tの関数となっていることが多い。 For example, when the inflow amount evaluation formula representing the inflow amount per unit time is Equation 8, the inflow amount Q can be expressed as Equation 31. When the inundation depth H is included in the integrand as shown in Equation 31, the inundation depth H is often a function of time t.

Figure 2017020787
Figure 2017020787

そして流入量導出部分では、数30で導出した流入量を出力部分に伝送する。 In the inflow amount deriving portion, the inflow amount derived in Expression 30 is transmitted to the output portion.

出力部分では、流入量導出部分から伝送された流入量を出力する。   The output portion outputs the inflow amount transmitted from the inflow amount deriving portion.

したがって本装置により、実施例5の流入量評価式導出装置などで導出した流入量評価式を用いて、流入量を導出することが可能となる。   Therefore, according to the present apparatus, the inflow amount can be derived using the inflow amount evaluation formula derived by the inflow amount evaluation formula deriving apparatus of the fifth embodiment.

本実施例では、実施例6において導出した流入量を用いて、浸水に起因した機器のフラジリティ評価を行う方法及び具体的な装置の構成例について説明する。   In the present embodiment, a method for evaluating the fragility of a device caused by inundation using the inflow amount derived in Embodiment 6 and a specific configuration example of the apparatus will be described.

まず浸水に起因した機器のフラジリティ評価を行う方法、つまり建屋内に設置された機器の損傷確率の導出方法について説明する。   First, a method for evaluating the fragility of equipment caused by flooding, that is, a method for deriving the damage probability of equipment installed in a building will be described.

図17は、浸水に起因した機器のフラジリティ評価を行う方法を示したフローチャートの例である。   FIG. 17 is an example of a flowchart showing a method for evaluating the fragility of a device due to flooding.

まず実施例6などで得られる流入量及び建屋内の面積などを入力データとし、建屋内浸水深を求める。ここで建屋内浸水深は、数32のように、流入量を建屋内の面積で割ることで求められる。数32において、Hは建屋内浸水深、Qは建屋内へ流入する流入量、Sは建屋内の面積である。 First, the inflow amount obtained in Example 6 and the area of the building are used as input data to determine the inundation depth in the building. Here, the inundation depth of the building is obtained by dividing the inflow amount by the area of the building as shown in Equation 32. In Equation 32, H b is depth immersion in the building, Q is flow rate flowing into the building, S b is the area of the building.

Figure 2017020787
Figure 2017020787

一方で機器の設置高さ及び機器の損傷確率特性から、建屋内浸水深に対する機器の損傷確率を求める。例として、図18のように、建屋内の床面から機器の下部までの高さをHb1、建屋内の床面から機器のMHbの部分までの高さをHb2、建屋内の床面から機器の上部までの高さをHb3とし、Hb1まで浸水した時の機器の損傷確率をP、Hb2まで浸水した時の機器の損傷確率をP、Hb3まで浸水した時の機器の損傷確率をPとする。この例では、建屋内浸水深に対する機器の損傷確率は、数33のように表すことができる。 On the other hand, from the installation height of the equipment and the damage probability characteristic of the equipment, the damage probability of the equipment with respect to the inundation depth in the building is obtained. As an example, as shown in FIG. 18, the height from the floor of the building to the lower part of the device is H b1 , the height from the floor of the building to the MHb portion of the device is H b2 , and the floor of the building When the height from the surface to the top of the equipment is H b3 , the damage probability of the equipment when it is submerged to H b1 is P 1 , and the damage probability of the equipment when it is submersed to H b2 is P 2 , H b3 of the equipment of the damage probability and P 3. In this example, the damage probability of the equipment with respect to the inundation depth in the building can be expressed as in Expression 33.

Figure 2017020787
Figure 2017020787

そして、数33のような建屋内浸水深に対する機器の損傷確率に、数32で求めた建屋内浸水深Hを代入することで、建屋内に設置された機器の損傷確率が導出できる。 And the damage probability of the apparatus installed in the building can be derived by substituting the building inundation depth Hb obtained in Expression 32 into the damage probability of the apparatus with respect to the inundation depth in the building as shown in Expression 33.

したがって以上のような方法で、浸水に起因した機器のフラジリティ評価を行うこと、つまり建屋内に設置された機器の損傷確率の導出が可能となる。   Therefore, it is possible to evaluate the fragility of the equipment due to the flooding by the above method, that is, to derive the damage probability of the equipment installed in the building.

次に浸水に起因した機器のフラジリティ評価を行う装置について説明する。   Next, an apparatus for evaluating the fragility of equipment caused by water immersion will be described.

図19は、浸水に起因した機器のフラジリティ評価を行う装置の全体概要を示した図の例である。   FIG. 19 is an example of a diagram illustrating an overall outline of an apparatus that performs fragility evaluation of equipment caused by water immersion.

入力部分には、入力パラメータ、つまり、流入量、建屋内の面積、機器の設置高さ、機器の損傷確率特性などが入力される。そして入力部分では、流入量及び建屋内の面積を建屋内浸水深導出部分へ伝送し、機器の設置高さ及び機器の損傷確率特性を建屋内浸水深に対する機器の損傷確率導出部分に伝送する。   Input parameters such as inflow, building area, equipment installation height, equipment damage probability characteristics, and the like are input to the input section. In the input portion, the inflow amount and the area of the building are transmitted to the inundation depth deriving portion, and the installation height and the damage probability characteristic of the device are transmitted to the damage probability deriving portion of the device with respect to the inundation depth.

建屋内浸水深導出部分では、入力部分から伝送された流入量を入力部分から伝送された建屋内の面積で割ることで、建屋内浸水深を求める。そして求めた建屋内浸水深を機器の損傷確率導出部分に伝送する。   In the inundation depth deriving portion of the building, the inundation depth is obtained by dividing the inflow amount transmitted from the input portion by the area of the building transmitted from the input portion. Then, the found inundation depth is transmitted to the damage probability deriving part of the equipment.

建屋内浸水深に対する機器の損傷確率導出部分では、入力部分から伝送された機器の設置高さと機器の損傷確率特性とから建屋内浸水深に対する機器の損傷確率を求める。そして求めた建屋内浸水深に対する機器の損傷確率を機器の損傷確率導出部分に伝送する。   In the device damage probability deriving portion with respect to the inundation depth in the building, the damage probability of the device with respect to the inundation depth in the building is obtained from the installation height of the device transmitted from the input portion and the damage probability characteristic of the device. And the damage probability of the equipment with respect to the found building inundation depth is transmitted to the damage probability derivation part of the equipment.

機器の損傷確率導出部分では、建屋内浸水深導出部分から伝送された建屋内浸水深と建屋内浸水深に対する機器の損傷確率導出部分から伝送された建屋内浸水深に対する機器の損傷確率とから機器の損傷確率を導出する。そして求めた機器の損傷確率を出力部分に伝送する。   In the equipment damage probability derivation part, the equipment damage probability is calculated from the building inundation depth transmitted from the building inundation depth derivation part and the equipment damage probability against the building inundation depth transmitted from the equipment damage probability derivation part. The probability of damage is derived. Then, the obtained damage probability of the device is transmitted to the output portion.

出力部分では、機器の損傷確率導出部分から伝送された機器の損傷確率を出力する。   In the output part, the damage probability of the equipment transmitted from the damage probability derivation part of the equipment is output.

したがって本装置により、実施例6の流入量導出装置などで導出した流入量を用いて、浸水に起因した機器のフラジリティ評価を行うこと、つまり機器の損傷確率の導出が可能となる。   Therefore, this apparatus makes it possible to evaluate the fragility of the equipment caused by the inundation using the inflow amount derived by the inflow amount deriving apparatus of Example 6 or the like, that is, to derive the damage probability of the equipment.

また本実施例では、説明をわかりやすくするために、入力データを実施例6で導出した流入量とした時のフラジリティ評価装置の例を示したが、図20のように、実施例5で説明した流入量評価式導出装置と実施例6で説明した流入量導出装置とまで組み込み、入力データを第1の流入量評価式、流入量評価式に必要なパラメータ、繰り返し条件、流入時間、建屋内の面積、機器の設置高さ、及び機器の損傷確率特性とした時のフラジリティ評価装置も本実施例に含まれる。   Further, in this embodiment, in order to make the explanation easy to understand, the example of the fragility evaluation apparatus when the input data is the inflow amount derived in the sixth embodiment is shown. However, as shown in FIG. The inflow rate evaluation formula deriving device and the inflow rate deriving device described in the sixth embodiment are incorporated, and the input data is input to the first inflow rate evaluation formula, parameters necessary for the inflow rate evaluation formula, repetition conditions, inflow time, building This example also includes a fragility evaluation apparatus using the area, the installation height of the equipment, and the damage probability characteristics of the equipment.

本実施例では、実施例7において導出した機器の損傷確率を用いて、津波の確率論的リスク評価(津波PRA)を行う具体的な装置の構成例について説明する。   In this embodiment, a configuration example of a specific apparatus that performs a tsunami probabilistic risk evaluation (tsunami PRA) using the damage probability of the device derived in the seventh embodiment will be described.

図21は、津波PRAを行う装置の全体概要を示した図の例である。なお本実施例におけるフラジリティ評価部分は、説明を簡単にするために、図20のように、流入量評価式導出装置と流入量導出装置とまで組み込んだフラジリティ評価装置と想定する。   FIG. 21 is an example of a diagram showing an overall outline of an apparatus that performs tsunami PRA. Note that the fragility evaluation part in the present embodiment is assumed to be a fragility evaluation apparatus that incorporates an inflow amount evaluation formula deriving device and an inflow amount deriving device as shown in FIG.

入力部分には、入力パラメータ、つまり津波発生モデル、津波伝播モデル、第1の流入量評価式、建屋近傍の建屋外の浸水深以外の流入量評価式に必要なパラメータ、繰り返し条件、流入時間、機器の設置高さ、機器の損傷確率特性、建屋内の面積、事故シーケンスモデルなどが入力される。建屋近傍の建屋外の浸水深以外の流入量評価式に必要なパラメータとは、例えば実施例1の数1から数3を流入量評価式とした場合、b、L、r、C、gに相当する。また、津波発生モデル、津波伝播モデル、事故シーケンスモデルとは、それぞれ津波の発生源のモデル、津波の発生地点から津波をどのように伝播するかを表現したモデル、事故シーケンスのモデルである。   The input part includes input parameters, that is, a tsunami generation model, a tsunami propagation model, a first inflow evaluation formula, parameters necessary for an inflow evaluation formula other than the inundation depth in the vicinity of the building, repetition conditions, inflow time, Equipment installation height, equipment damage probability characteristics, building area, accident sequence model, etc. are input. The parameters required for the inflow rate evaluation formula other than the inundation depth outside the building near the building are, for example, b, L, r, C, and g when the formula 1 to formula 3 in Example 1 are used as the inflow rate evaluation formula. Equivalent to. The tsunami generation model, tsunami propagation model, and accident sequence model are a tsunami source model, a model that expresses how a tsunami propagates from a tsunami occurrence point, and an accident sequence model, respectively.

その他の入力部分から伝送されたパラメータ、及び津波ハザード部分から伝送されたパラメータについては、実施例5から実施例7において説明したため、説明を省略する。そして入力部分では、津波発生モデルと津波伝播モデルとを津波ハザード評価部分へ伝送し、第1の流入量評価式、建屋近傍の建屋外の浸水深以外の流入量評価式に必要なパラメータ、繰り返し条件、流入時間、機器の設置高さ、機器の損傷確率特性、及び建屋内の面積をフラジリティ評価部分に伝送し、事故シーケンスモデルを事故シーケンス評価部分に伝送する。   Since the parameters transmitted from the other input parts and the parameters transmitted from the tsunami hazard part have been described in the fifth to seventh embodiments, the description thereof is omitted. In the input part, the tsunami generation model and the tsunami propagation model are transmitted to the tsunami hazard evaluation part, the parameters required for the first inflow evaluation formula, the inflow evaluation formula other than the inundation depth in the vicinity of the building, and the repetition The conditions, inflow time, equipment installation height, equipment damage probability characteristics, and building area are transmitted to the fragility evaluation part, and the accident sequence model is transmitted to the accident sequence evaluation part.

津波ハザード評価部分では、入力部分から伝送された津波発生モデルと津波伝播モデルとなどから、建屋近傍の建屋外の浸水深を導出する。なお建屋近傍の建屋外の浸水深の導出方法の例としては、津波発生モデルと津波伝播モデルとから沖合の津波の津波ハザード曲線などを作成し、津波遡上解析などで建屋近傍の建屋外の浸水深を導出する方法がある。そして津波ハザード評価部分では、建屋近傍の建屋外の浸水深をフラジリティ評価部分に伝送する。   In the tsunami hazard evaluation part, the inundation depth near the building is derived from the tsunami generation model and tsunami propagation model transmitted from the input part. As an example of the method for deriving the inundation depth in the vicinity of the building, a tsunami hazard curve of the offshore tsunami is created from the tsunami generation model and tsunami propagation model, and the tsunami run-up analysis etc. There is a method to derive the inundation depth. In the tsunami hazard evaluation part, the inundation depth in the vicinity of the building is transmitted to the fragility evaluation part.

フラジリティ評価部分では、入力部分から伝送された第1の流入量評価式、建屋近傍の建屋外の浸水深以外の流入量評価式に必要なパラメータ、繰り返し条件、流入時間、機器の設置高さ、機器の損傷確率特性、建屋内の面積、及び津波ハザード部分から伝送された建屋近傍の建屋外の浸水深から機器の損傷確率を導出する。そして機器の損傷確率を事故シーケンス評価部分に伝送する。   In the fragility evaluation part, the first inflow rate evaluation formula transmitted from the input part, the parameters required for the inflow rate evaluation formula other than the inundation depth outside the building near the building, the repetition conditions, the inflow time, the installation height of the equipment, The damage probability of the equipment is derived from the damage probability characteristics of the equipment, the area of the building, and the inundation depth in the vicinity of the building transmitted from the tsunami hazard. The device damage probability is transmitted to the accident sequence evaluation part.

事故シーケンス評価部分では、入力部分から伝送された事故シーケンス評価モデルとフラジリティ評価部分から伝送された機器の損傷確率とから、炉心損傷頻度を導出する。そして導出した炉心損傷頻度を出力部分に伝送する。   In the accident sequence evaluation part, the core damage frequency is derived from the accident sequence evaluation model transmitted from the input part and the damage probability of the equipment transmitted from the fragility evaluation part. The derived core damage frequency is transmitted to the output portion.

出力部分では、事故シーケンス評価部分から伝送された炉心損傷頻度を出力する。   In the output part, the core damage frequency transmitted from the accident sequence evaluation part is output.

したがって本装置により、実施例7のフラジリティ評価装置などで導出した機器の損傷確率を用いて、例えば、原子力発電所の原子炉の炉心損傷頻度の導出が可能となる。   Therefore, this apparatus makes it possible to derive, for example, the core damage frequency of a nuclear power plant reactor using the damage probability of equipment derived by the fragility evaluation apparatus of the seventh embodiment.

なお本実施例では、フラジリティ評価部分は、図20のように、流入量評価式を導出する装置と流入量を導出する装置とまで組み込んだフラジリティ評価装置としたが、図19のように、流入量評価式を導出する装置と流入量を導出する装置とに分けた装置も、本実施例に含まれる。   In this embodiment, the fragility evaluation part is a fragility evaluation apparatus that incorporates a device for deriving an inflow amount evaluation device and a device for deriving an inflow amount as shown in FIG. 20. However, as shown in FIG. A device divided into a device for deriving the quantity evaluation formula and a device for deriving the inflow amount is also included in this embodiment.

なお、単位時間当たりの流入量を評価もしくは計測する対象は各実施例において示したような建屋のモデルに限定されるものではない。例えば、水路に設けた開口板のようなモデルであってもよい。   The target for evaluating or measuring the inflow per unit time is not limited to the building model as shown in each embodiment. For example, a model such as an aperture plate provided in a water channel may be used.

また、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   The present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

10…建屋
11…流入量計測装置
12…建屋内に設置された機器
21…浸水深計測装置
N…2以上の整数
b…建屋開口の形状が四角形の時における建屋開口の水平方向の長さ
d…建屋開口の形状が四角形の時における建屋開口の鉛直方向の長さ
H…建屋近傍の建屋外の浸水深
L…建屋開口の下部までの高さ
r…建屋開口の形状が円形の時における建屋開口の半径
C…流量係数
g…重力加速度
Q…流入量
tg…単位時間当たりの流入量
…第1の流入量評価式から得られる単位時間当たりの流入量
t1…数1のような第1の流入量評価式から得られる単位時間当たりの流入量
t2…数2のような第1の流入量評価式から得られる単位時間当たりの流入量
t3…数3のような第1の流入量評価式から得られる単位時間当たりの流入量
tn…第2の流入量評価式から得られる単位時間当たりの流入量
tn1…数8のような第2の流入量評価式から得られる単位時間当たりの流入量
tn2…数9のような第2の流入量評価式から得られる単位時間当たりの流入量
tn3…数10のような第2の流入量評価式から得られる単位時間当たりの流入量
tn4…数15のような第2の流入量評価式から得られる単位時間当たりの流入量
tn5…数16のような第2の流入量評価式から得られる単位時間当たりの流入量
tn6…数17のような第2の流入量評価式から得られる単位時間当たりの流入量
tnn…第3の流入量評価式から得られる単位時間当たりの流入量
tnn1…数22のような第3の流入量評価式から得られる単位時間当たりの流入量
tnn2…数23のような第3の流入量評価式から得られる単位時間当たりの流入量
tnn3…数24のような第3の流入量評価式から得られる単位時間当たりの流入量
…流入量計測装置11により計測した単位時間当たりの流入量
mv…流速計測装置により計測した流速vの利用により導出した単位時間当たりの流入量
R…QとQとの比
…Qt1とQとの比
…Qt2とQとの比
…Qt3とQとの比
…QtnとQとの比
n1…Qtn1とQとの比
n2…Qtn2とQとの比
n3…Qtn3とQとの比
nn…QtnnとQとの比
nn1…Qtnn1とQとの比
nn2…Qtnn2とQとの比
nn3…Qtnn3とQとの比
D…QとQとの差
…Qt1とQとの差
…Qt2とQとの差
…Qt3とQとの差
…QtnとQとの差
n1…Qtn4とQとの差
n2…Qtn5とQとの差
n3…Qtn6とQとの差
f…HとRとの関係を表す近似曲線
…HとRとの関係を表す近似曲線
…HとRとの関係を表す近似曲線
…HとRとの関係を表す近似曲線
…HとRとの関係を表す近似曲線
n1…HとRn1との関係を表す近似曲線
n2…HとRn2との関係を表す近似曲線
n3…HとRn3との関係を表す近似曲線
h…HとDとの関係を表す近似曲線
…HとDとの関係を表す近似曲線
…HとDとの関係を表す近似曲線
…HとDとの関係を表す近似曲線
U…流体が建屋開口を通過する時の流速分布
…流体が建屋開口を通過する時の計算により求めた流速分布
…流速計測装置により計測した流速
mH…yがHの位置で計測した流速
mL…yがLの位置で計測した流速
…速度の次元をもつ定数
…速度の次元をもつyの係数
t…時刻
…流入開始時刻
…流入終了時刻
b1…建屋内の床面から機器の下部までの高さ
b2…建屋内の床面から機器のMHbの部分までの高さ
b3…建屋内の床面から機器の上部までの高さ
Hb…機器の損傷確率が変わる機器の位置
…Hb1まで浸水した時の機器の損傷確率
…Hb2まで浸水した時の機器の損傷確率
…Hb3まで浸水した時の機器の損傷確率。
DESCRIPTION OF SYMBOLS 10 ... Building 11 ... Inflow measuring device 12 ... Equipment installed in building 21 ... Inundation depth measuring device N ... Integer more than 2 b ... Horizontal length of building opening when shape of building opening is square d … Vertical length of the building opening when the shape of the building opening is square H… depth of flooding outside the building near the building L… height to the bottom of the building opening r… building when the shape of the building opening is circular the radius of the aperture C ... flow coefficient g ... gravitational acceleration Q ... inflow Q tg ... per unit time flow rate Q t ... first inflow amount per unit time obtained from the inflow amount evaluation formula Q t1 ... number 1 like Inflow rate per unit time obtained from the first inflow rate evaluation formula Q t2 ... Inflow rate per unit time obtained from the first inflow rate evaluation formula as shown in Equation 2 Q t3 ... Unit time obtained from 1 inflow rate evaluation formula Per inflow Q tn ... inflow per unit time obtained from the second inflow evaluation formula such as the second inflow evaluation inflow amount per unit time obtained from the equation Q tn1 ... number 8 Q tn2 ... Inflow rate per unit time obtained from the second inflow rate evaluation formula as shown in Equation 9 Q tn3 ... Inflow rate per unit time as obtained from the second inflow rate evaluation formula as shown in Equation 10 Q tn4 ... Inflow rate per unit time obtained from the second inflow rate evaluation formula like Q tn5 ... Inflow rate per unit time obtained from the second inflow rate evaluation formula like Formula 16 Q tn6 ... such third inflow evaluation such as a second inflow evaluation inflow inflow Q TNN ... third per unit time obtained from the inflow evaluation formula per unit time obtained from the equation Q tnn1 ... number 22 Simply obtained from the formula Third inflow third per unit time obtained from the inflow evaluation formula such as the evaluation amount of inflow per unit time obtained from the equation Q tnn3 ... number 24, such as inflow Q tnn2 ... number 23 per hour inflow Q m ... inflow per unit derived time by the use of inflow Q mv ... flow rate measuring device velocity v m measured by the per unit measured time by the inflow amount measuring apparatus 11 R ... Q t and Q m of the R 1 ... Q t1 and Q m ratio R 2 ... Q t2 and Q m ratio R 3 ... Q t3 and Q m ratio R n ... Q tn and Q m ratio R n1 ... Q tn1 and Q m ratio R n2 ... Q tn2 and Q m ratio R n3 ... Q tn3 and Q m ratio R nn ... Q tnn and Q m ratio R nn1 ... Q tnn1 and Q m R nn2 ... Q tnn2 to Q m ratio R nn3 ... Ratio of Q tnn3 and Q m D: Difference between Q t and Q m D 1 ... Difference between Q t1 and Q m D 2 ... Difference between Q t2 and Q m D 3 ... Difference between Q t3 and Q m the difference D n ... Q tn and the difference between Q m D n1 ... difference between the difference D n3 ... Q tn6 and Q m of the difference D n2 ... Q tn5 and Q m of Q tn4 and Q m f ... H and R approximate curve f indicating the relationship between the approximate curve f 1 ... H and R 1 approximate curve representing the relation between f 2 ... H and approximate curve f representing the relationship between the R 2 3 ... H and R 3 representing a relationship between n : an approximate curve representing the relationship between H and R n f n1 ... an approximate curve representing the relationship between H and R n1 f n2 ... an approximate curve representing the relationship between H and R n2 f n3 ... between H and R n3 represents the relationship between the approximation curve h 2 ... H and D 2 representing the relationship between the approximate curve h 1 ... H and D 1 representing a relation between the approximate curve h ... H and D representing the relationship Similar curves h 3 ... H and D 3 flow velocity the flow velocity distribution U s ... fluid when approximate curve U ... fluid passes through the building aperture is determined by calculation as it passes through the building aperture which represents the relationship between the distribution v m ... Flow velocity measured by the flow velocity measuring device v mH ... Flow velocity measured at the position where y is H v mL ... Flow velocity measured at the position where y is L v 0 ... Constant with velocity dimension v 1 ... y with velocity dimension Factor t: Time t 1 ... Inflow start time t 2 ... Inflow end time H b1 ... Height from the floor in the building to the lower part of the equipment H b2 ... Height from the floor in the building to the MHb portion of the equipment Height H b3 ... Height from the floor in the building to the top of the equipment M Hb ... Equipment position where the equipment damage probability changes P 1 ... Equipment damage probability when inundated to H b1 P 2 ... Water infiltrated to H b2 damage to the equipment at the time of the probability P 3 ... flooded up to H b3 Equipment damage probability of the time was.

Claims (14)

建屋内への流体の単位時間当たりの流入量を算出する流入量評価式の導出方法であって、
流入量評価式に関連するパラメータと建屋近傍の建屋外の浸水深とから単位時間当たりの流入量を算出することが可能な流入量評価式を第1の流入量評価式とした場合、
前記建屋開口の幅、前記建屋近傍の建屋外の浸水深、前記建屋開口の下部までの高さ、前記建屋開口の半径、流量係数、重力加速度のうち、少なくとも一つ以上のパラメータを用いて、前記第1の流入量評価式により単位時間当たりの流入量を算出し、
前記建屋開口もしくは前記建屋開口の近傍に設置された流入量計測装置により計測した単位時間当たりの流入量と、前記第1の流入量評価式により算出した単位時間当たりの流入量との関係から第2の流入量評価式を導出することを特徴とする流入量評価式導出方法。
A method for deriving an inflow rate evaluation formula for calculating an inflow rate per unit time of fluid into a building,
When the inflow rate evaluation formula capable of calculating the inflow rate per unit time from the parameters related to the inflow rate evaluation formula and the inundation depth outside the building near the building is the first inflow rate evaluation formula,
Using at least one parameter among the width of the building opening, the depth of inundation outside the building near the building, the height to the lower part of the building opening, the radius of the building opening, the flow coefficient, and the gravitational acceleration, Calculate the inflow per unit time by the first inflow rate evaluation formula,
From the relationship between the inflow per unit time measured by the inflow measuring device installed in the building opening or in the vicinity of the building opening and the inflow per unit time calculated by the first inflow evaluation formula 2. A method for deriving an inflow rate evaluation formula, wherein the inflow rate evaluation formula is derived.
請求項1に記載の流入量評価式導出方法において、
前記第1の流入量評価式により算出した単位時間当たりの流入量と、前記流入量計測装置により計測した単位時間当たりの流入量との比率を算出し、
前記比率と前記建屋近傍の建屋外の浸水深との関係を示す近似曲線を算出し、
前記第1の流入量評価式により算出した単位時間当たりの流入量と前記近似曲線との比率から前記第2の流入量評価式を導出することを特徴とする流入量評価式導出方法。
In the inflow amount evaluation formula deriving method according to claim 1,
Calculating the ratio between the inflow per unit time calculated by the first inflow rate evaluation formula and the inflow per unit time measured by the inflow rate measuring device;
Calculate an approximate curve indicating the relationship between the ratio and the inundation depth in the vicinity of the building,
An inflow rate evaluation formula derivation method, wherein the second inflow rate evaluation formula is derived from a ratio between the inflow rate per unit time calculated by the first inflow rate evaluation formula and the approximate curve.
請求項1に記載の流入量評価式導出方法において、
前記第1の流入量評価式により算出した単位時間当たりの流入量と、前記流入量計測装置により計測した単位時間当たりの流入量との差分を算出し、
前記差分と前記建屋近傍の建屋外の浸水深との関係を示す近似曲線を算出し、
前記第1の流入量評価式により算出した単位時間当たりの流入量と前記近似曲線との差分から前記第2の流入量評価式を導出することを特徴とする流入量評価式導出方法。
In the inflow amount evaluation formula deriving method according to claim 1,
Calculating the difference between the inflow per unit time calculated by the first inflow rate evaluation formula and the inflow per unit time measured by the inflow rate measuring device;
Calculate an approximate curve indicating the relationship between the difference and the depth of inundation near the building,
An inflow rate evaluation formula deriving method, wherein the second inflow rate evaluation formula is derived from a difference between the inflow rate per unit time calculated by the first inflow rate evaluation formula and the approximate curve.
請求項1から3のいずれか一項に記載の流入量評価式導出方法において、
指定された回数に応じて前記流入量評価式導出方法を逐次繰り返し、新たな流入量評価式を導出することを特徴とする流入量評価式導出方法。
In the inflow amount evaluation formula deriving method according to any one of claims 1 to 3,
An inflow rate evaluation formula deriving method characterized in that the inflow rate evaluation formula deriving method is sequentially repeated according to the designated number of times to derive a new inflow rate evaluation formula.
建屋内への流体の単位時間当たりの流入量を算出する流入量評価式の導出方法であって、
流入量評価式に関連するパラメータと建屋近傍の建屋外の浸水深とから単位時間当たりの流入量を算出することが可能な流入量評価式を第1の流入量評価式とした場合、
前記建屋開口の幅、前記建屋近傍の建屋外の浸水深、前記建屋開口の下部までの高さ、前記建屋開口の半径、流量係数、重力加速度のうち、少なくとも一つ以上のパラメータを用いて、前記第1の流入量評価式により単位時間当たりの流入量を算出し、
前記建屋開口の形状と大きさ、および流速計測装置により計測した前記流体の流速に基づき前記流体の流速分布を算出し、
当該算出した流速分布に基づき、単位時間当たりの流入量を算出し、
前記第1の流入量評価式により算出した単位時間当たりの流入量と前記流速分布に基づき算出した単位時間当たりの流入量との関係から第2の流入量評価式を導出することを特徴とする流入量評価式導出方法。
A method for deriving an inflow rate evaluation formula for calculating an inflow rate per unit time of fluid into a building,
When the inflow rate evaluation formula capable of calculating the inflow rate per unit time from the parameters related to the inflow rate evaluation formula and the inundation depth outside the building near the building is the first inflow rate evaluation formula,
Using at least one parameter among the width of the building opening, the depth of inundation outside the building near the building, the height to the lower part of the building opening, the radius of the building opening, the flow coefficient, and the gravitational acceleration, Calculate the inflow per unit time by the first inflow rate evaluation formula,
Calculate the flow velocity distribution of the fluid based on the shape and size of the building opening, and the flow velocity of the fluid measured by a flow velocity measuring device,
Based on the calculated flow velocity distribution, calculate the inflow per unit time,
The second inflow rate evaluation formula is derived from the relationship between the inflow rate per unit time calculated by the first inflow rate evaluation formula and the inflow rate per unit time calculated based on the flow velocity distribution. Method for deriving inflow rate evaluation formula.
請求項1から5のいずれか一項に記載した流入量評価式導出方法で導出した流入量評価式を用いる流入量導出方法であって、
前記建屋開口の幅、前記建屋近傍の建屋外の浸水深、前記建屋開口の下部までの高さ、前記建屋開口の半径、流量係数、重力加速度のうち、少なくとも一つ以上のパラメータを用いて、前記導出した流入量評価式による流体の流入開始から流入終了までの時間における積分値から流入量を導出することを特徴とする流入量導出方法。
An inflow rate derivation method using the inflow rate evaluation formula derived by the inflow rate evaluation formula derivation method according to any one of claims 1 to 5,
Using at least one parameter among the width of the building opening, the depth of inundation outside the building near the building, the height to the lower part of the building opening, the radius of the building opening, the flow coefficient, and the gravitational acceleration, An inflow amount derivation method, wherein the inflow amount is derived from an integral value in a time from the start of inflow of fluid to the end of inflow according to the derived inflow amount evaluation formula.
請求項6において導出した流入量を用いる機器のフラジリティ評価方法であって、
導出した流入量および前記建屋内の面積から前記建屋内浸水深を導出し、
前記建屋内における機器の設置高さおよび前記機器の損傷確率特性から、前記建屋内浸水深に対する前記機器の損傷確率を算出し、
前記建屋内浸水深、および前記建屋内浸水深に対する前記機器の損傷確率に基づき、建屋内の機器の損傷確率を導出することを特徴とする機器のフラジリティ評価方法。
A method for evaluating the fragility of a device using the inflow amount derived in claim 6,
Deriving the inundation depth of the building from the derived inflow amount and the area of the building,
From the installation height of the equipment in the building and the damage probability characteristics of the equipment, calculate the damage probability of the equipment with respect to the inundation depth of the building,
A device fragility evaluation method, wherein the device damage probability is derived based on the inundation depth of the building and the damage probability of the device with respect to the inundation depth of the building.
請求項7において算出した機器の損傷確率に基づき、津波の確率論的リスク評価を行う津波の確率論的リスク評価方法。   A tsunami probabilistic risk evaluation method for performing a tsunami probabilistic risk evaluation based on the damage probability of the device calculated in claim 7. 第1の流入量評価式および前記第1の流入量評価式に必要なパラメータ、繰り返し条件を入力する入力部と、
前記第1の流入量評価式および前記パラメータを用いて、単位時間当たりの流入量を算出する単位時間当たりの流入量導出部と、
単位時間当たりの流入量を計測する流入量計測装置および流速を計測する流速計測装置のうち、少なくともいずれか一方と、
前記流入量導出部で算出した単位時間当たりの流入量、および前記流入量計測装置により計測した単位時間当たりの流入量または前記流速計測装置により計測した流速から算出した単位時間当たりの流入量に基づき、第2の流入量評価式を導出する流入量評価式導出部と、
前記繰り返し条件に基づき、前記流入量評価式導出部を制御する制御部と、
を備え、
前記流入量評価式導出部は、前記流入量計測装置により計測した単位時間当たりの流入量または前記流速計測装置により計測した流速に基づき算出した単位時間当たりの流入量と、前記第1の流入量評価式および前記パラメータを用いて算出した単位時間当たりの流入量との関係から第2の流入量評価式を導出し、
前記繰り返し条件において、前記流入量評価式導出部で逐次繰り返し行われる処理の回数を指定することを特徴とする流入量評価式導出装置。
An input unit for inputting parameters necessary for the first inflow rate evaluation formula and the first inflow rate evaluation formula, and repetition conditions;
An inflow amount deriving unit per unit time for calculating an inflow amount per unit time using the first inflow amount evaluation formula and the parameter;
At least one of an inflow measuring device that measures the inflow per unit time and a flow velocity measuring device that measures the flow velocity; and
Based on the inflow per unit time calculated by the inflow amount deriving unit, the inflow per unit time measured by the inflow amount measuring device, or the inflow per unit time calculated from the flow velocity measured by the flow velocity measuring device An inflow rate evaluation formula deriving unit for deriving a second inflow rate evaluation formula;
A control unit for controlling the inflow rate evaluation formula deriving unit based on the repetition condition;
With
The inflow amount evaluation formula deriving unit includes an inflow amount per unit time measured by the inflow amount measuring device or an inflow amount per unit time calculated based on a flow velocity measured by the flow velocity measuring device, and the first inflow amount. A second inflow rate evaluation formula is derived from the relationship between the evaluation formula and the inflow rate per unit time calculated using the parameters,
An inflow rate evaluation formula deriving device characterized in that, in the repetition condition, the number of processes that are sequentially repeated by the inflow rate evaluation formula deriving unit is designated.
請求項9に記載の流入量評価式導出装置において、
前記第1の流入量評価式および前記パラメータを用いて算出した単位時間当たりの流入量と、前記流入量計測装置により計測した単位時間当たりの流入量または前記流速計測装置により計測した流速に基づき算出した単位時間当たりの流入量との比率を算出し、
前記比率と前記建屋近傍の建屋外の浸水深との関係を示す近似曲線を算出し、
前記第1の流入量評価式および前記パラメータを用いて算出した単位時間当たりの流入量と前記近似曲線との比率から前記第2の流入量評価式を導出することを特徴とする流入量評価式導出装置。
In the inflow amount evaluation formula deriving device according to claim 9,
Calculated based on the inflow rate per unit time calculated using the first inflow rate evaluation formula and the parameter, and the inflow rate per unit time measured by the inflow rate measuring device or the flow rate measured by the flow rate measuring device Calculate the ratio of the inflow per unit time
Calculate an approximate curve indicating the relationship between the ratio and the inundation depth in the vicinity of the building,
The inflow rate evaluation formula, wherein the second inflow rate evaluation formula is derived from the ratio between the inflow rate per unit time calculated using the first inflow rate evaluation formula and the parameter and the approximate curve. Derivation device.
請求項9に記載の流入量評価式導出装置において、
前記第1の流入量評価式および前記パラメータを用いて算出した単位時間当たりの流入量と、前記流入量計測装置により計測した単位時間当たりの流入量または前記流速計測装置により計測した流速に基づき算出した単位時間当たりの流入量との差分を算出し、
前記差分と前記建屋近傍の建屋外の浸水深との関係を示す近似曲線を算出し、
前記第1の流入量評価式および前記パラメータを用いて算出した単位時間当たりの流入量と前記近似曲線との差分から前記第2の流入量評価式を導出することを特徴とする流入量評価式導出装置。
In the inflow amount evaluation formula deriving device according to claim 9,
Calculated based on the inflow rate per unit time calculated using the first inflow rate evaluation formula and the parameter, and the inflow rate per unit time measured by the inflow rate measuring device or the flow rate measured by the flow rate measuring device Calculate the difference from the inflow per unit time
Calculate an approximate curve indicating the relationship between the difference and the depth of inundation near the building,
The second inflow rate evaluation formula is derived from the difference between the inflow rate per unit time calculated using the first inflow rate evaluation formula and the parameter and the approximate curve. Derivation device.
請求項9から11のいずれか一項に記載の流入量評価式導出装置を備える流入量導出装置であって、
前記建屋開口の幅、前記建屋近傍の建屋外の浸水深、前記建屋開口の下部までの高さ、前記建屋開口の半径、流量係数、重力加速度のうち、少なくとも一つ以上のパラメータを用いて、導出した流入量評価式による流体の流入開始から流入終了までの時間における積分値から流入量を導出することを特徴とする流入量導出装置。
An inflow amount deriving device comprising the inflow amount evaluation formula deriving device according to any one of claims 9 to 11,
Using at least one parameter among the width of the building opening, the depth of inundation outside the building near the building, the height to the lower part of the building opening, the radius of the building opening, the flow coefficient, and the gravitational acceleration, An inflow rate deriving device, characterized in that an inflow rate is derived from an integral value in a time from the start of inflow of fluid to the end of inflow according to the derived inflow rate evaluation formula.
請求項12に記載の流入量導出装置を備える機器のフラジリティ評価装置であって、
導出した流入量および前記建屋内の面積から前記建屋内浸水深を導出し、
前記建屋内における機器の設置高さおよび前記機器の損傷確率特性から、前記建屋内浸水深に対する前記機器の損傷確率を算出し、
前記建屋内浸水深、および前記建屋内浸水深に対する前記機器の損傷確率に基づき、建屋内の機器の損傷確率を導出することを特徴とする機器のフラジリティ評価装置。
A fragility evaluation device for equipment comprising the inflow amount derivation device according to claim 12,
Deriving the inundation depth of the building from the derived inflow amount and the area of the building,
From the installation height of the equipment in the building and the damage probability characteristics of the equipment, calculate the damage probability of the equipment with respect to the inundation depth of the building,
A device fragility evaluation apparatus that derives a damage probability of a device in a building based on the inundation depth of the building and a damage probability of the device with respect to the inundation depth of the building.
請求項13において算出した機器の損傷確率に基づき、津波の確率論的リスク評価を行う津波の確率論的リスク評価装置。   A tsunami probabilistic risk evaluation apparatus that performs a tsunami probabilistic risk evaluation based on the damage probability of the device calculated in claim 13.
JP2015135828A 2015-07-07 2015-07-07 Inflow rate evaluation formula deriving method and inflow rate evaluation formula deriving device, inflow rate deriving method and inflow rate deriving device, device fragility evaluation method and device fragility evaluation device, tsunami probabilistic risk evaluation method and tsunami probabilistic Risk assessment device Active JP6430338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015135828A JP6430338B2 (en) 2015-07-07 2015-07-07 Inflow rate evaluation formula deriving method and inflow rate evaluation formula deriving device, inflow rate deriving method and inflow rate deriving device, device fragility evaluation method and device fragility evaluation device, tsunami probabilistic risk evaluation method and tsunami probabilistic Risk assessment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015135828A JP6430338B2 (en) 2015-07-07 2015-07-07 Inflow rate evaluation formula deriving method and inflow rate evaluation formula deriving device, inflow rate deriving method and inflow rate deriving device, device fragility evaluation method and device fragility evaluation device, tsunami probabilistic risk evaluation method and tsunami probabilistic Risk assessment device

Publications (2)

Publication Number Publication Date
JP2017020787A true JP2017020787A (en) 2017-01-26
JP6430338B2 JP6430338B2 (en) 2018-11-28

Family

ID=57889418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015135828A Active JP6430338B2 (en) 2015-07-07 2015-07-07 Inflow rate evaluation formula deriving method and inflow rate evaluation formula deriving device, inflow rate deriving method and inflow rate deriving device, device fragility evaluation method and device fragility evaluation device, tsunami probabilistic risk evaluation method and tsunami probabilistic Risk assessment device

Country Status (1)

Country Link
JP (1) JP6430338B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018000047A1 (en) 2017-02-07 2018-08-09 Otsuka Electronics Co., Ltd. Optical Spectra Measuring Device and Optical Spectra Measuring Method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06341868A (en) * 1993-05-31 1994-12-13 Japan Radio Co Ltd Method for calculating quantity of discharged water
JPH10141203A (en) * 1996-11-05 1998-05-26 Toshiba Corp Method for preventing inundation in hydraulic power plant
JPH10508112A (en) * 1995-08-21 1998-08-04 マーシュ−マックバーニー インコーポレイテッド Self-calibrating open channel flowmeter
JP2002322727A (en) * 2001-04-26 2002-11-08 Yaskawa Electric Corp Operation support system
JP2004069615A (en) * 2002-08-08 2004-03-04 Kawatetsu Advantech Co Ltd Volumetric flow rate measurement method and device
WO2004038343A1 (en) * 2002-10-25 2004-05-06 Waste Water Control Aps Determining a flow in a wastewater system
JP2004246430A (en) * 2003-02-10 2004-09-02 Fuji Chichiyuu Joho Kk Time factor adjusting method in pipe network hydrologic accounting and pipe network hydrologic accounting device using the same method
JP2005055243A (en) * 2003-08-01 2005-03-03 Ryoko Eng Kk Inundation detector and inundation alarm system having the same
JP2006301475A (en) * 2005-04-25 2006-11-02 Kazuya Inoue Underground space flood/evacuation simulation system
WO2013001600A1 (en) * 2011-06-28 2013-01-03 中国電力株式会社 Inflow prediction device, and inflow prediction method and program
JP2015004245A (en) * 2013-06-21 2015-01-08 株式会社東芝 Water immersion prediction system, water immersion prediction method and program

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06341868A (en) * 1993-05-31 1994-12-13 Japan Radio Co Ltd Method for calculating quantity of discharged water
JPH10508112A (en) * 1995-08-21 1998-08-04 マーシュ−マックバーニー インコーポレイテッド Self-calibrating open channel flowmeter
JPH10141203A (en) * 1996-11-05 1998-05-26 Toshiba Corp Method for preventing inundation in hydraulic power plant
JP2002322727A (en) * 2001-04-26 2002-11-08 Yaskawa Electric Corp Operation support system
JP2004069615A (en) * 2002-08-08 2004-03-04 Kawatetsu Advantech Co Ltd Volumetric flow rate measurement method and device
WO2004038343A1 (en) * 2002-10-25 2004-05-06 Waste Water Control Aps Determining a flow in a wastewater system
JP2004246430A (en) * 2003-02-10 2004-09-02 Fuji Chichiyuu Joho Kk Time factor adjusting method in pipe network hydrologic accounting and pipe network hydrologic accounting device using the same method
JP2005055243A (en) * 2003-08-01 2005-03-03 Ryoko Eng Kk Inundation detector and inundation alarm system having the same
JP2006301475A (en) * 2005-04-25 2006-11-02 Kazuya Inoue Underground space flood/evacuation simulation system
WO2013001600A1 (en) * 2011-06-28 2013-01-03 中国電力株式会社 Inflow prediction device, and inflow prediction method and program
JP2015004245A (en) * 2013-06-21 2015-01-08 株式会社東芝 Water immersion prediction system, water immersion prediction method and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018000047A1 (en) 2017-02-07 2018-08-09 Otsuka Electronics Co., Ltd. Optical Spectra Measuring Device and Optical Spectra Measuring Method

Also Published As

Publication number Publication date
JP6430338B2 (en) 2018-11-28

Similar Documents

Publication Publication Date Title
Chiu et al. Maximum velocity and regularities in open-channel flow
Camenen et al. Assessment of methods used in 1D models for computing bed-load transport in a large river: the Danube River in Slovakia
Gisen et al. Revised predictive equations for salt intrusion modelling in estuaries
Moore et al. Monte Carlo approach for uncertainty analysis of acoustic Doppler current profiler discharge measurement by moving boat
US20200050718A1 (en) Simulation apparatus, simulation method, and storage medium
Zeng et al. Applications of computational fluid dynamics to flow ratings at prototype spillways and weirs. I: Data generation and validation
JP6430338B2 (en) Inflow rate evaluation formula deriving method and inflow rate evaluation formula deriving device, inflow rate deriving method and inflow rate deriving device, device fragility evaluation method and device fragility evaluation device, tsunami probabilistic risk evaluation method and tsunami probabilistic Risk assessment device
Temeepattanapongsa et al. Generic free-flow rating for cutthroat flumes
CN111311734A (en) Three-dimensional numerical simulation method for hydraulic characteristics of flood discharge system of uranium tailing pond
Dabrowski et al. Improvements in flow rate measurements by flumes
Bonakdari et al. Developing turbulent flows in rectangular channels: A parametric study
Moghadam et al. Numerical study of energy dissipation and block barriers in stepped spillways
Howes et al. Subcritical contraction for improved open-channel flow measurement accuracy with an upward-looking ADVM
WO2018003621A1 (en) River water level and flow rate calculating device and program
JP3821437B2 (en) River condition simulation method
Kayyun et al. Potential sediment within a reach in Tigris River
Sin Methodology for calculating shear stress in a meandering channel
Ahn et al. Uncertainty analysis for mean flow velocity and discharge measurements using floats based on large-scale experiments
Iqbal et al. Effect of Variation in Key Slope Ratios and Key Width Ratios on Energy Dissipation Over a Piano Key Weir
Rosić et al. Data assimilation for operational reservoir management on the Danube River
Riahi-Madvar et al. Uncertainty analysis of quasi-two-dimensional flow simulation in compound channels with overbank flows
Kayyun et al. 2D-Unsteady flow within a reach in Tigris River
Apostolidis et al. A case study on the interplay between numerical and physical hydraulic modelling as design tools on rookwood weir
Oertel Sensitivity analysis for discharge coefficients of Piano Key Weirs
Steenstra et al. Stone stability under stationary nonuniform flows

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170417

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181031

R150 Certificate of patent or registration of utility model

Ref document number: 6430338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150