JP2017020295A - Sound absorbing membrane material - Google Patents

Sound absorbing membrane material Download PDF

Info

Publication number
JP2017020295A
JP2017020295A JP2015140310A JP2015140310A JP2017020295A JP 2017020295 A JP2017020295 A JP 2017020295A JP 2015140310 A JP2015140310 A JP 2015140310A JP 2015140310 A JP2015140310 A JP 2015140310A JP 2017020295 A JP2017020295 A JP 2017020295A
Authority
JP
Japan
Prior art keywords
fabric
yarn
resin
sound
yarns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015140310A
Other languages
Japanese (ja)
Other versions
JP6531316B2 (en
Inventor
狩野 俊也
Toshiya Karino
俊也 狩野
加奈子 須田
Kanako Suda
加奈子 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiraoka and Co Ltd
Original Assignee
Hiraoka and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiraoka and Co Ltd filed Critical Hiraoka and Co Ltd
Priority to JP2015140310A priority Critical patent/JP6531316B2/en
Publication of JP2017020295A publication Critical patent/JP2017020295A/en
Application granted granted Critical
Publication of JP6531316B2 publication Critical patent/JP6531316B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a membrane material suitable for membrane ceiling construction of an indoor stadium, a gymnasium, an indoor pool, an event hall, a public hall, a ceremonial hall, a station building, an airport, a shopping mall, or the like, which is excellent in membrane material strength and sound absorbing effect, with light weight property and incombustibility, as a ceiling area constituting membrane material (membrane ceiling) installed on a ceiling of a building and a ceiling accessory (aerial membrane).SOLUTION: A sound absorbing membrane material is a fabric of void rate being 5% or less, including a resin coating yarn and multifilament yarn in knitting element. A specific gravity difference between the resin coating yarn and the multifilament yarn is 0.25 or larger, while, an occupied volume ratio of both yarns is 4:1-1:1. Especially, in a mode of single layer fabric, double fabric, or triplex fabric, a cross section of especially the resin coating yarn is flat, and the resin coating yarn has thermal expansion property especially.SELECTED DRAWING: Figure 1

Description

本発明は屋内競技場、体育館、屋内プール、イベントホール、公会堂、冠婚葬祭式場、駅舎、空港、ショッピングモールなどの天井に設置される天井面積構成膜材(膜天井)兼吸音膜材、または天井付帯物(空中膜)として建築基準法に準じる不燃性を具備し、震災に備え万が一、天井が崩落した場合にも深刻な人的被害を生じる可能性の低い軽量性とフレキシブル性を有し、特に騒音全般に対して偏在なく吸音効果に優れ、天井用途以外にも、間仕切り、ブラインド、日除けテントなどに応用可能な膜材に関する。   The present invention is an indoor stadium, gymnasium, indoor pool, event hall, public hall, ceremonial hall, station building, airport, shopping mall, etc. As a ceiling accessory (aerial film), it has non-combustibility in accordance with the Building Standards Act, and has lightness and flexibility that are unlikely to cause serious human damage even if the ceiling collapses in case of an earthquake. In particular, the present invention relates to a membrane material that is excellent in sound absorbing effect without being unevenly distributed with respect to noise in general, and can be applied to partitions, blinds, awning tents, etc. in addition to ceiling applications.

特許文献1に膜天井用ガラスクロスとして、バルキー加工されていないガラス繊維糸、及びバルキー加工されたガラス繊維糸を特定比率で併用した開口率0.02〜1.0%の二重織ガラスクロスが開示され、不燃性かつ光遮蔽性で、特に低周波領域(人の声)での吸音性に優れることが記載されている。特許文献1の膜天井用ガラスクロスでは特に高周波領域の騒音に対する吸音効果が不十分なものであり、従って現在、騒音全般に対して偏在なく吸音効果に優れ、かつ不燃性の膜天井用織物が望まれている。   Patent Document 1 discloses a double woven glass cloth having an opening ratio of 0.02 to 1.0%, which is a glass cloth yarn not subjected to a bulky process and a glass fiber thread subjected to a bulky process in a specific ratio as a glass cloth for a membrane ceiling. Is disclosed, and is non-flammable and light-shielding, and is particularly excellent in sound absorption in a low-frequency region (human voice). The glass ceiling glass cloth disclosed in Patent Document 1 has an insufficient sound absorbing effect especially for noise in a high frequency region. Therefore, currently, there is an excellent non-uniform sound absorbing effect for noise in general and a nonflammable film ceiling fabric. It is desired.

特許第5641168号公報Japanese Patent No. 5461168

本発明は、建築物の天井に設置される天井面積構成膜材(膜天井)兼吸音膜材、または天井付帯物(空中膜)として建築基準法に準じる不燃性を具備し、震災に備え万が一、天井が崩落した場合にも深刻な人的被害を生じる可能性の低い軽量性とフレキシブル性とを有し、特に騒音全般に対して偏在なく吸音効果に優れ、さらに照明や映像投影による演出も可能とすることで、屋内競技場、体育館、屋内プール、イベントホール、公会堂、冠婚葬祭式場、駅舎、空港、ショッピングモールなどの膜天井構築用、光天井膜構築用、さらには間仕切りやブラインド、日除けテントなどにも応用可能な吸音膜材の提供を課題とする。   The present invention has a nonflammability according to the Building Standard Act as a ceiling area constituting membrane material (membrane ceiling) and sound absorbing membrane material or ceiling accessory (aerial membrane) installed on the ceiling of a building, and is prepared for an earthquake disaster. In the unlikely event that the ceiling collapses, it has lightness and flexibility that are unlikely to cause serious human damage, and is particularly excellent in noise absorption without being unevenly distributed with respect to noise in general. It is also possible to build indoor ceilings, gymnasiums, indoor pools, event halls, public halls, ceremonial occasions, station buildings, airports, shopping malls, etc. for membrane ceiling construction, optical ceiling membrane construction, and even partitions and blinds An object is to provide a sound-absorbing film material that can also be applied to sun tents and the like.

上記課題を解決するために、樹脂コーティング糸条及びマルチフィラメント糸条を織編要素に含む織物において、樹脂コーティング糸条及びマルチフィラメント糸条の、互いに比重が異なる織編要素を特定の体積占有比率で用いること、特に単層織物、または二重織物、または三重織物の態様とすること、更に樹脂コーティング糸条の断面を扁平とすること、更に樹脂コーティング糸条を熱膨張性のものとすることで、得られた天井面積構成膜材(膜天井)、または天井付帯物(空中膜)としての織物膜材が、膜天井として十分な強度を有し、震災に備え万が一、天井が崩落した場合にも深刻な人的被害を生じる可能性の低い軽量性と不燃性とを有し、特に騒音全般に対して偏在なく吸音効果に優れ、さらに照明や映像投影による演出効果も可能であることを見出して本発明を完成するに至った。   In order to solve the above-mentioned problems, in a woven fabric including resin-coated yarn and multifilament yarn in a woven or knitted element, a specific volume occupation ratio of the resin-coated yarn and multifilament yarn having different specific gravities is specified. In particular, a single-layer woven fabric, a double-woven fabric, or a triple-woven fabric, a flat cross section of the resin-coated yarn, and a thermally expandable resin-coated yarn Thus, the obtained membrane material for the ceiling area (membrane ceiling) or the textile membrane material as a ceiling accessory (aerial membrane) has sufficient strength as a membrane ceiling, and the ceiling collapsed in case of earthquake disaster Lightweight and non-flammable, which is unlikely to cause serious human damage in some cases, and is particularly excellent in sound absorption without being unevenly distributed with respect to noise in general. They have found that it is a function and have completed the present invention.

すなわち本発明の吸音膜材は、樹脂コーティング糸条及びマルチフィラメント糸条を織編要素に含む空隙率5%以下の織物であって、前記樹脂コーティング糸条及びマルチフィラメント糸条との比重差が0.25以上、かつ両者糸条の占有体積比が4:1〜1:1であることが好ましい。互いに異なる比重を有する糸条を特定の占有体積比で用いることによって製織された織物には織目単位で異なる比重の糸条が露出したり、隠れたり立体交差することで本発明の吸音膜材全面に音響吸収性の異なる織目単位がランダムまたは規則的に点在する微小単位を構成して吸音効果を発現すること、すなわち、樹脂コーティング糸条とマルチフィラメント糸条との対比では、樹脂コーティング糸条の方がマルチフィラメント糸条よりも低い周波数領域の音を効果的に吸音し、同時にマルチフィラメント糸条の方は樹脂コーティング糸条よりも高い周波数領域の音を効果的に吸音することの相乗効果で、より広域の騒音に対する吸音効果の発現を可能とする。本発明において、樹脂コーティング糸条とマルチフィラメント糸条は、互いの比重差に応じて共通する周波数領域での吸音効果を有していてもよい。例えば比重差が小さいほど共通する周波数領域が増大し、比重差が大きいほど共通する周波数領域が減少する。従って、本発明の吸音膜材の効果をより高いものとするには、樹脂コーティング糸条とマルチフィラメント糸条の、互いの吸音周波数領域を異にするほど好ましいが、これに限るものではない。   That is, the sound-absorbing film material of the present invention is a woven fabric having a porosity of 5% or less including a resin-coated yarn and a multifilament yarn in a woven or knitted element, and has a specific gravity difference from the resin-coated yarn and the multifilament yarn. It is preferable that the occupied volume ratio of both yarns is 0.25 or more and 4: 1 to 1: 1. By using yarns having different specific gravities at a specific occupied volume ratio, the sound absorbing film material of the present invention can be obtained by exposing, hiding, or crossing three-dimensionally the yarns having different specific gravities in a woven fabric. A fine unit in which texture units with different sound absorption properties are randomly or regularly scattered on the entire surface to express a sound absorbing effect, that is, in contrast to resin-coated yarn and multifilament yarn, resin coating The yarn effectively absorbs sound in the lower frequency range than the multifilament yarn, and at the same time the multifilament yarn absorbs sound in the higher frequency region more effectively than the resin-coated yarn. Synergistic effects enable the creation of sound absorption effects over a wider range of noise. In the present invention, the resin-coated yarn and the multifilament yarn may have a sound-absorbing effect in a common frequency region depending on the specific gravity difference between them. For example, as the specific gravity difference is smaller, the common frequency region is increased, and as the specific gravity difference is larger, the common frequency region is decreased. Therefore, in order to further enhance the effect of the sound absorbing film material of the present invention, it is preferable that the sound absorption frequency regions of the resin-coated yarn and the multifilament yarn are different from each other, but this is not restrictive.

本発明の吸音膜材は、前記織編要素が、1)経糸条群及び緯糸条群、または2)経糸条群及び左斜上・右斜上バイアス糸条群で、かつ前記織物が単層織物、二重織物、及び三重織物、から選ばれた何れか1種であることが好ましい。互いに異なる比重を有する糸条によって製織されたこれら織物には織目単位で異なる比重の糸条が露出したり、隠れたり複雑に立体交差する効果で本発明の吸音膜材全面に音響吸収性の異なる織目単位(ランダム配置または規則的配置)が複雑に点在することによって吸音効果を発現すること、すなわち、樹脂コーティング糸条の方がマルチフィラメント糸条よりも低い周波数領域の音を効果的に吸音し、同時にマルチフィラメント糸条の方は樹脂コーティング糸条よりも高い周波数領域の音を効果的に吸音することの相乗効果で、より広域の騒音に対する吸音効果の発現を可能とする。   In the sound-absorbing membrane material of the present invention, the woven or knitted element is 1) a warp group and a weft group, or 2) a warp group and a left-upper / right-upward bias yarn group, and the woven fabric is a single layer. Any one selected from a woven fabric, a double woven fabric, and a triple woven fabric is preferable. These woven fabrics woven with yarns having different specific gravities have the effect that the yarns of different specific gravities are exposed, hidden, or confounded three-dimensionally in a woven unit, so that the sound absorbing film material of the present invention has a sound absorbing property on the entire surface. The sound absorption effect is expressed by the complicated interspersing of different texture units (random arrangement or regular arrangement), that is, the resin coated yarn is more effective in the lower frequency region than the multifilament yarn. At the same time, the multifilament yarn has a synergistic effect of effectively absorbing the sound in a higher frequency range than the resin-coated yarn, thereby enabling the sound absorption effect to be exerted on a wider range of noise.

本発明の吸音膜材は、前記樹脂コーティング糸条が扁平楕円断面を有し、その扁平楕円断面における高さ:幅の比が3:4〜1:4であることが好ましい。これによって
吸音効果をより向上することができる。
In the sound absorbing film material of the present invention, it is preferable that the resin-coated yarn has a flat elliptical cross section, and the ratio of height: width in the flat elliptical cross section is 3: 4 to 1: 4. As a result, the sound absorption effect can be further improved.

本発明の吸音膜材は、前記樹脂コーティング糸条が、マルチフィラメント糸条と樹脂被覆層とで構成され、前記樹脂被覆層が熱膨張性を有し、熱膨張後の前記空隙率を1%以下に閉塞することが好ましい。これによって吸音効果を向上させると同時に、火災による火炎熱(模擬的にはコーンカロリーメーター試験(ASTM-E1354)により吸音膜材に50kW/mの輻射熱を照射した時)で樹脂コーティング糸条の被覆部分が体積膨張して、織物の目詰まりを促し、吸音膜材の空隙率を0〜1%に閉塞する作用で火炎の突き抜けや有毒ガスの漏出を遮断することで建築基準法に準じる不燃性を具備する吸音膜材とする。 In the sound-absorbing film material of the present invention, the resin-coated yarn is composed of a multifilament yarn and a resin coating layer, the resin coating layer has a thermal expansion property, and the porosity after the thermal expansion is 1%. It is preferable to block the following. As a result, the sound absorption effect is improved and at the same time the flame heat from the fire (simulated when the radiant heat of 50 kW / m 2 is applied to the sound absorbing film material by the cone calorimeter test (ASTM-E1354)) Non-combustible in accordance with the Building Standards Act by blocking the penetration of flames and leakage of toxic gases through the action of blocking the volume of the coating to promote clogging of the fabric and blocking the porosity of the sound absorbing membrane material to 0 to 1%. A sound-absorbing film material having properties.

本発明の吸音膜材は、前記樹脂被覆層が、塩化ビニル系樹脂、層状無機化合物、及びモリブデン化合物粒子を主体に含むことが好ましい。層状無機化合物を含むことによって吸音効果を向上させると同時に、火災による火炎熱(模擬的にはコーンカロリーメーター試験(ASTM-E1354)により吸音膜材に50kW/mの輻射熱を照射した時)で樹脂コーティング糸条の被覆部分が体積膨張して、織物の目詰まりを促し、吸音膜材の空隙率を0〜1%に閉塞する作用で火炎の突き抜けや有毒ガスの漏出を遮断し、モリブデン化合物粒子の作用で燃焼炭化物を強固とする残滓層(塩素―モリブデン複合酸化物)を形成することで、火炎の突き抜けや有毒ガスの漏出などの遮断を長時間持続させることで建築基準法に準じる不燃性を具備する吸音膜材とする。 In the sound absorbing film material of the present invention, it is preferable that the resin coating layer mainly contains a vinyl chloride resin, a layered inorganic compound, and molybdenum compound particles. Improve sound absorption effect by including layered inorganic compound, and at the same time, with flame heat due to fire (simulated when radiant heat of 50 kW / m 2 is applied to sound absorbing film material by cone calorimeter test (ASTM-E1354)) Molybdenum compounds block the penetration of flame and leakage of toxic gases by the action of blocking the volume of the resin-coated yarn volume to promote clogging of the fabric and closing the porosity of the sound-absorbing membrane material to 0 to 1%. By forming a residue layer (chlorine-molybdenum composite oxide) that hardens the combustion carbide by the action of particles, it prevents non-combustibility in accordance with the Building Standards Act by maintaining the interruption of flame penetration and toxic gas leakage for a long time. A sound-absorbing film material having properties.

本発明の吸音膜材は、前記織物の片面に密度0.35〜0.75g/cmの気泡含有樹脂層が形成されて織物組織内に前記気泡含有樹脂層の一部が浸入し、その深さが前記織物の厚さに対して1〜35%であることが好ましい。これによってより吸音性を向上させることができる。 In the sound-absorbing film material of the present invention, a bubble-containing resin layer having a density of 0.35 to 0.75 g / cm 3 is formed on one side of the fabric, and a part of the bubble-containing resin layer enters the fabric structure, The depth is preferably 1 to 35% with respect to the thickness of the fabric. As a result, the sound absorption can be further improved.

本発明の吸音膜材は、前記気泡含有樹脂層が、塩化ビニル系樹脂、層状無機化合物、及びモリブデン化合物粒子を主体に含むことが好ましい。これによって吸音効果を向上させると同時に、火災時の火炎熱により層状無機化合物が体積膨張することで火炎の突き抜けや有毒ガスの漏出を遮断し、モリブデン化合物粒子の作用で燃焼炭化物を強固とする残滓層(塩素―モリブデン複合酸化物)を形成することで、火炎の突き抜けや有毒ガスの漏出などの遮断を長時間持続させることで建築基準法に準じる不燃性を具備する吸音膜材とする。   In the sound absorbing film material of the present invention, it is preferable that the bubble-containing resin layer mainly contains a vinyl chloride resin, a layered inorganic compound, and molybdenum compound particles. As a result, the sound absorption effect is improved, and at the same time, the layered inorganic compound expands in volume due to the heat of the flame during a fire, blocking the penetration of the flame and the leakage of toxic gas, and the residue of the combustion compound is strengthened by the action of the molybdenum compound particles. By forming a layer (chlorine-molybdenum composite oxide), it is possible to obtain a sound-absorbing film material that has nonflammability according to the Building Standards Law by maintaining the interruption of flame penetration and toxic gas leakage for a long time.

本発明によれば、建築物の天井に設置される天井面積構成膜材(膜天井)兼吸音膜材、または天井面積構成部材付帯物として建築基準法に準じる不燃性膜材を具備し、震災に備え万が一、天井が崩落した場合にも深刻な人的被害を生じる可能性の低い軽量性とフレキシブル性とを有し、互いに異なる比重を有する糸条で製織された織物を用いることによって、織目単位で異なる比重の糸条が露出したり、隠れたり立体交差することで本発明の吸音膜材全面に音響吸収性の異なる織目単位がランダム、あるいは規則的に点在するような微小単位を構成して吸音効果を発現し、特に樹脂コーティング糸条部分によるおよそ1000Hz未満の低周波領域での吸音効果と、マルチフィラメント糸条部分によるおよそ1000Hz以上の中〜高周波領域での吸音効果を個別に同時発現することで騒音全般に対して偏在なく吸音効果に優れ、さらに照明や映像投影による演出も可能とするので、屋内競技場、体育館、屋内プール、イベントホール、公会堂、冠婚葬祭式場、駅舎、空港、ショッピングモールなどの膜天井構築用、光天井膜構築用などは勿論、さらには間仕切り、ブラインド、日除けテントなどにも応用することができる。   According to the present invention, a ceiling area constituting membrane material (membrane ceiling) and a sound absorbing membrane material installed on the ceiling of a building, or a ceiling area constituting member attached material is provided with a non-combustible membrane material according to the Building Standard Act, In the unlikely event of a disaster, by using a woven fabric woven with yarns having lightness and flexibility that are unlikely to cause serious human damage even if the ceiling collapses, and having different specific gravity, The yarns with different specific gravity are exposed, hidden or three-dimensionally crossed by the texture unit, so that the texture units with different sound absorption are randomly or regularly scattered on the entire surface of the sound absorbing film material of the present invention. The unit constitutes a sound absorbing effect, especially the sound absorbing effect in the low frequency region below about 1000 Hz due to the resin-coated yarn portion, and the medium to high frequency region above about 1000 Hz due to the multifilament yarn portion. By simultaneously expressing the sound absorption effect at the same time, it is excellent in sound absorption effect without being unevenly distributed with respect to the overall noise, and also can be produced by lighting and video projection, so indoor stadium, gymnasium, indoor pool, event hall, public hall It can also be applied to partitioning, blinds, awning tents, etc., as well as for membrane ceiling construction and optical ceiling membrane construction for ceremonial occasions, station buildings, airports, shopping malls, etc.

本発明の吸音膜材の織編要素の一例を模式的に示す図The figure which shows typically an example of the woven / knitting element of the sound-absorbing film material of this invention 本発明の吸音膜材の織編要素の一例を模式的に示す図The figure which shows typically an example of the woven / knitting element of the sound-absorbing film material of this invention 本発明の吸音膜材の断面の一例を模式的に示す図The figure which shows typically an example of the cross section of the sound-absorbing film material of this invention 本発明の吸音膜材の断面の一例を模式的に示す図The figure which shows typically an example of the cross section of the sound-absorbing film material of this invention

本発明の吸音膜材は、樹脂コーティング糸条及びマルチフィラメント糸条を織編要素に含む空隙率5%以下(織編交点に生じる孔状隙間の総和の占有率)の織物であって、樹脂コーティング糸条及びマルチフィラメント糸条との比重差を0.25以上、かつ両者糸条の占有体積比を4:1〜1:1とする、単層織物、または二重織物、または三重織物である。このように異なる比重を有する2種の糸条を特定の占有体積比で用いることによって製織された織物には織目単位で異なる比重の糸条が露出したり、隠れたり、複雑に立体交絡することで吸音膜材全面に音響吸収性の異なる織目単位が点在する微小構成によって優れた吸音効果を発現すること、すなわち、樹脂コーティング糸条とマルチフィラメント糸条との対比では、樹脂コーティング糸条の方がマルチフィラメント糸条よりも低い周波数領域の音を効果的に吸音し、同時にマルチフィラメント糸条の方は樹脂コーティング糸条よりも高い周波数領域の音を効果的に吸音することの相乗効果で、より広域の騒音に対する吸音効果の発現を可能とする。この効果は、JIS A1405(垂直入射法)によるNoise Reduction Coefficient(NRC値)によって評価される。(NRC値は、250Hz、500Hz、1000Hz、2000Hzの各吸音率の算術平均値)本発明において、樹脂コーティング糸条とマルチフィラメント糸条は、互いの比重差に応じて共通する周波数領域での吸音効果を有していてもよい。例えば比重差が小さいほど共通する周波数領域が増大し、比重差が大きいほど共通する周波数領域が減少する。従って、本発明の吸音膜材の効果をより高いものとするには、樹脂コーティング糸条とマルチフィラメント糸条の、互いの吸音周波数領域を異にするほど好ましいが、これに限るものではない。このような樹脂コーティング糸条を含む配置(織編要素)によって得られる膜材の破壊強度、引裂強度を効果的に向上させる。樹脂コーティング糸条の占有体積が上記比率範囲を外れ、例えば上記比率を1:2とするような膜材ではおよそ1000Hz未満の低い周波数領域での吸音効果が低下することがある。樹脂コーティング糸条は、マルチフィラメント糸条全面に樹脂被覆層を設けたもので、マルチフィラメント糸条全体に樹脂含浸したもの、あるいはマルチフィラメント糸条の一部に樹脂含浸したものの態様を包含する。樹脂コーティング糸条及びマルチフィラメント糸条としては、本発明の吸音膜材の不燃性を十分なものとするために、ガラス繊維(比重2.49〜2.55)、シリカ繊維(比重2.15〜2.2)、アルミナ繊維(比重3.0〜3.6)、シリカアルミナ繊維(比重2.5〜3.0)、バサルト繊維(比重2.6〜2.8)、炭素繊維(比重1.73〜1.8)などの無機繊維、及びステンレス繊維(比重4.6)などの金属繊維、などの不燃性繊維の使用が好ましいが、ポリpフェニレンテレフタルアミド繊維、ポリpベンズアミド繊維、pフェニレン3,4オキシジフェニレンテレフタルアミド共重合繊維などのアラミド繊維(比重1.3〜1.45)、ポリpフェニレンベンゾイミダゾール繊維(比重1.3〜1.45)、ポリpフェニレンベンゾオキサゾール繊維(比重1.5〜1.6)、ポリpフェニレンベンズチアゾール繊維(比重比重1.5〜1.6)、ポリエーテルエーテルケトン繊維(比重1.69)、ポリスルホン繊維(比重1.24)などの耐熱性繊維を使用、または上述の不燃性繊維などと混用してもよい。同様に上述の不燃性繊維、及び耐熱性繊維などには、ポリプロピレン繊維(比重0.9)、ポリエチレン繊維(比重0.92)、ポリエステル繊維(比重1.38)、ナイロン繊維(比重1.14)、ビニロン繊維(比重1.27)などの合成繊維を混用することもできる。またセルロースの水酸基を、ホウ酸エステル化、またはリン酸エステル化、またはケイ酸エステル化した不燃化綿(比重1.6前後)、不燃化ケナフ(比重1.5前後)などの短繊維紡績糸を併用、または上述の不燃性繊維、耐熱性繊維、及び合成繊維などによる短繊維紡績糸と混紡した糸条も有効である。   The sound-absorbing membrane material of the present invention is a woven fabric having a porosity of 5% or less (the total occupation ratio of hole-like gaps generated at a woven-knitting intersection) including resin-coated yarn and multifilament yarn in a woven / knitted element. Single layer fabric, double fabric, or triple fabric in which the specific gravity difference between the coated yarn and the multifilament yarn is 0.25 or more and the occupied volume ratio of both yarns is 4: 1 to 1: 1. is there. By using two kinds of yarns having different specific gravities at a specific occupied volume ratio, the yarns woven by weaving are exposed, hidden, or complicatedly entangled. Therefore, it is possible to express an excellent sound absorbing effect by the fine structure in which the texture units having different sound absorption properties are scattered on the entire surface of the sound absorbing film material, that is, in the contrast between the resin coated yarn and the multifilament yarn, The multi-filament yarn effectively absorbs sound in the lower frequency range than the multifilament yarn, while the multi-filament yarn effectively absorbs sound in the higher frequency region than the resin-coated yarn. This makes it possible to produce a sound absorption effect for a wider range of noise. This effect is evaluated by Noise Reduction Coefficient (NRC value) according to JIS A1405 (normal incidence method). (NRC values are arithmetic average values of the respective sound absorption rates of 250 Hz, 500 Hz, 1000 Hz, and 2000 Hz.) In the present invention, the resin-coated yarn and the multifilament yarn have sound absorption in a common frequency region depending on the specific gravity difference between them. You may have an effect. For example, as the specific gravity difference is smaller, the common frequency region is increased, and as the specific gravity difference is larger, the common frequency region is decreased. Therefore, in order to further enhance the effect of the sound absorbing film material of the present invention, it is preferable that the sound absorption frequency regions of the resin-coated yarn and the multifilament yarn are different from each other, but this is not restrictive. The fracture strength and tear strength of the film material obtained by the arrangement (woven / knitted element) including such resin-coated yarns are effectively improved. When the occupied volume of the resin-coated yarn is out of the above ratio range, for example, in a film material in which the above ratio is 1: 2, the sound absorbing effect in a low frequency region of less than about 1000 Hz may be lowered. The resin-coated yarn includes a multifilament yarn provided with a resin coating layer, and includes an embodiment in which the entire multifilament yarn is impregnated with resin, or a portion of the multifilament yarn is impregnated with resin. As the resin-coated yarn and the multifilament yarn, in order to make the sound-absorbing film material of the present invention have sufficient incombustibility, glass fiber (specific gravity 2.49 to 2.55), silica fiber (specific gravity 2.15) To 2.2), alumina fiber (specific gravity 3.0 to 3.6), silica alumina fiber (specific gravity 2.5 to 3.0), basalt fiber (specific gravity 2.6 to 2.8), carbon fiber (specific gravity) It is preferable to use non-combustible fibers such as inorganic fibers such as 1.73 to 1.8) and metal fibers such as stainless steel fibers (specific gravity 4.6), but poly pphenylene terephthalamide fibers, poly p benzamide fibers, Aramid fiber (specific gravity 1.3 to 1.45) such as p-phenylene 3,4 oxydiphenylene terephthalamide copolymer fiber, poly-p-phenylenebenzimidazole fiber (specific gravity 1.3 to 1.45), poly-p Nylene benzoxazole fiber (specific gravity 1.5-1.6), poly-p-phenylenebenzthiazole fiber (specific gravity 1.5-1.6), polyether ether ketone fiber (specific gravity 1.69), polysulfone fiber (specific gravity 1) .24) may be used, or may be used in combination with the non-combustible fibers described above. Similarly, the above-mentioned noncombustible fiber and heat resistant fiber include polypropylene fiber (specific gravity 0.9), polyethylene fiber (specific gravity 0.92), polyester fiber (specific gravity 1.38), nylon fiber (specific gravity 1.14). ) And synthetic fibers such as vinylon fibers (specific gravity 1.27) can also be mixed. Short fiber spun yarns such as non-combustible cotton (specific gravity around 1.6) and non-combustible kenaf (specific gravity around 1.5) in which the hydroxyl group of cellulose is borated, phosphoric or silicated In combination with the above, or a yarn blended with the above-mentioned non-combustible fiber, heat-resistant fiber, synthetic fiber, and short fiber spun yarn is also effective.

樹脂コーティング糸条及びマルチフィラメント糸条において、マルチフィラメント糸条は、フィラメント直径3〜10μm、繊度69〜2223dtex、特に138〜1112dtexの糸条で、フィラメント数50〜500本、特に100〜300本を集束して無撚糸、または撚糸に束ね、その断面形状を円形、楕円形、及び扁平(横長に潰れた楕円形)とする糸条であり、本発明の吸音膜材においては特に扁平楕円断面のマルチフィラメント糸条が好ましい。扁平楕円断面のマルチフィラメント糸条を用いた樹脂コーティング糸条も同様に扁平楕円断面を有し、樹脂コーティング糸条の扁平楕円断面における高さ:幅の比が3:4〜1:4、特に2:3〜2:5の扁平楕円であることが、JIS A1405(垂直入射法)による吸音性向上のために好ましく、同時に扁平楕円断面の樹脂コーティング糸条を含むことによって得られる膜材の1000Hz以下の吸音効果をより向上する。上記マルチフィラメント糸条の比重は、フィラメント数50〜500本を収束する隙間を含むので、段落〔0015〕に記載した各種繊維の比重に対して、隙間の含有率に応じて0.65〜0.97を乗じた数値を見掛比重とするが、マルチフィラメント糸条から直接測定した比重が最も適切である。特に繊維の比重に0.65〜0.85を乗じた見掛比重のマルチフィラメント糸条とは、フィラメント同士が隙間を持って絡み合ったバルキー糸条であり、これらはタスラン加工糸、インターレース加工糸、ウーリー加工糸などである。具体的には、マルチフィラメント糸条の製造時に、フィラメントの開繊(解繊)混繊をタスランノズルによるエアージェット交絡により行ない、乱過流の渦中で巻き込みと絡みを強制することでランダムルーズに絡め、ループ、渦巻きコイル、や結び目を多数形成することで嵩高化した糸条である。あるいは縮れ性(芯鞘)フィラメント、または縮れ加工された(芯鞘)フィラメント同士を交絡して得た(芯鞘)バルキー糸条であってもよい。マルチフィラメント糸条で特にバルキー糸条など、繊維質で連続空間をもつ材料(表面積が大きい材料)に音が入射すると、音はその小さな空間内で乱反射を起し、フィラメントとの摩擦や抵抗、フィラメントの振動などによって、音エネルギーの一部が熱エネルギーとして消費される。樹脂コーティング糸条の見掛比重は、マルチフィラメント(バルキー)糸条の比重×マルチフィラメント(バルキー)糸条の体積占有率、と樹脂(含浸)被覆層の比重×樹脂(含浸)被覆層の体積占有率との和である。ここでマルチフィラメント(バルキー)糸条の体積占有率と樹脂(含浸)被覆層の体積占有率との和を1.0とするが、樹脂コーティング糸条から直接測定した比重が最も適切である。上述の樹脂コーティング糸条及びマルチフィラメント糸条との(見掛)比重差は0.25以上、好ましくは0.45以上が吸音効果の発現に優れ好ましい。   In the resin-coated yarn and the multifilament yarn, the multifilament yarn is a yarn having a filament diameter of 3 to 10 μm and a fineness of 69 to 2223 dtex, particularly 138 to 1112 dtex, and having 50 to 500 filaments, particularly 100 to 300 filaments. It is a yarn that is bundled and bundled into a non-twisted yarn or a twisted yarn, and the cross-sectional shape is circular, elliptical, and flat (an elliptical shape that is crushed horizontally). Multifilament yarn is preferred. Similarly, a resin-coated yarn using a multifilament yarn having a flat elliptical cross section has a flat elliptical cross section, and the ratio of height: width in the flat elliptical cross section of the resin-coated yarn is from 3: 4 to 1: 4. A flat ellipse of 2: 3 to 2: 5 is preferable for improving sound absorption by JIS A1405 (normal incidence method), and at the same time, a film material obtained by including a resin-coated yarn having a flat elliptical cross section is 1000 Hz. The following sound absorbing effect is further improved. Since the specific gravity of the multifilament yarn includes a gap that converges 50 to 500 filaments, the specific gravity of each fiber described in paragraph [0015] is 0.65 to 0 depending on the gap content. The value obtained by multiplying by .97 is the apparent specific gravity, but the specific gravity measured directly from the multifilament yarn is most appropriate. In particular, multifilament yarns with an apparent specific gravity obtained by multiplying the specific gravity of the fiber by 0.65 to 0.85 are bulky yarns in which filaments are intertwined with a gap, and these are Taslan processed yarn and interlaced yarn. , Wooly yarn and so on. Specifically, when producing multifilament yarns, filament opening (defibration) is performed by air jet entanglement using a Taslan nozzle, and entrainment and entanglement are forced in a turbulent vortex to make it random and loose It is a yarn that has become bulky by forming many entanglements, loops, spiral coils, and knots. Alternatively, it may be a crimped (core-sheath) filament, or a (core-sheath) bulky yarn obtained by entanglement between crimped (core-sheath) filaments. When sound is incident on a fibrous material with continuous space (a material with a large surface area), such as a bulky yarn, especially multi-filament yarn, the sound causes irregular reflection in the small space, friction and resistance with the filament, A part of sound energy is consumed as heat energy by vibration of the filament. The apparent specific gravity of the resin-coated yarn is: the specific gravity of the multifilament (bulky) yarn x the volume occupation ratio of the multifilament (bulky) yarn, and the specific gravity of the resin (impregnated) coating layer x the volume of the resin (impregnated) coating layer. It is the sum of the occupation ratio. Here, the sum of the volume occupancy of the multifilament (bulky) yarn and the volume occupancy of the resin (impregnated) coating layer is 1.0, but the specific gravity measured directly from the resin coated yarn is most appropriate. The (apparent) specific gravity difference between the above-mentioned resin-coated yarn and multifilament yarn is 0.25 or more, and preferably 0.45 or more is excellent in the expression of the sound absorption effect.

樹脂コーティング糸条の芯糸及びマルチフィラメント糸条が、特にガラス繊維によるマルチフィラメント糸条の場合、ガラス繊維はE(無アルカリ)ガラス、C(アルカリ含)ガラス、Gガラス、Aガラス、Sガラス、Dガラス、DEガラスなど何れのガラス組成であってもよく、シランカップリング剤による表面改質処理がガラス繊維に施されていることが樹脂コーティング糸条を構成する樹脂被覆層との密着性向上の観点において好ましい。シランカップリング剤は具体的に、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、3−グリシドキシプロピルトリメトキシシラン、3−メルカプトプロピルメチルジメトキシシランなどから選ばれた1種以上、の他、有機チタネート化合物を使用してもよい。   When the core yarn of the resin-coated yarn and the multifilament yarn are multifilament yarn made of glass fiber, the glass fiber is E (no alkali) glass, C (containing alkali) glass, G glass, A glass, S glass. Any glass composition such as D glass or DE glass may be used, and the surface modification treatment with a silane coupling agent is applied to the glass fiber, so that the adhesion with the resin coating layer constituting the resin coating yarn It is preferable in terms of improvement. Specific examples of the silane coupling agent include vinyltrimethoxysilane, vinyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-acryloxypropyltrimethoxysilane, and 3-amino. One or more selected from propyltrimethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, 3-glycidoxypropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane and the like In addition, organic titanate compounds may be used.

樹脂コーティング糸条の樹脂被覆層は熱膨張性を有し、火災による火炎熱(模擬的にはコーンカロリーメーター試験(ASTM-E1354)により吸音膜材に50kW/mの輻射熱を照射した時)で体積膨張し、吸音膜材の空隙率を0〜1%までに閉塞する作用で火炎の突き抜けや有毒ガスの漏出を遮断することで建築基準法に準じる不燃性を具備する吸音膜材とする。樹脂コーティング糸条の樹脂被覆層を熱膨張性とするためには、樹脂被覆層に層状無機化合物を1.5〜10質量%含み、層状無機化合物には、スメクタイト系粘土鉱物、合成スメクタイト、セリサイト、フッ素雲母、及び膨張黒鉛から選ばれた1種以上を使用する。このような樹脂被覆層は熱可塑性樹脂をベースに層状無機化合物を主体に含み、樹脂被覆層の比重1.3〜2.5とする。樹脂コーティング糸条を構成する樹脂被覆層に用いる熱可塑性樹脂成分は、塩化ビニル系樹脂(可塑剤を塩化ビニル系樹脂100質量部に対して30〜100質量部含有する軟質組成物)、塩化ビニル系共重合体樹脂、オレフィン樹脂、オレフィン系共重合体樹脂、ウレタン樹脂、ウレタン系共重合体樹脂、アクリル樹脂、アクリル系共重合体樹脂、酢酸ビニル樹脂、酢酸ビニル系共重合体樹脂、スチレン樹脂、スチレン系共重合体樹脂、ポリエステル樹脂、およびポリエステル系共重合体樹脂、フッ素樹脂(ポリテトラフルオロエチレン)、フッ素系共重合体樹脂などが使用でき、樹脂被覆層の熱可塑性樹脂を異にする複数種の樹脂コーティング糸条を併用することもできる。 The resin coating layer of the resin-coated yarn has thermal expansibility, and flame heat due to fire (simulated when radiant heat of 50 kW / m 2 is applied to the sound-absorbing film material by cone calorimeter test (ASTM-E1354)) The sound-absorbing film material has non-combustibility according to the Building Standards Act by blocking the penetration of the flame and leakage of toxic gas by the action of expanding the volume of the sound-absorbing film to close the porosity of the sound-absorbing film material to 0 to 1%. . In order to make the resin coating layer of the resin-coated yarn thermally expandable, the resin coating layer contains 1.5 to 10% by mass of a layered inorganic compound, and the layered inorganic compound includes smectite clay mineral, synthetic smectite, sericite. One or more selected from sites, fluorine mica, and expanded graphite are used. Such a resin coating layer mainly contains a layered inorganic compound based on a thermoplastic resin, and has a specific gravity of 1.3 to 2.5 of the resin coating layer. The thermoplastic resin component used in the resin coating layer constituting the resin-coated yarn is a vinyl chloride resin (a soft composition containing 30 to 100 parts by mass of a plasticizer with respect to 100 parts by mass of the vinyl chloride resin), vinyl chloride. Copolymer resin, olefin resin, olefin copolymer resin, urethane resin, urethane copolymer resin, acrylic resin, acrylic copolymer resin, vinyl acetate resin, vinyl acetate copolymer resin, styrene resin , Styrene copolymer resin, polyester resin, polyester copolymer resin, fluororesin (polytetrafluoroethylene), fluorocopolymer resin, etc. can be used, and the thermoplastic resin of the resin coating layer is different. A plurality of types of resin-coated yarns can be used in combination.

層状無機化合物としては、スメクタイト系粘土鉱物、合成スメクタイト、セリサイト、フッ素雲母、及び膨張黒鉛などが挙げられ、何れも熱で体積膨張する特性を有していて、これら層状無機化合物は樹脂被覆層に対して1.5〜10質量%含むことが好ましい。スメクタイト系粘土鉱物としては、2:1型スメクタイトで、ケイ素と酸素からなる層(シリカ四面体層)が、アルミニウムと酸素からなる層(アルミニウム八面体層)を挟んだ、「シリカ四面体層/アルミニウム八面体層/シリカ四面体層」構造層を一単位とし、この構造層が積重したものである。2八面体型スメクタイトの具体例として、モンモリロナイト、バイデライト、ノントロナイトなど、3八面体型スメクタイトの具体例として、サポナイト、ヘクトライト、ソーコナイト、スティーブンサイトなどが挙げられる。合成スメクタイトは、シリカ四面体(四配位)層とアルミニウム八面体(六配位)層が交互に積重した構造で、シリカ/アルミが2:1の質量比率が好ましい。セリサイト(絹雲母)は白雲母の微細なもので平均粒子径1〜20μmのものである。またフッ素雲母はNa四珪素雲母を有機交換処理した平均粒子径1〜20μmのフッ素四珪素雲母が使用できる。また、スメクタイト系粘土鉱物(モンモリロナイトなど)の層間に四級アンモニウム化合物を置換変性したインターカレーション型の層状化合物なども使用できる。膨張黒鉛は、天然黒鉛を濃硫酸、硝酸、セレン酸などと、濃硝酸、過塩素酸塩、過マンガン酸塩、重クロム酸塩などによる処理品が使用でき、これらはグラファイト状層構造を有する結晶質化合物のため、熱による発生ガスで膨張することで不燃性の炭化層を形成する。   Examples of layered inorganic compounds include smectite clay minerals, synthetic smectites, sericite, fluorinated mica, and expanded graphite, all of which have the property of volume expansion by heat. These layered inorganic compounds are resin-coated layers. It is preferable to contain 1.5-10 mass% with respect to. The smectite clay mineral is 2: 1 type smectite, and a layer composed of silicon and oxygen (silica tetrahedral layer) sandwiches a layer composed of aluminum and oxygen (aluminum octahedral layer), “silica tetrahedral layer / The “aluminum octahedral layer / silica tetrahedral layer” structure layer is a unit, and the structure layers are stacked. Specific examples of dioctahedral smectite include montmorillonite, beidellite, nontronite, and specific examples of trioctahedral smectite include saponite, hectorite, soconite, and stevensite. The synthetic smectite has a structure in which a silica tetrahedral (tetracoordinate) layer and an aluminum octahedral (hexacoordinate) layer are alternately stacked, and a mass ratio of silica / aluminum is preferably 2: 1. Sericite (sericite) is fine muscovite and has an average particle diameter of 1 to 20 μm. As the fluorine mica, fluorine tetrasilicon mica having an average particle diameter of 1 to 20 μm obtained by organic exchange treatment of Na tetrasilicon mica can be used. Further, an intercalation type layered compound in which a quaternary ammonium compound is substituted and modified between layers of a smectite clay mineral (such as montmorillonite) can also be used. For expanded graphite, natural graphite can be treated with concentrated sulfuric acid, nitric acid, selenic acid, etc. and concentrated nitric acid, perchlorate, permanganate, dichromate, etc., and these have a graphite-like layer structure. Since it is a crystalline compound, it expands with a gas generated by heat to form a nonflammable carbonized layer.

また特に樹脂コーティング糸条の樹脂被覆層は、塩化ビニル系樹脂、層状無機化合物、及びモリブデン化合物粒子を主体に含むことが好ましく、塩化ビニル系樹脂(可塑剤を塩化ビニル樹脂100質量部に対して30〜100質量部含有する軟質組成物)100質量部に対して層状無機化合物を1.5〜10質量部、モリブデン化合物粒子を1.5〜10質量部を含むことが好ましい。モリブデン化合物粒子として、三酸化モリブデン、モリブデン酸、リンモリブデン酸、二硫化モリブデン、モリブデン酸ナトリウム、七モリブデン酸六アンモニウム、モリブデン酸二アンモニウム、モリブデン酸カルシウム、モリブデン酸カルシウム亜鉛、モリブデン酸カリウム、モリブデン酸炭酸カルシウムなどが挙げられ、特に塩素含有樹脂(塩化ビニル樹脂、軟質塩化ビニル樹脂、塩化ビニリデン樹脂、塩素化ポリエチレン)などとの併用により、これら塩素含有樹脂の燃焼炭化物を強固とする残滓層(塩素−モリブデン複合酸化物)を形成することで火炎の突き抜けや有毒ガスの漏出などの遮断率を高めることで建築基準法に準じる不燃性を具備することができる。   In particular, the resin coating layer of the resin-coated yarn preferably contains a vinyl chloride resin, a layered inorganic compound, and molybdenum compound particles as main components, and a vinyl chloride resin (plasticizer with respect to 100 parts by mass of the vinyl chloride resin). Soft composition containing 30 to 100 parts by mass) It is preferable that the layered inorganic compound is contained in an amount of 1.5 to 10 parts by mass and the molybdenum compound particles are contained in an amount of 1.5 to 10 parts by mass with respect to 100 parts by mass. As molybdenum compound particles, molybdenum trioxide, molybdic acid, phosphomolybdic acid, molybdenum disulfide, sodium molybdate, hexaammonium molybdate, diammonium molybdate, calcium molybdate, zinc zinc molybdate, potassium molybdate, molybdic acid Residue layer (chlorine) that strengthens the combustion carbide of these chlorine-containing resins, especially when used in combination with chlorine-containing resins (vinyl chloride resin, soft vinyl chloride resin, vinylidene chloride resin, chlorinated polyethylene), etc. -Molybdenum composite oxide) can increase non-combustibility according to the Building Standards Act by increasing the blocking rate of flame penetration and toxic gas leakage.

また樹脂被覆層には難燃剤粒子を併用することができ、難燃剤粒子は、a).金属リン酸塩、金属有機リン酸塩、リン酸誘導体、ポリリン酸アンモニウム、及びポリリン酸アンモニウム誘導体(メラミン変性体など)などのリン原子含有化合物、b).(イソ)シアヌレート系化合物、(イソ)シアヌル酸系化合物、グアニジン系化合物(ジシアンジアミドなど)、尿素系化合物(ジメチロール尿素など)、及び、これらの誘導体化合物(例えばメラミンシアヌレート)などの窒素原子含有化合物、c).金属水酸化物(水酸化アルムニウムなど)、金属酸化物(酸化アンチモンなど)、金属炭酸塩化合物(塩基性炭酸マグネシウムなど)、金属硫酸塩化合物(硫酸バリウムなど)、ホウ酸化合物(ホウ酸亜鉛など)、及び無機系化合物複合体(ハイドロタルサイトなど)などの無機系化合物、d).臭素置換有機化合物、塩素置換有機化合物から選ばれた1種以上である。   In addition, flame retardant particles can be used in combination with the resin coating layer. Phosphorus atom-containing compounds such as metal phosphates, metal organic phosphates, phosphoric acid derivatives, ammonium polyphosphates, and ammonium polyphosphate derivatives (such as melamine-modified products), b). Nitrogen-containing compounds such as (iso) cyanurate compounds, (iso) cyanuric acid compounds, guanidine compounds (such as dicyandiamide), urea compounds (such as dimethylolurea), and derivative compounds thereof (eg, melamine cyanurate) C). Metal hydroxide (such as aluminum hydroxide), metal oxide (such as antimony oxide), metal carbonate compound (such as basic magnesium carbonate), metal sulfate compound (such as barium sulfate), boric acid compound (such as zinc borate) ), And inorganic compounds such as inorganic compound composites (hydrotalcite, etc.), d). One or more selected from a bromine-substituted organic compound and a chlorine-substituted organic compound.

樹脂コーティング糸条において、樹脂被覆層の厚さは0.03mm〜0.5mm、特に0.05mm〜0.3mmが好ましい。一方、樹脂コーティング糸条はマルチフィラメント芯糸全面に樹脂被覆層を設けたもので、マルチフィラメント芯糸全体に樹脂含浸したもの、あるいはマルチフィラメント芯糸の一部に樹脂含浸したものの態様を包含する。この態様において、マルチフィラメント芯糸と樹脂被覆層との質量比は3:1〜1:2、好ましくは3:2〜2:3である。特に本発明において好ましい樹脂被覆層は、塩化ビニル樹脂(可塑剤、安定剤、難燃剤などを配合した軟質〜半硬質塩化ビニル樹脂を包含する)、スチレン系共重合体樹脂(難燃剤などを配合)、ウレタン系共重合体樹脂(難燃剤などを配合)、およびフッ素系共重合体樹脂などの熱可塑性樹脂である。これらの熱可塑性樹脂はマルチフィラメント糸条をコーティングダイス口金に芯通しした押出成型機に用い、熱可塑性樹脂をホットメルト状態としてコーティングダイスの口金ノズル孔から押出すと同時に、繊維糸条を引き取ることでマルチフィラメント芯糸の表面に樹脂被覆層を連続的に被覆することで樹脂コーティング糸条を得る。また塩化ビニル樹脂ペーストゾルのような粘重液状物、有機溶剤に可溶化した難燃性樹脂溶液、エマルジョンやラテックスのような水性樹脂ベースの難燃剤組成物にマルチフィラメント芯糸をディッピングし、これを熱処理乾燥することで樹脂コーティング糸条を得てもよい。これらの樹脂被覆層には必要に応じて有機顔料、無機顔料、パール粉顔料、アルミ粉顔料、光輝性顔料、蓄光顔料、充填剤、紫外線吸収剤、劣化防止剤、接着剤、防黴剤、抗菌剤、防虫剤、帯電防止剤、香料など公知の添加剤を含むことができる。   In the resin-coated yarn, the thickness of the resin coating layer is preferably 0.03 mm to 0.5 mm, particularly preferably 0.05 mm to 0.3 mm. On the other hand, the resin-coated yarn is provided with a resin coating layer on the entire surface of the multifilament core yarn, and includes a mode in which the entire multifilament core yarn is impregnated with resin, or a part of the multifilament core yarn is impregnated with resin. . In this embodiment, the mass ratio between the multifilament core yarn and the resin coating layer is 3: 1 to 1: 2, preferably 3: 2 to 2: 3. Particularly preferred resin coating layers in the present invention include vinyl chloride resins (including soft to semi-rigid vinyl chloride resins containing plasticizers, stabilizers, flame retardants, etc.) and styrene copolymer resins (including flame retardants). ), Urethane copolymer resins (containing a flame retardant, etc.), and thermoplastic resins such as fluorine copolymer resins. These thermoplastic resins are used in an extrusion molding machine in which multifilament yarns are cored through a coating die die, and the thermoplastic resin is extruded in a hot melt state from the die nozzle hole of the coating die, and at the same time, the fiber yarn is taken up. The resin-coated yarn is obtained by continuously coating the surface of the multifilament core yarn with the resin coating layer. Also, the multifilament core yarn is dipped into a viscous liquid such as vinyl chloride resin paste sol, a flame retardant resin solution solubilized in an organic solvent, or an aqueous resin-based flame retardant composition such as emulsion or latex. The resin-coated yarn may be obtained by drying with heat treatment. These resin coating layers include organic pigments, inorganic pigments, pearl powder pigments, aluminum powder pigments, glitter pigments, phosphorescent pigments, fillers, UV absorbers, deterioration inhibitors, adhesives, antifungal agents, as necessary. Known additives such as antibacterial agents, insect repellents, antistatic agents, and fragrances can be included.

樹脂コーティング糸条及びマルチフィラメント糸条を織編要素に含み、両者糸条の占有体積比を4:1〜1:1とする織編要素の例として、1)経糸条群及び緯糸条群、または2)経糸条群及び左斜上・右斜上バイアス糸条群で、単層織物、二重織物、及び三重織物の何れかの態様である。織編要素が1)経糸条群及び緯糸条群の場合、双方の群に樹脂コーティング糸条、及びマルチフィラメント糸条を規則的交互配置またはランダム配置で含む態様、或いは樹脂コーティング糸条を経糸条群に、マルチフィラメント糸条を緯糸条群に使い分けた態様、またはこの反対の使い分け態様が例示でき、これらは各々、単層織物、二重織物、及び三重織物の何れかの態様である。また三軸織物として織編要素が2)経糸条群及び左斜上・右斜上バイアス糸条群の場合も同様に、双方の群に樹脂コーティング糸条、及びマルチフィラメント糸条を規則的交互配置またはランダム配置で含む態様、或いは樹脂コーティング糸条を経糸条群に、マルチフィラメント糸条をバイアス糸条群に使い分けた態様、またはこの反対の使い分け態様が例示でき、これらは各々、単層織物、二重織物、及び三重織物の何れかの態様で、織編要素1)及び2)の織編交点の孔状隙間の総和を空隙率と定義した時の値は5%以下、特に2.5%以下が好ましい。孔状隙間に音が入射すると、特定の周波数において共鳴振動が生じ、孔状隙間で空気が振動し、音エネルギーを減衰させるので、孔状隙間の孔径は直径0.05〜1.0mmの範囲で、好ましくは0.05〜0.5mmと特に小さく、孔状隙間数が(タテ8個×ヨコ8個)〜(タテ60個×ヨコ60個)/25.4mmの範囲で、特に(タテ12個×ヨコ12個)〜(タテ33個×ヨコ33個)/25.4mmをピークに吸音効果を高いものとする。この孔状隙間と、互いに異なる比重を有する糸条による織編要素によって、織目単位で異なる比重の糸条が露出したり、隠れたり立体交差することで本発明の吸音膜材全面に音響吸収性の異なる織目単位がランダム、あるいは規則的に点在するような微小単位を構成して吸音効果を発現し、具体的に、樹脂コーティング糸条の方がマルチフィラメント糸条よりも低い周波数領域の音を効果的に吸音し、同時にマルチフィラメント糸条の方は樹脂コーティング糸条よりも高い周波数領域の音を効果的に吸音することの相乗効果で、より広域の騒音に対する吸音効果の発現を可能とする。 Examples of woven and knitted elements that include resin-coated yarns and multifilament yarns in the woven and knitted elements, and the occupied volume ratio of both yarns is 4: 1 to 1: 1. 1) Warp yarn groups and weft yarn groups, Or 2) The warp yarn group and the upper left and upper right bias yarn groups are any one of the single-layer fabric, the double fabric, and the triple fabric. In the case where the woven or knitted element is a warp yarn group and a weft yarn group, a mode in which both groups include resin-coated yarns and multifilament yarns arranged regularly or randomly, or resin-coated yarns are warp yarns A group can be exemplified by a mode in which multifilament yarns are properly used as weft yarn groups, or a mode in which these are opposite, and these are each a mode of single-layer fabric, double fabric, and triple fabric. Similarly, in the case of triaxial woven and knitted elements 2) Warp yarn group and left oblique upper and right oblique upper bias yarn group, resin coated yarn and multifilament yarn are regularly alternated in both groups. An embodiment including arrangement or random arrangement, an embodiment in which a resin-coated yarn is used as a warp yarn group, a multifilament yarn is used as a bias yarn group, or an opposite usage manner can be exemplified. In the case of any one of the double woven fabric and the triple woven fabric, the value when the sum of the pore gaps at the woven / knitting intersections of the woven / knitting elements 1) and 2) is defined as the porosity is 5% or less, particularly 2. 5% or less is preferable. When sound enters the hole gap, resonance vibration occurs at a specific frequency, air vibrates in the hole gap, and sound energy is attenuated. Therefore, the hole diameter of the hole gap is in the range of 0.05 to 1.0 mm. Preferably, the number of hole gaps is in the range of (vertical 8 × horizontal 8) to (vertical 60 × horizontal 60) /25.4 mm 2 , especially ( vertical 12 × horizontal 12) and - (33 × width 33 length) of 25.4 mm 2 peak higher the sound absorbing effect. Due to the woven and knitted elements made of yarns having different specific gravities from the hole gaps, the yarns having different specific gravities are exposed, hidden, or three-dimensionally crossed, so that the entire surface of the sound-absorbing membrane material of the present invention absorbs sound. A fine unit in which weave units with different properties are randomly or regularly interspersed to produce a sound absorption effect. Specifically, resin-coated yarns have a lower frequency range than multifilament yarns. The multifilament yarns are effective in absorbing sound in a higher frequency range than the resin-coated yarns. Make it possible.

単層織物は、平織物、2/2ななこ(バスケット)織物、2/2畝織物、綾織物:2/1綾織物、2/2綾織物、3/1斜文(四枚綾)、3/1破れ斜文(四枚綾)、3/2斜文(五枚綾)、4/1斜文(五枚綾)、5/1斜文(六枚綾)、4/2斜文(六枚綾)、1・3/1・1斜文(六枚綾)など、朱子織物:2飛び4/1朱子(五枚朱子)、3飛び4/1朱子(五枚朱子)、2飛び3/2朱子(五枚朱子)、3飛び3/2朱子(五枚朱子)など、及びこれらの変化平織物、変化綾織物、変化朱子織物など、さらに蜂巣織物、梨子地織物、破れ斜文織物、昼夜朱子織物、もじり織物(紗織物、絽織物)、縫取織物、ラッセル編物などが使用でき、これらは質量0.2〜1.2kg/m、空隙率5%以下(織編交点に生じる孔状隙間の総和の占有率)、好ましくは2.5%以下、かつ通気度(JIS L1096:フラジール法)3〜50cc/cm2/秒、好ましくは10〜25cc/cm2/秒を満たすものが例示される。 Single-layer fabrics are plain fabrics, 2/2 Nanako (basket) fabrics, 2/2 cocoon fabrics, twill fabrics: 2/1 twill fabrics, 2/2 twill fabrics, 3/1 obliques (four sheets twill), 3 / 1 Torn text (4 sheets Aya), 3/2 Text (5 sheets Aya), 4/1 Text (5 sheets Aya), 5/1 Text (6 sheets Aya), 4/2 Text ( 6 sheets Aya), 1/3/1, 1 Oblique (6 sheets Aya), etc. Ako fabric: 2 jump 4/1 Auko (5 sheets Ako), 3 jump 4/1 Auko (5 sheets Auko), 2 jumps 3/2 Auko (5 sheets Auko), 3 Jump 3/2 Auko (5 sheets Auko), etc., and these changed plain fabrics, changed twill fabrics, changed satin fabrics, honeycomb fabric, pear fabrics, tearing obliques textile, day and night satin product, twisting the fabric (gauze fabric, Roori thereof), Nuito fabrics, such as Russell knitting can be used, they are mass 0.2~1.2kg / m 2, void ratio of 5% or less (textile intersection Of hole-like gaps Occupancy of the sum), preferably 2.5% or less, and an air permeability (JIS L1096: the Frazier method) 3~50cc / cm 2 / sec, preferably exemplified those satisfying 10~25cc / cm 2 / sec .

二重織物は、表経・裏経の経糸条及び表緯・裏緯の緯糸条を用いて上下2枚に重なり合った織物で、上部の織物が表経糸条と表緯糸条とで空隙率10%以下(織編交点に生じる孔状隙間の総和の占有率)を成し、下部の織物が裏経糸条と裏緯糸条とで空隙率10%以下(織編交点に生じる孔状隙間の総和の占有率)を成し、質量0.4〜2.4kg/m、共有空隙率5%以下(積重した織物に生じる孔状隙間の重なり部分の総和の占有率)、好ましくは2.5%以下、かつ通気度(JIS L1096:フラジール法)3〜50cc/cm2/秒、好ましくは10〜25cc/cm2/秒を満たすものが例示される。同様に表経・裏経の経糸条及び表斜・裏斜のバイアス糸条を用いて上下2枚に重なり合った織物で、上部の織物が表経糸条と表斜糸条とで空隙率10%以下(織編交点に生じる孔状隙間の総和の占有率)を成し、下部の織物が裏経糸条と裏斜糸条とで空隙率10%以下(織編交点に生じる孔状隙間の総和の占有率)を成し、質量0.4〜2.4kg/m、共有空隙率5%以下(積重した織物に生じる孔状隙間の重なり部分の総和の占有率)、好ましくは1〜2.5%、かつ通気度(JIS L1096:フラジール法)3〜50cc/cm2/秒、好ましくは10〜25cc/cm2/秒を満たすものが例示される。通気度が3cc/cm2/秒未満だと反響抑止効果を悪くすることがあり、50cc/cm2/秒を超えると吸音効果を悪くすることがある。共有空隙率は吸音膜材を水平に置き、これを垂直方向から観察したときに上部の織物の空隙部と下部の織物の空隙部とが互いに重なり合って、2枚の織物を貫通する共有空隙部の総和の単位面積当たりの占有率である。すなわち上部の織物の糸条が下部の織物の空隙部に重なって配置され、あるいは下部の織物の糸条が上部の織物の空隙部に重なって配置されることで共有空隙率は小さい値となり、重なり具合によっては見掛け0となる。経二重織物は1組の緯糸条に表経と裏経が組織して一重の織物の裏にも1つ余分の経糸条が織付いたもので表経と裏経の配列は1:1、2:1、3:1などである。緯二重織物は1組の経糸条に表緯と裏緯が組織して一重の織物に別の緯糸条が織付いたもので表緯と裏緯の配列は1:1、2:1、3:1などである。経緯二重織物は2枚の織物を同一織機で織り、その織糸条で上下2枚の織物(各々質量0.4〜1.2kg/m)を接結したものである。 The double woven fabric is a woven fabric that overlaps the upper and lower two sheets using the front and back warp yarns and the front and back weft yarns, and the upper fabric has a porosity of 10 between the front warp yarn and the front weft yarn. % Or less (occupation ratio of the total pore clearance generated at the weaving and knitting intersection), and the lower woven fabric has a porosity of 10% or less between the back warp and the back weft (total of the pore clearance generated at the weaving and knitting intersection) 2 ), a mass of 0.4 to 2.4 kg / m 2 , a common void ratio of 5% or less (occupation ratio of the sum of overlapping portions of pore-shaped gaps generated in the stacked fabrics), preferably 2. Examples are those satisfying 5% or less and air permeability (JIS L1096: Fragil method) of 3 to 50 cc / cm 2 / sec, preferably 10 to 25 cc / cm 2 / sec. Similarly, the upper and lower fabrics are overlapped using upper / lower warp and front / back warp bias yarns, and the upper fabric has a porosity of 10% between the front warp and the front warp yarn. The following is made up (occupation ratio of the sum of the hole gaps generated at the weaving and knitting intersections), and the lower fabric has a void ratio of 10% or less between the back warp and the back diagonal threads (the sum of the hole gaps occurring at the weaving and knitting intersections) ), A mass of 0.4 to 2.4 kg / m 2 , a shared porosity of 5% or less (a total occupancy ratio of overlapping portions of pore-shaped gaps generated in the stacked fabrics), preferably 1 to 1 Examples are those satisfying 2.5% and air permeability (JIS L1096: Fragil method) of 3 to 50 cc / cm 2 / sec, preferably 10 to 25 cc / cm 2 / sec. When the air permeability is less than 3 cc / cm 2 / second, the echo suppression effect may be deteriorated, and when it exceeds 50 cc / cm 2 / second, the sound absorption effect may be deteriorated. The common void ratio is that the sound-absorbing membrane material is placed horizontally, and when this is observed from the vertical direction, the void portion of the upper fabric and the void portion of the lower fabric overlap each other and pass through the two fabrics. Is the occupancy rate per unit area. In other words, the upper woven yarn is arranged to overlap the lower woven fabric gap, or the lower woven yarn is arranged to overlap the upper woven void, and the shared porosity becomes a small value, Apparently 0 depending on the degree of overlap. A warp double woven fabric is composed of a set of weft and warp warps and warp warps, and an extra warp thread is woven on the back of a single woven fabric. 2: 1, 3: 1, etc. A weft double woven fabric consists of a set of warps and wefts with a weft and back weaving and a single weaving with another weft, and the arrangement of wefts and wefts is 1: 1, 2: 1, 3: 1 and so on. The background double woven fabric is obtained by weaving two woven fabrics with the same loom, and connecting the upper and lower two woven fabrics (with a mass of 0.4 to 1.2 kg / m 2 ) with the yarns.

同様に三重織物は、表経・中経・裏経の経糸条及び表緯・中緯・裏緯の緯糸条を用いて上中下の織物3枚が積重した織物で、上部織物、中部織物、下部織物、各々が、空隙10%以下(織編交点に生じる孔状隙間の総和の占有率)、かつ質量0.2〜1.0kg/mで成り、質量0.6〜3.0kg/m共有空隙率5%以下(積重した織物に生じる孔状隙間の重なり部分の総和の占有率)、好ましくは2.5%以下、かつ通気度(JIS L1096:フラジール法)3〜50cc/cm2/秒、好ましくは10〜25cc/cm2/秒を満たすもので、同様に経三重織物(1組の緯糸条に表経・中経・裏経が組織)、緯三重織物(1組の経糸条に表緯・中緯・裏緯が組織)、経緯三重織物:a)3枚の織物を同一織機で織り、その織糸条で下部織物から中部織物に接結し、中部織物から上部織物に接結したもの、b)上部織物から中部織物に接結し、中部織物から下部織物に接結したもの、c)上部織物から中部織物に接結し、下部織物から中部織物に接結したもの、d)上中下3枚の織物の耳部だけを接結したものが例示できる。通気度が3cc/cm2/秒未満だと反響抑止効果を悪くすることがあり、50cc/cm2/秒を超えると吸音効果を悪くすることがある。 Similarly, a triple woven fabric is a woven fabric in which three upper, middle, and lower fabrics are stacked using front, middle, and back warp yarns and front, middle, and back weft yarns. Each of the woven fabric and the lower woven fabric is composed of a void of 10% or less (occupation ratio of the total pore-shaped gap generated at the knitting intersection), and a mass of 0.2 to 1.0 kg / m 2 , and a mass of 0.6 to 3. 0 kg / m 2 shared porosity 5% or less (occupation ratio of the sum of overlapping portions of the pore-shaped gaps generated in the stacked fabric), preferably 2.5% or less, and air permeability (JIS L1096: Frazier method) 3 50 cc / cm 2 / sec, preferably those satisfying 10~25cc / cm 2 / sec, likewise through triple fabric (a set of tissue Omotekei, medium through-Urakei weft strip), weft triple fabric ( A set of warps, wefts, middle wefts, and back weaves)), weft triple woven fabrics: a) Weaving three woven fabrics with the same loom, and lower weaving with the woven yarns From the middle fabric to the upper fabric, b) from the upper fabric to the middle fabric, from the middle fabric to the lower fabric, c) from the upper fabric to the middle fabric Examples are those that are connected and connected from the lower fabric to the middle fabric, and d) only the ears of the upper, middle, and lower three fabrics are connected. When the air permeability is less than 3 cc / cm 2 / second, the echo suppression effect may be deteriorated, and when it exceeds 50 cc / cm 2 / second, the sound absorption effect may be deteriorated.

二重織物は具体的にフライシャットル織機、エアージェット織機、スルーザー織機、レピア織機、ウォータージェット織機などを用い、経樹脂コーティング糸条及び緯マルチフィラメント糸条からなる右上がりの2/1斜文(綾)織の組織を有する上部織物と、経樹脂コーティング糸条及び緯マルチフィラメントからなる左上がりの2/1斜文(綾)織の組織を有する下部織物とを、下部織物の経樹脂コーティング糸条が所定本数おきに上部織物の緯マルチフィラメント糸条に浮くようにして接結点で繋ぎ合わせ、同時に下部織物の緯マルチフィラメントが所定本数おきに上部織物の経樹脂コーティング糸条に浮くようにして接結点で繋ぎ合わせた二重織物で、上部織物と下部織物との接結点は1平方インチ面積当たり8〜50ヶ所設けることが好ましい。このような二重織物を用いた吸音膜材においては、織布を右上がりの2/1斜文(綾)織の組織を有する上部織物と、左上がりの2/1斜文(綾)織の組織を有する下部織物とからなる二重織物とすることで、上部織物と下部織物の斜文(綾)織の組織が交差してそれぞれの織物の空隙部同士が完全に重なることがないので共有空隙率5%以下(好ましくは2.5%以下)を満たす。この二重織物は共有空隙率5%以下で、特に見掛け0%であっても通気度(JIS L1096:フラジール法)3〜50cc/cm2/秒を満たすことができる。これは上部織物と下部織物との界面の隙間が通気部として機能し、上部織物と下部織物との空隙部を立体的に連結する作用による。このような立体的な連続通気部は音響の拡散吸収に効果的に寄与する。また、経樹脂コーティング糸条と緯樹脂コーティング糸条との織交点は熱癒着により互いに固定されたものは吸音膜材の形態安定性に優れ、特に織り交点に熱溶融固定が一切なされないか、熱癒着が軽微なものは吸音膜材を柔軟とする。織交点の熱癒着による固定は、二重織物全体に及んでいてもよく、また上下左右に等間隔、もしくはランダムな部分的な織り交点の熱癒着であってもよい。 The double woven fabric is specifically a fly shuttle loom, air jet loom, slewer loom, rapier loom, water jet loom, etc. Aya) An upper woven fabric having a weave structure and a lower woven fabric having a 2/1 oblique (twill) weave structure composed of warp resin-coated yarns and weft multifilaments, and a lower resin warp resin-coated yarn The yarns are floated on the weft multifilament yarns of the upper fabric every predetermined number, and joined at the connection point. At the same time, the weft multifilaments of the lower fabric are floated on the warp resin-coated yarns of the upper fabric. This is a double woven fabric joined together at the connection points, and the connection points between the upper and lower fabrics should be 8-50 per square inch area. It is preferred. In the sound-absorbing membrane material using such a double woven fabric, the woven fabric has an upper fabric having a 2/1 oblique (twill) weave structure and a 2/1 oblique (weave) weave fabric. By forming a double woven fabric composed of a lower woven fabric having the structure of the upper fabric and the lower woven fabric, it is possible that the texture of the upper woven fabric and the lower woven fabric intersect and the voids of the respective woven fabrics do not completely overlap each other. The shared porosity is 5% or less (preferably 2.5% or less). This double woven fabric has a common porosity of 5% or less, and can satisfy an air permeability (JIS L1096: Frazier method) of 3 to 50 cc / cm 2 / sec even when the apparent porosity is 0%. This is because the gap at the interface between the upper fabric and the lower fabric functions as a ventilation portion, and the space between the upper fabric and the lower fabric is three-dimensionally connected. Such a three-dimensional continuous ventilation portion effectively contributes to acoustic diffusion absorption. In addition, the woven intersection between the warp resin coated yarn and the weft resin coated yarn is fixed to each other by thermal adhesion, and is excellent in the form stability of the sound absorbing film material. Those with slight thermal adhesion make the sound-absorbing membrane material flexible. The fixing of the woven intersections by thermal adhesion may extend over the entire double woven fabric, or may be performed at equal intervals vertically or horizontally or at random partial woven intersections.

同様に三重織物では、各織物の斜文線が隣接する織物の斜文線と交差するものは各織物の斜文線が隣接する織物の斜文線と交差するため、それぞれの織物の空隙部同士が完全に重なることがないので共有空隙率5%以下を満たす。このような三重織物は共有空隙率5%以下で、特に見掛け0%であっても通気度(JIS L1096:フラジール法)3〜50cc/cm2/秒を満たすことができる。これは上部織物と中部織物の界面、中部織物と下部織物との界面の2つの界面の隙間が通気部として機能し、上部織物、中部織物、下部織物の各々の空隙部を立体的に連結する作用による。このような立体的な連続通気部は音響の拡散吸収に効果的に寄与する。また二重織物、及び三重織物構は、右上がりのM/N斜文(綾)織の組織を有する上部織物と、左上がりのM/N斜文(綾)織の組織を有する下部織物とからなる二重織物(M=2〜5の整数,N=1)または(M=1,N=2〜5の整数)、また、右上がりのM/N斜文(綾)織の組織を有する上部織物及び下部織物と、左上がりのM/N斜文(綾)織の組織を有する中部織物とからなる三重織物(M=2〜5の整数,N=1)または(M=1,N=2〜5の整数)などである。同様に本発明の吸音膜材は四重織物、五重織物などであっても同様に相応の吸音効果を得る。 Similarly, in the triple woven fabric, each fabric's oblique line intersects with the adjacent fabric's oblique line because each fabric's oblique line intersects with the adjacent fabric's oblique line. Since they do not completely overlap each other, the shared porosity is 5% or less. Such a triple woven fabric has a common porosity of 5% or less, and can satisfy an air permeability (JIS L1096: Frazier method) of 3 to 50 cc / cm 2 / sec even when the apparent porosity is 0%. This is because the gap between the interface between the upper fabric and the middle fabric, and the interface between the middle fabric and the lower fabric functions as a ventilation part, and three-dimensionally connects the voids of the upper fabric, the middle fabric, and the lower fabric. By action. Such a three-dimensional continuous ventilation portion effectively contributes to acoustic diffusion absorption. In addition, the double woven fabric and the triple woven fabric structure are an upper woven fabric having an M / N oblique (twill) weave structure and a lower woven fabric having an M / N oblique (twill) weave structure. A double woven fabric (M = 2 to 5, an integer of N = 1) or (M = 1, an integer of N to 2 to 5), and an M / N oblique (twill) weave structure A triple woven fabric (M = 2 to 5 integers, N = 1) or (M = 1,) consisting of an upper woven fabric and a lower woven fabric, and a middle woven fabric having an M / N oblique (twill) weave structure N is an integer of 2 to 5. Similarly, even if the sound-absorbing film material of the present invention is a quadruple woven fabric or a five-fold woven fabric, the corresponding sound absorbing effect is obtained.

同様に、平織物、模紗織、五枚朱子織(2飛び4/1朱子、3飛び4/1朱子、2飛び3/2朱子、3飛び3/2朱子)による重ね織物の場合は織物(上部/下部、または上部/中部/下部)の組織ズレ部分が互いに同一部分に重ならないように織組織の組織ズレ部分を表組織と裏組織で相反する場所に上下左右に1完全組織ずらした織物とする。真正面からは隙間がずれているため共有空隙率5%以下を満たすが、特に見掛け0%であっても通気度(JIS L1096:フラジール法)3〜50cc/cm2/秒を満たすことができる。これは織物(上部/下部、または上部/中部/下部)の1つまたは2つの界面の隙間が通気部として機能し、各々の織物の空隙部を立体的に連結する作用による。このような立体的な連続通気部は音響の拡散吸収に効果的に寄与する。また、経糸条及び左斜上・右斜上バイアス糸条を用いた織物2枚または3枚が重なり合った三軸重ね織物で、各部の織物の空隙率10%以下で成り、質量0.8〜3.0kg/m、共有空隙率5%以下(好ましくは2.5%以下)、かつ通気度(JIS L1096:フラジール法)3〜50cc/cm2/秒、好ましくは10〜25cc/cm2/秒を満たす三軸平織物、または三軸バスケット織物または三軸模紗織物など、さらに経糸条、緯糸条及び左斜上・右斜上バイアス糸条を用いた織物を2枚または3枚が重なり合った四軸重ね織物で、各部の織物の空隙率10%以下で成り、質量0.8〜3.0kg/m、共有空隙率5%以下(好ましくは2.5%以下)、かつ通気度(JIS L1096:フラジール法)3〜50cc/cm2/秒、好ましくは10〜25cc/cm2/秒を満たす四軸平織物、または四軸バスケット織物または四軸模紗織物などであってもよい。上述した織物において樹脂コーティング糸条同士の織交点は熱癒着により互いに固定されたものは吸音膜材の形態安定性に優れ、織り交点に熱溶融固定が一切なされないものや熱癒着が軽微なものは吸音膜材のフレキシブル性をより柔軟とする。織交点の熱癒着による固定は、織物全体に及んでいてもよく、また上下左右に等間隔、もしくはランダムな部分的な織り交点の熱癒着であってもよい。 Similarly, in the case of layered woven fabrics of plain fabric, imitation weave, five-sheet satin weave (2 jump 4/1 Auko, 3 jump 4/1 Auko, 2 jump 3/2 Auko, 3 jump 3/2 Auko) A fabric in which the tissue misalignment of the upper / lower or upper / middle / lower) is shifted by one complete structure vertically and horizontally so that the texture misalignment of the weaving structure does not overlap the same part. And Since the gap is shifted from the front, the common porosity is 5% or less, but even if the apparent porosity is 0%, the air permeability (JIS L1096: Frazier method) can be 3 to 50 cc / cm 2 / sec. This is because the gap between one or two interfaces of the fabrics (upper / lower, or upper / middle / lower) functions as a ventilation portion and connects the voids of each fabric in a three-dimensional manner. Such a three-dimensional continuous ventilation portion effectively contributes to acoustic diffusion absorption. Further, it is a triaxial woven fabric in which two or three woven fabrics using warp yarns and bias yarns on the left oblique upper and right oblique upper portions are overlapped, each having a void ratio of 10% or less and a mass of 0.8 to 3.0 kg / m 2 , shared porosity 5% or less (preferably 2.5% or less), and air permeability (JIS L1096: Frazier method) 3 to 50 cc / cm 2 / sec, preferably 10 to 25 cc / cm 2 2 or 3 fabrics using warp yarns, weft yarns, and upper left and upper right bias yarns, such as triaxial flat fabrics satisfying / sec, triaxial basket fabrics or triaxial mimetic fabrics A four-ply woven fabric that overlaps and has a porosity of 10% or less for each portion of fabric, a mass of 0.8 to 3.0 kg / m 2 , a shared porosity of 5% or less (preferably 2.5% or less), and ventilation Degree (JIS L1096: Frazier method) 3-50 cc / cm 2 / sec, preferably It may be a four-axis flat woven fabric satisfying 10 to 25 cc / cm 2 / sec, a four-axis basket woven fabric, a four-axis mimic woven fabric, or the like. In the woven fabric mentioned above, the woven intersections between the resin-coated yarns fixed to each other by thermal adhesion are excellent in the form stability of the sound-absorbing membrane material, and the fusion intersections are not heat-melted or fixed at all and the thermal adhesion is slight. Makes the sound absorbing film material more flexible. The fixing of the woven intersections by thermal adhesion may extend over the entire woven fabric, or may be performed at equal intervals vertically or horizontally, or at random partial woven intersections.

本発明の吸音膜材の態様には、織物の片面に密度0.35〜0.75g/cmの気泡含有樹脂層が形成されて織物組織内に気泡含有樹脂層の一部が浸入し、その深さが織物の厚さに対して1〜35%であることが好ましい。気泡含有樹脂層はフォーム状組成物のコーティング、及び固化処理により形成され、それによって織物組織内にも気泡含有樹脂層の一部が浸入することで通気度(JIS L1096:フラジール法)3〜50cc/cm2/秒、好ましくは10〜25cc/cm2/秒を有し、より反響減衰効果を向上させる。音の入射による空気振動が気泡含有樹脂層に含む気泡部分に伝播して乱反射や振動して生じる粘性摩擦により、音エネルギーが熱エネルギーに変換消費されることで吸音効果を発現する。例えばフォーム状組成物は、2液型シリコーンエラストマーペースト(有機溶剤を粘度調整剤に含むことができる)、シリコーン樹脂エマルジョンによる樹脂組成物(塗料)、軟質ポリ塩化ビニル樹脂を主体とするペーストゾル(整泡剤としてシリコーンオイルを1〜5質量部含有する)、などを用い、これらを攪拌機(ステンレスや金属を数本組み合わせて茶筅形にしたブレードを装着)により機械攪拌して気泡を強制的に巻き込んだホイップを、そのまま織物の片面にナイフコーティングし、それを固化させることで織物への含浸と被覆を同時に成し、これによって形成された気泡含有樹脂層はその一部が織物内に含浸部を有し、この含浸部の最大深さを織物の厚さに対して1〜35%とすることで織物内部にも実質的に気泡を含有する構成を成すことで反響減衰効果による吸音特性をより向上させる。気泡含有樹脂層の密度が0.75g/cmを超えると反響減衰効果による吸音特性が不十分となることがあり、密度が0.35g/cmより小さいと気泡含有樹脂層の摩耗強度を悪くすることがある。 In the aspect of the sound-absorbing film material of the present invention, a bubble-containing resin layer having a density of 0.35 to 0.75 g / cm 3 is formed on one side of the fabric, and a part of the bubble-containing resin layer enters the fabric structure, The depth is preferably 1 to 35% with respect to the thickness of the fabric. The cell-containing resin layer is formed by coating with a foam-like composition and solidification treatment, whereby a part of the cell-containing resin layer penetrates into the woven fabric structure so that the air permeability (JIS L1096: Frazier method) is 3 to 50 cc. / Cm < 2 > / sec, preferably 10 to 25 cc / cm < 2 > / sec, further improving the echo attenuation effect. The sound energy is converted into heat energy and consumed by viscous friction caused by diffused reflection and vibration caused by the air vibration caused by the sound propagation to the bubble part included in the bubble-containing resin layer. For example, the foam composition is a two-pack type silicone elastomer paste (an organic solvent can be included in the viscosity modifier), a resin composition (paint) using a silicone resin emulsion, a paste sol mainly composed of a soft polyvinyl chloride resin ( For example, containing 1 to 5 parts by mass of silicone oil as a foam stabilizer), and mechanically stirring them with a stirrer (equipped with a blade made of a combination of several stainless steels and metals) to force bubbles. The wound whip is directly knife coated on one side of the fabric and solidified to simultaneously impregnate and coat the fabric. A part of the bubble-containing resin layer formed thereby is impregnated in the fabric. The maximum depth of the impregnated portion is 1 to 35% with respect to the thickness of the fabric, so that the inside of the fabric substantially contains bubbles. Further improve the sound absorption characteristics of echo attenuation effect by forming a formation. If the density of the bubble-containing resin layer exceeds 0.75 g / cm 3 , the sound absorption characteristics due to the echo attenuation effect may be insufficient. If the density is less than 0.35 g / cm 3 , the wear strength of the bubble-containing resin layer may be reduced. May be wrong.

本発明において気泡含有樹脂層は、その一部である含浸部が化学発泡剤含有組成物のコーティング、180〜220℃の加熱により化学発泡剤を熱分解ガス化させ、ガス発生痕として生成した気泡を含み、密度0.35〜0.75g/cmに形成された通気度(JIS L1096:フラジール法)3〜50cc/cm2/秒を有する気泡含有樹脂層がより反響減衰効果を向上させる手段として好ましい。化学発泡剤含有組成物は可塑剤を含む軟質塩化ビニル樹脂ペーストゾルに化学発泡剤として、アゾジカルボアミド、オキシビスベンゼンスルフォニルヒドラジド、ベンゼンスルフォニルヒドラジド、p−トルエンスルフォニルヒドラジド、ジアゾアミノベンゼン、アゾビスイソブチロニトリルなどから選ばれた1種以上を1〜10質量部含有する粘重なペーストゾル組成物を織物の片面にナイフコーティングすることで織物への含浸と被覆を同時に成し、これによって形成された気泡含有樹脂層はその一部が織物内に含浸部を有し、この含浸部の最大深さを織物の厚さに対して1〜35%とする。そして180〜220℃の加熱により化学発泡剤を熱分解ガス化させ、ガス発生痕として生成した気泡を気泡含有樹脂層と含浸部に含み、気泡含有樹脂層の密度を0.35〜0.75g/cmとする。また気泡含有樹脂層は軟質塩化ビニル樹脂、またはスチレン系共重合体樹脂に、上記化学発泡剤を1〜10質量部含有する組成物をカレンダー成型したフィルムとして織物上に150〜175℃で熱溶融積層して形成し、180〜220℃の加熱により化学発泡剤を熱分解ガス化させ、ガス発生痕として生成した気泡を気泡含有樹脂層と含浸部に含み、気泡含有樹脂層の密度を0.35〜0.75g/cmとすることもできる。 In the present invention, the bubble-containing resin layer is a bubble produced as gas generation traces by impregnating a part of the impregnated portion with a chemical foaming agent-containing composition coating and thermally decomposing the chemical foaming agent by heating at 180 to 220 ° C. And a bubble-containing resin layer having an air permeability (JIS L1096: Frazier method) of 3 to 50 cc / cm 2 / sec formed at a density of 0.35 to 0.75 g / cm 3 further improves the echo attenuation effect. As preferred. The chemical foaming agent-containing composition is composed of a soft vinyl chloride resin paste sol containing a plasticizer as a chemical foaming agent. The fabric is impregnated and coated simultaneously by knife coating one side of the fabric with a viscous paste sol composition containing 1 to 10 parts by mass of one or more selected from isobutyronitrile and the like. A part of the formed bubble-containing resin layer has an impregnation portion in the fabric, and the maximum depth of the impregnation portion is 1 to 35% with respect to the thickness of the fabric. The chemical foaming agent is pyrolyzed and gasified by heating at 180 to 220 ° C., and bubbles generated as gas generation traces are included in the bubble-containing resin layer and the impregnation part, and the density of the bubble-containing resin layer is 0.35 to 0.75 g. / Cm 3 . The bubble-containing resin layer is a soft vinyl chloride resin or a styrene copolymer resin, and a composition obtained by calendering a composition containing 1 to 10 parts by mass of the above chemical foaming agent is heat-melted on a fabric at 150 to 175 ° C. It is formed by laminating, pyrolyzing and gasifying the chemical foaming agent by heating at 180 to 220 ° C., and bubbles generated as gas generation traces are included in the bubble-containing resin layer and the impregnation part. It can also be set to 35 to 0.75 g / cm 3 .

特に気泡含有樹脂層は、塩化ビニル系樹脂、層状無機化合物、及びモリブデン化合物粒子を主体に含むものが好ましく、塩化ビニル系樹脂(可塑剤を塩化ビニル樹脂100質量部に対して30〜100質量部含有する軟質組成物)100質量部に対して層状無機化合物を1.5〜10質量部、モリブデン化合物粒子を1.5〜10質量部を含むことが好ましい。層状無機化合物は段落〔0019〕に記載のものが使用でき、同様にモリブデン化合物粒子は段落〔0020〕に記載のものが使用できる。これによって吸音効果を向上させると同時に、火災時の火炎熱により層状無機化合物が体積膨張することで火炎の突き抜けや有毒ガスの漏出を遮断し、モリブデン化合物粒子の作用で燃焼炭化物を強固とする残滓層(塩素―モリブデン複合酸化物)を形成することで、火炎の突き抜けや有毒ガスの漏出などの遮断率を高めることで建築基準法に準じる不燃性を具備することができる。   In particular, the bubble-containing resin layer preferably includes a vinyl chloride resin, a layered inorganic compound, and molybdenum compound particles as a main component, and a vinyl chloride resin (30-100 parts by mass of a plasticizer with respect to 100 parts by mass of the vinyl chloride resin). It is preferable that 1.5 to 10 parts by mass of the layered inorganic compound and 1.5 to 10 parts by mass of the molybdenum compound particles with respect to 100 parts by mass of the soft composition contained. As the layered inorganic compound, those described in paragraph [0019] can be used, and similarly, the molybdenum compound particles described in paragraph [0020] can be used. As a result, the sound absorption effect is improved, and at the same time, the layered inorganic compound expands in volume due to the heat of the flame during a fire, blocking the penetration of the flame and the leakage of toxic gas, and the residue of the combustion compound strengthened by the action of the molybdenum compound particles By forming a layer (chlorine-molybdenum composite oxide), it is possible to provide nonflammability in accordance with the Building Standards Act by increasing the blocking rate of penetration of flames and leakage of toxic gases.

本発明の吸音膜材の施工は、幅1m〜3mの任意、長さ1m〜50mの任意の規格シートを自在に組み合わせ、吸音膜材の織物面側を音響の入射面として装着する。特に1).1枚が幅1m〜3m程度、長さ1m〜5m程度の吸音膜材は、四角形、長方形、三角形、菱形、などの形態でアルミフレーム(押材)により吸音膜材全周を固定したパネル同士の組み合わせで、天井梁システムに固定することや、吊り下げることでフラット天井や幾何学立体天井に使用でき、2).また1枚が幅1m〜3m程度、長さ1m〜10m程度の長尺吸音膜材は、幅方向の2辺を天井梁やアルミ押材に固定し、張力を掛けずに吸音膜材を自重で弛んだ半円弧状態に懸垂し、多数の吸音膜材で半円弧の並びを表現したデザインアート天井に使用でき、3).また1枚が幅1m〜3m程度、長さ1m〜5m程度の吸音膜材は、四角形、長方形、三角形、菱形、などの形態で吸音膜材の外周のポイント毎にハトメ、ターンバックル、取付金具、ジョイントナットなどを設け、ロープやバネを用いて天井梁システムにサスペンジョン固定することで張力をコントロールして得たドレープを利用するデザインアート天井に使用することができる。4).上記施工を応用し、天井以外の用途、例えば間仕切り、ブラインド、日除けテントなどに使用し、相応の吸音効果を確保することもできる。   The construction of the sound absorbing film material of the present invention is performed by freely combining arbitrary standard sheets having a width of 1 m to 3 m and an arbitrary length of 1 m to 50 m, and mounting the fabric surface side of the sound absorbing film material as an acoustic incident surface. Especially 1). One sheet is about 1m to 3m in width and about 1m to 5m in length, and the sound absorbing film material is a square, rectangle, triangle, rhombus, etc. It can be used for flat ceilings and geometric 3D ceilings by fixing to the ceiling beam system or by hanging 2). In addition, a long sound-absorbing film material with a width of about 1m to 3m and a length of about 1m to 10m is fixed to the ceiling beam or aluminum pressing material on the two sides in the width direction, and the sound-absorbing film material is weighted without applying tension. It can be used for design art ceilings that are suspended in a loose semicircular arc state and express the arrangement of semicircular arcs with a number of sound-absorbing film materials 3). In addition, a single sound absorbing film material having a width of about 1 m to 3 m and a length of about 1 m to 5 m is in the form of a square, a rectangle, a triangle, a rhombus, etc. It can be used for design art ceilings that use drapes obtained by controlling tension by providing suspension nuts to the ceiling beam system using ropes and springs. 4). By applying the above construction, it can be used for purposes other than the ceiling, for example, for partitions, blinds, awning tents, etc., to ensure a corresponding sound absorbing effect.

以下、本発明について実施例を挙げて具体的に説明するが、本発明はこれらに限定されるものではない。先ずは本発明の吸音膜材の評価方法を述べる。
〈吸音率〉
膜材の織物面側を音響の入射面として、JIS A1405(垂直入射法)によるNoise Reduction Coefficient(NRC値)を250Hz、500Hz、1000Hz、2000Hzの各吸音率の算術平均値を求めた。
〈含浸部深さ〉
膜材の幅なりに均等6分割する5つのポイントでの埋没部(含浸部)を膜材断面の拡大画像から求め、膜材の厚さに対する百分率で求めた。
〈共有空隙率〉
吸音膜材を水平に置き、これを垂直方向から観察したときに上部の織物の空隙部と下部の織物の空隙部とが互いに重なり合って、2枚または3枚の織物を貫通する共有空隙部の総和の単位面積当たりの占有率とし、デジタル顕微鏡観察のモニター画像より光線透過部を共有空隙率と見做しコンピュータで計算した。
〈通気度〉
JIS L1096 8.27.1 A法に定めるフラジール形法により求めた。
〈不燃試験〉(ASTM-E1354:コーンカロリーメーター試験法)
輻射電気ヒーターによる50kW/mの輻射熱を膜材面に20分間照射し、この発熱性試験において、20分間の総発熱量と発熱速度を測定し、試験後の膜材外観を観察した。
(a)総発熱量:8MJ/m以下のものを適合とした。
(b)発熱速度:10秒以上継続して200kW/mを超えないものを適合とした。
(c)外観観察:直径0.5mmを超えるピンホール陥没痕の発生がないものを適合と
した。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not limited to these. First, a method for evaluating the sound absorbing film material of the present invention will be described.
<Sound absorption rate>
Using the fabric surface side of the membrane material as the sound incident surface, the noise reduction coefficient (NRC value) according to JIS A1405 (normal incidence method) was determined as the arithmetic average value of each sound absorption coefficient of 250 Hz, 500 Hz, 1000 Hz, and 2000 Hz.
<Impregnation depth>
The buried part (impregnated part) at five points equally divided into six parts according to the width of the film material was obtained from an enlarged image of the cross section of the film material, and was obtained as a percentage with respect to the thickness of the film material.
<Shared porosity>
When the sound-absorbing film material is placed horizontally and observed from the vertical direction, the upper fabric gap and the lower fabric gap overlap each other, and the shared gap that penetrates two or three fabrics is formed. The total occupancy rate per unit area was calculated from a monitor image obtained by digital microscope observation, assuming that the light transmitting portion was a shared porosity, and calculated by a computer.
<Air permeability>
JIS L1096 8.27.1 Determined by the Frazier method defined in the A method.
<Nonflammable test> (ASTM-E1354: Corn calorimeter test method)
The surface of the film material was irradiated with 50 kW / m 2 of radiant heat from a radiant electric heater for 20 minutes. In this exothermic test, the total heat generation amount and the heat generation rate for 20 minutes were measured, and the appearance of the film material after the test was observed.
(A) Total calorific value: 8 MJ / m 2 or less was regarded as suitable.
(B) heating speed: 10 seconds or more continuously to the Relevant not exceed 200 kW / m 2.
(C) Appearance observation: Applicable to those with no pinhole depression exceeding 0.5 mm in diameter.

〔実施例1〕
〈樹脂コーティング糸条(1)〉
無アルカリガラスのマルチフィラメント糸条(フィラメント径9μm、400本フィラメント:75番手:687dtex)の扁平糸を芯糸とし、下記配合1の軟質塩化ビニル系樹脂によるペーストゾル組成物の液浴中にディッピングして軟質塩化ビニル樹脂ペーストゾル組成物をマルチフィラメント糸条の全周に被覆した後、180℃でゲル化処理して樹脂被覆層を形成して、糸条断面における高さ:幅の比が3:5の扁平楕円断面を有し、見掛比重2.06の樹脂コーティング糸条(1)を得た。
〔配合1〕軟質塩化ビニル樹脂ペーストゾル組成物
乳化重合ポリ塩化ビニル樹脂(重合度1700) 100質量部
1,2−シクロヘキサンジカルボン酸ジイソノニル(可塑剤) 70質量部
※商品名:ヘキサモールDINCH(BASF社製)
エポキシ化大豆油(可塑剤) 5質量部
バリウム/亜鉛複合化合物(安定剤) 2質量部
三酸化アンチモン(難燃剤) 10質量部
層状無機化合物(モンモリロナイト:平均粒子径8μm) 10質量部
モリブデン酸カルシウム亜鉛(モリブデン化合物粒子) 5質量部
シランカップリング剤 2質量部
※γ−アミノプロピルトリメトキシシラン(有効成分100%)
ベンゾトリアゾール(紫外線吸収剤) 0.3質量部
酸化チタン(白顔料) 2質量部
〈マルチフィラメント糸条(1)〉
無アルカリガラスのマルチフィラメント(フィラメント径9μm:400本フィラメント)からなり、Z撚25回/mを施したタスラン糸75番手(687dtex)による比重2.55のマルチフィラメント糸条(1)を使用した。
〈織物(1)〉
経糸条群及び緯糸条群ともに〔樹脂コーティング糸条(1)2本、マルチフィラメント糸条(1)2本〕nを繰り返し単位とする2/2ななこ(バスケット)織物による単層織物で、経糸群は1インチ間28本(うち樹脂コーティング糸条(1)の本数は14本)の織密度、また緯糸群は1インチ間30本(うち樹脂コーティング糸条(1)の本数は15本)の織密度とする空隙率2%、通気度45cc/cm2/秒、質量680g/mの〔織物1〕を得た。樹脂コーティング糸条(1)とマルチフィラメント糸条(1)との比重差は0.49、これら糸条の占有体積比は2:1であった。
[Example 1]
<Resin-coated yarn (1)>
Dipping into a liquid bath of paste sol composition with soft vinyl chloride resin of the following formulation 1 using a flat yarn of alkali-free multifilament yarn (filament diameter 9 μm, 400 filaments: 75 count: 687 dtex) as a core yarn Then, after covering the entire circumference of the multi-filament yarn with the soft vinyl chloride resin paste sol composition, the resin coating layer is formed by gelation at 180 ° C., and the height: width ratio in the yarn cross section is A resin-coated yarn (1) having a flat elliptical cross section of 3: 5 and an apparent specific gravity of 2.06 was obtained.
[Formulation 1] Soft vinyl chloride resin paste sol composition Emulsion polymerization polyvinyl chloride resin (degree of polymerization 1700) 100 parts by mass 1,2-cyclohexanedicarboxylic acid diisononyl (plasticizer) 70 parts by mass * Product name: Hexamol DINCH (BASF (Made by company)
Epoxidized soybean oil (plasticizer) 5 parts by weight Barium / zinc composite compound (stabilizer) 2 parts by weight Antimony trioxide (flame retardant) 10 parts by weight Layered inorganic compound (montmorillonite: average particle size 8 μm) 10 parts by weight calcium molybdate Zinc (molybdenum compound particles) 5 parts by mass Silane coupling agent 2 parts by mass * γ-aminopropyltrimethoxysilane (100% active ingredient)
Benzotriazole (UV absorber) 0.3 part by mass Titanium oxide (white pigment) 2 parts by mass
<Multifilament yarn (1)>
Made of alkali-free multifilament (filament diameter 9μm: 400 filaments), we used a multifilament yarn (1) with a specific gravity of 2.55 using a 75th Taslan yarn (687dtex) with Z twist 25 times / m. .
<Weaving (1)>
Both warp and weft groups [2 resin-coated yarns (1), 2 multifilament yarns (1) 2] are single layer fabrics made of 2/2 Nanako (basket) fabrics with n as a repeating unit. The group has 28 weaves per inch (of which 14 are resin-coated yarns (1)), and the weft group is 30 per inch (of which 15 are resin-coated yarns (1)) A [woven fabric 1] having a porosity of 2%, an air permeability of 45 cc / cm 2 / sec, and a mass of 680 g / m 2 was obtained. The specific gravity difference between the resin-coated yarn (1) and the multifilament yarn (1) was 0.49, and the occupied volume ratio of these yarns was 2: 1.

〔実施例2〕
〈織物(2)〉
経糸群として樹脂コーティング糸条(1)の打ち込み密度が36本/インチ、緯糸群としてマルチフィラメント糸条(1)の打ち込み密度が30本/インチである二重織物を、上層織物組織を右上がりの2/1の斜文織、下層織物組織を左上がりの2/1の斜文織、上層織物と下層織物とを5本跨ぎの結線で結接して製織し、共有空隙率0.8%、通気度16cc/cm2/秒、質量1300g/mの〔織物2〕を得た。樹脂コーティング糸条(1)とマルチフィラメント糸条(1)との比重差は0.49、これら糸条の占有体積比は2:1であった。
[Example 2]
<Weaving (2)>
Double woven fabric with a resin-coated yarn (1) driving density of 36 yarns / inch as the warp group and multifilament yarn (1) driving density of 30 yarns / inch as the weft group, and the upper layer fabric structure rising to the right 2/1 oblique weaving, lower fabric weaving 2/1 oblique weaving, upper layer fabric and lower layer fabric are connected by connecting them in a five-strand connection, and the common porosity is 0.8% [Weaving 2] having an air permeability of 16 cc / cm 2 / sec and a mass of 1300 g / m 2 was obtained. The specific gravity difference between the resin-coated yarn (1) and the multifilament yarn (1) was 0.49, and the occupied volume ratio of these yarns was 2: 1.

〔実施例3〕
〈織物(3)〉
経糸群として樹脂コーティング糸条(1)の打ち込み密度が30本/インチ、左斜上・右斜上バイアス糸群としてマルチフィラメント糸条(1)の打ち込み密度が20本/インチである上層三軸織物と、経糸群として樹脂コーティング糸条(1)の打ち込み密度が30本/インチ、左斜上・右斜上バイアス糸群としてマルチフィラメント糸条(1)の打ち込み密度が20本/インチである下層三軸織物とを、下層三軸織物の樹脂コーティング糸条(1)が5本跨ぎの結線で上層三軸織物のマルチフィラメント糸条(1)に結接し、また下層三軸織物のマルチフィラメント糸条(1)が5本跨ぎの結線で上層三軸織物の樹脂コーティング糸条(1)に結接して製織した三軸二重織物であって、共有空隙率0.3%、通気度6cc/cm2/秒、質量1650g/mの〔織物3〕を得た。樹脂コーティング糸条(1)とマルチフィラメント糸条(1)との比重差は0.49、これら糸条の占有体積比は1:1であった。
Example 3
<Woven (3)>
Upper layer triaxial woven fabric in which the driving density of the resin-coated yarn (1) is 30 yarns / inch as the warp group, and the driving density of the multifilament yarn (1) is 20 yarns / inch as the upper left and upper right bias yarn groups. The lower layer 3 has a driving density of the resin-coated yarn (1) of 30 yarns / inch as the warp group, and the multifilament yarn (1) has a driving density of 20 yarns / inch as the upper left and upper right bias yarn groups. The lower-layer triaxial woven resin filament yarn (1) is connected to the multi-filament yarn (1) of the lower-layer triaxial woven fabric by connecting the five-layered resin-coated yarn (1) to the upper-layer triaxial woven fabric. (1) is a triaxial double woven fabric woven by connecting to the upper layer triaxial woven resin-coated yarn (1) with a connection straddling five wires, with a common porosity of 0.3% and an air permeability of 6 cc / cm 2 / sec, Was obtained in an amount 1650 g / m 2 of [fabric 3]. The specific gravity difference between the resin-coated yarn (1) and the multifilament yarn (1) was 0.49, and the occupied volume ratio of these yarns was 1: 1.

〔実施例4〕
〈織物(4)〉
樹脂コーティング糸条(1)及びマルチフィラメント糸条(1)を用い、経糸群として樹脂コーティング糸条(1)の打ち込み密度が60本/インチ、経糸群としてマルチフィラメント糸条(1)の打ち込み本数が45本/インチである三重織物を、上層織物組織を右上がりの3/1の斜文織、中層織物組織を左上がりの3/1の斜文織、下層織物組織を右上がりの3/1の斜文織、上層織物と中層織物とを5本跨ぎの結線で結接し、中層織物と下層織物とを5本跨ぎの結線で結接して製織し、共有空隙率0.1%、通気度2cc/cm2/秒、質量1960g/mの〔織物4〕を得た。樹脂コーティング糸条(1)とマルチフィラメント糸条(1)との比重差は0.49、これら糸条の占有体積比は2:1であった。
Example 4
<Fabric (4)>
Using resin-coated yarn (1) and multifilament yarn (1), the density of the resin-coated yarn (1) as a warp group is 60 yarns / inch, and the number of multifilament yarns (1) as the warp group Woven fabric with 45 / inch, upper layer fabric texture rising to 3/1 diagonal fabric, middle layer fabric texture rising to left 3/1 diagonal fabric, lower layer fabric texture rising to 3 / No. 1 oblique weave, upper layer fabric and middle layer fabric are connected by a five-strand connection, middle layer fabric and lower layer fabric are connected by a five-strand connection, and weaving is performed. A [woven fabric 4] having a degree of 2 cc / cm 2 / sec and a mass of 1960 g / m 2 was obtained. The specific gravity difference between the resin-coated yarn (1) and the multifilament yarn (1) was 0.49, and the occupied volume ratio of these yarns was 2: 1.

〔実施例5〕
〈樹脂コーティング糸条(2)〉
樹脂コーティング糸条(1)の芯糸を、ポリパラフェニレンテレフタルアミド繊維(アラミド繊維:フィラメント径12μm、843dtex)の扁平糸に変更し、配合1の軟質塩化ビニル系樹脂によるペーストゾル組成物の液浴中にディッピングして軟質塩化ビニル樹脂ペーストゾル組成物をマルチフィラメント糸条の全周に被覆した後、180℃でゲル化処理して樹脂被覆層を形成して、糸条断面における高さ:幅の比が2:5の扁平楕円断面を有し、見掛比重1.44の樹脂コーティング糸条(2)を得た。
〈織物(5)〉
経糸条群及び緯糸条群ともに〔樹脂コーティング糸条(2)2本、マルチフィラメント糸条(1)2本〕nを繰り返し単位とする2/2ななこ(バスケット)織物による単層織物で、経糸群は1インチ間24本(うち樹脂コーティング糸条(2)の本数は12本)の織密度、また緯糸群は1インチ間26本(うち樹脂コーティング糸条(2)の本数は13本)の織密度とする空隙率1.6%、通気度30cc/cm2/秒、質量625g/mの〔織物5〕を得た。樹脂コーティング糸条(2)とマルチフィラメント糸条(1)との比重差は1.11、これら糸条の占有体積比は2:1であった。
Example 5
<Resin-coated yarn (2)>
The core yarn of the resin-coated yarn (1) is changed to a flat yarn of polyparaphenylene terephthalamide fiber (aramid fiber: filament diameter 12 μm, 843 dtex), and the liquid of the paste sol composition using the soft vinyl chloride resin of compound 1 After dipping in a bath and coating the soft vinyl chloride resin paste sol composition on the entire circumference of the multifilament yarn, gelation treatment is performed at 180 ° C. to form a resin coating layer, and the height in the cross section of the yarn: A resin-coated yarn (2) having a flat elliptical cross section with a width ratio of 2: 5 and an apparent specific gravity of 1.44 was obtained.
<Weaving (5)>
Both warp and weft yarn groups [2 resin-coated yarns (2), multifilament yarns (1) 2]] Single-layer fabric made of 2/2 Nanako (basket) fabric with n as a repeating unit. The group has a weaving density of 24 pieces per inch (of which 12 are resin-coated yarns (2)), and the weft group is 26 pieces per inch (of which the number of resin-coated yarns (2) is 13) A [woven fabric 5] having a porosity of 1.6%, an air permeability of 30 cc / cm 2 / sec, and a mass of 625 g / m 2 was obtained. The specific gravity difference between the resin-coated yarn (2) and the multifilament yarn (1) was 1.11, and the occupied volume ratio of these yarns was 2: 1.

〔実施例6〕
〈織物(6)〉
経糸群として樹脂コーティング糸条(2)の打ち込み密度が32本/インチ、緯糸群としてマルチフィラメント糸条(1)の打ち込み密度が30本/インチである二重織物を、上層織物組織を右上がりの2/1の斜文織、下層織物組織を左上がりの2/1の斜文織、上層織物と下層織物とを5本跨ぎの結線で結接して製織し、共有空隙率0.7%、通気度14cc/cm2/秒、質量1190g/mの〔織物6〕を得た。樹脂コーティング糸条(2)とマルチフィラメント糸条(1)との比重差は1.11、これら糸条の占有体積比は2:1であった。
Example 6
<Fabric (6)>
A double woven fabric with a resin-coated yarn (2) driving density of 32 yarns / inch as the warp group and a multifilament yarn (1) with a driving density of 30 yarns / inch as the weft group, and the upper layer fabric structure rising to the right 2/1 oblique weaving, lower fabric weaving 2/1 oblique weaving, upper layer fabric and lower layer fabric are woven by connecting them with a five-strand connection, and the common porosity is 0.7% [Weaving 6] having an air permeability of 14 cc / cm 2 / sec and a mass of 1190 g / m 2 was obtained. The specific gravity difference between the resin-coated yarn (2) and the multifilament yarn (1) was 1.11, and the occupied volume ratio of these yarns was 2: 1.

〔実施例7〕
〈織物(7)〉
経糸群として樹脂コーティング糸条(2)の打ち込み密度が26本/インチ、左斜上・右斜上バイアス糸群としてマルチフィラメント糸条(1)の打ち込み密度が18本/インチである上層三軸織物と、経糸群として樹脂コーティング糸条(2)の打ち込み密度が26本/インチ、左斜上・右斜上バイアス糸群としてマルチフィラメント糸条(1)の打ち込み密度が18本/インチである下層三軸織物とを、下層三軸織物の樹脂コーティング糸条(2)が5本跨ぎの結線で上層三軸織物のマルチフィラメント糸条(1)に結接し、また下層三軸織物のマルチフィラメント糸条(1)が5本跨ぎの結線で上層三軸織物の樹脂コーティング糸条(2)に結接して製織した三軸二重織物であって、共有空隙率0.4%、通気度4cc/cm2/秒、質量1425g/mの〔織物7〕を得た。樹脂コーティング糸条(2)とマルチフィラメント糸条(1)との比重差は1.11、これら糸条の占有体積比は1:1であった。
Example 7
<Weaving (7)>
Upper layer triaxial woven fabric in which the driving density of resin-coated yarn (2) is 26 yarns / inch as the warp group, and the multifilament yarn (1) driving density is 18 yarns / inch as the upper left and upper right bias yarn groups. The lower layer 3 has a driving density of the resin-coated yarn (2) of 26 yarns / inch as the warp group, and the driving density of the multifilament yarn (1) of 18 yarns / inch as the upper left and upper right bias yarn groups. The lower-layer triaxial woven resin filament yarn (2) is connected to the upper-layer triaxial woven multifilament yarn (1) by connecting the five-layered resin-coated yarn (2) to the upper-layer triaxial woven fabric. (1) is a triaxial double woven fabric that is woven by connecting to the resin coating yarn (2) of the upper triaxial woven fabric with five straddling wires, and has a shared porosity of 0.4% and an air permeability of 4 cc / cm 2 / sec, Was obtained in an amount 1425 g / m 2 of [fabric 7]. The specific gravity difference between the resin-coated yarn (2) and the multifilament yarn (1) was 1.11, and the occupied volume ratio of these yarns was 1: 1.

〔実施例8〕
〈織物(8)〉
樹脂コーティング糸条(2)及びマルチフィラメント糸条(1)を用い、経糸群として樹脂コーティング糸条(2)の打ち込み密度が52本/インチ、経糸群としてマルチフィラメント糸条(1)の打ち込み本数が40本/インチである三重織物を、上層織物組織を右上がりの3/1の斜文織、中層織物組織を左上がりの3/1の斜文織、下層織物組織を右上がりの3/1の斜文織、上層織物と中層織物とを5本跨ぎの結線で結接し、中層織物と下層織物とを5本跨ぎの結線で結接して製織し、共有空隙率0.2%、通気度2cc/cm2/秒、質量1660g/mの〔織物8〕を得た。樹脂コーティング糸条(2)とマルチフィラメント糸条(1)との比重差は1.11、これら糸条の占有体積比は2:1であった。
Example 8
<Woven (8)>
Using resin-coated yarn (2) and multifilament yarn (1), the density of the resin-coated yarn (2) as a warp group is 52 yarns / inch, and the number of multifilament yarns (1) as a warp group A triple fabric with an upper layer of 40 / inch, a 3/1 diagonal weave with an upper layer fabric texture, a 3/1 oblique weave with a middle layer fabric texture, and a 3/1 diagonal fabric with a lower layer fabric texture No. 1 oblique weave, upper layer fabric and middle layer fabric are connected by a five-strand connection, middle layer fabric and lower layer fabric are connected by a five-strand connection, weaving, shared porosity 0.2%, ventilation A [woven fabric 8] having a degree of 2 cc / cm 2 / sec and a mass of 1660 g / m 2 was obtained. The specific gravity difference between the resin-coated yarn (2) and the multifilament yarn (1) was 1.11, and the occupied volume ratio of these yarns was 2: 1.

〔実施例9〕
〈マルチフィラメント糸条(2)〉
ポリパラフェニレンテレフタルアミド繊維(アラミド繊維:フィラメント径12μm、843dtex)の比重1.31のマルチフィラメント糸条(2)を使用した。
〈織物(9)〉
経糸条群及び緯糸条群ともに〔樹脂コーティング糸条(1)2本、マルチフィラメント糸条(2)2本〕nを繰り返し単位とする2/2ななこ(バスケット)織物による単層織物で、経糸群は1インチ間28本(うち樹脂コーティング糸条(1)の本数は14本)の織密度、また緯糸群は1インチ間26本(うち樹脂コーティング糸条(1)の本数は13本)の織密度とする空隙率1.8%、通気度40cc/cm2/秒、質量645g/mの〔織物9〕を得た。樹脂コーティング糸条(1)とマルチフィラメント糸条(2)との比重差は0.75、これら糸条の占有体積比は2:1であった。
Example 9
<Multifilament yarn (2)>
A multifilament yarn (2) having a specific gravity of 1.31 of polyparaphenylene terephthalamide fiber (aramid fiber: filament diameter 12 μm, 843 dtex) was used.
<Weaving (9)>
Both warp and weft yarn groups [2 resin-coated yarns (1), 2 multifilament yarns (2) 2] are single-layer fabrics made of 2/2 Nanako (basket) fabrics with n as a repeating unit. The group has 28 weaves per inch (of which 14 are resin-coated yarns (1)), and the weft group is 26 per inch (of which 13 are resin-coated yarns (1)) A [woven fabric 9] having a porosity of 1.8%, an air permeability of 40 cc / cm 2 / second, and a mass of 645 g / m 2 was obtained. The specific gravity difference between the resin-coated yarn (1) and the multifilament yarn (2) was 0.75, and the occupied volume ratio of these yarns was 2: 1.

〔実施例10〕
〈織物(10)〉
経糸群として樹脂コーティング糸条(1)の打ち込み密度が36本/インチ、緯糸群としてマルチフィラメント糸条(2)の打ち込み密度が24本/インチである二重織物を、上層織物組織を右上がりの2/1の斜文織、下層織物組織を左上がりの2/1の斜文織、上層織物と下層織物とを5本跨ぎの結線で結接して製織し、共有空隙率0.6%、通気度12cc/cm2/秒、質量1230g/mの〔織物10〕を得た。樹脂コーティング糸条(1)とマルチフィラメント糸条(2)との比重差は0.75、これら糸条の占有体積比は2:1であった。
Example 10
<Woven (10)>
A double woven fabric in which the density of the resin-coated yarn (1) is 36 yarns / inch as the warp group and a multifilament yarn (2) is 24 yarns / inch in the weft yarn group, and the upper layer fabric structure rises to the right. 2/1 oblique weaving, lower fabric weaving 2/1 oblique weaving, upper layer fabric and lower layer fabric are woven by connecting them with 5 straddles, and the common porosity is 0.6% [Weaving 10] having an air permeability of 12 cc / cm 2 / sec and a mass of 1230 g / m 2 was obtained. The specific gravity difference between the resin-coated yarn (1) and the multifilament yarn (2) was 0.75, and the occupied volume ratio of these yarns was 2: 1.

〔実施例11〕
〈織物(11)〉
経糸群として樹脂コーティング糸条(1)の打ち込み密度が30本/インチ、左斜上・右斜上バイアス糸群としてマルチフィラメント糸条(2)の打ち込み密度が16本/インチである上層三軸織物と、経糸群として樹脂コーティング糸条(1)の打ち込み密度が30本/インチ、左斜上・右斜上バイアス糸群としてマルチフィラメント糸条(2)の打ち込み密度が16本/インチである下層三軸織物とを、下層三軸織物の樹脂コーティング糸条(1)が5本跨ぎの結線で上層三軸織物のマルチフィラメント糸条(2)に結接し、また下層三軸織物のマルチフィラメント糸条(2)が5本跨ぎの結線で上層三軸織物の樹脂コーティング糸条(1)に結接して製織した三軸二重織物であって、共有空隙率0.3%、通気度6cc/cm2/秒、質量1525g/mの〔織物11〕を得た。樹脂コーティング糸条(1)とマルチフィラメント糸条(2)との比重差は0.75、これら糸条の占有体積比は1:1であった。
Example 11
<Weaving (11)>
Upper layer triaxial woven fabric in which the density of the resin-coated yarn (1) is 30 yarns / inch as the warp group, and the density of the multifilament yarn (2) is 16 yarns / inch as the upper left and upper right bias yarn groups The lower three layers of the resin-coated yarn (1) have a driving density of 30 yarns / inch as the warp group, and the multifilament yarn (2) has a driving density of 16 yarns / inch as the upper left and upper right bias yarn groups. The lower-layer triaxial woven resin filament yarn (1) is connected to the upper-layer triaxial woven fabric multifilament yarn (2) by connecting the five-layered resin-coated yarn (1) to the upper-layer triaxial woven fabric. (2) is a triaxial double woven fabric woven by connecting to the upper layer triaxial woven resin coated yarn (1) with a connection straddling five wires, with a shared porosity of 0.3% and an air permeability of 6 cc / cm 2 / sec, It was obtained in an amount 1525g / m 2 of [fabric 11]. The specific gravity difference between the resin-coated yarn (1) and the multifilament yarn (2) was 0.75, and the occupied volume ratio of these yarns was 1: 1.

〔実施例12〕
〈織物(12)〉
樹脂コーティング糸条(1)及びマルチフィラメント糸条(2)を用い、経糸群として樹脂コーティング糸条(1)の打ち込み密度が60本/インチ、経糸群としてマルチフィラメント糸条(2)の打ち込み本数が40本/インチである三重織物を、上層織物組織を右上がりの3/1の斜文織、中層織物組織を左上がりの3/1の斜文織、下層織物組織を右上がりの3/1の斜文織、上層織物と中層織物とを5本跨ぎの結線で結接し、中層織物と下層織物とを5本跨ぎの結線で結接して製織し、共有空隙率0.1%、通気度2cc/cm2/秒、質量1860g/mの〔織物12〕を得た。樹脂コーティング糸条(1)とマルチフィラメント糸条(2)との比重差は0.75、これら糸条の占有体積比は2:1であった。
Example 12
<Woven (12)>
Using resin-coated yarn (1) and multifilament yarn (2), the density of the resin-coated yarn (1) as the warp group is 60 yarns / inch, and the number of multifilament yarns (2) as the warp group A triple fabric with an upper layer of 40 / inch, a 3/1 diagonal weave with an upper layer fabric texture, a 3/1 oblique weave with a middle layer fabric texture, and a 3/1 diagonal fabric with a lower layer fabric texture No. 1 oblique weave, upper layer fabric and middle layer fabric are connected by a five-strand connection, middle layer fabric and lower layer fabric are connected by a five-strand connection, and weaving is performed. A [woven fabric 12] having a degree of 2 cc / cm 2 / sec and a mass of 1860 g / m 2 was obtained. The specific gravity difference between the resin-coated yarn (1) and the multifilament yarn (2) was 0.75, and the occupied volume ratio of these yarns was 2: 1.

〔実施例13〜24〕
〈気泡含有樹脂層の形成〉
下記配合2の軟質塩化ビニル樹脂ペーストゾル組成物を攪拌機(ステンレス線を8本組み合わせて茶筅形にしたブレードを装着)により機械攪拌して気泡を強制的に巻き込ませて形態保持したホイップ(2倍発泡)を、実施例1〜12で得た織物1〜12の12種類の織物の片面側にクリアランスコーティングし、ペーストによる濡塗膜フォームを均一に形成し、180℃×3分間電気炉加熱してゲル化処理及び織物との接着処理を行い、織物1〜12の片面に気泡含有樹脂層(密度0.5g/cm)が225g/m設けられ、織物組織内に気泡含有樹脂層の一部が浸入し、その深さが織物の厚さに対して15〜30%である実施例13〜24の膜材を得た。
〔配合2〕軟質塩化ビニル系樹脂によるペーストゾル組成物
乳化重合塩化ビニル樹脂(重合度1700) 100質量部
1,2−シクロヘキサンジカルボン酸ジイソノニル(可塑剤) 65質量部
※商品名:ヘキサモールDINCH(BASF社製)
エポキシ化大豆油(可塑剤) 5質量部
バリウム/亜鉛複合化合物(安定剤) 2質量部
三酸化アンチモン(難燃剤) 10質量部
層状無機化合物(モンモリロナイト:平均粒子径8μm) 10質量部
モリブデン酸カルシウム亜鉛(モリブデン化合物粒子) 5質量部
シランカップリング剤 2質量部
※γ−アミノプロピルトリメトキシシラン(有効成分100%)
ベンゾトリアゾール(紫外線吸収剤) 0.3質量部
酸化チタン(白顔料) 2質量部
ジメチルシリコーンオイル(整泡剤) 2質量部
[Examples 13 to 24]
<Formation of bubble-containing resin layer>
Whip (2 times) that the soft vinyl chloride resin paste sol composition of the following formulation 2 was mechanically stirred by a stirrer (attached to a combination of 8 stainless steel wires and made into a bowl shape) to forcibly entrain air bubbles. (Foaming) is clearance-coated on one side of the 12 types of fabrics 1 to 12 obtained in Examples 1 to 12, uniformly forming a wet paint film with paste, and heated in an electric furnace at 180 ° C. for 3 minutes. Gelling treatment and adhesion treatment with the woven fabric are performed, and a bubble-containing resin layer (density 0.5 g / cm 3 ) is provided on one side of the woven fabrics 1 to 12 and 225 g / m 2 is provided in the fabric structure. A membrane material of Examples 13 to 24, in which a part thereof penetrated and the depth thereof was 15 to 30% with respect to the thickness of the woven fabric, was obtained.
[Formulation 2] Paste sol composition with soft vinyl chloride resin Emulsion polymerization vinyl chloride resin (degree of polymerization 1700) 100 parts by mass 1,2-cyclohexanedicarboxylic acid diisononyl (plasticizer) 65 parts by mass * Product name: Hexamol DINCH ( (Made by BASF)
Epoxidized soybean oil (plasticizer) 5 parts by weight Barium / zinc composite compound (stabilizer) 2 parts by weight Antimony trioxide (flame retardant) 10 parts by weight Layered inorganic compound (montmorillonite: average particle size 8 μm) 10 parts by weight calcium molybdate Zinc (molybdenum compound particles) 5 parts by mass Silane coupling agent 2 parts by mass * γ-aminopropyltrimethoxysilane (100% active ingredient)
Benzotriazole (ultraviolet absorber) 0.3 part by mass Titanium oxide (white pigment) 2 parts by mass Dimethyl silicone oil (foam stabilizer) 2 parts by mass

実施例1〜12の織物1〜12はいずれも天井用膜材に使用可能な膜材強度を有し、震災に備え万が一崩落した場合にも深刻な人的被害を生じる可能性の低い軽量性とフレキシブル性とを有し、特に樹脂コーティング糸条の方がマルチフィラメント糸条よりも低い周波数領域(具体的におよそ1000Hz未満)の音を効果的に吸音し、同時にマルチフィラメント糸条の方は樹脂コーティング糸条よりも高い周波数領域の音を効果的に吸音することの相乗効果で、より広域の騒音に対する吸音効果(JIS A1405:垂直入射法によるNRC値向上)の発現を可能とした。これはJIS A1405(垂直入射法)によるNRC値の算出が、250Hz、500Hz、1000Hz、2000Hzの各吸音率の算術平均値であるため、樹脂コーティング糸条部分によるおよそ1000Hz未満の吸音効果と、マルチフィラメント糸条部分による、1000Hz以上の吸音効果を個別に同時発現することの実証となり、比較例との対比においてもNRC値が向上していた。また空隙率1〜5%目開きの織物であれば、本発明の効果によりASTM-E1354:コーンカロリーメーター試験の熱で、織物の糸条が体積膨張し、それによって織物の空隙率を0〜1%に閉塞させるので、建築基準法に準じる不燃性の吸音膜材を得ることが可能となった。また、織物1〜12の片面に気泡含有樹脂層(密度0.5g/cm)を形成した実施例13〜24の織物13〜24においては、各々織物1〜12よりも吸音効果(NRC値)が更に0.9〜1.3向上した。 All the woven fabrics 1 to 12 of Examples 1 to 12 have a membrane material strength that can be used for a ceiling membrane material, and are light in weight that are unlikely to cause serious human damage even in the event of a disaster. In particular, the resin-coated yarn effectively absorbs sound in a lower frequency region (specifically less than about 1000 Hz) than the multifilament yarn, and at the same time the multifilament yarn Is a synergistic effect of effectively absorbing sound in a higher frequency range than that of the resin-coated yarn, and it has made it possible to develop a sound absorption effect (JIS A1405: NRC value improvement by normal incidence method) over a wider range of noise. This is because the calculation of the NRC value according to JIS A1405 (normal incidence method) is the arithmetic average value of each sound absorption coefficient of 250 Hz, 500 Hz, 1000 Hz, and 2000 Hz. It proved that the sound absorption effect of 1000 Hz or more by the filament yarn portion was individually expressed simultaneously, and the NRC value was also improved in comparison with the comparative example. Further, in the case of a woven fabric having an opening of 1 to 5%, the effect of the present invention is that ASTM-E1354: the yarn of the woven fabric undergoes volume expansion by the heat of the corn calorimeter test, thereby reducing the porosity of the woven fabric to 0 to 0. Since it is closed to 1%, it becomes possible to obtain a non-combustible sound-absorbing film material according to the Building Standard Law. Further, in the fabrics 13 to 24 of Examples 13 to 24 in which the bubble-containing resin layer (density 0.5 g / cm 3 ) was formed on one side of the fabrics 1 to 12, the sound absorption effect (NRC value) was higher than that of the fabrics 1 to 12, respectively. ) Further improved by 0.9 to 1.3.

〔比較例1〕
実施例1の織物1の織組織を変更し、経糸条群及び緯糸条群ともに、樹脂コーティング糸条(1)、及びマルチフィラメント糸条(1)を用いた2/2ななこ(バスケット)織物で、経糸群は1インチ間28本(うち樹脂コーティング糸条(1)の本数は7本)の織密度、また緯糸群は1インチ間30本(うち樹脂コーティング糸条(1)の本数は7.5本)の織密度とする空隙率2%、通気度45cc/cm2/秒、質量415g/mの〔織物25〕とした。樹脂コーティング糸条(1)とマルチフィラメント糸条(1)との比重差は0.49であったが、樹脂コーティング糸条(1)とマルチフィラメント糸条(1)との占有体積比を1:2としたことで吸音効果を低下させると同時に、下記のように膜材の引裂強度(JIS L1096:C法トラペゾイド型)も低下させる結果となった。
〔織物1〕の引裂強度:13kgf
〔織物1〕と同一の織組織である〔織物25〕の引裂強度:4.5kgf
[Comparative Example 1]
By changing the woven structure of the fabric 1 of Example 1, both warp and weft yarn groups are 2/2 Nanako (basket) fabrics using resin-coated yarn (1) and multifilament yarn (1). The warp group has 28 weaves per inch (of which the number of resin-coated yarns (1) is 7), and the weft group has 30 weaves per inch (of which the number of resin-coated yarns (1) is 7) (Woven fabric 25) having a porosity of 2%, a permeability of 45 cc / cm 2 / sec, and a mass of 415 g / m 2 . The specific gravity difference between the resin-coated yarn (1) and the multifilament yarn (1) was 0.49, but the occupied volume ratio between the resin-coated yarn (1) and the multifilament yarn (1) was 1 : 2 has the effect of lowering the sound absorption effect and at the same time lowering the tear strength of the film material (JIS L1096: C method trapezoid type) as described below.
Tear strength of [Fabric 1]: 13kgf
Tear strength of [woven fabric 25] having the same woven structure as [woven fabric 1]: 4.5 kgf

〔比較例2〕
実施例2の織物2の織編要素を変更し、経糸群として樹脂コーティング糸条(1)の打ち込み密度が36本/インチ、緯糸群も同じ樹脂コーティング糸条(1)による打ち込み密度が30本/インチである二重織物を、上層織物組織を右上がりの2/1の斜文織、下層織物組織を左上がりの2/1の斜文織、上層織物と下層織物とを5本跨ぎの結線で結接して製織し、共有空隙率0.6%、通気度8cc/cm2/秒、質量1435g/mの〔織物26〕を得た。織編要素を同種として糸条同士の比重差が0のため、実施例2の織物2よりも吸音効果に劣るものとなった。
[Comparative Example 2]
The weaving and knitting elements of the woven fabric 2 of Example 2 were changed, and the driving density of the resin-coated yarn (1) as a warp group was 36 / inch, and the weft group had a driving density of 30 by the same resin-coated yarn (1). / Inches of double woven fabric, the upper layer fabric texture is 2/1 diagonal weaving, the lower layer fabric organization is 2/1 obliquely weaving, and the upper layer fabric and the lower layer fabric are straddling 5 Weaving was performed by connecting with a wire to obtain [woven fabric 26] having a common porosity of 0.6%, an air permeability of 8 cc / cm 2 / sec, and a mass of 1435 g / m 2 . Since the woven / knitting elements were the same type and the specific gravity difference between the yarns was 0, the sound absorbing effect was inferior to that of the fabric 2 of Example 2.

〔比較例3〕
実施例2の織物2の織編要素を変更し、経糸群としてマルチフィラメント糸条(1)の打ち込み密度が42本/インチ、緯糸群も同じマルチフィラメント糸条(1)による打ち込み密度が36本/インチである二重織物を、上層織物組織を右上がりの2/1の斜文織、下層織物組織を左上がりの2/1の斜文織、上層織物と下層織物とを5本跨ぎの結線で結接して製織し、共有空隙率2.6%、通気度35cc/cm2/秒、質量985g/mの〔織物27〕を得た。織編要素を同種として糸条同士の比重差が0のため、実施例2の織物2よりも吸音効果に劣るものとなった。
[Comparative Example 3]
The weaving and knitting elements of the woven fabric 2 of Example 2 were changed, the multifilament yarn (1) has a driving density of 42 / inch as the warp group, and the weft group has a driving density of 36 with the same multifilament yarn (1). / Inches of double woven fabric, the upper layer fabric texture is 2/1 diagonal weaving, the lower layer fabric organization is 2/1 obliquely weaving, and the upper layer fabric and the lower layer fabric are straddling 5 Weaving was performed by connecting with a wire to obtain [Fabric 27] having a shared porosity of 2.6%, an air permeability of 35 cc / cm 2 / sec, and a mass of 985 g / m 2 . Since the woven / knitting elements were the same type and the specific gravity difference between the yarns was 0, the sound absorbing effect was inferior to that of the fabric 2 of Example 2.

〔参考例1〕
〈樹脂コーティング糸条(3)〉
無アルカリガラスのマルチフィラメント糸条(フィラメント径9μm、400本フィラメント:75番手:687dtex)を芯糸とし、配合1の軟質塩化ビニル系樹脂によるペーストゾル組成物の液浴中にディッピングして軟質塩化ビニル樹脂ペーストゾル組成物をマルチフィラメント糸条の全周に被覆した後、180℃でゲル化処理して樹脂被覆層を形成して、糸条断面における高さ:幅の比が1:1近似の円形断面を有し、見掛比重2.06の樹脂コーティング糸条(3)を得た。
〈織物(28)〉
樹脂コーティング糸条(3)2本、及びマルチフィラメント糸条(1)2本を経糸条群及び緯糸条群として織編要素の基本単位に含み、経糸条群及び緯糸条群ともに〔樹脂コーティング糸条(3)2本、マルチフィラメント糸条(1)2本〕nを繰り返し単位とする2/2ななこ(バスケット)織物による単層織物で、経糸群は1インチ間30本(うち樹脂コーティング糸条(3)の本数は15本)の織密度、また緯糸群は1インチ間32本(うち樹脂コーティング糸条(1)の本数は16本)の織密度とする空隙率2%、通気度45cc/cm2/秒、質量720g/mの〔織物28〕を得た。樹脂コーティング糸条(3)とマルチフィラメント糸条(1)との比重差は0.49で、空隙率、通気度ともに織物1と同一であったが、樹脂コーティング糸条の断面形状の違いによって吸音効果が実施例1の織物1よりもやや低下する傾向となった。
[Reference Example 1]
<Resin-coated yarn (3)>
A non-alkali glass multifilament yarn (filament diameter 9 μm, 400 filaments: 75 counts: 687 dtex) is used as a core yarn and dipped into a paste sol composition liquid bath of soft vinyl chloride resin of compound 1 for soft chlorination After the vinyl resin paste sol composition is coated on the entire circumference of the multifilament yarn, it is gelled at 180 ° C. to form a resin coating layer, and the height: width ratio in the yarn cross section approximates 1: 1. Thus, a resin-coated yarn (3) having an apparent specific gravity of 2.06 was obtained.
<Woven (28)>
Resin-coated yarn (3) and two multifilament yarns (1) are included in the basic unit of the woven or knitted element as a warp yarn group and a weft yarn group. Both the warp yarn group and the weft yarn group [resin-coated yarn] (3) 2 strands, 2 multifilament yarns (1) 2] Single layer fabric made of 2/2 Nanako (basket) fabric with repeating unit of n, 30 warps per inch (including resin-coated yarn) The weaving density is 15% for the strip (3), and the weft density is 32 per inch (of which the number of the resin-coated yarn (1) is 16), the porosity is 2%, and the air permeability [Fabric 28] having 45 cc / cm 2 / sec and a mass of 720 g / m 2 was obtained. The specific gravity difference between the resin-coated yarn (3) and the multifilament yarn (1) was 0.49, and the porosity and air permeability were the same as those of the fabric 1. However, due to the difference in the cross-sectional shape of the resin-coated yarn The sound absorption effect tended to be slightly lower than that of the fabric 1 of Example 1.

〔参考例2〕
〈樹脂コーティング糸条(4)〉
無アルカリガラスのマルチフィラメント糸条(フィラメント径9μm、400本フィラメント:75番手:687dtex)を芯糸とし、配合3の軟質塩化ビニル系樹脂によるペーストゾル組成物の液浴中にディッピングして軟質塩化ビニル樹脂ペーストゾル組成物をマルチフィラメント糸条の全周に被覆した後、180℃でゲル化処理して樹脂被覆層を形成して、糸条断面における高さ:幅の比が3:5の扁平楕円断面を有し、見掛比重2.06の樹脂コーティング糸条(4)を得た。
〔配合3〕軟質塩化ビニル樹脂ペーストゾル組成物
乳化重合ポリ塩化ビニル樹脂(重合度1700) 100質量部
1,2−シクロヘキサンジカルボン酸ジイソノニル(可塑剤) 70質量部
※商品名:ヘキサモールDINCH(BASF社製)
エポキシ化大豆油(可塑剤) 5質量部
バリウム/亜鉛複合化合物(安定剤) 2質量部
三酸化アンチモン(難燃剤) 10質量部
シランカップリング剤 2質量部
※γ−アミノプロピルトリメトキシシラン(有効成分100%)
ベンゾトリアゾール(紫外線吸収剤) 0.3質量部
酸化チタン(白顔料) 2質量部
※〔配合1〕から層状無機化合物(モンモリロナイト:平均粒子径8μm)10質量部
及びモリブデン酸カルシウム亜鉛(モリブデン化合物粒子)5質量部を省略
〈織物(29)〉
樹脂コーティング糸条(4)2本、及びマルチフィラメント糸条(1)2本を経糸条群及び緯糸条群として織編要素の基本単位に含み、経糸条群及び緯糸条群ともに〔樹脂コーティング糸条(4)2本、マルチフィラメント糸条(1)2本〕nを繰り返し単位とする2/2ななこ(バスケット)織物による単層織物で、経糸群は1インチ間28本(うち樹脂コーティング糸条(4)の本数は14本)の織密度、また緯糸群は1インチ間30本(うち樹脂コーティング糸条(4)の本数は15本)の織密度とする空隙率2%、通気度45cc/cm2/秒、質量665g/mの〔織物29〕を得た。樹脂コーティング糸条(4)とマルチフィラメント糸条(1)との比重差は0.47で、空隙率、通気度ともに織物1と同一であったが、ASTM-E1354:コーンカロリーメーター試験の熱で樹脂コーティング糸条が体積膨張できずに、織物全体の空隙部がそのまま残り、火炎の突き抜けや有毒ガスの漏出を遮断することのできない建築基準法物件に不適切な膜材であった。
[Reference Example 2]
<Resin-coated yarn (4)>
A non-alkali glass multifilament yarn (filament diameter 9 μm, 400 filaments: 75 counts: 687 dtex) is used as the core yarn, and soft chlorination is carried out by dipping into a liquid bath of paste sol composition with soft vinyl chloride resin of compound 3. After the vinyl resin paste sol composition is coated on the entire circumference of the multifilament yarn, it is gelled at 180 ° C. to form a resin coating layer, and the height: width ratio in the yarn cross section is 3: 5. A resin-coated yarn (4) having a flat elliptical cross section and an apparent specific gravity of 2.06 was obtained.
[Formulation 3] Soft vinyl chloride resin paste sol composition Emulsion polymerization polyvinyl chloride resin (degree of polymerization 1700) 100 parts by mass 1,2-cyclohexanedicarboxylic acid diisononyl (plasticizer) 70 parts by mass * Product name: Hexamol DINCH (BASF (Made by company)
Epoxidized soybean oil (plasticizer) 5 parts by weight Barium / zinc composite compound (stabilizer) 2 parts by weight Antimony trioxide (flame retardant) 10 parts by weight Silane coupling agent 2 parts by weight * γ-aminopropyltrimethoxysilane (effective) 100% ingredient)
Benzotriazole (ultraviolet absorber) 0.3 parts by mass Titanium oxide (white pigment) 2 parts by mass * From [Composition 1], 10 parts by mass of layered inorganic compound (montmorillonite: average particle diameter 8 μm) and calcium zinc molybdate (molybdenum compound particles) ) Omit 5 parts by mass
<Weaving (29)>
Resin-coated yarn (4) and two multifilament yarns (1) are included in the basic unit of the woven or knitted element as a warp yarn group and a weft yarn group. (4) 2 strands, (2) multifilament yarns (1) 2] Single-layer fabric made of 2/2 Nanako (basket) fabric with n as the repeat unit, and 28 warps per inch (including resin-coated yarn) The number of strips (4) is 14), and the weft group is 30 weaves per inch (of which the number of resin-coated yarns (4) is 15). The porosity is 2% and the air permeability [Fabric 29] having 45 cc / cm 2 / sec and a mass of 665 g / m 2 was obtained. The specific gravity difference between the resin-coated yarn (4) and the multifilament yarn (1) was 0.47, and the porosity and air permeability were the same as those of the woven fabric 1, but ASTM-E1354: heat of corn calorimeter test However, the resin-coated yarn could not be expanded in volume, and the voids of the entire fabric remained as it was, and it was an inappropriate film material for the Building Standard Act property that could not block the penetration of flame and leakage of toxic gas.

本発明によれば、建築物の天井に設置される天井面積構成膜材(膜天井)兼吸音膜材、または天井面積構成部材付帯物として建築基準法に準じる不燃性膜材を具備し、震災に備え万が一、天井が崩落した場合にも深刻な人的被害を生じる可能性の低い軽量性とフレキシブル性とを有し、互いに異なる比重を有する糸条で製織された織物を用いることによって、織目単位で異なる比重の糸条が露出したり、隠れたり立体交差することで本発明の吸音膜材全面に音響吸収性の異なる織目単位がランダム、あるいは規則的に点在するような微小単位を構成して吸音効果を発現し、特に樹脂コーティング糸条部分によるおよそ1000Hz未満の低周波領域での吸音効果と、マルチフィラメント糸条部分によるおよそ1000Hz以上の中〜高周波領域での吸音効果を個別に同時発現することで騒音全般に対して偏在なく吸音効果に優れ、さらに照明や映像投影による演出も可能とするので、屋内競技場、体育館、屋内プール、イベントホール、公会堂、冠婚葬祭式場、駅舎、空港、ショッピングモールなどの膜天井構築用、光天井膜構築用などは勿論、さらには間仕切り、ブラインド、日除けテントなどにも応用することができる。   According to the present invention, a ceiling area constituting membrane material (membrane ceiling) and a sound absorbing membrane material installed on the ceiling of a building, or a ceiling area constituting member attached material is provided with a non-combustible membrane material according to the Building Standard Act, In the unlikely event of a disaster, by using a woven fabric woven with yarns having lightness and flexibility that are unlikely to cause serious human damage even if the ceiling collapses, and having different specific gravity, The yarns with different specific gravity are exposed, hidden or three-dimensionally crossed by the texture unit, so that the texture units with different sound absorption are randomly or regularly scattered on the entire surface of the sound absorbing film material of the present invention. The unit constitutes a sound absorbing effect, especially the sound absorbing effect in the low frequency region below about 1000 Hz due to the resin-coated yarn portion, and the medium to high frequency region above about 1000 Hz due to the multifilament yarn portion. By simultaneously expressing the sound absorption effect at the same time, it is excellent in sound absorption effect without being unevenly distributed with respect to the overall noise, and also can be produced by lighting and video projection, so indoor stadium, gymnasium, indoor pool, event hall, public hall It can also be applied to partitioning, blinds, awning tents, etc., as well as for membrane ceiling construction and optical ceiling membrane construction for ceremonial occasions, station buildings, airports, shopping malls, etc.

1:吸音膜材
2:織物
2−1:単層織物
2−2:二重織物
2−3:三重織物
2−4:空隙部
3:糸条
3−1:樹脂コーティング糸条
3−1−1:マルチフィラメント糸条(芯糸)
3−1−2:樹脂被覆層(コーティング)
3−2:マルチフィラメント糸条
4:気泡含有樹脂層
4−1:気泡
1: Sound absorbing film material 2: Fabric 2-1: Single layer fabric 2-2: Double fabric 2-3: Triple fabric 2-4: Cavity portion 3: Yarn 3-1: Resin coated yarn 3-1 1: Multifilament yarn (core yarn)
3-1-2: Resin coating layer (coating)
3-2: Multifilament yarn 4: Bubble-containing resin layer 4-1: Bubble

Claims (7)

樹脂コーティング糸条及びマルチフィラメント糸条を織編要素に含む空隙率5%以下の織物であって、前記樹脂コーティング糸条及びマルチフィラメント糸条との比重差が0.25以上、かつ両者糸条の占有体積比が4:1〜1:1であることを特徴とする吸音膜材。   A woven fabric having a void ratio of 5% or less including a resin-coated yarn and a multifilament yarn in a woven or knitted element, and a specific gravity difference between the resin-coated yarn and the multifilament yarn is 0.25 or more, and both yarns The sound absorbing film material is characterized in that the occupied volume ratio is 4: 1 to 1: 1. 前記織編要素が、1)経糸条群及び緯糸条群、または2)経糸条群及び左斜上・右斜上バイアス糸条群で、かつ前記織物が単層織物、二重織物、及び三重織物、から選ばれた何れか1種である請求項1に記載の吸音膜材。   The weaving and knitting elements are 1) a warp group and a weft group, or 2) a warp group and an upper left / upward bias yarn group, and the fabric is a single layer fabric, a double fabric, and a triple fabric. The sound-absorbing film material according to claim 1, wherein the sound-absorbing film material is any one selected from woven fabrics. 前記樹脂コーティング糸条が扁平楕円断面を有し、その扁平楕円断面における高さ:幅の比が3:4〜1:4である請求項1または2に記載の吸音膜材。   The sound-absorbing film material according to claim 1 or 2, wherein the resin-coated yarn has a flat elliptical cross section, and a ratio of height: width in the flat elliptical cross section is from 3: 4 to 1: 4. 前記樹脂コーティング糸条が、マルチフィラメント糸条と樹脂被覆層とで構成され、前記樹脂被覆層が熱膨張性を有し、熱膨張後の前記空隙率を1%以下に閉塞する請求項1〜3の何れか1項に記載の吸音膜材。   The said resin coating thread | yarn is comprised with a multifilament thread | yarn and a resin coating layer, the said resin coating layer has thermal expansibility, and obstruct | occludes the said porosity after thermal expansion to 1% or less. 4. The sound absorbing film material according to any one of 3 above. 前記樹脂被覆層が、塩化ビニル系樹脂、層状無機化合物、及びモリブデン化合物粒子を主体に含む請求項4に記載の吸音膜材。   The sound-absorbing film material according to claim 4, wherein the resin coating layer mainly contains a vinyl chloride resin, a layered inorganic compound, and molybdenum compound particles. 前記織物の片面に密度0.35〜0.75g/cmの気泡含有樹脂層が形成されて織物組織内に前記気泡含有樹脂層の一部が浸入し、その深さが前記織物の厚さに対して1〜35%である請求項1〜5の何れか1項に記載の吸音膜材。 A bubble-containing resin layer having a density of 0.35 to 0.75 g / cm 3 is formed on one side of the fabric, and a part of the bubble-containing resin layer penetrates into the fabric structure, and the depth is the thickness of the fabric. The sound-absorbing film material according to any one of claims 1 to 5, wherein the content of the sound-absorbing film material is 1 to 35%. 前記気泡含有樹脂層が、塩化ビニル系樹脂、層状無機化合物、及びモリブデン化合物粒子を主体に含む請求項6に記載の吸音膜材。   The sound-absorbing film material according to claim 6, wherein the bubble-containing resin layer mainly includes a vinyl chloride resin, a layered inorganic compound, and molybdenum compound particles.
JP2015140310A 2015-07-14 2015-07-14 Sound absorbing film Active JP6531316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015140310A JP6531316B2 (en) 2015-07-14 2015-07-14 Sound absorbing film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015140310A JP6531316B2 (en) 2015-07-14 2015-07-14 Sound absorbing film

Publications (2)

Publication Number Publication Date
JP2017020295A true JP2017020295A (en) 2017-01-26
JP6531316B2 JP6531316B2 (en) 2019-06-19

Family

ID=57887842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015140310A Active JP6531316B2 (en) 2015-07-14 2015-07-14 Sound absorbing film

Country Status (1)

Country Link
JP (1) JP6531316B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019090137A (en) * 2017-11-16 2019-06-13 Toyo Tire株式会社 Heat-responsive fabric
JP2021195645A (en) * 2020-06-11 2021-12-27 前田工繊株式会社 Sheet material, composite material using the same, multilayer molded article using the same, and sheet material manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272660A (en) * 2005-03-28 2006-10-12 Hiraoka & Co Ltd Antifouling, nonflammable flexible film material
JP2012066570A (en) * 2010-08-23 2012-04-05 Nitto Denko Corp Composite sheet
JP2014040033A (en) * 2012-08-22 2014-03-06 Hiraoka & Co Ltd Incombustible membrane material
JP2014518338A (en) * 2011-07-08 2014-07-28 セルジュ・フェラーリ・エスアーエス Fiber twist that can absorb sound waves

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272660A (en) * 2005-03-28 2006-10-12 Hiraoka & Co Ltd Antifouling, nonflammable flexible film material
JP2012066570A (en) * 2010-08-23 2012-04-05 Nitto Denko Corp Composite sheet
JP2014518338A (en) * 2011-07-08 2014-07-28 セルジュ・フェラーリ・エスアーエス Fiber twist that can absorb sound waves
JP2014040033A (en) * 2012-08-22 2014-03-06 Hiraoka & Co Ltd Incombustible membrane material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019090137A (en) * 2017-11-16 2019-06-13 Toyo Tire株式会社 Heat-responsive fabric
JP2021195645A (en) * 2020-06-11 2021-12-27 前田工繊株式会社 Sheet material, composite material using the same, multilayer molded article using the same, and sheet material manufacturing method

Also Published As

Publication number Publication date
JP6531316B2 (en) 2019-06-19

Similar Documents

Publication Publication Date Title
JP6580928B2 (en) Deodorant fabric
JP7026752B2 (en) How to form a fire protection compartment
JP6040434B2 (en) Nonflammable membrane ceiling material with excellent tear propagation prevention
JP2016186534A (en) Sound absorbing ceiling membrane
JP6435484B2 (en) Sound absorbing interior material and manufacturing method thereof
JP6464412B2 (en) Sound-absorbing incombustible sheet
JP2017020295A (en) Sound absorbing membrane material
JP6583912B2 (en) Sound absorbing film material
JP6585944B2 (en) Sound absorbing film material
JP6560584B2 (en) Deodorant fabric
JP6450922B2 (en) Sound absorbing sheet for membrane ceiling
JP2016186533A (en) Sound absorbing sheet
JP2017089071A (en) Deodorant flame retardant sheet
CN208558515U (en) A kind of sound-absorbing and flame-retardant fabric
JP2017031514A (en) Deodorant acoustic absorptive fabric
JP6504389B2 (en) Sound absorbing interior material
JP6543478B2 (en) Sound absorbing interior material
TWI447027B (en) Coated resin Flammable fiber and coated resin Flammable fiber fabric
JP5392445B1 (en) Resin-coated flame-retardant fiber yarn and resin-coated flame-retardant fiber fabric using the same
JP5990759B2 (en) Nonflammable membrane ceiling material with excellent tear propagation prevention
CN220075782U (en) Waterproof flame-retardant textile fabric
KR100722954B1 (en) Functional finishing board with fire retardant and sound absorbing function
CN219567847U (en) Flame-retardant laminated film with improved tearing strength
CN211917957U (en) Honeycomb-structure ultraviolet-resistant polyester modified short fiber
CN209178567U (en) A kind of fire-retardant composite filament of high-strength polyester

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190425

R150 Certificate of patent or registration of utility model

Ref document number: 6531316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250