JP2017019710A - Nitride semiconductor substrate - Google Patents

Nitride semiconductor substrate Download PDF

Info

Publication number
JP2017019710A
JP2017019710A JP2016105768A JP2016105768A JP2017019710A JP 2017019710 A JP2017019710 A JP 2017019710A JP 2016105768 A JP2016105768 A JP 2016105768A JP 2016105768 A JP2016105768 A JP 2016105768A JP 2017019710 A JP2017019710 A JP 2017019710A
Authority
JP
Japan
Prior art keywords
nitride semiconductor
substrate
base substrate
nitride
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016105768A
Other languages
Japanese (ja)
Other versions
JP6556664B2 (en
Inventor
典子 大森
Noriko Omori
典子 大森
大石 浩司
Koji Oishi
浩司 大石
阿部 芳久
Yoshihisa Abe
芳久 阿部
小宮山 純
Jun Komiyama
純 小宮山
健一 江里口
Kenichi Eriguchi
健一 江里口
知子 渡辺
Tomoko Watanabe
知子 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Coorstek KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Coorstek KK filed Critical Coorstek KK
Priority to US15/202,736 priority Critical patent/US9748344B2/en
Publication of JP2017019710A publication Critical patent/JP2017019710A/en
Application granted granted Critical
Publication of JP6556664B2 publication Critical patent/JP6556664B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a nitride semiconductor substrate excellent in pressure proof.SOLUTION: A nitride semiconductor substrate has an initial nitride 2 and a nitride semiconductor laminated in order on a principal plane of a ground substrate 1. Recess parts 10 of a diameter of 6 nm or more and 60 nm or less of which the number is 3×10/cmor more and 1×10/cmor less are arranged on the ground substrate 1 side of the interface of the ground substrate 1 and the initial nitride 2 in an optional cross section of the nitride semiconductor substrate. Preferably, the recess parts 10 have a depth of 3 nm or more and 45 nm or less toward the ground substrate 1 side from the interface of the ground substrate 1 and the initial nitride 2.SELECTED DRAWING: Figure 2

Description

本発明は、パワー半導体・電子デバイス等に好適な窒化物半導体基板に関する。   The present invention relates to a nitride semiconductor substrate suitable for a power semiconductor / electronic device and the like.

特許文献1に、転位密度を低減して、形成する半導体デバイスの性能や寿命を向上させるような窒化物半導体の結晶成長方法を提供する技術として、気相成長によって基体上に複数の窒化物半導体の島状結晶領域を形成させる第1の結晶成長工程と、前記島状結晶領域の境界同士を結合させながら前記島状結晶領域を更に成長させる第2の結晶成長工程を有する窒化物半導体の結晶成長方法において、第2の結晶成長工程の結晶成長速度を第1の結晶成長工程の結晶成長速度より高く設定し、或いは第2の結晶成長工程の結晶成長温度を第1の結晶成長工程の結晶成長温度より低く設定することで、転位が境界の結合部分で曲げられ、転位密度を下げることができる、という技術の開示があり、下地基板上に窒化物半導体層を気相成長で形成する際の窒化物層の形成メカニズムは公知である。   Patent Document 1 discloses a technique for providing a nitride semiconductor crystal growth method that reduces dislocation density and improves the performance and life of a semiconductor device to be formed. A plurality of nitride semiconductors are formed on a substrate by vapor phase growth. A nitride semiconductor crystal comprising: a first crystal growth step for forming the island-like crystal region; and a second crystal growth step for further growing the island-like crystal region while bonding boundaries between the island-like crystal regions. In the growth method, the crystal growth rate of the second crystal growth step is set higher than the crystal growth rate of the first crystal growth step, or the crystal growth temperature of the second crystal growth step is set to the crystal of the first crystal growth step. There is a technology disclosure that dislocations can be bent at the boundary joints by setting the temperature lower than the growth temperature, and the dislocation density can be lowered, and a nitride semiconductor layer is formed on the base substrate by vapor phase growth. That formation mechanism of the nitride layer in are known.

また特許文献2に、低転位密度の窒化物半導体を成長することが可能な窒化物半導体成長用基板として、サファイア基板のC面である主面に、前記主面に対して90°未満で傾斜した側面を有する錐状または錐台状の凸部が格子状に配置して形成されており、前記主面からの前記凸部の高さが0.5μm以上3μm以下で、隣接する前記凸部間の距離が1μm以上6μm以下であって、前記凸部の前記側面の表面粗さRMSが10nm以下である窒化物半導体成長用基板の開示がある。すなわち、下地基板の一主面に凹凸形状を有することで、その上に形成される窒化物半導体の特性に影響を与えることも知られている。   Further, in Patent Document 2, as a nitride semiconductor growth substrate capable of growing a low dislocation density nitride semiconductor, the main surface which is the C-plane of the sapphire substrate is inclined at less than 90 ° with respect to the main surface. Convex or frustum-shaped protrusions having side surfaces that are arranged are formed in a lattice pattern, and the height of the protrusions from the main surface is 0.5 μm or more and 3 μm or less, and the adjacent protrusions There is a disclosure of a nitride semiconductor growth substrate in which the distance between them is 1 μm or more and 6 μm or less, and the surface roughness RMS of the side surface of the convex portion is 10 nm or less. That is, it is also known that having a concavo-convex shape on one main surface of the base substrate affects the characteristics of the nitride semiconductor formed thereon.

特開2002−323733号公報JP 2002-323733 A 特開2013−087012号公報JP 2013-087012 A

特許文献1に記載の発明は、窒化物半導体層の成長条件の最適化で、窒化物半導体層を低転位化しようとするものである。従って、基板の面内全体で均一な窒化物半導体層の成長がなされないと、高品位な窒化物半導体層が得られない懸念がある。   The invention described in Patent Document 1 attempts to reduce dislocations in a nitride semiconductor layer by optimizing the growth conditions of the nitride semiconductor layer. Therefore, there is a concern that a high-quality nitride semiconductor layer cannot be obtained unless a uniform nitride semiconductor layer is grown on the entire surface of the substrate.

特許文献2に記載の発明は、あらかじめ下地基板に凹凸を形成して、窒化物半導体層の成長速度を適正化して転位消滅を促すものである。しかし、このようなサイズの凹凸を、基板の面内に精度よく形成することは、下地基板の高コスト化につながる。また、凹凸が完全に埋没する程度まで、初期の窒化物半導体層を形成する必要があり、窒化物半導体層の製造コスト高となる。また、均一に凹凸が形成されないと、その上に形成される窒化物半導体層も均一にならない懸念がある。   In the invention described in Patent Document 2, irregularities are formed on a base substrate in advance, and the growth rate of the nitride semiconductor layer is optimized to promote dislocation disappearance. However, accurately forming such irregularities in the surface of the substrate leads to higher cost of the base substrate. In addition, it is necessary to form the initial nitride semiconductor layer to the extent that the unevenness is completely buried, which increases the manufacturing cost of the nitride semiconductor layer. Further, if the unevenness is not formed uniformly, there is a concern that the nitride semiconductor layer formed thereon will not be uniform.

すなわち、下地基板の一主面上の凹凸形状は、均一かつ適切なサイズで形成される必要がある。さらには、凹凸の形成は、工業的に安価で精度よく実現されることが望まれる。   That is, the uneven shape on one main surface of the base substrate needs to be formed in a uniform and appropriate size. Furthermore, it is desired that the formation of the unevenness is industrially inexpensive and can be realized with high accuracy.

本発明は、このような課題に鑑み、特に耐圧特性に優れた窒化物半導体を簡易に提供することを目的とする。   In view of such problems, an object of the present invention is to easily provide a nitride semiconductor particularly excellent in breakdown voltage characteristics.

本発明に係る窒化物半導体基板は、下地基板の一主面上に初期窒化物及び窒化物半導体が順次積層された窒化物半導体基板であって、前記窒化物半導体基板の任意の一断面において、前記下地基板と前記初期窒化物との界面から前記下地基板側に直径6nm以上60nm以下のくぼみ部が3×108個/cm2以上1×1011個/cm2以下存在することを特徴とする。かかる構成を有することで、耐圧特性に優れた窒化物半導体基板を、簡易な構造で提供することを可能とする。 A nitride semiconductor substrate according to the present invention is a nitride semiconductor substrate in which an initial nitride and a nitride semiconductor are sequentially stacked on one main surface of a base substrate, and in any one section of the nitride semiconductor substrate, There are 3 × 10 8 pieces / cm 2 or more and 1 × 10 11 pieces / cm 2 or less of recesses having a diameter of 6 nm to 60 nm on the base substrate side from the interface between the base substrate and the initial nitride. To do. By having such a configuration, it is possible to provide a nitride semiconductor substrate having excellent breakdown voltage characteristics with a simple structure.

また、前記くぼみ部は、前記下地基板と前記初期窒化物との界面から前記下地基板側に向かって3nm以上45nm以下の深さを有していると、好ましいものである。   Further, it is preferable that the indented portion has a depth of 3 nm or more and 45 nm or less from the interface between the base substrate and the initial nitride toward the base substrate.

前記くぼみ部は、組成、結晶構造、結晶方位、結晶相の少なくともいずれかが前記下地基板と異なるものである。   The recessed portion is different from the base substrate in at least one of composition, crystal structure, crystal orientation, and crystal phase.

さらに、前記くぼみ部は、空隙、あるいは多結晶もしくは非晶質の無機材料で充填されている形態の、少なくともいずれかであると好ましい。   Furthermore, it is preferable that the indented portion is at least one of a void or a form filled with a polycrystalline or amorphous inorganic material.

本発明によれば、下地基板とその上の初期窒化物とからなる初期層の形態の中に、直径6nm以上60nm以下のくぼみ部を3×108個/cm2以上1×1011個/cm2以下の密度で設けるという簡易な構成を設けることにより、従来よりも耐圧特性に優れた窒化物半導体基板を提供することができる。 According to the present invention, 3 × 10 8 / cm 2 or more and 1 × 10 11 / indentations having a diameter of 6 nm to 60 nm are included in the form of the initial layer composed of the base substrate and the initial nitride thereon. By providing a simple configuration of providing a density of cm 2 or less, it is possible to provide a nitride semiconductor substrate that is more excellent in breakdown voltage characteristics than in the past.

本発明に係る窒化物半導体基板の、一例として挙げる積層構造の概略断面図である。It is a schematic sectional drawing of the laminated structure mentioned as an example of the nitride semiconductor substrate which concerns on this invention. 本発明に係る窒化物半導体基板の、下地基板の一主面表層部に形成されているくぼみ部を模式的に示した断面図である。It is sectional drawing which showed typically the hollow part currently formed in the one main surface surface layer part of the base substrate of the nitride semiconductor substrate which concerns on this invention. 本発明に係る窒化物半導体基板の、くぼみ部の直径、平均深さを模式的に説明する断面図である。It is sectional drawing which illustrates typically the diameter of a hollow part and the average depth of the nitride semiconductor substrate which concerns on this invention. 本発明に係る窒化物半導体基板の、くぼみ部の充填状態を模式的に示した断面図である。It is sectional drawing which showed typically the filling state of the hollow part of the nitride semiconductor substrate which concerns on this invention.

以下、本発明を、図面も参照して詳細に説明する。本発明に係る窒化物半導体基板の一例としては、図1に示す通り、下地基板1の一主面上に、初期窒化物からなる層2(以下単に「層2」ともいう。)、及び、窒化物半導体層3、4、5としてバッファ層3、電子走行層4、電子供給層5が、この順で積層されているものが挙げられる。   Hereinafter, the present invention will be described in detail with reference to the drawings. As an example of the nitride semiconductor substrate according to the present invention, as shown in FIG. 1, a layer 2 made of initial nitride (hereinafter also simply referred to as “layer 2”) on one main surface of the base substrate 1, and Examples of the nitride semiconductor layers 3, 4, and 5 include a buffer layer 3, an electron transit layer 4, and an electron supply layer 5 that are stacked in this order.

下地基板1には、窒化物半導体層の成長に用いられる公知の材料、例えば炭化ケイ素、サファイア等を適用できる。しかしながら、後述する理由により、シリコン単結晶を用いると、本発明の構成を容易かつ確実に実現できる点で、より好ましいものと言える。   A known material used for the growth of the nitride semiconductor layer, such as silicon carbide or sapphire, can be applied to the base substrate 1. However, it can be said that it is more preferable to use a silicon single crystal for the reason described later in that the configuration of the present invention can be realized easily and reliably.

そして、この下地基板1の一主面上には、初期窒化物からなる層2が形成されている。層2は、下地基板1上に格子定数や熱膨張係数が異なるバッファ層3(窒化物半導体層3)を適切に形成する役割を有するもので、その膜厚、組成等は、目的に応じて適宜設定すればよい。バッファ層の構成材料がGaとAlを含む窒化物半導体からなる層であれば、窒化アルミニウム(AlN)が、平坦性や転位制御性等の観点から、好適と言える。   A layer 2 made of initial nitride is formed on one main surface of the base substrate 1. The layer 2 has a role of appropriately forming the buffer layer 3 (nitride semiconductor layer 3) having different lattice constants and thermal expansion coefficients on the base substrate 1, and the film thickness, composition, etc. are determined according to the purpose. What is necessary is just to set suitably. If the constituent material of the buffer layer is a layer made of a nitride semiconductor containing Ga and Al, it can be said that aluminum nitride (AlN) is preferable from the viewpoint of flatness, dislocation controllability, and the like.

初期窒化物からなる層2、バッファ層3(窒化物半導体層3)の形成方法は、例えば、気相成長法、特に有機金属気相成長(MOCVD)法が好適であるが、その他の手法を適用してもよい。   As a method for forming the initial nitride layer 2 and the buffer layer 3 (nitride semiconductor layer 3), for example, a vapor phase growth method, in particular, a metal organic chemical vapor deposition (MOCVD) method is preferable. You may apply.

下地基板1の一主面上には、前記窒化物半導体基板の任意の一断面において、前記下地基板と前記初期窒化物との界面から前記下地基板1側に向かって直径6nm以上60nm以下のくぼみ部が3×108個/cm2以上1×1011個/cm2以下存在している。 On one main surface of the base substrate 1, a recess having a diameter of 6 nm or more and 60 nm or less from the interface between the base substrate and the initial nitride toward the base substrate 1 in an arbitrary cross section of the nitride semiconductor substrate. The portion is 3 × 10 8 pieces / cm 2 or more and 1 × 10 11 pieces / cm 2 or less.

図2は、下地基板1の一主面表層部に形成されているくぼみ部10を模式的に示した断面図である。ここで、Kは下地基板1の一主面、Wはくぼみ部10の直径、Dはくぼみ部10の平均深さである。本発明では、深さを平均深さDで表すものとする。くぼみ部10には材料Xが充填されていてもよい(図示せず)。   FIG. 2 is a cross-sectional view schematically showing the indented portion 10 formed on the surface layer portion of one main surface of the base substrate 1. Here, K is one main surface of the base substrate 1, W is the diameter of the recess 10, and D is the average depth of the recess 10. In the present invention, the depth is represented by the average depth D. The recess 10 may be filled with a material X (not shown).

なお、前記窒化物半導体基板は、製法の関係から、基板のごく外周端部まで全く均一に製造することは困難であるため、前記任意の一断面は、前記窒化物半導体基板の、ごく外周端部を避けて観察すべきである。そのため、後述するように、例えば外周端部から5〜25mm程度内側の位置が、観察位置として好ましい。   Since the nitride semiconductor substrate is difficult to manufacture completely uniformly up to the very outer peripheral edge of the substrate due to the manufacturing method, the arbitrary one cross section is the very outer peripheral edge of the nitride semiconductor substrate. It should be observed avoiding the part. Therefore, as will be described later, for example, a position about 5 to 25 mm inside from the outer peripheral end is preferable as the observation position.

本発明において「断面」とは、下地基板1の一主面に対して垂直方向の面とするが、厳密に垂直方向である必要はなく、該一主面に対する垂直方向から±20°程度のずれは許容される。例えば、面方位(111)のシリコン単結晶基板1をダイヤモンドペン等で劈開して得られる劈開面は19.47°であり、実用上問題ないものである。   In the present invention, the “cross section” is a plane perpendicular to the one principal surface of the base substrate 1, but does not have to be strictly perpendicular, and is about ± 20 ° from the direction perpendicular to the one principal surface. Deviation is allowed. For example, the cleavage plane obtained by cleaving the silicon single crystal substrate 1 having the plane orientation (111) with a diamond pen or the like is 19.47 °, which is not a problem in practice.

本発明における直径Wは、図2に示すように、一主面K上で下地基板1と、くぼみ部10又は前記くぼみ部10に充填された材料X(図示せず)とで形成される角部p1、p2を両端として、その間隔を実側した値とする。なお、実際は、くぼみ部10を一主面方向から見ると略円形、略楕円形、あるいは角のとれた多角形であるが、本発明では、断面観察図で得られる角部p1、p2の間隔をもって、くぼみ部10の直径Wとみなす。   As shown in FIG. 2, the diameter W in the present invention is an angle formed by the base substrate 1 and the recess 10 or the material X (not shown) filled in the recess 10 on one main surface K. Let the part p1, p2 be both ends, and let the distance be the actual value. Actually, when the indentation 10 is viewed from one principal surface direction, it is a substantially circular shape, a substantially elliptical shape, or a polygon with a rounded corner. However, in the present invention, the interval between the corner portions p1 and p2 obtained in the cross-sectional observation view is shown. Is considered as the diameter W of the indentation 10.

本発明における平均深さDは、図3に示すように、一主面Kの下方で下地基板1と、くぼみ部10又は前記くぼみ部10に充填された材料X(図示せず)との境界部において形成される角部p3、p4と、前記2箇所の角部で形成される線分の中央部p5、の計3点でそれぞれ計測されるKとの間隔の平均値、とする。   As shown in FIG. 3, the average depth D in the present invention is a boundary between the base substrate 1 and the recess 10 or the material X (not shown) filled in the recess 10 below one main surface K. It is assumed that the average value of the intervals between K, which is measured at a total of three points, that is, the corners p3, p4 formed in the part and the central part p5 of the line segment formed by the two corners.

上記直径W、平均深さDおよび一主面Kは、好適な一例として、窒化物半導体基板を任意の直径に沿って、劈開、あるいはその他の方法で切断し、研磨等の手法を用いて形成される断面を観察することで得られる。そして、採取する箇所は、直径方向に対して劈開した面の、窒化物半導体基板中心部、両側の外周端部からそれぞれ20mm内側、の計3箇所とする。さらに、各採取箇所では、画像として幅500nmを観察した範囲内で、任意の5個のくぼみ部10を選択して、それらの直径W、平均深さDを観察し、測定した値を平均した値を用いる。   The diameter W, the average depth D, and the one principal surface K are preferably formed by using a technique such as cleaving or cutting the nitride semiconductor substrate along an arbitrary diameter by other methods and polishing. It is obtained by observing the cross section. Then, the sampling points are a total of three locations, that is, the center portion of the nitride semiconductor substrate on the surface cleaved with respect to the diametrical direction and 20 mm inside from the outer peripheral end portions on both sides. Furthermore, in each sampling location, within the range where a width of 500 nm was observed as an image, arbitrary five indentations 10 were selected, their diameter W and average depth D were observed, and the measured values were averaged. Use the value.

そして、本発明におけるくぼみ部10の密度(個/cm2)は、上記3箇所で、画像として幅500nmを観察した範囲内で隣接するくぼみ部10の個数を総平均して、単位面積cm2当たりの個数に換算して算出する。 The density (pieces / cm 2 ) of the indentations 10 in the present invention is the unit area cm 2 by averaging the total number of the indentations 10 within the range where the width of 500 nm is observed as an image at the above three locations. Calculated in terms of the number of hits.

上記は、好適な一例を示したものであるが、断面を得る箇所は、必ずしも中心と外周に限定されるものではなく、必要に応じて任意の3箇所でも差し支えない。また、幅についても、300nmから1000nmの範囲で、必要に応じて設定する事が出来る。   Although the above shows a suitable example, the location where the cross section is obtained is not necessarily limited to the center and the outer periphery, and any three locations may be used as necessary. Also, the width can be set as necessary in the range of 300 nm to 1000 nm.

なお、好適な一例として、くぼみ部10の密度を単位面積当たりの個数で表現したが、単位長さ当たりの密度で表現してもよい。透過電子顕微鏡(TEM)による観察では、厚み方向も透過して見えてしまうので、単位面積当たりの個数でのカウントとなるが、走査電子顕微鏡(SEM)による観察では単位長さ当たりの個数のカウントとなるので、この場合は単位長さ換算の方が好ましい。一例として、単位長さ当たりに換算した場合は、1×103個/cm以上3×105個/cm以下が本発明の好適範囲となる。 As a preferred example, the density of the recessed portions 10 is expressed by the number per unit area, but may be expressed by the density per unit length. In the observation with a transmission electron microscope (TEM), the thickness direction is also seen through, so the number per unit area is counted, but in the observation with the scanning electron microscope (SEM), the number per unit length is counted. Therefore, in this case, unit length conversion is preferable. As an example, when converted per unit length, the preferred range of the present invention is 1 × 10 3 pieces / cm or more and 3 × 10 5 pieces / cm or less.

くぼみ部10の各寸法、個数等は、好適には、TEMによる断面を撮影した画像から直接計測して得られるが、適切に画像処理をして解析してもよい。また、TEM以外の手法、例えばSEM、さらには、走査透過電子顕微鏡(STEM)、を用いてもよい。   The dimensions, number, etc. of the indentations 10 are preferably obtained by direct measurement from an image obtained by photographing a cross section with a TEM, but may be analyzed by appropriate image processing. In addition, a technique other than TEM, for example, SEM, or scanning transmission electron microscope (STEM) may be used.

公知技術にもある通り、平坦な一主面上には、初期窒化物による島状の形成体が生成しにくいので、その上(該一主面上)に形成される層2の結晶性が悪化する。そのため、下地基板1の一主面上に、ある程度の凹凸又は段差を形成する事が行われていた。   As known in the art, since an island-shaped formation due to initial nitride is difficult to be formed on a flat main surface, the crystallinity of the layer 2 formed thereon (on the main surface) is low. Getting worse. For this reason, a certain degree of unevenness or level difference has been formed on one main surface of the base substrate 1.

本発明では、凹凸に相当するくぼみ部10を、従来と比べて非常に小さいサイズとすることで、一主面上の単位面積当たりの初期窒化物による島状の形成体の発生頻度を、より高くすることができる。かつ、島状の形成体自体のサイズも非常に小さくなり、小さいサイズの島状の形成体が数多く生成されることで、層2は、従来にも増して平坦性に優れた結晶性に優れた層となる。   In the present invention, the indentation 10 corresponding to the unevenness is made a very small size compared to the conventional one, so that the occurrence frequency of island-shaped formed bodies by the initial nitride per unit area on one main surface is further increased. Can be high. In addition, the size of the island-shaped formed body itself becomes very small, and a large number of small-sized island-shaped formed bodies are generated, so that the layer 2 has excellent flatness and crystallinity that is superior to the conventional one. Layer.

その結果、形成された層2は、その良好な結晶性により、層2の上に形成される窒化物半導体層3、4、5の耐圧特性が改善されることが分かった。   As a result, it was found that the breakdown voltage characteristics of the nitride semiconductor layers 3, 4, and 5 formed on the layer 2 are improved due to the good crystallinity of the formed layer 2.

本発明においては、窒化物半導体基板の任意の一断面において、下地基板1と層2との界面から前記下地基板1側に直径6nm以上60nm以下のくぼみ部10が3×108個/cm2以上1×1011個/cm2以下の密度で存在している。 In the present invention, in any one cross section of the nitride semiconductor substrate, the number of recessed portions 10 having a diameter of 6 nm or more and 60 nm or less is 3 × 10 8 pieces / cm 2 from the interface between the base substrate 1 and the layer 2 to the base substrate 1 side. The density is 1 × 10 11 pieces / cm 2 or less.

くぼみ部10の直径Wは6nm以上60nm以下である。直径Wは、6nm未満では島状の形成体が生成されないことがあり、60nm超では、くぼみ部10自体が新たな結晶欠陥の発生源となることがある。   The diameter W of the recess 10 is 6 nm or more and 60 nm or less. If the diameter W is less than 6 nm, an island-shaped formed body may not be generated, and if it exceeds 60 nm, the indentation 10 itself may be a source of new crystal defects.

くぼみ部10は、下地基板1と層2との界面から前記下地基板1側に向って3nm以上45nm以下の深さ(平均深さD)を有していると好ましい。平均深さDが3nm未満では、島状の形成体が生成されないことがあり、45nm超では、くぼみ部10自体が新たな結晶欠陥の発生源となることがある。より好ましくは、10nm以上20nm以下である。   The indentation 10 preferably has a depth (average depth D) of 3 nm or more and 45 nm or less from the interface between the base substrate 1 and the layer 2 toward the base substrate 1 side. If the average depth D is less than 3 nm, island-shaped formations may not be generated, and if it exceeds 45 nm, the indentation 10 itself may become a new crystal defect source. More preferably, it is 10 nm or more and 20 nm or less.

本発明において、くぼみ部10は、3×108個/cm2以上1×1011個/cm2以下の密度で存在している。 In the present invention, the recessed portion 10 exists at a density of 3 × 10 8 pieces / cm 2 or more and 1 × 10 11 pieces / cm 2 or less.

3×108個/cm2未満では、島状の形成体同士の間隔が広すぎて、互いに成長して結合する確率が極端に低くなり、結晶欠陥として残存することがある。一方、1×1011個/cm2超では、くぼみ部10同士の間隔が狭すぎて、これを起点として発生する島状の形成体同士が結合して成長したものが突起状のまま残存して、やはり結晶欠陥の発生源となることがある。 If it is less than 3 × 10 8 pieces / cm 2 , the distance between the island-shaped formed bodies is too wide, and the probability of growing and bonding to each other becomes extremely low, and crystal defects may remain. On the other hand, if it exceeds 1 × 10 11 pieces / cm 2 , the distance between the indentations 10 is too narrow, and the island-like formed bodies that are generated from this as a starting point are grown and remain in a protruding shape. As a result, it may be a source of crystal defects.

くぼみ部10は、組成、結晶構造、結晶方位、結晶相の少なくともいずれかが前記下地基板1と異なるものである。すなわち、くぼみ部10が、下地基板1とは前記に挙げた形態の内、少なくとも1つが異なるものであれば、本発明の効果が発揮される。言い換えると、くぼみ部10は、下地基板1と「同一」のものでなければよく、広範囲の形態をとることができる。   The recessed portion 10 is different from the base substrate 1 in at least one of composition, crystal structure, crystal orientation, and crystal phase. That is, the effect of the present invention is exhibited if the indentation 10 is different from the base substrate 1 in at least one of the forms listed above. In other words, the indentation 10 need not be “same” as the underlying substrate 1 and can take a wide range of forms.

なお、くぼみ部10は、何かしらの材料が存在しない、いわゆる空隙でも、本発明の効果が得られる。空隙とは、例えば欠陥、ボイド、閉気孔、等が挙げられる。また、空隙は、必ずしもくぼみ部10全体が空間でなくても、一部に何かしらの材料が存在する形態でも構わない。   In addition, even if the hollow part 10 does not have any material, what is called a space | gap can also obtain the effect of this invention. Examples of voids include defects, voids, closed pores, and the like. Further, the gap may not necessarily be a space as a whole of the recess 10, but may have a form in which some material exists in part.

あるいは、材料Xが下地基板1と組成は同一であるが、単結晶に対して多結晶あるいは非晶質であるか、もしくは、単結晶同士でも結晶方位が異なる、という相違の場合も、本発明の範囲と言える。   Alternatively, the material X has the same composition as the base substrate 1 but is polycrystalline or amorphous with respect to the single crystal, or the crystal orientation is different between the single crystals. It can be said that the range.

上記のような構成を有することで、くぼみ部10の上部で成長する初期窒化物は、下地基板1上部で成長する初期窒化物とは、成長速度と成長する方向が有意に異なるので、島状の形成体が成長の初期段階で効果的に生成される。   By having the above-described configuration, the initial nitride grown on the upper portion of the recess 10 is significantly different in the growth rate and growth direction from the initial nitride grown on the upper portion of the base substrate 1. Are formed effectively in the early stages of growth.

一例として、下地基板1が結晶方位(111)を有する単結晶であれば、材料Xは、同じ単結晶ではあるが、結晶方位(111)以外の方位、例えば(100)、(110)、(115)等の結晶方位を有する単結晶で構成される。   As an example, if the base substrate 1 is a single crystal having a crystal orientation (111), the material X is the same single crystal, but an orientation other than the crystal orientation (111), for example, (100), (110), ( 115) or the like.

充填される材料Xとしては、無機材料が好ましく、多結晶または非晶質の、酸化物、窒化物であると、より好ましい。材料Xの具体例としては、高濃度ボロンドープのシリコン単結晶基板の表層部等に含まれる酸素析出物が挙げられる。すなわち、材料Xが多結晶または非晶質である場合、くぼみ部10への多結晶または非晶質材料の充填が簡易かつ確実に行われるためである。   The material X to be filled is preferably an inorganic material, more preferably a polycrystalline or amorphous oxide or nitride. Specific examples of the material X include oxygen precipitates contained in the surface layer portion of a high concentration boron-doped silicon single crystal substrate. That is, when the material X is polycrystalline or amorphous, filling of the recessed portion 10 with the polycrystalline or amorphous material is easily and reliably performed.

ここで、本発明において「充填」とは、一主面Kを境界として、その下方、すなわち下地基板1側にあるくぼみ部10が、材料X(例えば、前記各種無機材料)のみで構成されていることを示すものとする。ただし、材料Xと層2との界面が、一主面Kと完全に一致している必要はなく、材料Xと層2との界面領域が緩やかな凹凸を形成していてもよい。すなわち、図4に示すように、境界線20または21で形成される上下方向への張り出し部12の存在も、本発明の範疇といえる。   Here, in the present invention, “filling” means that the depression 10 on the lower side, that is, on the base substrate 1 side, with one principal surface K as a boundary, is composed of only the material X (for example, the various inorganic materials). It shall be shown that However, the interface between the material X and the layer 2 does not have to be completely coincident with the one principal surface K, and the interface region between the material X and the layer 2 may form gentle irregularities. That is, as shown in FIG. 4, the presence of the overhanging portion 12 formed by the boundary line 20 or 21 in the vertical direction is also within the scope of the present invention.

なお、張り出し部12の間隔(張り出し部12表面の凹凸の範囲)は、平均深さDの±20%以内が好ましく、±10%以内がさらに好ましい。この張り出し部12の間隔が大きすぎると、凹凸の湾曲度合が過大であるので、直上に形成される層2が、この湾曲度合に依存して成長してしまい、結晶欠陥の原因となるおそれが生じる。   The interval between the overhang portions 12 (the range of irregularities on the surface of the overhang portion 12) is preferably within ± 20% of the average depth D, and more preferably within ± 10%. If the distance between the protruding portions 12 is too large, the degree of curvature of the unevenness is excessive, and the layer 2 formed immediately above may grow depending on the degree of curvature, which may cause crystal defects. Arise.

本発明に係る窒化物半導体基板は、下地基板1の一主面K上に、初期窒化物からなる層2及び窒化物半導体層3、4、5(バッファ層3、電子走行層4、電子供給層5)が、この順で積層されている。下地基板1が、上記の通り特徴的なくぼみ部10を有するので、初期窒化物及び窒化物半導体中の転位が少なく、それにより耐圧特性の向上した窒化物半導体基板とすることができる。   The nitride semiconductor substrate according to the present invention includes an initial nitride layer 2 and nitride semiconductor layers 3, 4, 5 (buffer layer 3, electron transit layer 4, electron supply on one main surface K of the base substrate 1. Layers 5) are laminated in this order. Since the base substrate 1 has the characteristic recess 10 as described above, the dislocations in the initial nitride and the nitride semiconductor are few, and thereby a nitride semiconductor substrate with improved breakdown voltage characteristics can be obtained.

また、本発明においては、下地基板1がシリコン単結晶である場合に、前記シリコン単結晶が1×1018atoms/cm3以上のボロンを含有すると、より好ましい。なお、ボロン濃度が高すぎると、新たな結晶欠陥発生要因となる懸念があるので、上限は5×1020atoms/cm3以下が好ましい。 In the present invention, when the base substrate 1 is a silicon single crystal, it is more preferable that the silicon single crystal contains boron of 1 × 10 18 atoms / cm 3 or more. If the boron concentration is too high, there is a concern that it may cause a new crystal defect, so the upper limit is preferably 5 × 10 20 atoms / cm 3 or less.

シリコン単結晶基板1は、高濃度ボロンドープであると、基板の強度が増し、反りが低減される。反りの小さい下地基板1は、初期窒化物積層時の下地基板1の変形が小さく、転位の発生抑制効果が相乗的に発揮される。   When the silicon single crystal substrate 1 is highly doped with boron, the strength of the substrate increases and warpage is reduced. The base substrate 1 having a small warpage has a small deformation of the base substrate 1 at the time of initial nitride lamination, and synergistically exhibits the effect of suppressing the occurrence of dislocations.

さらに、高濃度ボロンドープのシリコン単結晶基板1は、くぼみ部10の元となる酸素析出物、すなわち材料Xが比較的小さいものが高密度に、その表層部に多く存在するため、後述する熱処理によって、本発明の実施形態に係るサイズと分布を有するくぼみ部10を作製するのに好適である。   Further, since the silicon single crystal substrate 1 of high-concentration boron dope has a high density of oxygen precipitates that are the material of the recess 10, that is, the material X is relatively small in the surface layer portion, It is suitable for manufacturing the hollow part 10 which has the size and distribution which concerns on embodiment of this invention.

なお、ボロン濃度が5×1018atoms/cm3以上であると、酸素析出物の密度が本発明の実施範囲内でより高密度化して本発明の効果も向上するので、さらに好ましい。 Note that it is more preferable that the boron concentration is 5 × 10 18 atoms / cm 3 or more because the density of oxygen precipitates is further increased within the scope of the present invention and the effects of the present invention are improved.

また、本発明の窒化物半導体基板の、好ましい一製造方法としては、酸素濃度が8×1017cm-3以上1.8×1018cm-3以下のシリコン単結晶基板1を少なくとも1000℃以上かつ1分以上非酸化性雰囲気で熱処理する工程を含むものである。 Further, as a preferable manufacturing method of the nitride semiconductor substrate of the present invention, a silicon single crystal substrate 1 having an oxygen concentration of 8 × 10 17 cm −3 or more and 1.8 × 10 18 cm −3 or less is at least 1000 ° C. or more. And a step of heat treatment in a non-oxidizing atmosphere for 1 minute or longer.

酸素濃度が8×1017cm-3以上1.8×1018cm-3以下のシリコン単結晶基板1を少なくとも1000℃以上かつ1分以上非酸化性雰囲気で熱処理すると、基板表面部に露出した酸素析出物の一部もしくは全部が、非酸化性雰囲気の熱処理により、酸素の外方拡散によって消失し、析出物の跡が空洞として残る。本発明では、これをくぼみ部10として活用する。 When the silicon single crystal substrate 1 having an oxygen concentration of 8 × 10 17 cm −3 or more and 1.8 × 10 18 cm −3 or less is heat-treated in a non-oxidizing atmosphere at least 1000 ° C. for 1 minute or more, it is exposed on the surface of the substrate. Part or all of the oxygen precipitates disappear due to the outward diffusion of oxygen by heat treatment in a non-oxidizing atmosphere, and the traces of the precipitates remain as cavities. In the present invention, this is utilized as the recess 10.

ここで、大きな空洞のくぼみは初期窒化物で充填され、小さなくぼみは残留した酸化シリコンと初期窒化物が充填され、凹部がない析出部は酸化シリコンがそのままくぼみ部10の材料Xを構成する。   Here, the large hollow recess is filled with the initial nitride, the small recess is filled with the remaining silicon oxide and the initial nitride, and the deposited portion without the recess constitutes the material X of the recess 10 as it is.

酸素濃度が8×1017cm-3以上1.8×1018cm-3以下のシリコン単結晶基板1を、少なくとも1000℃以上かつ1分以上非酸化性雰囲気にて熱処理することで、本発明のような、直径W、平均深さD、密度の分布を有する下地基板1とすることができる。酸素濃度が低すぎると密度が小さくなりすぎ、酸素濃度が高すぎると直径Wおよび平均深さDが過大になるおそれがある。 The silicon single crystal substrate 1 having an oxygen concentration of 8 × 10 17 cm −3 or more and 1.8 × 10 18 cm −3 or less is heat-treated in a non-oxidizing atmosphere at least 1000 ° C. for 1 minute or more. Thus, the base substrate 1 having a diameter W, an average depth D, and a density distribution can be obtained. If the oxygen concentration is too low, the density becomes too small, and if the oxygen concentration is too high, the diameter W and the average depth D may become excessive.

また、くぼみ部10の直径W、平均深さD、および密度は、1000℃以上かつ1分以上非酸化性雰囲気での熱処理で調整できる。前記熱処理の温度が低すぎる、または前記熱処理の時間が短すぎると、直径Wおよび平均深さDの値が過小になり、前記熱処理の温度が高すぎる、または前記熱処理の時間が長すぎると、直径Wおよび平均深さDが大きくなりすぎるおそれがある。   Further, the diameter W, the average depth D, and the density of the recessed portion 10 can be adjusted by heat treatment in a non-oxidizing atmosphere at 1000 ° C. or more for 1 minute or more. When the temperature of the heat treatment is too low or the time of the heat treatment is too short, the values of the diameter W and the average depth D are too low, the temperature of the heat treatment is too high, or the time of the heat treatment is too long, The diameter W and the average depth D may be too large.

もちろん、本発明の直径W、平均深さD、および密度を実現できる他の手法、例えば化学的表面処理等により、くぼみ部10の形成を実施してもよい。   Of course, the indentation 10 may be formed by other methods capable of realizing the diameter W, the average depth D, and the density of the present invention, such as chemical surface treatment.

以上の通り、本発明に係る窒化物半導体基板は、下地基板の一主面に、無機材料で充填されていてもよい、非常に小さいくぼみ部10が多数形成されている、という特異な構造を有することで、この構成だけで、下地基板上に形成される窒化物半導体層の転位を低減し、特に耐圧特性を飛躍的に向上させることが可能となる。   As described above, the nitride semiconductor substrate according to the present invention has a unique structure in which a large number of very small depressions 10 that may be filled with an inorganic material are formed on one main surface of a base substrate. With this structure alone, dislocations in the nitride semiconductor layer formed on the base substrate can be reduced, and particularly the breakdown voltage characteristics can be dramatically improved.

以下、本発明を実施例に基づいてさらに具体的に説明するが、本発明は、下記実施例により制限されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is not restrict | limited by the following Example.

[実施例1]
(下地基板の準備)
まず、直径6インチ、面方位(111)、ボロンドープで比抵抗0.004Ωcm、酸素濃度が1.0×1018cm-3のシリコン単結晶基板を下地基板として準備した。
[Example 1]
(Preparation of base substrate)
First, a silicon single crystal substrate having a diameter of 6 inches, a plane orientation (111), boron doping, a specific resistance of 0.004 Ωcm, and an oxygen concentration of 1.0 × 10 18 cm −3 was prepared as a base substrate.

(初期窒化物および窒化物半導体の積層)
図1に示すような層構造を備えた窒化物半導体基板を、以下の工程により作製した。
まず、前記のシリコン単結晶基板をMOCVD装置内にセットし、昇温、ガス置換後に、1000℃×15分、水素100%雰囲気で熱処理を行った。
続いて、原料ガスとしてトリメチルアルミニウム(TMA)、アンモニア(NH3)を用い、炭素濃度1×1018atoms/cm3、厚さ100nmのAlN単結晶からなる初期窒化物の層2を、500℃で気相成長させた。なお、これ以降の13族窒化物半導体層の形成は全て、成長温度の基準を1000℃とし、これに1〜15℃の範囲で微調整を加えている。前記層2の上に、原料ガスとしてトリメチルガリウム(TMG)、TMA、NH3を用い、炭素濃度5×1019atoms/cm3、厚さ300nmのAlxGa1-xN単結晶層(x=0.1)を気相成長させた。
次に、原料ガスとしてTMG、TMA、NH3を用い、炭素濃度5×1019atoms/cm3で、厚さ5nmのAlN単結晶層及び厚さ30nmのGaN単結晶層を交互に各8層気相成長させて、続いて、炭素濃度1×1018atoms/cm3にて、厚さ1250nmのGaN単結晶層を同様にして積層し、バッファ層3を形成した。
その後、活性層4である電子走行層として、炭素濃度1×1016atoms/cm3、厚さ700nmのGaN単結晶層を同様にして積層し、さらに、電子供給層として、厚さ18nmのAlGa1-yN単結晶層(y=0.26)を同様にして積層し、13族窒化物半導体基板を得た。
なお、気相成長により形成した各層の厚さや炭素濃度の制御は、原料ガスの流量と供給時間及び基板温度、その他公知の成長条件の調整により行った。
(Lamination of initial nitride and nitride semiconductor)
A nitride semiconductor substrate having a layer structure as shown in FIG. 1 was produced by the following steps.
First, the silicon single crystal substrate was set in an MOCVD apparatus, and after heat-up and gas replacement, heat treatment was performed in an atmosphere of 1000 ° C. for 15 minutes and 100% hydrogen.
Subsequently, trimethylaluminum (TMA) and ammonia (NH 3 ) were used as source gases, and an initial nitride layer 2 made of an AlN single crystal having a carbon concentration of 1 × 10 18 atoms / cm 3 and a thickness of 100 nm was formed at 500 ° C. Vapor phase growth. In all subsequent formations of the group 13 nitride semiconductor layer, the reference of the growth temperature is set to 1000 ° C., and fine adjustment is made in the range of 1 to 15 ° C. On the layer 2, trimethylgallium (TMG), TMA, and NH 3 are used as source gases, and an Al x Ga 1-x N single crystal layer (x x 5 × 10 19 atoms / cm 3 , 300 nm thick) = 0.1) was vapor grown.
Next, TMG, TMA, and NH 3 are used as the source gas, and an AlN single crystal layer having a thickness of 5 nm and a GaN single crystal layer having a thickness of 30 nm are alternately formed at a carbon concentration of 5 × 10 19 atoms / cm 3. by vapor phase growth, subsequently, at a carbon concentration 1 × 10 18 atoms / cm 3 , laminated in the same manner GaN single crystal layer having a thickness of 1250 nm, to form a buffer layer 3.
Thereafter, a GaN single crystal layer having a carbon concentration of 1 × 10 16 atoms / cm 3 and a thickness of 700 nm is stacked in the same manner as an electron transit layer that is the active layer 4, and an 18 nm-thick Al layer is further formed as an electron supply layer. A y Ga 1-y N single crystal layer (y = 0.26) was laminated in the same manner to obtain a group 13 nitride semiconductor substrate.
Note that the thickness and carbon concentration of each layer formed by vapor phase growth were controlled by adjusting the flow rate and supply time of the source gas, the substrate temperature, and other known growth conditions.

[比較例1]
前記熱処理の条件を、1000℃×5分とした以外は、実施例1と同様にして、比較例1のサンプルを作製、評価した。
[Comparative Example 1]
A sample of Comparative Example 1 was prepared and evaluated in the same manner as in Example 1 except that the heat treatment condition was 1000 ° C. × 5 minutes.

上記の通り作製した窒化物半導体基板の耐圧評価を行った。耐圧評価は、得られた各窒化物半導体基板に対して、リセスゲート領域及び素子分離領域の溝をドライエッチングにより形成し、電子供給層5側にゲート電極としてNi/Au電極を、ソース電極及びドレイン電極としてTi/Al電極を、また、下地基板の裏面側に裏面電極としてTi/Al電極を、それぞれ真空蒸着により形成し、HEMT素子を面内に28個作製した。このHEMT素子について、市販のカーブトレーサーを用いて、耐圧を測定した。600V以上を合格、600V未満を不合格として、全28個中の合格率を、耐圧歩留り(%)として判定した。   The breakdown voltage of the nitride semiconductor substrate manufactured as described above was evaluated. In the breakdown voltage evaluation, recesses in the recess gate region and the element isolation region are formed by dry etching on each nitride semiconductor substrate obtained, and a Ni / Au electrode is formed on the electron supply layer 5 side as a gate electrode, and a source electrode and a drain. A Ti / Al electrode as an electrode and a Ti / Al electrode as a back electrode on the back side of the base substrate were formed by vacuum deposition, respectively, and 28 HEMT elements were produced in the plane. About this HEMT element, the pressure | voltage resistance was measured using the commercially available curve tracer. A pass rate of all 28 pieces was determined as a pressure-resistant yield (%), with 600V or higher being accepted and less than 600V being rejected.

表1に、基板一主面中央部1か所、外周部から20mm内側(両端)の計3箇所において、TEMを用いてくぼみ部10の各サイズと密度を測定し、耐圧歩留りの結果と合わせて示す。なお、表1中、耐圧歩留まりが50%以上を(○)、50%未満を(×)として評価した。   In Table 1, the size and density of the indentation 10 are measured using TEM at three locations, one central part of the main surface of the substrate and 20 mm inside (both ends) from the outer periphery, and the results are combined with the results of the breakdown voltage yield. Show. In Table 1, an evaluation was made with a breakdown voltage yield of 50% or more as (◯) and less than 50% as (x).

Figure 2017019710
Figure 2017019710

表1の結果から、本発明の実施範囲にある実施例1は、耐圧歩留りが80%以上と良好であった。これに対して、直径Wが本発明の実施範囲外である比較例1は、耐圧歩留りが50%を下回り、実施例1と比べて見劣りするものであった。   From the results shown in Table 1, in Example 1 within the scope of the present invention, the breakdown voltage yield was as good as 80% or more. On the other hand, Comparative Example 1 in which the diameter W is outside the implementation range of the present invention has a breakdown voltage yield of less than 50%, which is inferior to Example 1.

シリコン単結晶基板の表面に形成されていた酸化膜は、前記熱処理の時間の長い実施例1では完全に消失、実施例1と比べて前記熱処理の時間の短い比較例1では部分的に残存している。このため、実施例1では、くぼみ部10が一主面上で全体的に均質に形成され、その結果、個々の直径Wが比較的小さいくぼみ部10が高密度で形成される。   The oxide film formed on the surface of the silicon single crystal substrate completely disappears in Example 1 where the heat treatment time is long, and partially remains in Comparative Example 1 where the heat treatment time is short compared to Example 1. ing. For this reason, in Example 1, the recessed part 10 is uniformly formed on one main surface as a whole, and as a result, the recessed part 10 with each comparatively small diameter W is formed in high density.

これに対して、比較例1は、酸化膜が部分的に残存しているので、酸化膜が残っている箇所ではくぼみ部10がほとんど形成されず、酸化膜がない箇所に集中してくぼみ部10が形成される。その結果、単体のくぼみ部10の直径Wが大きくなり、かつ、くぼみ部10の密度も低下する。   On the other hand, in Comparative Example 1, since the oxide film partially remains, the recessed portion 10 is hardly formed in the portion where the oxide film remains, and is concentrated in the portion where there is no oxide film. 10 is formed. As a result, the diameter W of the single depression 10 is increased, and the density of the depression 10 is also reduced.

なお、実施例1、比較例1で観察されたくぼみ部10は、全体が空隙のもの、及び、一部が空隙で残りがシリコン、酸素、窒素を含む非晶質体の材料Xが存在しているもの、が混在しているものであった。   In addition, the hollow part 10 observed in Example 1 and Comparative Example 1 has a void material as a whole and an amorphous material X containing a part of the void and the remainder of silicon, oxygen, and nitrogen. It was a mixture of things.

ここで、実施例1と比較例1の比較において、前記熱処理の時間の長い実施例1の方が、比較例1より直径Wおよび平均深さDが小さくなっており、前述した前記熱処理の条件による傾向とやや異なる挙動を示した。そこで、本発明の発明者らは、更に実験を行い、本発明を実施するためのより好ましい条件を検討した。   Here, in comparison between Example 1 and Comparative Example 1, Example 1 having a longer heat treatment time had a diameter W and an average depth D smaller than those of Comparative Example 1, and the conditions for the heat treatment described above were used. The behavior was slightly different from that of Therefore, the inventors of the present invention conducted further experiments and studied more preferable conditions for carrying out the present invention.

[実施例2]
前記熱処理の条件を1000℃×7分とした以外は、実施例1と同様にして、実施例2のサンプルを作製、評価した。
[Example 2]
A sample of Example 2 was prepared and evaluated in the same manner as in Example 1 except that the heat treatment condition was 1000 ° C. × 7 minutes.

[実施例3]
前記熱処理の条件を1000℃×10分とした以外は、実施例1と同様にして、実施例3のサンプルを作製、評価した。
[Example 3]
A sample of Example 3 was prepared and evaluated in the same manner as Example 1 except that the heat treatment condition was 1000 ° C. × 10 minutes.

[実施例4]
前記熱処理の条件を1000℃×30分とした以外は、実施例1と同様にして、実施例4のサンプルを作製、評価した。
[Example 4]
A sample of Example 4 was prepared and evaluated in the same manner as Example 1 except that the heat treatment condition was 1000 ° C. × 30 minutes.

[比較例2]
前記熱処理の条件を1100℃×10分とした以外は、実施例1と同じ条件で比較例2のサンプルを作製、評価した。
[Comparative Example 2]
A sample of Comparative Example 2 was prepared and evaluated under the same conditions as in Example 1 except that the heat treatment conditions were 1100 ° C. × 10 minutes.

[比較例3]
前記熱処理の条件を900℃×10分とした以外は、実施例1と同じ条件で比較例3のサンプルを作製、評価した。
[比較例4]
前記熱処理の条件を800℃×10分とした以外は、実施例1と同じ条件で比較例4のサンプルを作製、評価した。
[Comparative Example 3]
A sample of Comparative Example 3 was prepared and evaluated under the same conditions as in Example 1 except that the heat treatment conditions were 900 ° C. × 10 minutes.
[Comparative Example 4]
A sample of Comparative Example 4 was prepared and evaluated under the same conditions as in Example 1 except that the heat treatment conditions were 800 ° C. × 10 minutes.

表1と同様に、実施例2〜4と比較例2〜4のくぼみ部10の各サイズと密度を測定した。表2に、耐圧の歩留り結果と合わせて示す。表2中、耐圧歩留まりが60%超を(○)、50%以上60%以下を(△)、50%未満を(×)として評価した。   Similarly to Table 1, each size and density of the recessed part 10 of Examples 2-4 and Comparative Examples 2-4 were measured. Table 2 shows the yield results of breakdown voltage. In Table 2, the pressure yield was evaluated as (◯) when the breakdown voltage yield exceeded 60%, (Δ) when 50% or more and 60% or less, and (×) when less than 50%.

Figure 2017019710
Figure 2017019710

表2の結果から、実施例2は耐圧歩留りが60%であり、実施例1の耐圧歩留り90%に比べると見劣りするものであった。これは、実施例2は、実施例1と比較して、前記熱処理の時間が短いので、部分的に酸化膜が残っており、直径Wのサイズが相対的に大きくなったためと考えられる。ただし、実施例2でも、比較例1と比較してくぼみ部10の密度は十分高いので、耐圧歩留り50%を超えるレベルを確保できている。   From the results of Table 2, Example 2 had a breakdown voltage yield of 60%, which was inferior to the breakdown voltage yield of Example 1 of 90%. This is presumably because the heat treatment time in Example 2 is shorter than that in Example 1, so that the oxide film partially remains and the size of the diameter W is relatively large. However, also in Example 2, since the density of the hollow part 10 is sufficiently high as compared with Comparative Example 1, a level exceeding the breakdown voltage yield of 50% can be secured.

実施例3は耐圧歩留りが95%であり、実施例1の耐圧歩留り90%に比べるとより優れたものとなった。前述の通り、シリコン単結晶基板の表面に形成されていた酸化膜が残存すると、くぼみ部10の直径Wは大きくなる傾向にあるが、実施例3は、前記熱処理の時間が酸化膜をほぼ完全に除去できる程度の最適な時間であったので、直径Wのサイズが実施例1よりも小さく、かつ適切なものとなった。また、酸化膜がほぼ無いことで、くぼみ部10も一主面上で均質に形成され、耐圧歩留りがより向上したと考えられる。   Example 3 had a breakdown voltage yield of 95%, which was superior to that of Example 1 with a breakdown voltage yield of 90%. As described above, when the oxide film formed on the surface of the silicon single crystal substrate remains, the diameter W of the indented portion 10 tends to increase, but in Example 3, the time for the heat treatment is almost complete. Therefore, the diameter W was smaller than that of Example 1 and appropriate. In addition, since the oxide film is almost absent, it is considered that the recessed portion 10 is also formed uniformly on one main surface, and the breakdown voltage yield is further improved.

そのため、実施例3より前記熱処理の時間の短い実施例2では、酸化膜の残存による影響で耐圧歩留りがやや低下する傾向がみられた。すなわち、前記熱処理の時間が最適に制御され、シリコン単結晶基板の表面に形成されていた酸化膜がちょうどゼロになった状態が本発明の最良の形態といえ、この時、耐圧歩留りが格別高いものとなる。   For this reason, in Example 2 in which the heat treatment time was shorter than that in Example 3, the breakdown voltage yield tended to decrease slightly due to the influence of the remaining oxide film. That is, the state in which the heat treatment time is optimally controlled and the oxide film formed on the surface of the silicon single crystal substrate is just zero is the best mode of the present invention. At this time, the breakdown voltage yield is particularly high. It will be a thing.

しかしながら、前記熱処理の時間が長すぎると、生成したくぼみ部10がさらに成長して直径W、平均深さDともに大きくなる。実施例1は実施例3より前記熱処理の時間が長いので、個々のくぼみ部10のサイズが相対的に大きい。耐圧歩留りについても実施例3は実施例1と比較して、より耐圧歩留りが向上していることがみてとれる。すなわち、実施例3は、くぼみ部10のサイズがより適正化され、本発明の直径Wのより好ましい範囲は10nm以上20nm以下にあると考えられる。   However, if the time for the heat treatment is too long, the generated indentation 10 further grows and both the diameter W and the average depth D increase. Since the heat treatment time in Example 1 is longer than that in Example 3, the size of each recess 10 is relatively large. Regarding the breakdown voltage yield, it can be seen that the breakdown voltage yield of Example 3 is further improved as compared with Example 1. That is, in Example 3, it is considered that the size of the indentation part 10 is made more appropriate, and a more preferable range of the diameter W of the present invention is 10 nm or more and 20 nm or less.

実施例4は耐圧歩留りが85%であり、実施例2よりは良好であったが、実施例1よりは見劣りするものであった。実施例4は、前記熱処理の時間を実施例1より長い30分としたので、くぼみ部10の成長がさらに進み、直径Wのより好ましい範囲である10nm以上20nmから離れてしまったことにより、耐圧歩留りはやや低下したものとみられる。   Example 4 had a breakdown voltage yield of 85%, which was better than Example 2, but was inferior to Example 1. In Example 4, since the heat treatment time was set to 30 minutes longer than that in Example 1, the growth of the recessed portion 10 further progressed, and it was separated from the more preferable range of the diameter W from 10 nm to 20 nm. Yield seems to have fallen slightly.

一方、比較例2は、直径Wが本発明の実施範囲を超えた70nmとなり、その結果、耐圧歩留りも30%と大きく低下した。これは、比較例2が、前記熱処理の温度を、実施例1〜4の1000℃と比べてさらに高い1100℃としたことで、くぼみ部10の成長が急激に促進され、そのサイズが巨大化したことが原因と考えられる。なお、くぼみ部10の成長には、前記熱処理の時間よりも前記熱処理の温度の方が大きく影響する。   On the other hand, in Comparative Example 2, the diameter W was 70 nm exceeding the implementation range of the present invention, and as a result, the breakdown voltage yield was greatly reduced to 30%. This is because, in Comparative Example 2, the temperature of the heat treatment was set to 1100 ° C., which is higher than 1000 ° C. in Examples 1 to 4, so that the growth of the recessed portion 10 was rapidly promoted and the size thereof was enlarged. This is thought to be the cause. Note that the temperature of the heat treatment has a greater influence on the growth of the recessed portion 10 than the time of the heat treatment.

比較例3は、前記熱処理の温度を900℃まで下げたものである。その結果、直径Wは4nmと非常に小さくなり、耐圧歩留りも10%まで低下した。前記熱処理の温度が低いと、酸化膜には部分的に極微小な穴が多数形成され、それらの穴の下に微小なくぼみ部10が形成される。従って、くぼみ部10自体は形成されるものの、実施例1〜4と比較すると酸化膜の影響によりほとんどサイズが大きくならず、かつ、酸化膜はほとんど残っているため、その上に形成される窒化物半導体層の結晶性が悪化してしまい、結果としてリーク電流が多く、耐圧歩留りの低下につながる。   In Comparative Example 3, the temperature of the heat treatment was lowered to 900 ° C. As a result, the diameter W was as small as 4 nm, and the breakdown voltage yield was reduced to 10%. When the temperature of the heat treatment is low, a number of extremely minute holes are partially formed in the oxide film, and the minute depressions 10 are formed under these holes. Therefore, although the recess 10 itself is formed, the size is hardly increased due to the influence of the oxide film as compared with the first to fourth embodiments, and the oxide film remains almost, so the nitride formed thereon is formed. The crystallinity of the physical semiconductor layer is deteriorated, resulting in a large leakage current, leading to a decrease in breakdown voltage yield.

比較例4は、比較例3よりも前記熱処理の温度を更に下げて、800℃としたものである。この場合は、温度が低すぎて酸化膜がほぼ残存するので、くぼみ部10は形成されない。そのため、酸化膜が下地基板の全面に残っているので、その上に形成される窒化物半導体層の結晶性が著しく悪化してしまい、リーク電流が多くなり、耐圧歩留りはゼロとなった。   In Comparative Example 4, the temperature of the heat treatment was further lowered to 800 ° C. compared to Comparative Example 3. In this case, since the temperature is too low and the oxide film substantially remains, the recessed portion 10 is not formed. Therefore, since the oxide film remains on the entire surface of the base substrate, the crystallinity of the nitride semiconductor layer formed thereon is remarkably deteriorated, the leakage current increases, and the breakdown voltage yield becomes zero.

以上のことから、下地基板1にシリコン単結晶を用いた場合においては、シリコン単結晶基板上に形成されている酸化膜をほぼ完全に除去しつつ、くぼみ部10のサイズは本発明の効果が得られる範囲の適切なサイズになるように、初期窒化物から成る層の形成前の熱処理条件を最適化することが、本発明の好適な一実施態様といえる。   From the above, in the case where a silicon single crystal is used for the base substrate 1, the size of the indented portion 10 is effective in removing the oxide film formed on the silicon single crystal substrate almost completely. It can be said that a preferred embodiment of the present invention is to optimize the heat treatment conditions before the formation of the layer made of the initial nitride so as to obtain an appropriate size within the obtained range.

1 下地基板(シリコン単結晶基板)
2 初期窒化物からなる層
3 窒化物半導体層(バッファ層)
4 窒化物半導体層(電子走行層)
5 窒化物半導体層(電子供給層)
10 くぼみ部
12 張り出し部
20、21 下地基板と初期窒化物からなる層との境界線
W くぼみ部10の直径
D くぼみ部10の平均深さ
K 下地基板の一主面
X 材料
p1、p2、p3、p4 角部
p5 中央部
1 Base substrate (silicon single crystal substrate)
2 Layer made of initial nitride 3 Nitride semiconductor layer (buffer layer)
4 Nitride semiconductor layer (electron transit layer)
5 Nitride semiconductor layer (electron supply layer)
DESCRIPTION OF SYMBOLS 10 Indentation part 12 Overhang | projection part 20, 21 The boundary line of a base substrate and the layer which consists of initial nitrides W The diameter of the indentation part D The average depth of the indentation part K One main surface of a base board X Material p1, p2, p3 , P4 corner p5 center

Claims (4)

下地基板の一主面上に初期窒化物及び窒化物半導体が順次積層された窒化物半導体基板であって、
前記窒化物半導体基板の任意の一断面において、前記下地基板と前記初期窒化物との界面から前記下地基板側に直径6nm以上60nm以下のくぼみ部が3×108個/cm2以上1×1011個/cm2以下存在することを特徴とする窒化物半導体基板。
A nitride semiconductor substrate in which an initial nitride and a nitride semiconductor are sequentially stacked on one main surface of a base substrate,
In an arbitrary cross section of the nitride semiconductor substrate, 3 × 10 8 / cm 2 to 1 × 10 indentations having a diameter of 6 nm to 60 nm are formed on the base substrate side from the interface between the base substrate and the initial nitride. A nitride semiconductor substrate having 11 / cm 2 or less.
前記くぼみ部は、前記下地基板と前記初期窒化物との界面から前記下地基板側に向かって3nm以上45nm以下の深さを有していることを特徴とする請求項1記載の窒化物半導体基板。   2. The nitride semiconductor substrate according to claim 1, wherein the recess has a depth of 3 nm or more and 45 nm or less from an interface between the base substrate and the initial nitride toward the base substrate side. . 前記くぼみ部は、組成、結晶構造、結晶方位、結晶相の少なくともいずれかが前記下地基板と異なるものであることを特徴とする請求項1または2に記載の窒化物半導体基板。   3. The nitride semiconductor substrate according to claim 1, wherein at least one of a composition, a crystal structure, a crystal orientation, and a crystal phase is different from the base substrate. 前記くぼみ部は、空隙、あるいは多結晶もしくは非晶質の無機材料で充填されている形態の、少なくともいずれかであることを特徴とする、請求項3記載の窒化物半導体基板。   4. The nitride semiconductor substrate according to claim 3, wherein the indented portion is at least one of a void or a form filled with a polycrystalline or amorphous inorganic material.
JP2016105768A 2015-07-08 2016-05-27 Nitride semiconductor substrate Active JP6556664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/202,736 US9748344B2 (en) 2015-07-08 2016-07-06 Nitride semiconductor substrate having recesses at interface between base substrate and initial nitride

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015136598 2015-07-08
JP2015136598 2015-07-08

Publications (2)

Publication Number Publication Date
JP2017019710A true JP2017019710A (en) 2017-01-26
JP6556664B2 JP6556664B2 (en) 2019-08-07

Family

ID=57888817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016105768A Active JP6556664B2 (en) 2015-07-08 2016-05-27 Nitride semiconductor substrate

Country Status (1)

Country Link
JP (1) JP6556664B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11515408B2 (en) 2020-03-02 2022-11-29 Taiwan Semiconductor Manufacturing Company, Ltd. Rough buffer layer for group III-V devices on silicon

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021772A (en) * 1998-06-26 2000-01-21 Sony Corp Semiconductor device and its manufacture
JP2009096655A (en) * 2007-10-15 2009-05-07 Sanken Electric Co Ltd Manufacturing method of epitaxial growth substrate, manufacture method of nitride-based compound semiconductor element, epitaxial growth substrate, and nitride-based compound semiconductor element
JP2012031047A (en) * 2010-07-08 2012-02-16 Ritsumeikan Method for growing crystal and semiconductor element
JP2013042032A (en) * 2011-08-18 2013-02-28 Fujitsu Ltd Compound semiconductor device and manufacturing method of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021772A (en) * 1998-06-26 2000-01-21 Sony Corp Semiconductor device and its manufacture
JP2009096655A (en) * 2007-10-15 2009-05-07 Sanken Electric Co Ltd Manufacturing method of epitaxial growth substrate, manufacture method of nitride-based compound semiconductor element, epitaxial growth substrate, and nitride-based compound semiconductor element
JP2012031047A (en) * 2010-07-08 2012-02-16 Ritsumeikan Method for growing crystal and semiconductor element
JP2013042032A (en) * 2011-08-18 2013-02-28 Fujitsu Ltd Compound semiconductor device and manufacturing method of the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11515408B2 (en) 2020-03-02 2022-11-29 Taiwan Semiconductor Manufacturing Company, Ltd. Rough buffer layer for group III-V devices on silicon
TWI790463B (en) * 2020-03-02 2023-01-21 台灣積體電路製造股份有限公司 Semiconductor device and formation method thereof
US11862720B2 (en) 2020-03-02 2024-01-02 Taiwan Semiconductor Manufacturing Company, Ltd. Rough buffer layer for group III-V devices on silicon

Also Published As

Publication number Publication date
JP6556664B2 (en) 2019-08-07

Similar Documents

Publication Publication Date Title
US9966259B2 (en) Silicon-based substrate, semiconductor device, and method for manufacturing semiconductor device
JPWO2011161975A1 (en) Epitaxial growth substrate, semiconductor device, and epitaxial growth method
JP6863423B2 (en) Substrates for electronic devices and their manufacturing methods
US20100301393A1 (en) Field effect transistor and manufacturing method therefor
JP5684043B2 (en) Semiconductor device and manufacturing method thereof
US9748344B2 (en) Nitride semiconductor substrate having recesses at interface between base substrate and initial nitride
JP6239017B2 (en) Nitride semiconductor substrate
JP6269368B2 (en) Gallium nitride substrate
JP2018041851A (en) Nitride semiconductor substrate
JP6556664B2 (en) Nitride semiconductor substrate
JP6101565B2 (en) Nitride semiconductor epitaxial wafer
CN104465720A (en) Semiconductor epitaxial structure and growth method thereof
JP6089122B2 (en) Nitride semiconductor laminate, method for manufacturing the same, and nitride semiconductor device
JP2014192226A (en) Epitaxial substrate for electronic device
WO2012137309A1 (en) Method for manufacturing nitride electronic devices
TWI578382B (en) A semiconductor substrate, a semiconductor device, and a semiconductor device
JP6815278B2 (en) Nitride semiconductor laminate, semiconductor device, nitride semiconductor laminate manufacturing method and semiconductor device manufacturing method
JP2016219690A (en) Group 13 nitride semiconductor substrate
JP6108609B2 (en) Nitride semiconductor substrate
JP7220647B2 (en) Nitride semiconductor substrate and manufacturing method thereof
JP6493511B2 (en) Gallium nitride substrate
CN211125657U (en) Semiconductor structure
JP2021044596A (en) Nitride semiconductor laminate, semiconductor device, and method for manufacturing nitride semiconductor laminate
JP2013147383A (en) Nitride semiconductor wafer and method of manufacturing nitride semiconductor wafer
JP5743928B2 (en) Gallium nitride semiconductor epitaxial wafer and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190710

R150 Certificate of patent or registration of utility model

Ref document number: 6556664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350