JP2017017932A - Charging method for secondary battery with additional function - Google Patents

Charging method for secondary battery with additional function Download PDF

Info

Publication number
JP2017017932A
JP2017017932A JP2015134664A JP2015134664A JP2017017932A JP 2017017932 A JP2017017932 A JP 2017017932A JP 2015134664 A JP2015134664 A JP 2015134664A JP 2015134664 A JP2015134664 A JP 2015134664A JP 2017017932 A JP2017017932 A JP 2017017932A
Authority
JP
Japan
Prior art keywords
charging
rechargeable battery
voltage
additional function
slope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015134664A
Other languages
Japanese (ja)
Inventor
弘明 坂口
Hiroaki Sakaguchi
弘明 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhythm Watch Co Ltd
Original Assignee
Rhythm Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhythm Watch Co Ltd filed Critical Rhythm Watch Co Ltd
Priority to JP2015134664A priority Critical patent/JP2017017932A/en
Publication of JP2017017932A publication Critical patent/JP2017017932A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a charging method which is capable of detecting full charge even if -Δ(delta)V cannot be detected, and is not influenced by noise of a motor or the like, in a charging method for a secondary battery comprising an additional function such as a fan or a light.SOLUTION: The charging method for the secondary battery includes: a secondary battery 3; a microcomputer 4 including a timer function; an additional function having a plurality of modes that are switched by a switching operation; an additional function circuit 5 which performs a mode change of the additional function; a charge control circuit 6 which controls output to the secondary battery; and a power supply switch circuit 2 which outputs power supply while distributing the same to the microcomputer or the charge control circuit. A threshold value A is set from data based on a charging voltage profile, and a secondary battery voltage of the secondary battery is measured to calculate a curve S of a voltage change at an interval of a predetermined time. If the curve S exceeds the threshold value A and then falls lower than the threshold value A, full charge is discriminated.SELECTED DRAWING: Figure 2

Description

本発明は、ファンやライトなどの付加機能を有する充電池の充電方法であって、例えば、USBポートなどの出力電流が制限された電源を利用する充電池の充電方法に関する。   The present invention relates to a method for charging a rechargeable battery having an additional function such as a fan or a light, and relates to a method for charging a rechargeable battery using a power source with a limited output current, such as a USB port.

従来のニッケル水素などの充電池の充電方法においては、−▲△▼(デルタ)V検出方式の充電方式を採用しているものが多く、一定のタイミング毎に充電池の開放電圧を測定し、満充電か否かの判定を行っている。また、過充電対策として、最大充電時間を設定するタイマー方式と併用しているものも多く見られる。   In many conventional charging methods for rechargeable batteries such as nickel metal hydride, the charging method of the-▲ △ ▼ (delta) V detection method is adopted, and the open-circuit voltage of the rechargeable battery is measured at a certain timing. It is determined whether the battery is fully charged. Many countermeasures against overcharging are also used in combination with a timer method for setting a maximum charging time.

また、上記従来の充電池においては、充電池の充電プロファイル、すなわち、充電時間と電圧変化のグラフなどの充電池のデータシートや、充電池メーカーの試験結果データ、更には充電池そのものの公称電圧(例えば、3.6Vや4.8Vなど)は、予め与えられている。   In addition, in the above-mentioned conventional rechargeable battery, the charge profile of the rechargeable battery, that is, a rechargeable battery data sheet such as a graph of charging time and voltage change, test result data of the rechargeable battery manufacturer, and further the nominal voltage of the rechargeable battery itself (For example, 3.6V, 4.8V, etc.) is given in advance.

特開昭55−141938号公報JP-A-55-141938 特開昭61−288740号公報JP 61-288740 A 特開平9−233729号公報Japanese Patent Laid-Open No. 9-233729 特開2001−186683号公報JP 2001-186683 A 特開2007−252086号公報JP 2007-252086 A 特開2012−23849号公報JP 2012-23849 A 特許第3219731号公報Japanese Patent No. 3219731

このようなファンやライトなどの付加機能を有する充電池の充電方法においては、充電と付加機能の動作、例えばファン動作を同時に行う場合に、次のような問題点が生じている。   In such a charging method of a rechargeable battery having an additional function such as a fan or a light, the following problems occur when charging and the operation of the additional function, for example, the fan operation is performed simultaneously.

USBポートなどの出力電流に制限のある電源で充電する場合、付加機能の消費電流の影響で充電に使用できる電流が小さくなるため、−▲△▼(デルタ)Vを検出できない可能性がある。   When charging with a power source with a limited output current, such as a USB port, the current that can be used for charging is reduced due to the influence of the consumption current of the additional function, so that −ΔΔ (delta) V may not be detected.

また、付加機能を駆動するモータのノイズにより、充電池の開放電圧測定値の誤差が大きくなり、したがって満充電の誤検知をする可能性がある。   In addition, due to the noise of the motor that drives the additional function, the error in the measured value of the open-circuit voltage of the rechargeable battery becomes large, and thus there is a possibility of erroneous detection of full charge.

本発明は、上記事情に鑑みてなされたもので、前述の充電池のプロファイルや、充電メーカーの試験結果データ、あるいは充電池の公称電圧など(以下、「充電電圧プロファイル」という。)を用いることにより、USBポートなどの出力電流に制限のある電源を利用する場合に付加機能の消費電流の影響で充電電流が小さくなって、−▲△▼(デルタ)Vを検出できないときでも、満充電を検知することができる充電方法を提案するものである。   The present invention has been made in view of the above circumstances, and uses the above-described rechargeable battery profile, charging manufacturer test result data, or the nominal voltage of the rechargeable battery (hereinafter referred to as “charging voltage profile”). Therefore, when using a power supply with limited output current, such as a USB port, the charging current becomes small due to the current consumption of the additional function, and even when − ▲ △ ▼ (delta) V cannot be detected, the battery is fully charged. The charging method that can be detected is proposed.

更に、本発明は、充電機能を有する付加機能において充電と付加機能の動作を同時に行う場合に、モータのノイズの影響下でも満充電を誤検知なくして充電することができる充電方法を提案するものである。   Furthermore, the present invention proposes a charging method capable of charging without erroneous detection of full charge even under the influence of motor noise when charging and additional function operation are performed simultaneously in the additional function having a charging function. It is.

本願発明は、USBポートなどの出力電流が制限された電源を利用する充電システムであって、ファンやライトなどの付加機能を有する充電池の充電方法において、
充電池と、
充電開始からの経過時間をカウントするタイマー機能を備えるとともに、前記充電池の電圧及び電源電圧の監視、並びに、充電電流の制御と監視を行うマイコンと、
切り替え動作により切り替えられる複数のモードを有する付加機能と、
前記切り替え動作により前記付加機能の前記モードの変更を行う付加機能回路と、
前記電源からの電流を前記充電池へ出力制御する充電制御回路と、
前記電源と前記充電池から供給される電流を択一的に切り替えて前記マイコン又は前記充電制御回路へ振り分けて出力する電源切替回路と、
を備え、
前記充電池における充電電圧プロファイルに基づく充電時間と電池電圧変化とのデータ、又は当該充電池における充電時間と電池電圧変化との実測値データから、所定時間ごとの電圧変化グラフの傾きを算出して、前記電圧変化グラフの満充電と推定される近辺における電圧の傾きから閾値Aを設定し、
前記充電池の充電池電圧を測定して、所定時間ごとの電圧変化の傾きを算出し、この傾きが、前記閾値Aを上昇後、当該閾値Aを降下したときに満充電と判定することを特徴とする充電池の充電方法である。
The present invention is a charging system that uses a power source with limited output current, such as a USB port, in a charging method for a rechargeable battery having an additional function such as a fan or a light.
A rechargeable battery;
A timer function that counts the elapsed time from the start of charging, a microcomputer that monitors and controls the voltage and power supply voltage of the rechargeable battery, and a charging current;
An additional function having a plurality of modes switched by a switching operation;
An additional function circuit for changing the mode of the additional function by the switching operation;
A charge control circuit for controlling output of the current from the power source to the rechargeable battery;
A power source switching circuit that selectively switches the current supplied from the power source and the rechargeable battery and distributes and outputs to the microcomputer or the charge control circuit;
With
From the data of charging time and battery voltage change based on the charging voltage profile in the rechargeable battery, or the measured value data of the charging time and battery voltage change in the rechargeable battery, the slope of the voltage change graph for each predetermined time is calculated. , A threshold A is set from the slope of the voltage in the vicinity estimated to be fully charged in the voltage change graph,
Measure the rechargeable battery voltage of the rechargeable battery, calculate the slope of the voltage change every predetermined time, and determine that this slope is fully charged when the threshold A is lowered after the threshold A is raised. It is the charging method of the rechargeable battery characterized.

本願第2請求項に記載した発明は、請求項1において、前記傾きが、一定時間ごとの平均値を算出した測定電圧に基づいて算出されるように構成した充電池の充電方法である。   The invention described in claim 2 of the present application is the method of charging a rechargeable battery according to claim 1, wherein the slope is calculated based on a measured voltage obtained by calculating an average value for each fixed time.

従来の満充電の後に−▲△▼(デルタ)Vを検出する方式のものは、過充電による化学反応で電圧降下がなされることを利用して満充電を検知するものであるが、付加機能を有する充電池では、消費電流の影響で充電電流が小さくなって化学反応での電圧降下が非常に小さいため、−▲△▼(デルタ)Vを検出することができない。   The conventional method of detecting-[Delta] (delta) V after full charge detects full charge by using a voltage drop caused by a chemical reaction due to overcharge. In a rechargeable battery having a voltage of −ΔΔ (delta) V cannot be detected because the charging current is reduced due to the influence of current consumption and the voltage drop due to the chemical reaction is very small.

この点、本願は、−▲△▼(デルタ)Vを検出して満充電を判定するものではなく、充電池電圧(開放電圧)を測定して、所定時間ごとの電圧変化の傾き(電圧の上昇率)を算出することにより、満充電を判定するものである。   In this respect, the present application does not detect the full charge by detecting − ▲ Δ ▼ (delta) V, but measures the rechargeable battery voltage (open voltage) and determines the slope of voltage change (voltage The rate of increase is calculated to determine full charge.

すなわち、満充電以降に−▲△▼(デルタ)Vを検出することができない場合であっても、所定時間ごとの電圧変化の傾き(電圧の上昇率)に着目すると、満充電と推定される近辺で充電池の開放電圧の電圧変化は漸増していても、この電圧変化の傾きは、図1に示すように、傾きのグラフの後半部に山の部分が発生する。その山の頂点P0に対して横軸の前後T1(経過時間)離れたポイントP1,P2の傾き値の大きい方と、頂点P0の傾き値の差(この例ではP0とP1の差)を閾値Aに設定する。ここで、傾き値の大きい方(P1)を採用するのは、過充電状態を短くして、充電池の寿命に悪影響を及ぼさないようにするためである。   That is, even when −ΔΔ (delta) V cannot be detected after full charge, it is estimated that the battery is fully charged by paying attention to the slope of the voltage change (voltage increase rate) per predetermined time. Even if the voltage change of the open-circuit voltage of the rechargeable battery gradually increases in the vicinity, as shown in FIG. 1, the slope of this voltage change has a peak portion in the latter half of the slope graph. The threshold value is the difference between the slope value of the vertex P0 and the slope value of the vertex P0 (the difference between P0 and P1 in this example) that is larger at the points P1 and P2 that are T1 (elapsed time) away from the vertex P0 of the mountain Set to A. Here, the reason why the larger slope value (P1) is adopted is to shorten the overcharge state so as not to adversely affect the life of the rechargeable battery.

このようにして、充電する充電池における充電電圧プロファイルに基づく充電時間と電池電圧変化とのデータ又は当該充電池における充電時間と電池電圧変化との実測値データから、所定時間ごとの電圧変化グラフの傾きを算出しておき、前記電圧変化グラフの満充電と推定される近辺における電圧の傾きから閾値Aを設定するものである。   Thus, from the data of the charging time and the battery voltage change based on the charging voltage profile in the rechargeable battery to be charged or the measured value data of the charging time and the battery voltage change in the rechargeable battery, A slope is calculated, and a threshold value A is set from the slope of the voltage in the vicinity where the voltage change graph is estimated to be fully charged.

そして、充電池の充電の際、充電池電圧を測定して、所定時間ごとの電圧変化の傾きを算出し、この傾きが、P1を過ぎて前記閾値Aを上昇後、当該閾値Aを降下したときに(P0から下降しP1以下の傾きになったところで)満充電と判定するものである。   Then, when charging the rechargeable battery, the rechargeable battery voltage is measured, and the slope of the voltage change for each predetermined time is calculated. After the slope increases above the threshold A after P1, the threshold A is lowered. Sometimes it is determined that the battery is fully charged (when it descends from P0 and becomes less than or equal to P1).

本発明によれば、付加機構の消費電流の影響で、−▲△▼(デルタ)V検出による満充電検出ができないような小さい充電電流で充電を行う場合でも、閾値Aを用いることにより満充電が判定されるので、過充電を防止することができる。   According to the present invention, even when charging is performed with a small charging current that does not allow detection of a full charge by detection of-[Delta] (delta) V due to the current consumption of the additional mechanism, the threshold A is used to fully charge the battery. Therefore, overcharging can be prevented.

更に、前記傾きが、一定時間ごとの平均値を算出した測定電圧に基づいて算出されるので、モータのノイズの影響下でも満充電を誤検知なくして充電することができるものである。   Furthermore, since the inclination is calculated based on the measured voltage obtained by calculating the average value for every predetermined time, the full charge can be charged without erroneous detection even under the influence of the noise of the motor.

また、充電開始からの経過時間をカウントするタイマー機能を備えているので、充電経過時間が最大充電時間以上であるときは充電を終了して過充電を回避することができる。   Moreover, since the timer function which counts the elapsed time from the start of charging is provided, when the elapsed charging time is equal to or longer than the maximum charging time, the charging can be terminated to avoid overcharging.

本発明の説明に供するグラフであって、横軸に「経過時間」、縦軸に「充電池電圧」及び「T1経過毎の傾き算出値」をとって「充電池の電圧変化」と「充電池の電圧変化グラフの傾きの変化」を示したグラフである。FIG. 5 is a graph for explaining the present invention, in which “elapsed time” is plotted on the horizontal axis, “rechargeable battery voltage” and “calculated slope value every T1 elapsed” are plotted on the vertical axis, It is the graph which showed the change of the inclination of the voltage change graph of a battery. 本発明の実施例に係り、充電システム構成図である。It is a charge system block diagram concerning the Example of this invention. 本発明の実施例に係り、充電動作を示すフローチャートである。4 is a flowchart illustrating a charging operation according to the embodiment of the present invention.

以下に、本発明の実施例を図面に基づいて説明する。図2は、本例の充電システム構成を示す図で、この例では、パソコンなどの電源機器のUSBポートからの電源を利用している。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is a diagram showing the configuration of the charging system of this example. In this example, the power source from the USB port of a power supply device such as a personal computer is used.

USBポートの電源は、出力電流が制限されており、例えば、USB2.0では、5V、500mAの電力供給がなされる。尚、USB2.0のほか、USB3.0(5V、900mA)のものを使用することもできる。   The power supply of the USB port has a limited output current. For example, USB 2.0 supplies 5 V and 500 mA. In addition to USB 2.0, USB 3.0 (5 V, 900 mA) can also be used.

本例の充電システム構成1は、図2に示すように、電源機器100のUSBポートにUSBケーブルで接続される電源切替回路2、充電池3、タイマー機能を内蔵するマイコン4、付加機能(例えばファン)のモード変更を行う付加機能回路5、電源切替回路2から出力された電流を充電池3へ供給する充電制御回路6を備える。   As shown in FIG. 2, the charging system configuration 1 of this example includes a power supply switching circuit 2 connected to a USB port of a power supply device 100 with a USB cable, a rechargeable battery 3, a microcomputer 4 having a timer function, and additional functions (for example, An additional function circuit 5 that changes the mode of the fan), and a charge control circuit 6 that supplies the current output from the power supply switching circuit 2 to the rechargeable battery 3.

電源切替回路2は、前記USB電源と充電池3から供給される電流を択一的に切り替えてマイコン4又は充電制御回路6へ振り分けて出力する。   The power supply switching circuit 2 selectively switches the current supplied from the USB power supply and the rechargeable battery 3 and distributes the current to the microcomputer 4 or the charge control circuit 6 for output.

充電池3は、ニッケル水素電池、ニッケルカドミウム電池などの適宜の電池を用いる。   As the rechargeable battery 3, an appropriate battery such as a nickel metal hydride battery or a nickel cadmium battery is used.

マイコン4は、充電開始からの経過時間をカウントするタイマー機能を備えて、充電池3の電圧及び電源電圧(USB電源)の監視、並びに、充電電流の制御と監視を行う。   The microcomputer 4 has a timer function for counting the elapsed time from the start of charging, and monitors the voltage and power supply voltage (USB power supply) of the rechargeable battery 3 and controls and monitors the charging current.

付加機能回路5においては、付加機能のモード(オン・オフ、強・弱など)の変更が、例えば切替スイッチによるオン・オフ操作又は強・弱などの複数モードの切替操作によって行われる。   In the additional function circuit 5, the mode (ON / OFF, strong / weak, etc.) of the additional function is changed by, for example, an ON / OFF operation by a changeover switch or a switching operation of a plurality of modes such as strong / weak.

充電制御回路6は、前述したように、電源切替回路2から出力された電流を充電池3へ供給するものであり、その電流の出力はマイコン4により制御される。   As described above, the charging control circuit 6 supplies the current output from the power source switching circuit 2 to the rechargeable battery 3, and the output of the current is controlled by the microcomputer 4.

上記のように構成される本例の充電システムにおいては、前記付加機能モードを確認して最大充電時間と充電電流最大値を設定する。そして、前記付加機能モードが変更された場合は、当該変更されたモードに基づき、前記充電電流最大値を変更するとともに、前記最大充電時間を切り替えるように構成されている。   In the charging system of the present example configured as described above, the additional function mode is confirmed, and the maximum charging time and the charging current maximum value are set. When the additional function mode is changed, the charging current maximum value is changed and the maximum charging time is switched based on the changed mode.

以下、図3に示すフローチャートを用いて説明する。   This will be described below with reference to the flowchart shown in FIG.

USB電源から充電電流が供給されて充電動作が開始されると、ステップ110で閾値Aを設定する。閾値Aは、前述したように、当該充電池における充電電圧プロファイルに基づく「充電時間と電池電圧変化とのデータ」、又は、当該充電池を用いて予め測定した「充電時間と電池電圧変化との実測値データ」から、所定時間ごとの電圧変化グラフの傾きを算出して、前記電圧変化グラフの満充電と推定される近辺における電圧の傾きから閾値Aを設定する。   When a charging current is supplied from the USB power source and a charging operation is started, a threshold A is set in step 110. As described above, the threshold A is “data of charging time and battery voltage change” based on the charging voltage profile of the rechargeable battery, or “charge time and battery voltage change” measured in advance using the rechargeable battery. The slope of the voltage change graph for each predetermined time is calculated from the “measured value data”, and the threshold value A is set from the slope of the voltage in the vicinity estimated to be fully charged in the voltage change graph.

ステップ120でタイマーがスタートして充電時間の計時を開始し、ステップ130で充電池電圧(開放電圧)の測定を開始する。この測定は、例えば1秒間隔で行われる。   In step 120, the timer starts to start measuring the charging time, and in step 130, measurement of the rechargeable battery voltage (open voltage) is started. This measurement is performed at intervals of 1 second, for example.

ステップ140で所定時間T1が経過したか否かを判定する。ここでT1は、例えば10秒とし、10秒経過した場合はステップ150で平均値が算出され、ステップ160でT1タイマーがリスタートされる。なお、ステップ140で所定時間T1が経過してないときは、後述するステップ200へ進む。   In step 140, it is determined whether or not a predetermined time T1 has elapsed. Here, T1 is, for example, 10 seconds, and when 10 seconds have elapsed, the average value is calculated in step 150, and the T1 timer is restarted in step 160. When the predetermined time T1 has not elapsed in step 140, the process proceeds to step 200 described later.

ステップ160でT1タイマーがリスタートした後、ステップ170で所定時間T2が経過したか否かを判定する。ここでT2は、例えば60秒とすると、
ステップ170でYESであれば、この時点で6つの平均値を有しているので、ステップ180でこれら6つの平均値から傾きSを算出する。なお、ステップ170でNOであれば、ステップ200へ進むことになる。
After the T1 timer is restarted in step 160, it is determined in step 170 whether or not a predetermined time T2 has elapsed. Here, if T2 is 60 seconds, for example,
If YES in step 170, since there are six average values at this point, the slope S is calculated from these six average values in step 180. If NO in step 170, the process proceeds to step 200.

ステップ180で平均値から傾きSが算出されると、ステップ190で、この傾きSは閾値Aを上昇し且つそれからAを下降したか否かが判定され、YESであれば充電が終了される。なお、ステップ190でNOであれば、ステップ200へ進む。   When the slope S is calculated from the average value in step 180, it is determined in step 190 whether or not the slope S increases the threshold value A and then decreases A. If YES, the charging is terminated. If NO in step 190, the process proceeds to step 200.

ステップ200では、最大充電の状態にあるかが判定される。本例の場合、ステップ120のタイマースタートからの充電経過時間を算出し、充電経過時間が最大充電時間以上であるか否かを判定する。ステップ200でYESであれば充電が終了され、一方、ステップ200でNOであればステップ130へ移行して上述のステップを繰り返す。   In step 200, it is determined whether the battery is in the maximum charge state. In this example, the elapsed charging time from the start of the timer in step 120 is calculated, and it is determined whether the elapsed charging time is equal to or longer than the maximum charging time. If YES in step 200, charging is terminated, while if NO in step 200, the process proceeds to step 130 and the above steps are repeated.

前述のフローチャートにおいて、ステップ140で所定時間T1が経過した後にステップ150で平均値が算出され、更にステップ170で所定時間T2が経過した後にステップ180で傾きSを算出するようにしているので、この傾きSは、一定時間ごとの平均値を算出した測定電圧に基づいて算出されることとなり、したがって、モータのノイズの影響下でも満充電を誤検知なくして充電することができる。   In the flowchart described above, the average value is calculated in step 150 after the predetermined time T1 has elapsed in step 140, and the slope S is calculated in step 180 after the predetermined time T2 has elapsed in step 170. The slope S is calculated based on the measured voltage obtained by calculating the average value for every fixed time. Therefore, even under the influence of the motor noise, the full charge can be charged without erroneous detection.

また、本例では、充電開始からの経過時間をカウントするタイマー機能を備えているので、ステップ200において、充電経過時間が最大充電時間以上であるときは充電を終了して過充電を回避することができる。   In this example, the timer function for counting the elapsed time from the start of charging is provided. Therefore, in step 200, when the elapsed charging time is equal to or longer than the maximum charging time, charging is terminated to avoid overcharging. Can do.

また、上述した実施例では、パソコンなどの電源機器のUSBポートからの電源を利用した場合を例に採って説明したが、これに限られずに、出力電流が制限された電源機器一般のものを用いることができる。   In the above-described embodiments, the case where the power supply from the USB port of a power supply device such as a personal computer is used has been described as an example. However, the present invention is not limited to this, and a general power supply device with a limited output current is used. Can be used.

更に、本発明は、実施例で用いた付加機能に限らず適宜の付加機能を用いることができ、また、その他の付加機能付き二次電池を用いる携帯電話やスマートフォンなどにも応用することができるものである。   Furthermore, the present invention is not limited to the additional functions used in the embodiments, and appropriate additional functions can be used. Also, the present invention can be applied to a mobile phone, a smartphone, or the like that uses other secondary batteries with additional functions. Is.

なお、本発明における技術的構成は、付加機能を持たなくても、充電電流が小さく−▲△▼(デルタ)Vの検出が困難な場合(出力電流が小さい電源機器を利用する場合)に対して、同様の満充電検出機能が有効である。   It should be noted that the technical configuration according to the present invention is for the case where the charging current is small and it is difficult to detect −ΔΔ (delta) V without using an additional function (when a power supply device having a small output current is used). Therefore, the same full charge detection function is effective.

本発明の充電システムは、USBポートなどの出力電流が制限された電源を利用する充電システム一般に好適に利用することができる。   The charging system of the present invention can be suitably used for a general charging system that uses a power source with limited output current, such as a USB port.

1 充電システム構成
2 電源切替回路
3 充電池
4 マイコン
5 付加機能回路
6 充電制御回路
100 電源機器
A 閾値
S 傾き
DESCRIPTION OF SYMBOLS 1 Charging system structure 2 Power supply switching circuit 3 Rechargeable battery 4 Microcomputer 5 Additional function circuit 6 Charge control circuit 100 Power supply device A Threshold value S Inclination

Claims (2)

USBポートなどの出力電流が制限された電源を利用する充電システムであって、ファンやライトなどの付加機能を有する充電池の充電方法において、
充電池と、
充電開始からの経過時間をカウントするタイマー機能を備えるとともに、前記充電池の電圧及び電源電圧の監視、並びに、充電電流の制御と監視を行うマイコンと、
切り替え動作により切り替えられる複数のモードを有する付加機能と、
前記切り替え動作により前記付加機能の前記モードの変更を行う付加機能回路と、
前記電源からの電流を前記充電池へ出力制御する充電制御回路と、
前記電源と前記充電池から供給される電流を択一的に切り替えて前記マイコン又は前記充電制御回路へ振り分けて出力する電源切替回路と、
を備え、
前記充電池における充電電圧プロファイルに基づく充電時間と電池電圧変化とのデータ、又は当該充電池における充電時間と電池電圧変化との実測値データから、所定時間ごとの電圧変化グラフの傾きを算出して、前記電圧変化グラフの満充電と推定される近辺における電圧の傾きから閾値Aを設定し、
前記充電池の充電池電圧を測定して、所定時間ごとの電圧変化の傾きを算出し、この傾きが、前記閾値Aを上昇後、当該閾値Aを降下したときに満充電と判定することを特徴とする充電池の充電方法。
In a charging system using a power source with limited output current, such as a USB port, for charging a rechargeable battery having an additional function such as a fan or a light,
A rechargeable battery;
A timer function that counts the elapsed time from the start of charging, a microcomputer that monitors and controls the voltage and power supply voltage of the rechargeable battery, and a charging current;
An additional function having a plurality of modes switched by a switching operation;
An additional function circuit for changing the mode of the additional function by the switching operation;
A charge control circuit for controlling output of the current from the power source to the rechargeable battery;
A power source switching circuit that selectively switches the current supplied from the power source and the rechargeable battery and distributes and outputs to the microcomputer or the charge control circuit;
With
From the data of charging time and battery voltage change based on the charging voltage profile in the rechargeable battery, or the measured value data of the charging time and battery voltage change in the rechargeable battery, the slope of the voltage change graph for each predetermined time is calculated. , A threshold A is set from the slope of the voltage in the vicinity estimated to be fully charged in the voltage change graph,
Measure the rechargeable battery voltage of the rechargeable battery, calculate the slope of the voltage change every predetermined time, and determine that this slope is fully charged when the threshold A is lowered after the threshold A is raised. A charging method for a rechargeable battery.
前記傾きが、一定時間ごとの平均値を算出した測定電圧に基づいて算出されるようにしたことを特徴とする請求項1記載の充電池の充電方法。
2. The method for charging a rechargeable battery according to claim 1, wherein the inclination is calculated based on a measured voltage obtained by calculating an average value for each predetermined time.
JP2015134664A 2015-07-03 2015-07-03 Charging method for secondary battery with additional function Pending JP2017017932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015134664A JP2017017932A (en) 2015-07-03 2015-07-03 Charging method for secondary battery with additional function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015134664A JP2017017932A (en) 2015-07-03 2015-07-03 Charging method for secondary battery with additional function

Publications (1)

Publication Number Publication Date
JP2017017932A true JP2017017932A (en) 2017-01-19

Family

ID=57831282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015134664A Pending JP2017017932A (en) 2015-07-03 2015-07-03 Charging method for secondary battery with additional function

Country Status (1)

Country Link
JP (1) JP2017017932A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021528938A (en) * 2019-05-31 2021-10-21 北京小米移動軟件有限公司Beijing Xiaomi Mobile Software Co.,Ltd. Wireless charging communication methods, devices, devices, programs and storage media

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021528938A (en) * 2019-05-31 2021-10-21 北京小米移動軟件有限公司Beijing Xiaomi Mobile Software Co.,Ltd. Wireless charging communication methods, devices, devices, programs and storage media
JP7116079B2 (en) 2019-05-31 2022-08-09 北京小米移動軟件有限公司 Wireless charging communication method, wireless charging communication device, wireless charging system, program and storage medium

Similar Documents

Publication Publication Date Title
US8258750B2 (en) Constant current charging, followed by constant voltage charging, responsive to condition
JP5593849B2 (en) Battery monitoring device
US8093867B2 (en) Charging apparatus and charging method
TWI474532B (en) Systems, controllers and methods for battery controlling
US8310209B2 (en) Battery charger and method for charging a battery
US20110266998A1 (en) Battery Charging Method and Device
JP5690698B2 (en) Battery pack for electric tools
US20100194351A1 (en) Charging method and charger
JP2012016263A (en) Device and method for charging battery
JP2005006461A (en) Method for controlling charging/discharging of secondary battery for automated guided vehicle
KR20160040108A (en) Method for cell balancing a plurality of battery cells and battery system for carrying out such a method
KR20170030992A (en) Charging apparatus and method for cooling overheated battery
JP4017586B2 (en) How to charge the battery
US9843207B2 (en) Charging apparatus and charging method thereof
CN103078380B (en) Battery charger and method for charging batteries
JP6161919B2 (en) Quick charger with thermal escape prevention function
JP2017017932A (en) Charging method for secondary battery with additional function
JP2007195367A (en) Charging system and charging program
JP2007252086A (en) Method of charging secondary battery
JP3707636B2 (en) Charge control method and charge control device
KR101242455B1 (en) Battery charging apparatus and method of driving the same
JP2937075B2 (en) Charger with battery temperature control means
JP2008236972A (en) Charger
WO2013008614A1 (en) Battery management unit
JP2007037225A (en) Charging circuit and charge control method