JP2017016782A - Lead acid storage battery - Google Patents

Lead acid storage battery Download PDF

Info

Publication number
JP2017016782A
JP2017016782A JP2015130030A JP2015130030A JP2017016782A JP 2017016782 A JP2017016782 A JP 2017016782A JP 2015130030 A JP2015130030 A JP 2015130030A JP 2015130030 A JP2015130030 A JP 2015130030A JP 2017016782 A JP2017016782 A JP 2017016782A
Authority
JP
Japan
Prior art keywords
negative electrode
concentration
mass
electrode plate
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015130030A
Other languages
Japanese (ja)
Inventor
仁 渡邉
Hitoshi Watanabe
仁 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2015130030A priority Critical patent/JP2017016782A/en
Publication of JP2017016782A publication Critical patent/JP2017016782A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

CONSTITUTION: In a lead acid storage battery, a negative electrode material contains an organic shrink-proofing agent, the organic shrink-proofing agent concentration of the negative electrode material has a distribution along the vertical direction of a negative electrode plate, and the average concentration in 1/3 of a lower part of the negative electrode plate is higher than that in 1/3 of an upper part.EFFECT: In a lead acid storage battery, the deterioration in high-rate discharge performance due to vibration and impact after repeated light charge/discharge or after being left for a long period of time can be reduced while sulfation in a negative electrode plate is suppressed.SELECTED DRAWING: Figure 1

Description

この発明は鉛蓄電池に関し、特に負極電極材料の改良に関する。   The present invention relates to a lead-acid battery, and more particularly to improvement of a negative electrode material.

鉛蓄電池の負極板には従来からサルフェーションを起こし難いことが要求され、この対策としてビスフェノール類スルホン酸ポリマーを負極電極材料に含有させることが知られている。ここでサルフェーションは、還元が困難な硫酸鉛が負極電極材料中に蓄積する現象である。   Conventionally, it has been required that the negative electrode plate of a lead storage battery is less susceptible to sulfation. As a countermeasure against this, it is known that a negative electrode electrode material contains a bisphenol sulfonic acid polymer. Here, sulfation is a phenomenon in which lead sulfate, which is difficult to reduce, accumulates in the negative electrode material.

関連する先行技術を示す。特許文献1(JP2008-277244)は、負極板の内部にナフタレン類スルホン酸ポリマーを、表層にビスフェノール類スルホン酸ポリマーを含有させることを開示している。特許文献1によると、負極板の表層にビスフェノール類スルホン酸ポリマーを含有させることにより高率放電性能が向上し、内部にナフタレン類スルホン酸ポリマーを含有させることにより充電受入性能が向上する。   Related prior art is shown. Patent Document 1 (JP2008-277244) discloses that a naphthalene sulfonic acid polymer is contained in a negative electrode plate and a bisphenol sulfonic acid polymer is contained in a surface layer. According to Patent Document 1, high-rate discharge performance is improved by including a bisphenol sulfonic acid polymer in the surface layer of the negative electrode plate, and charge acceptance performance is improved by including a naphthalene sulfonic acid polymer inside.

特許文献2(JPH11-250913)は、負極電極材料にビスフェノール類スルホン酸ポリマーとリグニンスルホン酸の混合物を含有させることを開示している。特許文献2によると、ビスフェノール類スルホン酸ポリマーにより負極電極材料の表面積の低下や収縮を防止し、リグニンスルホン酸により低温での放電容量の低下を抑制する。   Patent Document 2 (JPH11-250913) discloses that a negative electrode material contains a mixture of a bisphenol sulfonic acid polymer and lignin sulfonic acid. According to Patent Document 2, the bisphenol sulfonic acid polymer prevents a decrease in surface area and shrinkage of the negative electrode material, and lignin sulfonic acid suppresses a decrease in discharge capacity at low temperatures.

JP2008-277244JP2008-277244 JPH11-250913JPH11-250913

この発明の課題は、負極板上部の充電受入性を損なわず、負極板下部のサルフェーションを抑制し、アイドリングストップ車用など、PSOC(充電不足な状態)で使用する鉛蓄電池の寿命性能を向上させることにある。
この発明の課題はまた、負極板のサルフェーションを抑制すると共に、浅い充放電の繰り返しあるいは長期間の放置後の振動や衝撃を経験しても、高率放電性能を実用的な範囲に維持できるようにすることにある。
The object of the present invention is to improve the life performance of lead-acid batteries used in PSOC (undercharged state), such as for idling stop cars, by suppressing sulfation of the lower part of the negative electrode plate without impairing the charge acceptability of the upper part of the negative electrode plate There is.
The object of the present invention is to suppress sulfation of the negative electrode plate, and to maintain high rate discharge performance within a practical range even after experiencing repeated vibrations and shocks after repeated shallow charge / discharge or prolonged standing. Is to make it.

この発明の鉛蓄電池は、負極電極材料が有機防縮剤を含有し、かつ負極電極材料の有機防縮剤濃度に負極板の上下方向に沿った分布があり、負極板の下部1/3での平均濃度が上部1/3での平均濃度よりも高いことを特徴とする。   In the lead storage battery of the present invention, the negative electrode material contains an organic shrunk agent, and the organic shrunk agent concentration of the negative electrode material has a distribution along the vertical direction of the negative electrode plate. The density is higher than the average density in the upper 1/3.

またこの発明の鉛蓄電池は、負極電極材料が複数種の有機防縮剤を含有し、かつ負極電極材料の有機防縮剤の合計濃度に負極板の上下方向に沿った分布があり、負極板の下部1/3での有機防縮剤の平均合計濃度が、上部1/3での有機防縮剤の平均合計濃度よりも高いことを特徴とする。   Further, in the lead storage battery of the present invention, the negative electrode material contains a plurality of types of organic shrinkage agents, and the total concentration of the organic shrinkage agents of the negative electrode material has a distribution along the vertical direction of the negative electrode plate, and the lower part of the negative electrode plate The average total concentration of the organic shrinkage agent in 1/3 is higher than the average total concentration of the organic shrinkage agent in the upper 1/3.

またこの発明の鉛蓄電池は、負極電極材料がリグニンスルホン酸と合成有機防縮剤とを含有し、かつ負極電極材料の有機防縮剤の合計濃度に負極板の上下方向に沿った分布があり、負極板の下部1/3でのリグニンスルホン酸と合成有機防縮剤との平均合計濃度が、上部1/3でのリグニンスルホン酸と合成有機防縮剤との平均合計濃度よりも高いことを特徴とする。   In the lead storage battery of the present invention, the negative electrode material contains lignin sulfonic acid and a synthetic organic shrinkage agent, and the total concentration of the organic shrinkage agent of the negative electrode material has a distribution along the vertical direction of the negative electrode plate. The average total concentration of lignin sulfonic acid and synthetic organic shrinkage agent in the lower 1/3 of the board is higher than the average total concentration of lignin sulfonic acid and synthetic organic shrinkage agent in the upper 1/3 .

なおこの発明は、負極電極材料が有機防縮剤を含有し、かつ負極電極材料の有機防縮剤濃度に負極板の上下方向に沿った分布があり、負極板の下部1/3での平均濃度が上部1/3での平均濃度よりも高い負極板にもある。そしてこの場合も、負極電極材料が複数種の有機防縮剤を含有し、負極板の下部1/3での有機防縮剤の平均合計濃度が、上部1/3での有機防縮剤の平均合計濃度よりも高いことが好ましい。また負極電極材料がリグニンスルホン酸と合成有機防縮剤とを含有し、負極板の下部1/3でのリグニンスルホン酸と合成有機防縮剤との平均合計濃度が、上部1/3でのリグニンスルホン酸と合成有機防縮剤との平均合計濃度よりも高いことが、特に好ましい。   In the present invention, the negative electrode material contains an organic shrinkage agent, and the organic shrinkage agent concentration of the negative electrode material has a distribution along the vertical direction of the negative electrode plate, and the average concentration in the lower third of the negative electrode plate is It is also on the negative electrode plate, which is higher than the average concentration in the upper third. And also in this case, the negative electrode material contains a plurality of organic shrinkage agents, and the average total concentration of the organic shrinkage agents in the lower 1/3 of the negative electrode plate is the average total concentration of the organic shrinkage agents in the upper 1/3 Higher than that. Also, the negative electrode material contains lignin sulfonic acid and a synthetic organic shrinkage agent, and the average total concentration of lignin sulfonic acid and synthetic organic shrinkage agent in the lower 1/3 of the negative electrode plate is lignin sulfone in the upper 1/3. It is particularly preferred that the concentration is higher than the average total concentration of the acid and the synthetic organic shrinking agent.

有機防縮剤に関して、負極板の下部1/3での平均濃度が上部1/3での平均濃度よりも高いとは、好ましくは0.05mass%以上高いことである。有機防縮剤とは、リグニンスルホン酸等の天然高分子スルホン酸化合物、及びビスフェノール類スルホン酸、ナフタレンスルホン酸ポリマー等の合成高分子スルホン酸化合物であり、特に骨格に芳香環を有するものが好ましく、スルホン基が酸型か塩型かは任意である。有機防縮剤の濃度は、負極電極材料を上中下に3等分した際の各部分での平均濃度であり、例えば上中下の各部分から複数箇所ずつ電極材料を採取し、平均濃度を測定する。   With respect to the organic shrinking agent, the average concentration in the lower 1/3 of the negative electrode plate being higher than the average concentration in the upper 1/3 is preferably higher than 0.05 mass%. The organic anti-shrinking agent is a natural polymer sulfonic acid compound such as lignin sulfonic acid, and a synthetic polymer sulfonic acid compound such as bisphenol sulfonic acid or naphthalene sulfonic acid polymer, particularly those having an aromatic ring in the skeleton, It is arbitrary whether a sulfone group is an acid type or a salt type. The concentration of the organic shrunk agent is an average concentration in each part when the negative electrode material is divided into three parts in the upper, middle, and lower parts. For example, a plurality of electrode materials are collected from each part in the upper, middle, and lower parts, and the average concentration is determined. taking measurement.

リグニンスルホン酸(以下「リグニン」)の濃度を負極板全体に高めることを検討する。リグニンは、充放電を繰り返したときの負極活物質(金属鉛)の凝集や硫酸鉛の粗大化(サルフェーション)を防ぎ、比表面積を維持する効果がある。しかし添加量が多く(活物質中の濃度が高く)なると、充電受入性が低下する。このため、単純にリグニン濃度を増すと、下部に比べて電流密度が高い負極板上部の充電効率が低下する。このため、大電流で短時間に充電する自動車用アイドリングストップ用電池等では、リグニン濃度を増しても寿命性能は向上しない。   Consider increasing the concentration of lignin sulfonic acid (hereinafter “lignin”) throughout the negative electrode plate. Lignin has an effect of preventing agglomeration of the negative electrode active material (metal lead) and coarsening (sulfation) of lead sulfate when charging and discharging are repeated, and maintaining a specific surface area. However, if the amount added is large (the concentration in the active material is high), the charge acceptance is reduced. For this reason, when the lignin concentration is simply increased, the charging efficiency of the upper part of the negative electrode plate having a higher current density than that of the lower part is lowered. For this reason, in an automobile idling stop battery or the like that is charged in a short time with a large current, the life performance is not improved even if the lignin concentration is increased.

充放電中のSOCが低い場合、電解液成層化に伴う負極板下部のサルフェーションが寿命原因となる。なおSOCは充電状態を意味し、満充電で100%とし、放電するとSOCが低くなる。しかしリグニン濃度を増やすと、サルフェーションを抑制し、SOCの回復充電で容量を回復できる。この一方で、リグニン濃度を増やしているため、負極板上部の充電受入性能が低下し、アイドリングストップ寿命はあまり増加しない。そこで従来よりも下部のリグニン量を増やし、充電効率が低下しやすい上部のリグニン濃度を据え置くかやや減らすと、高率充電受入性が向上してSOCの低下が抑制され、高率充電を繰り返すサイクル寿命が向上する。   When the SOC during charging / discharging is low, the sulfation under the negative electrode plate due to the stratification of the electrolyte causes the life. Note that SOC means a state of charge. When fully charged, the SOC becomes 100%. When discharged, the SOC becomes lower. However, increasing the lignin concentration suppresses sulfation, and the capacity can be recovered with SOC recovery charge. On the other hand, since the lignin concentration is increased, the charge acceptance performance at the upper part of the negative electrode plate is lowered and the idling stop life is not so increased. Therefore, if the amount of lignin in the lower part is increased and the lignin concentration in the upper part, where the charging efficiency is likely to be reduced, is deferred or somewhat reduced, the high rate charge acceptability is improved and the decrease in SOC is suppressed, and high rate charge is repeated. The service life is improved.

リグニンの代わりに、ビスフェノール類スルホン酸縮合物等の合成有機防縮剤を用いた場合も同様で、負極板下部の濃度を上部の濃度よりも増やすことにより、負極板上部の受電受入性を向上させると共に、負極板下部のサルフェーションを抑制し、アイドリングストップ等の寿命性能が向上する。なお合成有機防縮剤の最適濃度は、リグニンよりもやや低い。   The same is true when using synthetic organic shrinkage agents such as bisphenol sulfonic acid condensates instead of lignin. By increasing the concentration at the bottom of the negative electrode plate above the concentration at the top, the power receiving capability at the top of the negative electrode plate is improved. At the same time, the sulfation under the negative electrode plate is suppressed, and the life performance such as idling stop is improved. Note that the optimum concentration of the synthetic organic anti-shrink agent is slightly lower than that of lignin.

この発明では、負極板上部の充電受入性を損なわず、負極板下部のサルフェーションを抑制し、アイドリングストップ車用など、PSOC(充電不足な状態)で使用する鉛蓄電池の寿命性能を向上させることができる。   In the present invention, the charge acceptability of the upper part of the negative electrode plate is not impaired, the sulfation of the lower part of the negative electrode plate is suppressed, and the life performance of the lead storage battery used in PSOC (undercharged state) is improved, such as for an idling stop vehicle. it can.

この発明の鉛蓄電池はまた、負極電極材料がリグニンと合成芳香族スルホン酸ポリマーとを含有し、
負極電極材料のリグニンの平均濃度が0.1mass%以上0.3mass%以下で、
負極電極材料の合成芳香族スルホン酸ポリマー濃度に上下方向に沿った分布があり、
負極板の上部1/3での平均濃度が0以上0.15mass%以下、
中部1/3での平均濃度が0以上0.25mass%以下で、上部1/3での濃度以上、かつ下部1/3での濃度以下、
下部1/3での平均濃度が0.1mass%以上0.25mass%以下で、かつ下部1/3での平均濃度は上部1/3での平均濃度よりも0.05mass%以上高いことを特徴とする。
In the lead acid battery of the present invention, the negative electrode material contains lignin and a synthetic aromatic sulfonic acid polymer,
The average concentration of lignin of the negative electrode material is 0.1 mass% or more and 0.3 mass% or less,
There is a distribution along the vertical direction in the synthetic aromatic sulfonic acid polymer concentration of the negative electrode material,
The average concentration in the upper third of the negative electrode plate is 0 or more and 0.15 mass% or less,
The average concentration in the central 1/3 is 0 or more and 0.25 mass% or less, more than the concentration in the upper 1/3, and less than the concentration in the lower 1/3,
The average density in the lower 1/3 is 0.1 mass% or more and 0.25 mass% or less, and the average density in the lower 1/3 is 0.05 mass% or more higher than the average density in the upper 1/3.

即ちこの発明の特徴は鉛蓄電池の負極板にあり、負極電極材料がリグニンと合成芳香族スルホン酸ポリマーとを含有し、
負極電極材料のリグニンの平均濃度が0.1mass%以上0.3mass%以下で、
負極電極材料の合成芳香族スルホン酸ポリマー濃度に上下方向に沿った分布があり、
負極板の上部1/3での平均濃度が0以上0.15mass%以下、
中部1/3での平均濃度が0以上0.25mass%以下で、上部1/3での濃度以上、かつ下部1/3での濃度以下、
下部1/3での平均濃度が0.1mass%以上0.25mass%以下で、かつ下部1/3での平均濃度は上部1/3での平均濃度よりも0.05mass%以上高い。
That is, the feature of the present invention is in the negative electrode plate of the lead storage battery, the negative electrode material contains lignin and a synthetic aromatic sulfonic acid polymer,
The average concentration of lignin of the negative electrode material is 0.1 mass% or more and 0.3 mass% or less,
There is a distribution along the vertical direction in the synthetic aromatic sulfonic acid polymer concentration of the negative electrode material,
The average concentration in the upper third of the negative electrode plate is 0 or more and 0.15 mass% or less,
The average concentration in the central 1/3 is 0 or more and 0.25 mass% or less, more than the concentration in the upper 1/3, and less than the concentration in the lower 1/3,
The average density in the lower 1/3 is 0.1 mass% or more and 0.25 mass% or less, and the average density in the lower 1/3 is 0.05 mass% or more higher than the average density in the upper 1/3.

リグニンの濃度について説明すると、この濃度が0.1mass%未満でも0.3mass%超でも、浅い充放電の繰り返しあるいは長期間の放置後の振動や衝撃により、高率放電性能が低下するか、深い充放電により高率放電性能が低下する。従って、リグニンの平均濃度は0.1mass%以上0.3mass%以下が好ましい。   Explaining the concentration of lignin, even if this concentration is less than 0.1 mass% or more than 0.3 mass%, the high-rate discharge performance deteriorates due to repeated shallow charge / discharge or vibration and impact after standing for a long time, or deep charge / discharge As a result, the high rate discharge performance decreases. Therefore, the average concentration of lignin is preferably 0.1 mass% or more and 0.3 mass% or less.

合成芳香族スルホン酸ポリマーの負極板の下部1/3での平均濃度が0.25mass%を超えると、浅い充放電の繰り返しあるいは長期間の放置後の振動や衝撃により、高率放電性能が低下する。また負極板の下部1/3での合成芳香族スルホン酸ポリマーの平均濃度が0.1mass%未満では、サルフェーションが進行しやすくなり、深い充放電により高率放電性能が低下する。従って、下部1/3での合成芳香族スルホン酸ポリマーの平均濃度は0.1mass%以上0.25mass%以下に限られる。   If the average concentration of the synthetic aromatic sulfonic acid polymer in the lower third of the negative electrode plate exceeds 0.25 mass%, high-rate discharge performance decreases due to vibration and impact after repeated shallow charge / discharge or prolonged exposure. . Further, when the average concentration of the synthetic aromatic sulfonic acid polymer in the lower third of the negative electrode plate is less than 0.1 mass%, sulfation is likely to proceed, and the high rate discharge performance decreases due to deep charge / discharge. Therefore, the average concentration of the synthetic aromatic sulfonic acid polymer in the lower 1/3 is limited to 0.1 mass% or more and 0.25 mass% or less.

負極板の上部1/3での合成芳香族スルホン酸ポリマーの平均濃度が0.15mass%を超えると、浅い充放電の繰り返しあるいは長期間の放置後の振動や衝撃により、高率放電性能が低下する。なお上部1/3での濃度は0でもよい。そして下部1/3での合成芳香族スルホン酸ポリマーの平均濃度と上部1/3での平均濃度との差が0.05mass%未満の場合も、浅い充放電の繰り返しあるいは長期間の放置後の振動や衝撃により、高率放電性能が低下する。また中部1/3での合成芳香族スルホン酸ポリマーの平均濃度が、下部1/3よりも高いと、浅い充放電の繰り返しあるいは長期間の放置後の振動や衝撃により、高率放電性能が低下する。中部1/3での合成芳香族スルホン酸ポリマーの平均濃度が、上部部1/3よりも低いと、深い充放電の繰り返しによって高率放電性能が低下する。   If the average concentration of the synthetic aromatic sulfonic acid polymer in the upper third of the negative electrode plate exceeds 0.15 mass%, the high-rate discharge performance decreases due to vibration and impact after repeated shallow charge / discharge or prolonged standing. . The concentration in the upper 1/3 may be 0. And even if the difference between the average concentration of the synthetic aromatic sulfonic acid polymer in the lower 1/3 and the average concentration in the upper 1/3 is less than 0.05 mass%, vibration after repeated shallow charge / discharge or prolonged standing And high-rate discharge performance is reduced by impact. If the average concentration of the synthetic aromatic sulfonic acid polymer in the middle part 1/3 is higher than that in the lower part 1/3, the high-rate discharge performance decreases due to repeated charge / discharge or vibration and impact after standing for a long time. To do. When the average concentration of the synthetic aromatic sulfonic acid polymer in the middle part 1/3 is lower than that in the upper part 1/3, the high rate discharge performance is deteriorated by repeated deep charge / discharge.

そして上記の条件を全て満たす場合に、負極板のサルフェーションを抑制しながら、浅い充放電の繰り返しあるいは長期間の放置後の振動や衝撃を経験しても、高率放電性能を維持することができる。   And when all of the above conditions are satisfied, high rate discharge performance can be maintained even when experiencing repeated vibrations and impacts after repeated shallow charge / discharge or prolonged standing, while suppressing sulfation of the negative electrode plate. .

合成芳香族スルホン酸ポリマーは、例えばビスフェノール類スルホン酸ポリマー、ナフタレン類スルホン酸ポリマーで、ビスフェノール類スルホン酸ポリマーが好ましい。   The synthetic aromatic sulfonic acid polymer is, for example, a bisphenol sulfonic acid polymer or a naphthalene sulfonic acid polymer, and a bisphenol sulfonic acid polymer is preferable.

好ましくは、負極板の上部1/3での合成芳香族スルホン酸ポリマーの平均濃度が0以上0.1mass%以下である。上部1/3での濃度を0.1mass%以下にすると、浅い充放電の繰り返しあるいは長期間の放置後の振動や衝撃を経験しても、高率放電性能をより確実に維持できる。   Preferably, the average concentration of the synthetic aromatic sulfonic acid polymer in the upper third of the negative electrode plate is 0 or more and 0.1 mass% or less. If the concentration at the upper 1/3 is 0.1 mass% or less, high rate discharge performance can be more reliably maintained even after experiencing repeated charging / discharging or vibration and impact after standing for a long time.

またこの発明は、鉛蓄電池から取り出した負極板を水洗して硫酸分を除去し、
硫酸分を除去した負極板から、負極板の上部1/3内の負極電極材料と下部1/3内の負極電極材料とを採取し、
採取した各負極電極材料を1mol/lのNaOH水溶液に浸漬し、
不溶成分を濾過で取り除いた溶液を脱塩した後、濃縮・乾燥して得た粉末試料と、採取した負極電極材料との質量比が、負極板の下部1/3で上部1/3よりも高いことを特徴とする鉛蓄電池と負極板とにある。
The present invention also removes sulfuric acid by washing the negative electrode plate taken out from the lead acid battery,
From the negative electrode plate from which the sulfuric acid content was removed, the negative electrode material in the upper 1/3 of the negative electrode plate and the negative electrode material in the lower 1/3 were collected,
Immerse each collected negative electrode material in 1 mol / l NaOH aqueous solution,
After desalting the solution from which insoluble components have been removed by filtration, the mass ratio between the powder sample obtained by concentration and drying and the collected negative electrode material is lower in the lower 1/3 of the negative electrode plate than in the upper 1/3 It exists in the lead acid battery and negative electrode plate which are characterized by being high.

上記の手順で得られる粉末は、実用されている鉛蓄電池ではほぼ全部リグニン、合成有機防縮剤等の有機防縮剤であり、ほぼ全部ではない場合も大部分は有機防縮剤である。そして上記の手順により、負極電極材料中の有機防縮剤の濃度と、負極板の上下での濃度比が求まる。そして上記の粉末試料と採取した負極電極材料との質量比を、負極板の下部1/3で上部1/3よりも高くすることにより、負極板上部の充電受入性を損なわず、負極板下部のサルフェーションを抑制し、アイドリングストップ車用など、PSOC(充電不足な状態)で使用する鉛蓄電池の寿命性能を向上させることができる。   The powder obtained by the above procedure is almost all organic shrinkage agents such as lignin and synthetic organic shrinkage agents in practical lead storage batteries, and most of them are organic shrinkage agents even if not almost all. By the above procedure, the concentration ratio of the organic anti-shrink agent in the negative electrode material and the concentration ratio at the top and bottom of the negative electrode plate are obtained. And by making the mass ratio of the above powder sample and the collected negative electrode material higher in the lower 1/3 of the negative electrode plate than in the upper part 1/3, the charge acceptance at the upper part of the negative electrode plate is not impaired, and the lower part of the negative electrode plate Sulfation can be suppressed, and the life performance of lead-acid batteries used in PSOC (undercharged state), such as for idling stop vehicles, can be improved.

リグニン濃度を0.2mass%に固定し、下部1/3でのビスフェノール類スルホン酸ポリマー濃度を0.2mass%に固定した際の、上部1/3でのビスフェノール類スルホン酸ポリマー濃度の影響を示す特性図Characteristic diagram showing the effect of the bisphenol sulfonic acid polymer concentration in the upper 1/3 when the lignin concentration is fixed at 0.2 mass% and the bisphenol sulfonic acid polymer concentration in the lower 1/3 is fixed at 0.2 mass% リグニン濃度を0.05mass%に固定し、下部1/3でのビスフェノール類スルホン酸ポリマー濃度を0.2mass%に固定した際の、上部1/3でのビスフェノール類スルホン酸ポリマー濃度の影響を示す特性図Characteristic diagram showing the effect of the bisphenol sulfonic acid polymer concentration in the upper 1/3 when the lignin concentration is fixed at 0.05 mass% and the bisphenol sulfonic acid polymer concentration in the lower 1/3 is fixed at 0.2 mass% リグニン濃度を0.2mass%に固定し、下部1/3でのビスフェノール類スルホン酸ポリマー濃度を0.3mass%に固定した際の、上部1/3でのビスフェノール類スルホン酸ポリマー濃度の影響を示す特性図Characteristic chart showing the effect of bisphenol sulfonic acid polymer concentration in the upper 1/3 when the lignin concentration is fixed at 0.2 mass% and the bisphenol sulfonic acid polymer concentration in the lower 1/3 is fixed at 0.3 mass% リグニン濃度を0.2mass%に固定し、上部1/3及び中部1/3でのビスフェノール類スルホン酸ポリマー濃度を0.05mass%に固定した際の、下部1/3でのビスフェノール類スルホン酸ポリマー濃度の影響を示す特性図When the lignin concentration was fixed at 0.2 mass% and the bisphenol sulfonic acid polymer concentration at the upper 1/3 and middle 1/3 was fixed at 0.05 mass%, the bisphenol sulfonic acid polymer concentration at the lower 1/3 Characteristic diagram showing impact リグニン濃度を0.2mass%に固定し、中部1/3及び下部1/3でのビスフェノール類スルホン酸ポリマー濃度を0.2mass%に固定した際の、上部1/3でのビスフェノール類スルホン酸ポリマー濃度の影響を示す特性図When the lignin concentration was fixed at 0.2 mass% and the bisphenol sulfonic acid polymer concentration at the middle 1/3 and lower 1/3 was fixed at 0.2 mass%, the bisphenol sulfonic acid polymer concentration at the upper 1/3 Characteristic diagram showing impact リグニン濃度を0.2mass%に固定し、上部1/3及び中部1/3でのビスフェノール類スルホン酸ポリマー濃度を0.2mass%に固定した際の、下部1/3でのビスフェノール類スルホン酸ポリマー濃度の影響を示す特性図When the lignin concentration is fixed at 0.2 mass% and the bisphenol sulfonic acid polymer concentration at the upper 1/3 and middle 1/3 is fixed at 0.2 mass%, the bisphenol sulfonic acid polymer concentration at the lower 1/3 Characteristic diagram showing impact 上枠と下枠とを有するエキスパンド格子を備える負極板の模式図Schematic diagram of a negative electrode plate with an expanded lattice having an upper frame and a lower frame 下枠を備えないエキスパンド格子を備える負極板の模式図Schematic diagram of a negative electrode plate with an expanded lattice without a lower frame 格子が上下左右の枠を備える負極板の模式図Schematic diagram of a negative electrode plate with a grid with top, bottom, left and right frames

以下に、本願発明の最適実施例を示す。本願発明の実施に際しては、当業者の常識及び先行技術の開示に従い、実施例を適宜に変更できる。なお実施例では、負極電極材料を負極活物質と呼び、正極電極材料を正極活物質と呼ぶことがある。また負極板は、負極集電体(負極格子)と負極電極材料(負極活物質)とから成り、正極板は、正極集電体(正極格子)と正極電極材料(正極活物質)とから成り、集電体以外の固形成分は電極材料に属するものとする。   Hereinafter, an optimum embodiment of the present invention will be described. In carrying out the present invention, the embodiments can be appropriately changed in accordance with common sense of those skilled in the art and disclosure of prior art. In Examples, the negative electrode material may be referred to as a negative electrode active material, and the positive electrode material may be referred to as a positive electrode active material. The negative electrode plate comprises a negative electrode current collector (negative electrode lattice) and a negative electrode material (negative electrode active material), and the positive electrode plate comprises a positive electrode current collector (positive electrode lattice) and a positive electrode material (positive electrode active material). The solid components other than the current collector belong to the electrode material.

図7〜図9に実施例の負極板を示す。図7の負極板2では、エキスパンド格子4は上縁5と下縁6,耳7,及び桟8を備え、桟8で囲まれたマス目に負極活物質(負極電極材料)が保持されている。上縁4の底面と下縁6の上面との間に負極活物質が保持され、上縁4の底面に沿った境界線をH1で示し、下縁6の上面に沿った境界線をH4で示し、高さH1と高さH4との間を上下方向に3等分する3等分線をH2,H3とする。線H1,H2間に上部1/3の負極活物質11が、線H2,H3間に中部1/3の負極活物質12が、線H3,H4間に下部1/3の負極活物質13が有る。また負極板2は耳7の有る側を上、下縁6が有る側を下とする。有機防縮剤の平均濃度を求める際には、3等分線H2、H3と交差するマス目を避け、例えば図7,図8,図9にハッチングを付したマス目から上中下の各部分毎に複数のマス目を選び、複数のマス目での平均濃度を測定する。   7 to 9 show the negative electrode plate of the example. In the negative electrode plate 2 of FIG. 7, the expanded lattice 4 includes an upper edge 5, a lower edge 6, ears 7, and crosspieces 8, and a negative electrode active material (negative electrode electrode material) is held in a square surrounded by the crosspieces 8. Yes. The negative electrode active material is held between the bottom surface of the upper edge 4 and the upper surface of the lower edge 6, and the boundary line along the bottom surface of the upper edge 4 is denoted by H1, and the boundary line along the upper surface of the lower edge 6 is denoted by H4. The bisector that divides the height H1 and the height H4 into three equal parts in the vertical direction is denoted by H2 and H3. The negative active material 11 in the upper part 1/3 between the lines H1 and H2, the negative active material 12 in the middle 1/3 between the lines H2 and H3, and the negative active material 13 in the lower 1/3 between the lines H3 and H4. Yes. The negative electrode plate 2 has the side with the ears 7 as the upper side and the side with the lower edge 6 as the lower side. When calculating the average concentration of the organic pre-shrinking agent, avoid the grids that intersect with the bisectors H2 and H3, for example, the upper, middle, and lower parts from the hatched grids in FIG. 7, FIG. 8, and FIG. A plurality of grids are selected for each, and the average density at the plurality of grids is measured.

図8の負極板22では、エキスパンド格子4’は下縁が無く、図7と同様に線H1〜H4を定め、同様に線H1,H2間の負極活物質を上部1/3の負極活物質11とし、線H2,H3間の負極活物質を中部1/3の負極活物質12とし、線H3,H4間の負極活物質を下部1/3の負極活物質13とする。   In the negative electrode plate 22 of FIG. 8, the expanded lattice 4 ′ has no lower edge, and defines the lines H1 to H4 as in FIG. 7, and the negative active material between the lines H1 and H2 is similarly defined as the negative active material in the upper 1/3. 11, the negative electrode active material between the lines H2 and H3 is the negative electrode active material 12 of the middle 1/3, and the negative electrode active material between the lines H3 and H4 is the negative electrode active material 13 of the lower 1/3.

図9の負極板32では鋳造格子、打ち抜き格子等の4周に枠がある格子34を用い、縦枠35,36が追加され、また斜めの桟8に代えて上下に伸びる桟38が用いられている。この場合も、図7と同様に線H1〜H4を定め、同様に線H1,H2間の負極活物質を上部1/3の負極活物質11とし、線H2,H3間の負極活物質を中部1/3の負極活物質12とし、線H3,H4間の負極活物質を下部1/3の負極活物質13とする。   In the negative electrode plate 32 of FIG. 9, a grid 34 having a frame around four circumferences such as a cast grid and a punched grid is used, vertical frames 35 and 36 are added, and a bar 38 extending vertically is used instead of the diagonal bar 8. ing. Also in this case, lines H1 to H4 are defined in the same manner as in FIG. 7, and the negative electrode active material between the lines H1 and H2 is defined as the negative electrode active material 11 in the upper part, and the negative electrode active material between the lines H2 and H3 is the middle. The negative electrode active material 12 is 1/3, and the negative electrode active material between the lines H3 and H4 is the negative electrode active material 13 of the lower 1/3.

なお負極板に格子が無く、かつ負極板が上下方向に伸びている場合、負極活物質を高さ方向に3等分し、上部1/3の負極活物質,中部1/3の負極活物質,下部1/3の負極活物質を定める。   In addition, when the negative electrode plate has no grid and the negative electrode plate extends in the vertical direction, the negative electrode active material is divided into three equal parts in the height direction, the upper 1/3 negative electrode active material, and the middle 1/3 negative electrode active material. The negative active material for the lower third is defined.

鉛蓄電池の製造
ビスフェノール類ホルムアルデヒド縮合物とリグニンとを、有機防縮剤とした。ビスフェノール類ホルムアルデヒド縮合物はスルホン酸基を含有し、これに加えてスルホニル基を含有していても良い。またビスフェノールの種類はA型、F型、S型のいずれでも良く、縮合剤の種類は任意である。またスルホン酸基は、ビスフェノール骨格に直接結合していても、骨格とは別のフェニル基等に結合していても良い。用いたビスフェノール類ホルムアルデヒド縮合物に含まれるS元素含有量は約5000μmol/gであるが、S元素含有量は任意であり、例えば2000〜8000μmol/gの範囲とする。さらにリグニンは塩型でなく、酸型で添加しても良い。そして負極板の高さ方向に沿って、上部1/3と中部1/3及び下部1/3で、有機防縮剤の組成と濃度を変更した。
Manufacture of lead acid battery Bisphenol formaldehyde condensate and lignin were used as organic shrinkage agents. The bisphenol formaldehyde condensate contains a sulfonic acid group, and may contain a sulfonyl group in addition to this. The type of bisphenol may be any of A type, F type, and S type, and the type of condensing agent is arbitrary. The sulfonic acid group may be directly bonded to the bisphenol skeleton, or may be bonded to a phenyl group or the like different from the skeleton. The S element content contained in the used bisphenol formaldehyde condensate is about 5000 μmol / g, but the S element content is arbitrary, for example, in the range of 2000 to 8000 μmol / g. Furthermore, lignin may be added in acid form instead of salt form. Then, along the height direction of the negative electrode plate, the composition and concentration of the organic anti-shrink agent were changed in the upper part 1/3, the middle part 1/3, and the lower part 1/3.

鉛粉と有機防縮剤と硫酸バリウム及び合成繊維補強材を水と硫酸で混練し、負極活物質ペーストとした。化成後の負極活物質(厳密には負極電極材料)に対して、硫酸バリウムは1mass%、合成繊維補強材は0.1mass%含有させた。これらの成分の好ましい含有量の範囲は、硫酸バリウムは0.2mass%以上2.0mass%以下、合成繊維補強材は0.05mass%以上0.2mass%以下で、他にカーボン等を含んでいても良い。負極活物質ペーストを、Pb-0.09mass%Ca-0.7mass%Sn合金からなる負極格子に充填し、乾燥と熟成を施して未化成の負極板とした。鉛粉の種類、製造条件等は任意で、負極活物質は上記以外の成分を含有させても良い。   Lead powder, organic shrinkage agent, barium sulfate and synthetic fiber reinforcing material were kneaded with water and sulfuric acid to obtain a negative electrode active material paste. 1 mass% of barium sulfate and 0.1 mass% of the synthetic fiber reinforcing material were contained in the negative electrode active material after conversion (strictly, the negative electrode material). The preferable content ranges of these components are 0.2 mass% or more and 2.0 mass% or less for barium sulfate, 0.05 mass% or more and 0.2 mass% or less for the synthetic fiber reinforcing material, and may further contain carbon or the like. The negative electrode active material paste was filled in a negative electrode lattice made of a Pb-0.09 mass% Ca-0.7 mass% Sn alloy, dried and aged to obtain an unformed negative electrode plate. The kind of lead powder, manufacturing conditions, etc. are arbitrary, and the negative electrode active material may contain components other than those described above.

鉛粉と合成繊維補強材(化成済みの正極活物質に対して0.1mass%)とを、水と硫酸で混練し正極活物質ペーストとした。このペーストをPb-0.06mass%Ca-1.3mass%Snの合金から成る正極格子に充填し乾燥と熟成とを施し、未化成の正極板とした。未化成の負極板を微多孔質のポリエチレンから成る袋状のセパレータに収容し、セル当たり未化成の正極板5枚と未化成の負極板6枚とを対向させて電槽にセットし、電解液を加えて電槽化成して12V出力の液式鉛蓄電池を作製した。負極活物質の化成後の密度は通常の3.6g/cm3としたが、2.9g/cm3と低密度の負極活物質を用いても、有機防縮剤の濃度分布の影響は3.6g/cm3の場合と同様であった。鉛蓄電池は制御弁式でも良く、格子の種類と組成は任意である。また格子に代えてPb-Sb-As系合金等の芯金を正極の集電体に用いても良い。 Lead powder and a synthetic fiber reinforcing material (0.1 mass% with respect to the formed positive electrode active material) were kneaded with water and sulfuric acid to obtain a positive electrode active material paste. This paste was filled in a positive electrode grid made of an alloy of Pb-0.06 mass% Ca-1.3 mass% Sn, dried and aged to obtain an unformed positive electrode plate. The unformed negative electrode plate is accommodated in a bag-shaped separator made of microporous polyethylene, and 5 unformed positive electrode plates and 6 unformed negative electrode plates per cell are placed facing each other and electrolyzed. Liquid was added to form a battery case, and a liquid lead acid battery with 12V output was produced. The density of the negative electrode active material after chemical conversion was set to the usual 3.6 g / cm 3 , but even if a negative active material with a low density of 2.9 g / cm 3 was used, the influence of the concentration distribution of the organic shrinkage agent was 3.6 g / cm 3. It was the same as the case of 3 . The lead-acid battery may be a control valve type, and the type and composition of the lattice are arbitrary. Further, a cored bar such as a Pb—Sb—As alloy may be used for the current collector of the positive electrode instead of the lattice.

測定法
負極活物質中の有機防縮剤種の特定は、以下の様にして行う。満充電された鉛蓄電池を分解し、負極板を取り出し水洗により硫酸分を除去し、乾燥する。負極板から活物質を採取し、1mol/lのNaOH水溶液に活物質を浸漬して有機防縮剤を抽出し、不溶成分を濾過で取り除いた溶液を脱塩した後、濃縮・乾燥して粉末試料を得る。粉末試料を蒸留水で希釈し、紫外可視吸光度計で得られた紫外可視吸収スペクトルで、有機防縮剤種を特定する。紫外可視光吸収スペクトルでは不十分な場合には、濃縮・乾燥して得られた粉末試料を別途用意し、構造が解析可能な他の分析機器、たとえば、赤外分光(IR)、NMRなども用いる。
Measuring method Identification of the organic anti-shrink agent species in the negative electrode active material is performed as follows. The fully charged lead acid battery is disassembled, the negative electrode plate is taken out, washed with water to remove sulfuric acid, and dried. Extract the active material from the negative electrode plate, immerse the active material in 1 mol / l NaOH aqueous solution to extract the organic anti-shrink agent, desalinate the solution from which the insoluble components have been removed by filtration, concentrate and dry the powder sample Get. A powder sample is diluted with distilled water, and an organic-shrinking agent species is specified by an ultraviolet-visible absorption spectrum obtained by an ultraviolet-visible absorbance meter. If the UV-visible absorption spectrum is insufficient, prepare a powder sample obtained by concentration and drying, and use other analytical instruments that can analyze the structure, such as infrared spectroscopy (IR) and NMR. Use.

負極活物質中の有機防縮剤の含有量は以下の様にして測定する。満充電された鉛蓄電池を分解し、負極板を取り出し水洗により硫酸分を除去し、乾燥する。負極板の負極活物質を図7〜図9のようにして上下に3等分し、3等分線H2,H3と交差するマス目を避けて、各部分から複数のマス目ずつ、例えば3個のマス目ずつ、負極活物質を採取し、上中下の各部分毎に混合する。これによって、有機防縮剤濃度を、上中下の各部分内で平均化した試料を採取する。上中下の部分毎に、1mol/lのNaOH水溶液30mlに活物質試料10gを浸漬して有機防縮剤を抽出し、溶液中の不溶成分を濾過で取り除いた後、紫外可視吸収スペクトルを測定し、予め作成した検量線を用いて活物質中の有機防縮剤の含有量を測定する。   The content of the organic shrinking agent in the negative electrode active material is measured as follows. The fully charged lead acid battery is disassembled, the negative electrode plate is taken out, washed with water to remove sulfuric acid, and dried. The negative electrode active material of the negative electrode plate is divided into three equal parts in the vertical direction as shown in FIGS. 7 to 9, avoiding the cells intersecting with the bisectors H2 and H3, a plurality of cells from each portion, for example 3 The negative electrode active material is collected for each square and mixed for each of the upper, middle, and lower portions. In this way, a sample in which the concentration of the organic shrinking agent is averaged in the upper, middle and lower portions is collected. For each of the upper, middle and lower parts, 10 g of the active material sample is immersed in 30 ml of 1 mol / l NaOH aqueous solution to extract the organic anti-shrink agent, and after removing insoluble components in the solution by filtration, the UV-visible absorption spectrum is measured. The content of the organic shrinking agent in the active material is measured using a calibration curve prepared in advance.

有機防縮剤が複数混ざっている場合には以下の方法で分離し、有機防縮剤種の特定をする。満充電された鉛蓄電池を分解し、負極板を取り出し水洗により硫酸分を除去し、乾燥する。負極板から活物質を採取し、1mol/lのNaOH水溶液に活物質を浸漬して有機防縮剤を抽出し、不溶成分を濾過で取り除いた溶液を、ゲルカラム等を用いて脱塩・分画して、成分ごとに分離する。分離した試料の紫外可視吸収スペクトルをそれぞれ測定し、有機防縮剤種を特定する。紫外可視吸収スペクトルでは不十分な場合には、成分ごとに分離した試料を濃縮・乾燥して粉末試料とした後に、構造が解析可能な他の分析機器、たとえば、赤外分光(IR)、NMRなども用いて構造を特定する。   When a plurality of organic shrinking agents are mixed, they are separated by the following method to identify the organic shrinking agent species. The fully charged lead acid battery is disassembled, the negative electrode plate is taken out, washed with water to remove sulfuric acid, and dried. Extract the active material from the negative electrode plate, immerse the active material in a 1 mol / l NaOH aqueous solution to extract the organic anti-shrink agent, and remove the insoluble components by filtration. The solution is desalted and fractionated using a gel column or the like. Separate each component. The UV-visible absorption spectrum of each separated sample is measured to identify the organic shrinking agent species. If the UV-visible absorption spectrum is insufficient, the sample separated for each component is concentrated and dried to form a powder sample, then other analytical instruments that can analyze the structure, such as infrared spectroscopy (IR), NMR Etc. are used to identify the structure.

有機防縮剤が複数混ざっている場合には以下の方法で含有量を算出する。満充電された鉛蓄電池を分解し、負極板を取り出し水洗により硫酸分を除去し、乾燥する。負極板の負極活物質を図7〜図9のようにして上下に3等分し、3等分線H2,H3と交差するマス目を避けて、各部分から 複数のマス目ずつ、例えば3個のマス目ずつ、負極活物質を採取し、上中下の各部分毎に混合する。これによって、有機防縮剤濃度を、上中下の各部分内で平均化した試料を採取する。上中下の部分毎に、1mol/lのNaOH水溶液30mlに活物質試料10gを浸漬して有機防縮剤を抽出し、不溶成分を濾過で取り除いたNaOH水溶液を、収率を予め求めたゲルカラム等を用いて脱塩・分画して、成分ごとに分離する。分離した試料の紫外可視吸収スペクトルをそれぞれ測定し、予め作成した検量線を用いて含有量を算出し、含有量算出値と、カラムの収率から、活物質中の有機防縮剤の含有量を算出する。   When a plurality of organic shrinking agents are mixed, the content is calculated by the following method. The fully charged lead acid battery is disassembled, the negative electrode plate is taken out, washed with water to remove sulfuric acid, and dried. The negative electrode active material of the negative electrode plate is divided into three equal parts vertically as shown in FIGS. 7 to 9, and a plurality of squares from each part, for example 3 The negative electrode active material is collected for each square and mixed for each of the upper, middle, and lower portions. In this way, a sample in which the concentration of the organic shrinking agent is averaged in the upper, middle and lower portions is collected. For each of the upper, middle and lower parts, 10 g of active material sample is immersed in 30 ml of 1 mol / l NaOH aqueous solution to extract the organic anti-shrink agent, and the NaOH aqueous solution from which insoluble components have been removed by filtration is used for the gel column whose yield has been determined in advance. Desalinate and fractionate using ingredients to separate each component. Measure the UV-visible absorption spectrum of each separated sample, calculate the content using a calibration curve prepared in advance, and calculate the content of the organic shrinking agent in the active material from the calculated content and the column yield. calculate.

性能試験1:アイドリングストップ寿命
鉛蓄電池を25℃で、終止電圧10.2Vまで10Aで放電させ、10Aで放電電気量の1.3倍充電するサイクルを3回行い、3サイクルの放電電気量の平均を初期容量とした。電池工業会規格(SBA)の、アイドリングストップ車用電池の規格に準じ、45A×59secの放電と、300A×1secの放電、及び14.0V(制限電流100A)×60secの充電からなるサイクルを繰り返し、300A放電、1sec目の電圧が7.2Vを下回った時点で寿命と判定した。
Performance test 1: Idling stop life Lead-acid battery is discharged at 10A up to a final voltage of 10.2V at 25 ° C and charged three times as much as 1.3 times the discharge electricity at 10A. The capacity. According to the standard of battery industry association (SBA) battery for idling stop car, 45A x 59sec discharge, 300A x 1sec discharge, and 14.0V (limit current 100A) x 60sec charge cycle, The life was determined when the voltage was 300A discharged and the voltage at 1 sec was lower than 7.2V.

表1は、合成有機防縮剤を用いず、リグニンの濃度を負極板の上中下で変化させた際のアイドリングストップ寿命(IS寿命)を示す。従来例(リグニン0.2mass%)よりも下部のリグニン量を増やし、充電効率が低下しやすい上部のリグニン濃度を据え置くか、やや減らすと高率充電受入性が向上してSOC(充電状態)の低下が抑制され、アイドリングストップ寿命が向上した(表1)。   Table 1 shows the idling stop life (IS life) when the concentration of lignin was changed between the upper, middle, and lower sides of the negative electrode plate without using a synthetic organic shrinkage agent. Increasing the amount of lignin in the lower part of the conventional example (lignin 0.2 mass%) and deferring the lignin concentration in the upper part, where the charging efficiency is likely to be lowered, or reducing it slightly improves high-rate charge acceptance and lowers the SOC (charged state) Was suppressed, and the idling stop life was improved (Table 1).

表2は、リグニンの代わりに合成有機防縮剤(ビスフェノール類)を用いた場合の結果を示す。リグニンの場合と同様に、上部の濃度を下部の濃度よりも低くすることにより、アイドリングストップ寿命は向上した。しかし防縮剤濃度の最適値はリグニンの場合よりも低く、下部の濃度を増やすよりも、上部の濃度を減らす方が有効であった。   Table 2 shows the results when using synthetic organic shrinkage agents (bisphenols) instead of lignin. As in the case of lignin, the idling stop life was improved by making the upper concentration lower than the lower concentration. However, the optimum value of the anti-shrinkage agent concentration was lower than that of lignin, and it was more effective to reduce the upper concentration than to increase the lower concentration.

性能試験2:高率放電性能
リグニンの場合も合成有機防縮剤の場合も、負極板の上部の防縮剤濃度を下部の濃縮剤濃度よりも低くすることにより、アイドリングストップ寿命を向上できた。そこでリグニンと合成有機防縮剤とを併用することにより、高率放電性能をさらに向上させることを検討した。
Performance Test 2: High Rate Discharge Performance In both the case of lignin and the synthetic organic shrinkage agent, the idling stop life could be improved by making the concentration of the shrinkage preventing agent at the upper part of the negative electrode plate lower than the concentration of the lowering agent. Therefore, we studied to further improve the high rate discharge performance by using lignin and synthetic organic shrinkage agent in combination.

鉛蓄電池の初期5時間率容量と高率放電容量とを測定した。次いで5時間率容量(C5)を100%とする放電深さ(DOD)で、10%の放電と放電量の120%の充電を40℃で5000サイクル行い、5000サイクル後に10℃、1.5C5Aで放電し5秒目の端子電圧を測定した。この試験を試験Lと呼び、浅い充放電に対する高率放電性能の耐久性の指標とする。なお一部の電池に対し、初期性能の測定後に、40℃で240日間放置した後、上下に2.5Gの振動を2h加え、その後10℃、1.5 C5Aで放電し5秒目の端子電圧を測定する試験を行った。長期間の放置後に振動を加える試験での結果は、試験Lの結果と高い相関を示したので、長期間の放置後の振動試験を省略した。試験Lでの性能低下の原因は、負極活物質の収縮と格子からの剥離であった。 The initial 5-hour rate capacity and high rate discharge capacity of the lead acid battery were measured. Next, with a discharge depth (DOD) where the 5-hour rate capacity (C 5 ) is 100%, 10% discharge and 120% charge are performed at 40 ° C for 5000 cycles, and after 5000 cycles, 10 ° C, 1.5C After discharging at 5 A, the terminal voltage at 5 seconds was measured. This test is called test L and is used as an index of durability of high rate discharge performance against shallow charge / discharge. For some batteries, after initial performance measurement, after leaving at 40 ° C for 240 days, add 2.5G vibration for 2h up and down, and then discharge at 10 ° C and 1.5 C 5 A for 5 second terminal voltage The test which measures was performed. Since the result of the test in which vibration was applied after being left for a long time showed a high correlation with the result of test L, the vibration test after being left for a long time was omitted. The cause of the performance deterioration in Test L was the shrinkage of the negative electrode active material and the peeling from the lattice.

初期性能測定後の鉛蓄電池で、試験Lに供したものとは別の電池に対し、DOD70%の深い放電と放電量の115%の充電を40℃で700サイクル行い、700サイクル後に10℃で1.5 C5Aで放電し5秒目の端子電圧を測定した。この試験を試験Hと呼ぶ。試験Hでの性能低下の原因は、負極活物質のサルフェーションであった。 A lead-acid battery after initial performance measurement, which is different from the one used for test L, was subjected to 700 cycles of DOD 70% deep discharge and 115% charge discharge at 40 ° C and 700 cycles after 10 cycles. After discharging at 1.5 C 5 A, the terminal voltage at 5 seconds was measured. This test is referred to as test H. The cause of the performance deterioration in Test H was sulfation of the negative electrode active material.

試験結果
複数種の有機防縮剤を用いた際の、高率放電性能に関する試験結果を表3〜表12と図1〜図6とに示す。有機防縮剤Aはリグニン、有機防縮剤Bはビスフェノール類ホルムアルデヒド縮合物、有機防縮剤Cはナフタレンスルホン酸ホルムアルデヒド縮合物を表し、含有量の単位はmass%である。試験結果は、表3の最初の従来品を100%とする相対値で示す。表3は代表的な結果を示し、ビスフェノール類ホルムアルデヒド縮合物のみでも、リグニンのみでも、試験L,Hの双方への耐久性を得ることはできなかった。そして負極板の上部のビスフェノール類ホルムアルデヒド縮合物濃度を下部よりも低くすると、試験Lでも試験Hでも、高い高率放電性能を維持できた。また下部1/3でのビスフェノール類ホルムアルデヒド縮合物濃度が0.3mass%では、試験L後の高率放電性能が不十分であった。
Test Results Tables 3 to 12 and FIGS. 1 to 6 show the test results regarding the high rate discharge performance when using plural kinds of organic shrinking agents. The organic shrinkage agent A represents lignin, the organic shrinkage agent B represents a bisphenol formaldehyde condensate, the organic shrinkage agent C represents a naphthalene sulfonic acid formaldehyde condensate, and the unit of content is mass%. The test results are shown as relative values with the first conventional product in Table 3 as 100%. Table 3 shows representative results, and neither bisphenol formaldehyde condensate nor lignin alone could achieve durability in both tests L and H. When the concentration of the bisphenol formaldehyde condensate in the upper part of the negative electrode plate was made lower than that in the lower part, in both Test L and Test H, high high rate discharge performance could be maintained. Further, when the concentration of the bisphenol formaldehyde condensate in the lower third was 0.3 mass%, the high rate discharge performance after the test L was insufficient.

表4は、リグニンの濃度を0.2mass%に固定した際の、ビスフェノール類ホルムアルデヒド縮合物の濃度の影響を示す。下部1/3でのビスフェノール類ホルムアルデヒド縮合物の濃度を上部1/3よりも0.05mass%以上高くすることにより、良い結果が得られた。しかし下部1/3での濃度を0.3mass%とすると、浅い充放電を繰り返す試験Lにより高率放電性能が低下した。   Table 4 shows the influence of the concentration of bisphenol formaldehyde condensate when the concentration of lignin is fixed at 0.2 mass%. Good results were obtained by increasing the concentration of bisphenol formaldehyde condensate in the lower 1/3 higher by 0.05 mass% than in the upper 1/3. However, when the concentration in the lower 1/3 was 0.3 mass%, the high-rate discharge performance was lowered by the test L that repeated shallow charge and discharge.

表5は、リグニンの濃度を0.2mass%に固定した際の追加の結果を示す。上部1/3と下部1/3とでビスフェノール類ホルムアルデヒド縮合物の濃度が等しく、ビスフェノール類ホルムアルデヒド縮合物の濃度が均一な場合、良い結果が得られなかった。また下部1/3の濃度は上部1/3よりも高く、かつ下部1/3の濃度は0.3mass%未満でなければならないことも分かった。さらに中部1/3の濃度は上部1/3と等しくても、あるいは下部1/3と等しくても良いことが分かった。   Table 5 shows additional results when the lignin concentration was fixed at 0.2 mass%. When the concentration of the bisphenol formaldehyde condensate was the same in the upper 1/3 and the lower 1/3, and the concentration of the bisphenol formaldehyde condensate was uniform, good results were not obtained. It was also found that the concentration in the lower 1/3 must be higher than that in the upper 1/3 and the concentration in the lower 1/3 should be less than 0.3 mass%. Furthermore, it was found that the concentration of the middle 1/3 may be equal to the upper 1/3 or the lower 1/3.

表6と表7は、リグニンの濃度を0.1mass%あるいは0.3mass%に変えた時の結果を示す。結果は表3と類似であった。   Tables 6 and 7 show the results when the lignin concentration was changed to 0.1 mass% or 0.3 mass%. The results were similar to Table 3.

表3〜表7の結果を総合すると、L,Hの双方の試験に対して良い結果を得るには、ビスフェノール類ホルムアルデヒド縮合物に上下の濃度分布が必要で、下部1/3の濃度は上部1/3の濃度よりも0.05mass%以上高くする必要があることが分かった。また下部1/3での濃度は0.3mass%未満でかつ0.05mass%超でなければならないことが分かった。このことから、下部1/3の濃度を0.1mass%以上0.25mass%以下とした。さらに上部1/3の濃度は0以上0.15mass%、好ましくは0以上0.1mass%以下にする必要があることが分かった。また中部1/3の濃度は上部の濃度以上で下部の濃度以下である必要があることが分かった。   Summarizing the results in Tables 3 to 7, to obtain good results for both L and H tests, the bisphenol formaldehyde condensate requires a top and bottom concentration distribution, with the lower 1/3 concentration being the upper It was found that it was necessary to make it higher by 0.05 mass% than the concentration of 1/3. It was also found that the concentration in the lower 1/3 should be less than 0.3 mass% and greater than 0.05 mass%. From this, the concentration of the lower 1/3 was set to 0.1 mass% or more and 0.25 mass% or less. Further, it was found that the concentration of the upper 1/3 should be 0 or more and 0.15 mass%, preferably 0 or more and 0.1 mass% or less. It was also found that the concentration in the middle 1/3 must be higher than the upper concentration and lower than the lower concentration.

表8は、リグニンの濃度を0.4mass%に固定した際の結果を示す。ビスフェノール類ホルムアルデヒド縮合物の濃度を種々に変更しても、良い結果は得られなかった。   Table 8 shows the results when the concentration of lignin was fixed at 0.4 mass%. Even if the concentration of the bisphenol formaldehyde condensate was changed variously, good results were not obtained.

リグニンの濃度を0.2mass%に固定し、表4,表5から主な結果を抽出して表9と図1に示した。上部1/3でのビスフェノール類ホルムアルデヒド縮合物の濃度が0.05mass%、0.1mass%で良い結果が得られるが、0.2mass%以上では良い結果が得られないことが分かる。このことから、上部1/3でのビスフェノール類ホルムアルデヒド縮合物の濃度を0.15mass%以下とし、好ましくは0.1mass%以下とする。   The concentration of lignin was fixed at 0.2 mass%, and the main results were extracted from Tables 4 and 5 and shown in Table 9 and FIG. It can be seen that good results are obtained when the concentration of the bisphenol formaldehyde condensate in the upper third is 0.05 mass% and 0.1 mass%, but good results cannot be obtained when the concentration is 0.2 mass% or more. For this reason, the concentration of the bisphenol formaldehyde condensate in the upper part 1/3 is set to 0.15 mass% or less, preferably 0.1 mass% or less.

リグニンの濃度を0.05mass%に固定した際の結果を、表10と図2に示す。ビスフェノール類ホルムアルデヒド縮合物の濃度を種々に変更しても、良い結果は得られなかった。   The results when the concentration of lignin was fixed at 0.05 mass% are shown in Table 10 and FIG. Even if the concentration of the bisphenol formaldehyde condensate was changed variously, good results were not obtained.

以上のように、リグニンの濃度を0.05mass%としても0.4mass%としても良い結果は得られなかったが、0.1mass%〜0.3mass%で良い結果が得られた。このことから、リグニンの濃度を0.1mass%以上0.3mass%とした。   As described above, good results were not obtained when the concentration of lignin was 0.05 mass% or 0.4 mass%, but good results were obtained at 0.1 mass% to 0.3 mass%. Therefore, the concentration of lignin was set to 0.1 mass% or more and 0.3 mass%.

表3,表4,表5から、下部1/3でのビスフェノール類ホルムアルデヒド縮合物の濃度が0.3mass%のデータを抽出し、追加の結果と合わせて表11と図3に示す。リグニンの濃度は0.2mass%に固定した。上部1/3と中部1/3のビスフェノール類ホルムアルデヒド縮合物濃度を種々に変更しても、良い結果は得られないことが分かる。   From Table 3, Table 4, and Table 5, data in which the concentration of the bisphenol formaldehyde condensate in the lower third is 0.3 mass% is extracted and shown in Table 11 and FIG. 3 together with the additional results. The concentration of lignin was fixed at 0.2 mass%. It can be seen that good results cannot be obtained by variously changing the concentration of the bisphenol formaldehyde condensate in the upper 1/3 and the middle 1/3.

表12に、ビスフェノール類ホルムアルデヒド縮合物とナフタレンスルホン酸ホルムアルデヒド縮合物とを比較して示す。ビスフェノール類ホルムアルデヒド縮合物の代わりに、ナフタレンスルホン酸ホルムアルデヒド縮合物を用いても良いことが分かった。しかしビスフェノール類ホルムアルデヒド縮合物に比べてやや劣る性能になった。   Table 12 shows a comparison between a bisphenol formaldehyde condensate and a naphthalenesulfonic acid formaldehyde condensate. It has been found that naphthalenesulfonic acid formaldehyde condensate may be used in place of the bisphenol formaldehyde condensate. However, the performance was slightly inferior to the bisphenol formaldehyde condensate.

図4は、リグニンを負極活物質に上中下を問わず均一に0.2mass%含有させ、上部1/3のビスフェノール類の含有量を0.05mass%に、中部1/3の含有量も0.05mass%に固定し、下部1/3の含有量を変化させた際の結果を、各表から抽出して示す。下部1/3のビスフェノール類の含有量が0.1mass%及び0.2mass%で試験Lに対して良い結果が得られ、0.3mass%では試験Lへの結果が低下した。   FIG. 4 shows that lignin is uniformly contained in the negative electrode active material in an amount of 0.2 mass% regardless of whether it is upper, middle, or lower, the content of bisphenols in the upper 1/3 is 0.05 mass%, and the content in the middle 1/3 is also 0.05 mass. The results when the content of the lower part 1/3 is changed are shown extracted from each table. Good results were obtained for Test L when the content of bisphenols in the lower 1/3 was 0.1 mass% and 0.2 mass%, and the results for Test L were reduced at 0.3 mass%.

図5は、リグニンを負極活物質に上中下を問わず均一に0.2mass%含有させ、中部1/3のビスフェノール類の含有量を0.2mass%に、下部1/3の含有量も0.2mass%に固定し、上部1/3の含有量を変化させた際の結果を、各表から抽出して示す。上部1/3のビスフェノール類の含有量が0.05mass%及び0.1mass%で試験Lに対して良い結果が得られ、0.2mass%以上では試験Lへの結果が低下した。   Fig. 5 shows that lignin is uniformly contained in the negative electrode active material at 0.2 mass% regardless of the upper, middle, lower, the content of bisphenols in the middle part is 0.2 mass%, and the content in the lower part 1/3 is also 0.2 mass. The results when the content of the upper 1/3 is changed and fixed in% are extracted from each table and shown. Good results were obtained for Test L when the content of bisphenols in the upper 1/3 was 0.05 mass% and 0.1 mass%, and the results for Test L were decreased at 0.2 mass% or more.

図6は、リグニンを負極活物質に上中下を問わず均一に0.2mass%含有させ、上部1/3のビスフェノール類の含有量を0.2mass%に、中部1/3の含有量も0.2mass%に固定し、下部1/3の含有量を変化させた際の結果を、各表から抽出して示す。下部1/3のビスフェノール類の含有量が0.1mass%及び0.2mass%から0.3mass%へ増すと、試験Hへの結果が向上したが、試験Lへの結果が低下した。また上部及び中部のビスフェノール類の濃度が高すぎるため、図4,図5に匹敵する結果は得られなかった。   Fig. 6 shows that lignin is uniformly contained in the negative electrode active material in an amount of 0.2 mass% regardless of the upper, middle, lower, the content of bisphenols in the upper 1/3 is 0.2 mass%, and the content in the middle 1/3 is also 0.2 mass. The results when the content of the lower part 1/3 is changed are shown extracted from each table. When the content of bisphenols in the lower 1/3 was increased from 0.1 mass% and 0.2 mass% to 0.3 mass%, the result to Test H was improved, but the result to Test L was decreased. Moreover, since the density | concentration of the bisphenol of upper part and center part is too high, the result comparable to FIG. 4, FIG. 5 was not obtained.

なおリグニンは負極板の上下で濃度が異なっても良く、特に負極板の上部1/3の濃度が下部1/3の濃度よりも低いことが好ましい。その場合、平均濃度を0.1mass%以上0.3mass%以下にし、好ましくは上部1/3,中部1/3、下部1/3の各平均濃度を0.1mass%以上0.3mass%以下にする。   The concentration of lignin may be different between the upper and lower sides of the negative electrode plate, and the concentration of the upper third of the negative electrode plate is preferably lower than the lower one third. In that case, the average density is 0.1 mass% or more and 0.3 mass% or less, and preferably the average density of the upper 1/3, middle 1/3, and lower 1/3 is 0.1 mass% or more and 0.3 mass% or less.

2,22,32 負極板
4,4’ エキスパンド格子
5 上縁
6 下縁
7 耳
8、38 桟
11 上部1/3の負極活物質
12 中部1/3の負極活物質
13 下部1/3の負極活物質
34 格子
35,36 縦枠
H2,H3 3等分線
2, 22, 32 Negative electrode plate 4, 4 'Expanded grid 5 Upper edge 6 Lower edge 7 Ear 8, 38 Cross 11 Upper 1/3 negative electrode active material 12 Middle 1/3 negative electrode active material 13 Lower 1/3 negative electrode Active material 34 lattice
35, 36 vertical frame
H2, H3 trisection

Claims (6)

負極電極材料が有機防縮剤を含有し、かつ負極電極材料の有機防縮剤濃度に負極板の上下方向に沿った分布があり、
負極板の下部1/3での平均濃度が上部1/3での平均濃度よりも高いことを特徴とする、鉛蓄電池。
The negative electrode material contains an organic shrunk agent, and the organic shrunk agent concentration of the negative electrode material has a distribution along the vertical direction of the negative electrode plate,
A lead acid battery characterized in that the average concentration in the lower third of the negative electrode plate is higher than the average concentration in the upper third.
負極電極材料が複数種の有機防縮剤を含有し、かつ負極電極材料の有機防縮剤の合計濃度に負極板の上下方向に沿った分布があり、
負極板の下部1/3での有機防縮剤の平均合計濃度が、上部1/3での有機防縮剤の平均合計濃度よりも高いことを特徴とする、鉛蓄電池。
The negative electrode material contains a plurality of organic shrinkage agents, and the total concentration of the organic shrinkage agents of the negative electrode material has a distribution along the vertical direction of the negative electrode plate,
A lead acid battery, characterized in that the average total concentration of the organic shrinking agent in the lower 1/3 of the negative electrode plate is higher than the average total concentration of the organic shrinking agent in the upper 1/3.
負極電極材料がリグニンスルホン酸と合成有機防縮剤とを含有し、かつ負極電極材料の有機防縮剤の合計濃度に負極板の上下方向に沿った分布があり、
負極板の下部1/3でのリグニンスルホン酸と合成有機防縮剤との平均合計濃度が、上部1/3でのリグニンと合成有機防縮剤との平均合計濃度よりも高いことを特徴とする、鉛蓄電池。
The negative electrode material contains lignin sulfonic acid and a synthetic organic shrinkage agent, and the total concentration of the organic shrinkage agent of the negative electrode material has a distribution along the vertical direction of the negative electrode plate,
The average total concentration of lignin sulfonic acid and synthetic organic shrinkage agent in the lower 1/3 of the negative electrode plate is higher than the average total concentration of lignin and synthetic organic shrinkage agent in the upper 1/3, Lead acid battery.
負極電極材料がリグニンスルホン酸と合成芳香族スルホン酸ポリマーとを含有し、
負極電極材料のリグニンスルホン酸の平均濃度が0.1mass%以上0.3mass%以下、
負極電極材料の合成芳香族スルホン酸ポリマー濃度に上下方向に沿った分布があり、
負極板の上部1/3での平均濃度が0以上0.15mass%以下、
中部1/3での平均濃度が0以上0.25mass%以下で、上部1/3での濃度以上、かつ下部1/3での濃度以下、
下部1/3での平均濃度が0.1mass%以上0.25mass%以下で、かつ下部1/3での平均濃度は上部1/3での平均濃度よりも0.05mass%以上高い、ことを特徴とする、鉛蓄電池。
The negative electrode material contains lignin sulfonic acid and a synthetic aromatic sulfonic acid polymer,
The average concentration of lignin sulfonic acid of the negative electrode material is 0.1 mass% or more and 0.3 mass% or less,
There is a distribution along the vertical direction in the synthetic aromatic sulfonic acid polymer concentration of the negative electrode material,
The average concentration in the upper third of the negative electrode plate is 0 or more and 0.15 mass% or less,
The average concentration in the central 1/3 is 0 or more and 0.25 mass% or less, more than the concentration in the upper 1/3, and less than the concentration in the lower 1/3,
The average density in the lower 1/3 is 0.1 mass% or more and 0.25 mass% or less, and the average density in the lower 1/3 is 0.05 mass% or more higher than the average density in the upper 1/3. Lead acid battery.
負極板の上部1/3での合成芳香族スルホン酸ポリマーの平均濃度が0以上0.1mass%以下であることを特徴とする、請求項3または4の鉛蓄電池。   The lead acid battery according to claim 3 or 4, wherein the average concentration of the synthetic aromatic sulfonic acid polymer in the upper third of the negative electrode plate is 0 or more and 0.1 mass% or less. 鉛蓄電池から取り出した負極板を水洗して硫酸分を除去し、
硫酸分を除去した負極板から、負極板の上部1/3内の負極電極材料と下部1/3内の負極電極材料とを採取し、
採取した各負極電極材料を1mol/lのNaOH水溶液に浸漬し、
不溶成分を濾過で取り除いた前記NaOH水溶液を脱塩した後、濃縮・乾燥して得た粉末試料と、採取した負極電極材料との質量比が、負極板の下部1/3で上部1/3よりも高いことを特徴とする鉛蓄電池。
The negative electrode plate removed from the lead-acid battery was washed with water to remove the sulfuric acid,
From the negative electrode plate from which the sulfuric acid content was removed, the negative electrode material in the upper 1/3 of the negative electrode plate and the negative electrode material in the lower 1/3 were collected,
Immerse each collected negative electrode material in 1 mol / l NaOH aqueous solution,
After demineralizing the NaOH aqueous solution from which insoluble components have been removed by filtration, the mass ratio between the powder sample obtained by concentration and drying and the collected negative electrode material is 1/3 in the lower 1/3 of the negative electrode plate. Lead acid battery characterized by being higher than.
JP2015130030A 2015-06-29 2015-06-29 Lead acid storage battery Pending JP2017016782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015130030A JP2017016782A (en) 2015-06-29 2015-06-29 Lead acid storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015130030A JP2017016782A (en) 2015-06-29 2015-06-29 Lead acid storage battery

Publications (1)

Publication Number Publication Date
JP2017016782A true JP2017016782A (en) 2017-01-19

Family

ID=57830877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015130030A Pending JP2017016782A (en) 2015-06-29 2015-06-29 Lead acid storage battery

Country Status (1)

Country Link
JP (1) JP2017016782A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018199123A1 (en) * 2017-04-28 2018-11-01 株式会社Gsユアサ Lead acid battery
WO2020241885A1 (en) * 2019-05-31 2020-12-03 株式会社Gsユアサ Lead storage battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018199123A1 (en) * 2017-04-28 2018-11-01 株式会社Gsユアサ Lead acid battery
JPWO2018199123A1 (en) * 2017-04-28 2020-03-12 株式会社Gsユアサ Lead storage battery
JP7099449B2 (en) 2017-04-28 2022-07-12 株式会社Gsユアサ Lead-acid battery
WO2020241885A1 (en) * 2019-05-31 2020-12-03 株式会社Gsユアサ Lead storage battery

Similar Documents

Publication Publication Date Title
JP6652133B2 (en) Lead storage battery and method of manufacturing lead storage battery
US10003069B2 (en) Lead-acid battery
JP6202477B1 (en) Lead acid battery
JP6690636B2 (en) Lead acid battery
JP2022009931A (en) Lead acid battery
JP7355005B6 (en) lead acid battery
JP2017228530A (en) Lead storage battery
JP2017016782A (en) Lead acid storage battery
US20160240857A1 (en) Lead-acid battery
US20160240844A1 (en) Lead-acid battery, negative electrode plate thereof and method for producing lead-acid battery
JP4884748B2 (en) Lattice substrate for lead acid battery
JP6701600B2 (en) Lead acid battery
JP5790975B2 (en) Lead acid battery
JP6339030B2 (en) Lead acid battery
JP5578123B2 (en) Liquid lead-acid battery
JP6750377B2 (en) Lead acid battery
JP6136079B2 (en) Lead acid battery
US3084207A (en) Storage battery and method of forming the same
JP2019053998A (en) Lead acid storage battery
JP6649690B2 (en) Lead storage battery
JP2014137970A (en) Lead-acid battery
JP7318660B2 (en) lead acid battery
JP6775764B2 (en) Lead-acid battery
JP2019207786A (en) Lead acid battery
JP5025317B2 (en) Lattice substrate for lead acid battery