JP2017016114A - Optical unit with shake correction function - Google Patents
Optical unit with shake correction function Download PDFInfo
- Publication number
- JP2017016114A JP2017016114A JP2016118549A JP2016118549A JP2017016114A JP 2017016114 A JP2017016114 A JP 2017016114A JP 2016118549 A JP2016118549 A JP 2016118549A JP 2016118549 A JP2016118549 A JP 2016118549A JP 2017016114 A JP2017016114 A JP 2017016114A
- Authority
- JP
- Japan
- Prior art keywords
- movable body
- optical axis
- holder
- weight
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 179
- 239000002184 metal Substances 0.000 claims abstract description 57
- 230000007246 mechanism Effects 0.000 claims abstract description 55
- 230000002093 peripheral effect Effects 0.000 claims description 53
- 238000003466 welding Methods 0.000 claims description 6
- 239000011347 resin Substances 0.000 description 15
- 229920005989 resin Polymers 0.000 description 15
- 230000005484 gravity Effects 0.000 description 11
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000033001 locomotion Effects 0.000 description 5
- 239000002131 composite material Substances 0.000 description 3
- 239000011162 core material Substances 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Landscapes
- Adjustment Of Camera Lenses (AREA)
- Studio Devices (AREA)
Abstract
Description
本発明は、光学モジュールの振れを補正することのできる振れ補正機能付き光学ユニットに関するものである。 The present invention relates to an optical unit with a shake correction function capable of correcting shake of an optical module.
撮像用の光学ユニットにおいては、撮像用の光学モジュールをホルダで保持した可動体を光軸方向の途中位置でジンバル機構等によって揺動可能に支持しておき、磁気駆動機構等によって、可動体を光軸に交差する軸線周りに揺動させて光学モジュールの振れを補正する構成が提案されている。その際、可動体の重心位置とジンバル機構等による支持位置とが離間していると、可動体をスムーズに揺動させにくい。そこで、光学モジュールの端部に金属製のウェイトを固定させ、光軸方向における可動体の重心位置をジンバル機構等による支持位置に近接するように調整した構成が提案されている(特許文献1参照)。 In the imaging optical unit, a movable body holding an imaging optical module with a holder is supported so as to be swingable by a gimbal mechanism or the like at an intermediate position in the optical axis direction, and the movable body is supported by a magnetic drive mechanism or the like. There has been proposed a configuration in which the shake of the optical module is corrected by swinging around an axis intersecting the optical axis. At that time, if the position of the center of gravity of the movable body is separated from the support position by the gimbal mechanism or the like, it is difficult to smoothly swing the movable body. Therefore, a configuration has been proposed in which a metal weight is fixed to the end of the optical module, and the center of gravity position of the movable body in the optical axis direction is adjusted to be close to the support position by a gimbal mechanism or the like (see Patent Document 1). ).
しかしながら、光学モジュールの端部には、光軸に対して直交する方向のサイズが小さなウェイトしか取り付けることができない。このため、重心位置を適正に調整するには、ウェイトとして、光軸方向のサイズが大きなものを取り付ける必要があるため、可動体を光軸方向で小型化することの妨げとなってしまう。 However, only a weight having a small size in the direction orthogonal to the optical axis can be attached to the end of the optical module. For this reason, in order to properly adjust the position of the center of gravity, it is necessary to attach a weight having a large size in the optical axis direction, which hinders downsizing the movable body in the optical axis direction.
以上の問題点に鑑みて、本発明の課題は、可動体の重心位置の適正な位置への設定、および可動体の光軸方向の小型化の双方を実現することのできる振れ補正機能付き光学ユニットを提供することにある。 In view of the above problems, an object of the present invention is to provide an optical device with a shake correction function capable of realizing both the setting of the center of gravity of a movable body to an appropriate position and the miniaturization of the movable body in the optical axis direction. To provide a unit.
上記課題を解決するために、本発明に係る振れ補正機能付き光学ユニットは、光学モジュールをホルダで保持した可動体と、前記可動体を揺動可能に支持する固定体と、磁石およびコイルの一方からなり、前記ホルダに保持された複数の第1磁気素子と、磁石およびコイルの他方からなり、前記固定体に保持された第2磁気素子と、を有し、前記ホルダは、前記光学モジュールを内側に保持する枠部と、前記枠部から光軸に沿って突出して前記複数の第1磁気素子を各々保持する複数の壁部と、を備え、前記可動体は、前記壁部の先端部に連結された金属製のウェイトを備えていることを特徴とする。 In order to solve the above-described problems, an optical unit with a shake correction function according to the present invention includes a movable body that holds an optical module with a holder, a fixed body that supports the movable body in a swingable manner, and one of a magnet and a coil. A plurality of first magnetic elements held by the holder, and a second magnetic element made of the other of a magnet and a coil and held by the fixed body, wherein the holder includes the optical module. A frame portion that is held inside, and a plurality of wall portions that protrude from the frame portion along the optical axis and hold the plurality of first magnetic elements, respectively, and the movable body has a tip portion of the wall portion And a metal weight connected to each other.
本発明では、ウェイトが光学モジュールより外側の壁部の端部に連結されるため、ウェイトを光学モジュールに取り付けた場合に比べて、ウェイトの光軸に直交する方向のサイズを大きくすることができる。このため、ウェイトによって可動体の光軸方向の重心位置を適正な位置に調整した場合でも、ウェイトの光軸方向の寸法(厚さ)が小さくてよい。このため、ウェイトを含めた可動体の光軸方向の寸法を小さくすることができるので、振れ補正機能付き光学ユニットの小型化を図ることができる。 In the present invention, since the weight is connected to the end of the wall portion outside the optical module, the size of the weight in the direction perpendicular to the optical axis can be increased as compared with the case where the weight is attached to the optical module. . For this reason, even when the gravity center position of the movable body in the optical axis direction is adjusted to an appropriate position by the weight, the dimension (thickness) of the weight in the optical axis direction may be small. For this reason, since the dimension of the movable body including the weight in the optical axis direction can be reduced, the optical unit with a shake correction function can be downsized.
本発明において、前記ウェイトは、光軸を囲む筒状または枠状の部材であって、前記複数の壁部の前記先端部の各々に連結されていることが好ましい。かかる構成によれば、ウェイトによって壁部を補強することができる。 In the present invention, it is preferable that the weight is a cylindrical or frame-shaped member surrounding the optical axis, and is connected to each of the tip end portions of the plurality of wall portions. According to this configuration, the wall portion can be reinforced by the weight.
本発明において、前記ウェイトには、前記複数の壁部の前記先端部が光軸方向および光軸に直交する方向から当接する段部が形成されていることが好ましい。かかる構成によれば、ウェイトの光軸方向および光軸に直交する方向の位置精度を高めることができる。 In the present invention, it is preferable that the weight is formed with a step portion in which the distal end portions of the plurality of wall portions abut from an optical axis direction and a direction orthogonal to the optical axis. According to such a configuration, it is possible to improve the positional accuracy of the weight in the optical axis direction and in the direction orthogonal to the optical axis.
本発明において、前記複数の壁部の前記先端部には、光軸に沿って突出した凸部が設けられ、前記ウェイトの外周面には、前記凸部が嵌る切り欠きが設けられていることが好ましい。かかる構成によれば、ウェイトの光軸に直交する方向の位置精度を高めることができる。 In the present invention, the tip portions of the plurality of wall portions are provided with convex portions that protrude along the optical axis, and the outer peripheral surface of the weight is provided with a notch into which the convex portions are fitted. Is preferred. According to such a configuration, the positional accuracy in the direction orthogonal to the optical axis of the weight can be improved.
本発明において、前記凸部は金属製であり、前記ウェイトは、前記凸部に溶接により連結されていることが好ましい。かかる構成によれば、ウェイトを強固に固定することができる。 In this invention, it is preferable that the said convex part is metal, and the said weight is connected with the said convex part by welding. According to such a configuration, the weight can be firmly fixed.
本発明において、前記固定体は、前記ウェイトに対して光軸方向で対向するカバーを備え、前記カバーは、前記ウェイトの径方向内側に突出して前記可動体の揺動範囲を規制するストッパ用凸部を備えていることが好ましい。かかる構成によれば、外部から加わった衝撃に起因する可動体の過度な揺動を阻止することができる。 In the present invention, the fixed body includes a cover that opposes the weight in the optical axis direction, and the cover protrudes inward in the radial direction of the weight to restrict the swing range of the movable body. It is preferable to provide the part. According to such a configuration, it is possible to prevent excessive swinging of the movable body due to an impact applied from the outside.
本発明において、前記複数の壁部と前記固定体との間には、前記ホルダが光軸に直交する方向に変位したときに当接して前記ホルダの可動範囲を規制するストッパ機構を備えていることが好ましい。かかる構成によれば、可動体の過度な変位を阻止することができる。 In the present invention, a stopper mechanism is provided between the plurality of wall portions and the fixed body to restrict the movable range of the holder by contacting when the holder is displaced in a direction perpendicular to the optical axis. It is preferable. According to such a configuration, excessive displacement of the movable body can be prevented.
本発明において、前記枠部の前記壁部とは反対側では、前記ホルダおよび前記固定体に対して前記可動体の姿勢を規制するバネ部材が接続されていることが好ましい。かかる構成によれば、壁部の枠部とは反対側の先端部にウェイトを設けた場合でも、可動体の姿勢を規制するバネ部材を設けることができる。 In this invention, it is preferable that the spring member which controls the attitude | position of the said movable body is connected with respect to the said holder and the said fixed body on the opposite side to the said wall part of the said frame part. According to such a configuration, the spring member that regulates the posture of the movable body can be provided even when the weight is provided at the tip of the wall portion on the side opposite to the frame portion.
本発明では、ウェイトが光学モジュールより外側の壁部に連結されるため、ウェイトを光学モジュールに連結した場合に比べて、ウェイトの光軸に直交する方向のサイズを大きくすることができる。このため、ウェイトによって可動体の光軸方向の重心位置を適正な位置に調整するにも、ウェイトの光軸方向の寸法(厚さ)が小さくてよい。このため、ウェイトを含めた可動体の光軸方向の寸法を小さくすることができるので、振れ補正機能付き光学ユニットの小型化を図ることができる。 In the present invention, since the weight is connected to the wall portion outside the optical module, the size of the weight in the direction perpendicular to the optical axis can be increased as compared with the case where the weight is connected to the optical module. For this reason, the dimension (thickness) of the weight in the optical axis direction may be small in order to adjust the position of the center of gravity of the movable body in the optical axis direction to an appropriate position. For this reason, since the dimension of the movable body including the weight in the optical axis direction can be reduced, the optical unit with a shake correction function can be downsized.
以下に、図面を参照して、本発明を適用した振れ補正機能付き光学ユニットの実施の形態を説明する。本明細書において、XYZの3軸は互いに直交する方向であり、X軸方向
の一方側を+X、他方側を−Xで示し、Y軸方向の一方側を+Y、他方側を−Yで示し、Z軸方向の一方側を+Z、他方側を−Zで示す。Z軸方向は光学ユニットが備える光学モジュールの光軸L(レンズの光軸)に沿う方向である。また、−Z方向が光軸L方向の像側、+Z方向が光軸L方向の被写体側である。
Embodiments of an optical unit with a shake correction function to which the present invention is applied will be described below with reference to the drawings. In this specification, the three axes of XYZ are directions orthogonal to each other, one side in the X-axis direction is indicated by + X, the other side is indicated by -X, one side in the Y-axis direction is indicated by + Y, and the other side is indicated by -Y. , One side in the Z-axis direction is indicated by + Z and the other side is indicated by -Z. The Z-axis direction is a direction along the optical axis L (lens optical axis) of the optical module provided in the optical unit. Further, the −Z direction is the image side in the optical axis L direction, and the + Z direction is the subject side in the optical axis L direction.
(全体構成)
図1は、本発明を適用した振れ補正機能付き光学ユニット(以下、光学ユニット100という)の斜視図であり、図1(a)は被写体側(+Z方向側)から見た斜視図、図1(b)は像側(−Z方向側)から見た斜視図である。図2は、図1に示す光学ユニット100の断面図(図1(a)のA−A断面図)である。図3は、図1に示す光学ユニット100の分解斜視図である。
(overall structure)
FIG. 1 is a perspective view of an optical unit with a shake correction function (hereinafter referred to as an optical unit 100) to which the present invention is applied, and FIG. 1 (a) is a perspective view seen from the subject side (+ Z direction side). (B) is the perspective view seen from the image side (-Z direction side). FIG. 2 is a sectional view of the
図1に示す光学ユニット100は、例えばカメラ付き携帯電話機、ドライブレコーダー等の光学機器に搭載される。また、光学ユニット100は、ヘルメット、自転車、ラジコンヘリコプター等に搭載されるアクションカメラやウエアラブルカメラ等の光学機器に用いられる。このような光学ユニット100では、撮影時に光学機器に振れが発生すると、撮像画像に乱れが発生する。従って、光学ユニット100は、光学機器の振れを補正できる振れ補正機能付き光学ユニットとして構成されている。光学ユニット100のX軸周りの回転は、いわゆるピッチング(縦揺れ)に相当し、Y軸周りの回転は、いわゆるヨーイング(横揺れ)に相当し、Z軸周りの回転は、いわゆるローリングに相当する。
The
図2および図3に示すように、光学ユニット100は、可動体10と、固定体20と、可動体10を固定体20に対して揺動可能に支持する支持機構30と、可動体10を固定体20に対して相対変位させる磁気駆動力を発生させる振れ補正用駆動機構50と、可動体10および固定体20に接続するバネ部材70とを備えている。光学ユニット100は、図示しないフレキシブル配線基板を介して、光学ユニット100を搭載する光学機器の本体側に設けられた上位の制御部等に電気的に接続される。また、光学ユニット100または光学機器は、図示しないジャイロスコープ(振れ検出センサ)を搭載しており、ジャイロスコープは、光学機器に振れが発生したときに振れを検出して上位の制御装置に出力する。制御装置は、振れ補正用駆動機構50を駆動して可動体10を光軸Lに交差する軸線周りに揺動させ、振れ補正を行う。
As shown in FIGS. 2 and 3, the
可動体10は、後述する支持機構30(ジンバル機構)を介して、固定体20に、光軸Lと交差する第1軸線R1(図1(a)参照)回りに揺動可能に支持されているとともに、光軸Lおよび第1軸線R1と交差する第2軸線R2(図1(a)参照)回りに揺動可能に支持されている。本形態では、第1軸線R1および第2軸線R2は、光軸Lと直交する。また、第1軸線R1および第2軸線R2は、互いに直交する。
The
(固定体20の構成)
固定体20は、Z軸方向に見た場合に正方形の外形をしたケース210およびベース250を備える。ケース210は、ベース250に対して+Z方向側から組み付けられ、溶接等によりベース250と固定される。ケース210は、可動体10の周りを囲む角筒状の胴部211と、胴部211の+Z方向の端部から内側に張り出した矩形枠状の端板部212を備える。端板部212には矩形の窓214が形成されている。胴部211は、+X方向側に位置する側板部216と、−X方向側に位置する側板部217と、+Y方向側に位置する側板部218と、−Y方向側に位置する側板部219とを備える。側板部216、217、218、219のうち、隣り合う側板部が繋がる角部には、−Z方向に突出する突出部213が形成されている。
(Configuration of fixed body 20)
The fixed
ベース250は、開口部252が形成された矩形枠状の底部251と、底部251の四
隅で+Z方向に立ち上がる側壁部253、254、255、256とを備える。ケース210をベース250に組み付けたとき、側壁部253、254、255、256にケース210の突出部213が被さる。第1軸線R1上の対角位置に形成された側壁部253、255の各々には、内周側に張り出す張り出し部257が設けられている。張り出し部257には、支持機構30の第1揺動支持部36を構成する第1接点バネ保持部31が形成されている。第1接点バネ保持部31は、張り出し部257に形成された凹部311と、凹部311の内周側で+Z方向に突出する接点バネ支持部312と、凹部311の外周側に位置する規制部313を備える。規制部313は、張り出し部257において凹部311の外周側に位置する部位である。
The
図1および図2に示すように、固定体20は、ケース210の端板部212に固定された板状のカバー29を有している。カバー29には、ケース210の窓214と重なる位置に窓214より小さな開口部291が形成されている。カバー29には、開口部291の縁からケース210の内側(−Z方向)に突出したストッパ用凸部292が形成されている。かかるストッパ用凸部292は、後述するウェイト11とともに、可動体10の揺動範囲を規制するストッパ機構を構成する。
As shown in FIGS. 1 and 2, the fixed
(振れ補正用駆動機構50の構成)
振れ補正用駆動機構50は、固定体20と可動体10との間に設けられた4組の磁気駆動機構51を備える。各磁気駆動機構51は各々、磁石52とコイル53を備えており、磁石52およびコイル53のうちの一方からなる第1磁気素子は、可動体10に保持され、磁石52およびコイル53のうちの他方からなる第2磁気素子は、固定体20に保持されている。
(Configuration of shake correction drive mechanism 50)
The shake
コイル53(第1磁気素子)は空芯コイルであり、可動体10の+X方向側の側面、−X方向側の側面、+Y方向側の側面、および−Y方向側の側面に保持されている。磁石52(第2磁気素子)は、ケース210の胴部211において、+X方向側に位置する側板部216の内面、−X方向側に位置する側板部217の内面、+Y方向側に位置する側板部218の内面、および−Y方向側に位置する側板部219の内面に保持されている。従って、可動体10とケース210の胴部211との間では、+X方向側、−X方向側、+Y方向側、および−Y方向側のいずれにおいても、磁石52とコイル53とが対向している。
The coil 53 (first magnetic element) is an air-core coil and is held on the side surface on the + X direction side, the side surface on the −X direction side, the side surface on the + Y direction side, and the side surface on the −Y direction side of the
磁石52は、胴部211に接する外面側と、コイル53に面する内面側が異なる極に着磁されている。また、磁石52は光軸L方向(すなわち、Z軸方向)に2分割され、内面側の磁極が分割位置を境にして異なるように着磁されている。このため、コイル53は、Z方向に位置する一対の長辺部分が有効辺として利用される。4つの磁石は、外面側および内面側に対する着磁パターンが同一である。ケース210は磁性材料から構成されており、磁石52に対するヨークとして機能する。
The
(可動体10の構成)
図4は、図1に示す可動体10の分解斜視図である。なお、図4には、ウェイト11をZ方向で反転させた状態も示してある。図5は、図1に示すケース210およびウェイト11を取り外した光学ユニット100の平面図である。
(Configuration of movable body 10)
4 is an exploded perspective view of the
図4に示すように、可動体10は、光学モジュール1と、光学モジュール1を保持するホルダ40と、ホルダ40の+Z方向側に固定されたウェイト11とを備える。光学モジュール1は、光軸LがZ軸方向を向くように配置される。光学モジュール1は、例えば、光学素子としてのレンズおよび撮像素子等を内蔵する上部モジュール2と、ジャイロスコープおよび配線基板等の電子部品を内蔵する下部モジュール3とを備える。上部モジュー
ル2は直方体状の外形をしている。上部モジュール2の+Z方向の面からは円筒状のレンズホルダ4が突出する。下部モジュール3は上部モジュール2よりも一回り大きい直方体状である。下部モジュール3は上部モジュール2の−Z方向側に位置しており、上部モジュール2から+X方向側、−X方向側、+Y方向側、および−Y方向側に同一寸法だけ外側に張り出している。光学モジュール1をZ軸方向に見た場合に、レンズホルダ4は光軸Lを中心とする円形であるが、上部モジュール2および下部モジュール3の外形は正方形である。
As shown in FIG. 4, the
(ホルダ40の構成)
ホルダ40は、可動体10の外周部分を構成している。ホルダ40は、Z軸方向から見た場合に略矩形、具体的には略正方形の平面形状をした枠部41を備える。枠部41の内側は、光学モジュール1の上部モジュール2を保持する矩形の保持孔42になっている。ホルダ40は、枠部41の+X方向側、−X方向側、+Y方向側、および−Y方向側の各側端縁から光軸Lに沿って+Z方向に突出した板状の壁部43、44、45、46を備える。壁部43、44、45、46は、保持孔42の外周側を囲むように配置され、枠部41の各側端縁の中央で直線状に延在する。保持孔42に配置された上部モジュール2の外周面と壁部43、44、45、46との間には、後述する支持機構30の可動枠39が配置される空間が形成される。
(Configuration of holder 40)
The
壁部43、44、45、46は各々、保持孔42とは反対側を向く外側面に形成されたコイル保持部47を備える。コイル保持部47は、壁部43、44、45、46の外側面から突出する矩形の凸部である。コイル保持部47の外周側には、磁気駆動機構51のコイル53が配置される。コイル53は、その中央にコイル保持部47が嵌った状態で、壁部43、44、45、46の外側面に接着剤等により固定される。コイル53が壁部43、44、45、46に固定された状態では、図5に示すように、光軸L方向から見て壁部43、44、45、46の両側端面に対してコイル53の両外側端面を突出させ、壁部43、44、45、46の幅に対してコイル53の壁部43、44、45、46に沿う方向の幅を大きく設定しているが、可動枠39の光軸L回りの4か所に設けられた支点部391は、ケース210の胴部211の四隅に設けられているから、壁部43、44、45、46の幅に対してコイル53の幅を大きくしても、周方向に隣り合う壁部の間の隙間(間隙部401、402、403、404)の幅と周方向に隣り合うコイル53間の隙間の幅とをほぼ同じに確保することができる。コイル53は、コイル保持部47に巻線を巻き付けて形成してもよいし、予め空芯コイルの形状に形成したものをコイル保持部47に取り付けてもよい。
Each of the
図2に示すように、コイル保持部47は、コイル53の中央から、固定体20側の磁石52の側に突出しており、磁石52と対向する。可動体10が、外部から加わった振動等によって、光軸Lと交差する方向(X軸方向またはY軸方向)に変位した際、コイル保持部47が磁石52と当接して可動体10の移動範囲を規制する。このようにして、壁部43、44、45、46と固定体20との間には、ストッパ機構19が構成されている。
As shown in FIG. 2, the
枠部41は、第1軸線R1上の対角位置に形成された切り欠き48を備える。切り欠き48は、第1軸線R1上の対角位置に位置する2箇所の角部を第1軸線R1に対して垂直な平面で切断した部位である。図5に示すように、切り欠き48は、X方向側の壁部43と+Y方向側の壁部45の間に設けられた間隙部401、および、−X方向側の壁部44と−Y方向側の壁部46の間に設けられた間隙部402に配置されている。可動体10を固定体20に対して組み付けると、ベース250の第1軸線R1上の対角位置に設けられた張り出し部257が切り欠き48と対向する。その結果、張り出し部257に設けられた第1接点バネ保持部31は、枠部41の第1軸線R1上の対角位置で、壁部43と壁部45の間の間隙部401、および壁部44と壁部46の間の間隙部402に配置される。
The
枠部41の第2軸線R2上の対角位置には、支持機構30の第2揺動支持部37を構成する第2接点バネ保持部32が形成されている。第2接点バネ保持部32は、+X方向側の壁部43と−Y方向側の壁部46の間に設けられた間隙部403、および−X方向側の壁部44と+Y方向側の壁部45の間に設けられた間隙部404に配置されている。第2接点バネ保持部32は、+Z方向に立ち上がる接点バネ支持部322と、接点バネ支持部322の根元部から外周側に突出する突出部321と、突出部321の先端部から+Z方向に突出する規制部323を備える。
At the diagonal position on the second axis R <b> 2 of the
枠部41の外周面は、+X方向側、−X方向側、+Y方向側、および−Y方向側の各面がZ軸方向の途中位置で段差のある形状になっている。すなわち、枠部41の外周面の+Z方向側の部分は、外周側に張り出した張り出し部411を形成する(図4参照)。一方、枠部41の外周面の−Z方向側の部分は、内周側に凹んだ段部412を形成している。段部412には、+X方向側、−X方向側、+Y方向側、および−Y方向側を向く各面の中央で外周側に突出する固定用凸部413が形成されている。固定用凸部413は、後述するように、板状バネからなるバネ部材70を係合する係合部として機能する。
The outer peripheral surface of the
ホルダ40は、図2に示すように、保持孔42に上部モジュール2が配置され、枠部41の下端部と下部モジュール3の上端部とがZ軸方向に当接した状態で光学モジュール1を保持する。可動体10を固定体20に対して組み付けると、光学ユニット100の下端部分では、図1(b)、図2に示すように、ベース250の開口部252から−Z方向側に枠部41の下側部分および下部モジュール3が突出した状態となる。
As shown in FIG. 2, the
(ホルダ40の詳細構成)
ホルダ40は、樹脂製であり、枠部41および壁部43、44、45、46を構成する樹脂部49を有している。また、ホルダ40は、壁部43、44、45、46の各々に板状の金属部材80を備えた複合部品からなり、金属部材80は、補強用の芯材として用いられている。本形態において、ホルダ40は、金属部材80のインサート成形品であり、樹脂部49と金属部材80とが一体化している。
(Detailed configuration of holder 40)
The
金属部材80は、複数の壁部43、44、45、46の各々に独立して設けられている。本形態において、金属部材80は、複数の壁部43、44、45、46の各々に1つずつ埋め込まれた状態にある。金属部材80は、複数の壁部43、44、45、46の各々において、枠部41の内部から光軸Lに沿って被写体側(+Z方向側)に延在する第1支柱部86と、第1支柱部86と並列して枠部41の内部から光軸Lに沿って被写体側(+Z方向側)に延在する第2支柱部87とを備えている。また、金属部材80は、枠部41の側で第1支柱部86の端部と第2支柱部87の端部とを連結する連結部88を備えている。従って、金属部材80はU字状の平面形状を有している。本形態において、連結部88は、壁部43、44、45、46の内部に位置する。
The
(ウェイト11の構成)
金属部材80は、壁部43、44、45、46の先端部430、440、450、460で樹脂部49から露出した露出部を備えている。より具体的には、第1支柱部86の先端部、および第2支柱部87の先端部は、樹脂部49から突出した凸部861、871になっており、かかる凸部861、871は、樹脂部49からの露出部になっている。
(Configuration of weight 11)
The
このように構成した先端部430、440、450、460を利用して、可動体10の光軸L方向における重心位置を調整する金属製のウェイト11が連結されている。本形態では、ウェイト11は、光軸Lを囲む開口部13が形成された筒状または枠状の部材であって、先端部430、440、450、460の各々に連結されている。より具体的には
、ウェイト11は、Z方向からみたときに先端部430、440、450、460と重なる矩形枠状の板状部材であり、ウェイト11の光軸L方向の像側の面が先端部430、440、450、460と重なった状態で先端部430、440、450、460に固定されている。
The
ここで、ウェイト11の外周側の端面には、金属部材80の凸部861、871が嵌る切り欠き12が1辺につき2個所ずつ形成されている。また、ウェイト11の−Z方向側の端面には、先端部430、440、450、460が光軸L方向および光軸Lに直交する方向(X方向またはY方向)から当接する段部14が形成されている。従って、図3に示すように、ウェイト11を先端部430、440、450、460に重ねると、凸部861、871が切り欠き12に嵌り、ウェイト11は、X方向、Y方向およびZ方向で位置決めされる。また、ウェイト11を先端部430、440、450、460に重ねると、先端部430、440、450、460が段部14に当接し、ウェイト11は、X方向、Y方向およびZ方向で位置決めされる。この状態で、ウェイト11は、金属部材80の凸部861、871に固定される。本形態において、ウェイト11は、金属部材80の凸部861、871に溶接により固定される。その結果、可動体10は、光軸L方向における重心位置が支持機構30(ジンバル機構)による支持位置に近接する。本形態では、可動体10の重心位置と支持機構30(ジンバル機構)による支持位置が光軸L方向で一致している。
Here, on the end face on the outer peripheral side of the
このようなウェイト11を備えた可動体10を用いて光学ユニット100を組み立てると、図2に示すカバー29のストッパ用凸部292は、ウェイト11の開口部13の内周面に径方向内側で対向する。従って、外部から加わった衝撃等によって可動体10が過度に揺動した際、カバー29のストッパ用凸部292とウェイト11の開口部13の内面とが当接し、可動体10の揺動範囲を規制することができる。
When the
なお、金属部材80は、壁部43、44、45、46毎に独立しているが、インサート成形の際、壁部43、44、45、46に設けられた金属部材80は、凸部861、871に繋がる連結部(図示せず)で一体に繋がった状態にある。そして、インサート成形の後、連結部と第1支柱部86との間、および連結部と第2支柱部87との間で切断される。
The
(バネ部材70の構成)
図3に示すバネ部材70は、固定体20と可動体10とを接続して、振れ補正用駆動機構50が停止状態にあるときの可動体10の姿勢を規定する部材である。バネ部材70は、金属板を加工した矩形枠状のバネ部材である。バネ部材70は、固定体20に接続される固定体側連結部71と、可動体10に接続される可動体側連結部72と、固定体側連結部71と可動体側連結部72とを連結するアーム部73を備える。図1(b)に示すように、ベース250を−Z方向側から見た場合の底部251の四隅には、−Z方向に突出する固定用凸部258が形成されている。固定体側連結部71はバネ部材70の外周部に形成され、固定用凸部258が嵌る穴が形成されている。一方、可動体側連結部72はバネ部材70の内周縁に形成されている。可動体側連結部72には、ホルダ40の外周面に形成された固定用凸部413に対応する位置に凹部が形成されている。
(Configuration of the spring member 70)
The
バネ部材70は、ベース250の底部251に−Z方向側から重なり、ベース250の開口部252から突出する可動体10の部分(ホルダ40の枠部41)を囲むように取り付けられる。バネ部材70の固定体側連結部71は、固定用凸部258に固定され、バネ部材70の可動体側連結部72は、固定用凸部413に係合する。これにより、固定体20と可動体10とがバネ部材70を介して接続される。
The
(支持機構30の構成)
図6は、図1に示す支持機構30の分解斜視図である。図7は、図1に示す支持機構30の説明図であり、図7(a)は支持機構30を組み立てた状態の斜視図、図7(b)は第1揺動支持部の断面図(図7(a)のB−B位置で切断した部分断面図)、図7(c)は第2揺動支持部の断面図(図7(a)のC−C位置で切断した部分断面図)である。
(Configuration of support mechanism 30)
FIG. 6 is an exploded perspective view of the
本形態の光学ユニット100において、可動体10を第1軸線R1回りおよび第2軸線R2回りに揺動可能に支持するにあたって、固定体20のベース250と可動体10のホルダ40との間には、以下に説明する支持機構30が構成されている。本形態では、支持機構30としてジンバル機構を用いる。支持機構30(ジンバル機構)は、第1軸線R1方向で離間する2か所に設けた第1揺動支持部36と、第2軸線R2方向で離間する2か所に設けた第2揺動支持部37と、第1揺動支持部36および第2揺動支持部37によって支持される可動枠39を備える。
In the
可動枠39は概略矩形状の板バネからなるジンバルバネである。可動枠39は、光軸L回りの4か所で可動体10を揺動可能に支持する支点部391と、光軸L回りで隣り合う支点部391を繋ぐ連結部392を備える。支点部391のうちの2箇所は、第1軸線R1上の対角位置に設けられ、残りの2箇所は、第2軸線R2上の対角位置に設けられている。連結部392は、X軸方向もしくはY軸方向に延在する蛇行部393と、蛇行部393の両端からそれぞれ、支点部391まで延在する直線部394を備える。蛇行部393は、Z軸方向(すなわち、光軸L方向)に対して垂直な面内で蛇行しながら、X軸方向もしくはY軸方向に延在する。より具体的には、蛇行部393は、それぞれの壁部43、44、45、46の内側であって光学モジュール1の上部モジュール2の側面に対しては外側の位置において、それぞれの壁部43、44、45、46に対して、接近及び離間するように折り返す曲線部がそれぞれの壁部43、44、45、46に沿うように形成されている。即ち、蛇行部393は、互いに平行に配置された壁部43、44、45、46と上部モジュール2の側面との間において、曲線部を折り返し湾曲させることにより形成されている。なお、光学ユニット100の少なくとも非動作状態において、蛇行部393は、壁部43、44、45、46と上部モジュール2の側面とからは離間しており、接触はしていない。従って、蛇行部393は、光軸Lに対して直交する方向に弾性変形可能である。
The
かかる可動枠39は、例えば、金属板をエッチングすることにより形成される。本形態では、可動枠39の幅が厚さに比して狭い。従って、本形態では、金属板をエッチングした後、2枚を重ねることにより、可動枠39が構成されている。それ故、可動枠39は適正なバネ性を有している。
The
各支点部391は周方向に延在する。各支点部391の内周面には溶接等によって金属製の球体38が固定されている。この球体38によって、各支点部391に可動枠39の中心を向く半球状の凸面が設けられている。各支点部391の周方向の両端からそれぞれ、内周側に向けて直線部394が平行に延在する。従って、支点部391は、球体38が固定された周方向に延在する延在部分であり、また、平行に延在する2本の直線部394を連結する部分である。直線部394は、壁部43、44、45、46の内周側まで延在しており、壁部43、44、45、46の内周側で蛇行部393に接続される。
Each
第1揺動支持部36は、固定体20のベース250に設けられた第1接点バネ保持部31と、第1接点バネ保持部31に保持される第1接点バネ33を備える。第1接点バネ33は、U字状に屈曲した金属製の板バネである。第1接点バネ33は、Z軸方向に延在する固定側板バネ部331および可動側板バネ部332と、Z軸方向と交差する方向に延在して固定側板バネ部331と可動側板バネ部332とを接続する折り返し部333と、可
動側板バネ部332の+Z方向の端部から固定側板バネ部331と逆の側(すなわち、外周側)に突出する屈曲部334を備える。第1接点バネ33は、固定側板バネ部331が第1接点バネ保持部31の接点バネ支持部312に対して光軸L方向と直交する方向(第1軸線R1方向)で当接するとともに、折り返し部333が凹部311の底面に対して光軸L方向に当接するように配置される。従って、第1接点バネ33は、接点バネ支持部312によって光軸L方向と直交する方向(第1軸線R1方向)で支持されるとともに、凹部311の底面によって光軸L方向の像側(−Z方向)で支持される。
The first
第2揺動支持部37は、可動体10のホルダ40に設けられた第2接点バネ保持部32と、第2接点バネ保持部32に保持される第2接点バネ34を備える。第2接点バネ34は、U字状に屈曲した金属製の板バネであり、第1接点バネ33と同一形状である。すなわち、第2接点バネ34は、Z軸方向に延在する固定側板バネ部341および可動側板バネ部342と、Z軸方向と交差する方向に延在して固定側板バネ部341および可動側板バネ部342を接続する折り返し部343と、可動側板バネ部342の+Z方向の端部から固定側板バネ部341と逆の側(すなわち、外周側)に突出する屈曲部344を備える。第2接点バネ34は、固定側板バネ部341が第2接点バネ保持部32の接点バネ支持部322に対して光軸L方向と直交する方向(第2軸線R2方向)で当接するとともに、折り返し部343が突出部321に対して光軸L方向の像側(−Z方向)から当接するように配置される。従って、第2接点バネ34は、接点バネ支持部322によって光軸L方向と直交する方向(第2軸線R2方向)で支持されるとともに、突出部321によって光軸L方向の像側(−Z方向)で支持される。
The second
可動枠39は、第1軸線R1方向の対角位置に設けられた支点部391の内周側に第1揺動支持部36が配置され、第2軸線R2方向の対角位置に設けられた支点部391の内周側に第2揺動支持部37が配置されて、これら4箇所の揺動支持部によって支持される。
The
第1接点バネ33の可動側板バネ部332、および第2接点バネ34の可動側板バネ部342には、それぞれ、支点部391に溶接された球体38に接触する半球状の接点部335、345が形成されている。第1揺動支持部36と第2揺動支持部37は、第1軸線R1方向に弾性変形可能な状態に取り付けられた第1接点バネ33と、第2軸線R2方向に弾性変形可能な状態に取り付けられた第2接点バネ34を介して、可動枠39を光軸L方向と直交する2方向(第1軸線R1方向および第2軸線R2方向)の各方向回りに回転可能な状態で支持する。可動枠39は、支点部391の+Z方向側に位置する第1接点バネ33の屈曲部334、および第2接点バネ34の屈曲部344によって、光軸L方向の被写体側(+Z方向側)への移動が規制される。また、可動枠39は、第1接点バネ保持部31において凹部311の外周側に位置する部位である規制部313、および、第2接点バネ保持部32において突出部321の先端部に設けられた規制部323によって、光軸L方向の像側(−Z方向側)への移動が規制される。つまり、第1揺動支持部36および第2揺動支持部37は、可動枠39が光軸L方向の移動によって外れてしまうことがないように構成されている。
The movable side
次に、図5を参照して、光軸L方向に見た場合の支持機構30の平面配置を説明する。可動体10のホルダ40には、光学モジュール1の上部モジュール2を囲むように壁部43、44、45、46が設けられている。ホルダ40は正方形であり、ホルダ40の各辺に沿って壁部43、44、45、46が直線状に延在する。ホルダ40の角部には、壁部43、44、45、46が延在しない領域(上述した間隙部401、402、403、404)が設けられている。可動枠39を支持する第1揺動支持部36と第2揺動支持部37は、壁部43、44、45、46が設けられていない周方向位置、すなわち、間隙部401、402、403、404に配置されている。また、第1揺動支持部36と第2揺動
支持部37は、ホルダ40の角部に位置しており、壁部43、44、45、46よりも外周側に配置されている。また、可動枠39を支持する第1揺動支持部36と第2揺動支持部37は、正方形の外形をした固定体20であるケース210およびベース250の角部に位置している。
Next, a planar arrangement of the
可動枠39は、第1揺動支持部36と第2揺動支持部37に支持される支点部391が壁部43、44、45、46よりも外周側に位置する。一方、可動枠39の蛇行部393は、壁部43、44、45、46の内周側に位置し、光学モジュール1の上部モジュール2と壁部43、44、45、46との間の空間を通るように配置される。蛇行部393と支点部391とを繋ぐ直線部394は、間隙部401、402、403、404において第1軸線R1方向もしくは第2軸線R2方向と平行に壁部43、44、45、46よりも外周側の位置から壁部43、44、45、46の内周側の位置まで延在する。蛇行部393とその両側の直線部394は、全体として内周側に凹んだ形状に繋がっており、蛇行部393の外側には、支点部391と支点部391の間に壁部およびコイル53を配置可能な空間が形成されている。
In the
支点部391は、壁部43、44、45、46の外側面に取り付けられたコイル53よりも外周側に位置する。また、支点部391は、コイル53に対して外周側から対向する磁石52の内側面よりも外周側に位置するが、磁石52の外側面よりは内周側に位置する。コイル53および磁石52の内側部分は、壁部43、44、45、46とともに、支点部391と支点部391の間の空間に配置されている。
The
このように、支持機構30は、可動枠39の支点部391が、壁部43、44、45、46が設けられていない周方向位置であるホルダ40の角部において、壁部43、44、45、46の外周側に位置する。一方、支点部391と支点部391とを繋ぐ連結部392は、蛇行部393が壁部43、44、45、46の内周側を通るように内周側に凹んだ形状をしている。このようにすると、壁部43、44、45、46の内周側に支点部391を配置するスペースを確保する必要がなく、第1揺動支持部36および第2揺動支持部37を配置するスペースを確保する必要もない。従って、壁部43、44、45、46を内周側に配置できる。よって、光学ユニット100を全体として小型化できる。また、連結部392が内周側に凹んだ形状であるために、小型化によって可動枠39の周長が短くなって支持機能が低下することを回避できる。
As described above, the
また、本形態では、支点部391がコイル53および磁石52の内側部分よりも外周側に位置しており、支点部391と支点部391の間において、連結部392が内周側に凹んだ形状をしている。従って、この凹んだスペースに壁部43、44、45、46を配置できる。また、この凹んだスペースに、振れ補正用駆動機構50を構成するコイル53および磁石52の一部あるいは全体を配置できる。よって、振れ補正用駆動機構50の一部あるいは全体を支点部391、第1揺動支持部36、および第2揺動支持部37よりも内周側に配置できる。これにより、光学ユニット100を全体として小型化できる。
Further, in this embodiment, the
また、本形態では、ホルダ40が矩形であり、その角部を利用して、支点部391を支持する第1揺動支持部36および第2揺動支持部37を配置するスペースを確保している。従って、支点部391を壁部43、44、45、46およびコイル53よりも外周側に配置した構成でありながら、壁部43、44、45、46およびコイル53の幅を大きくとることができる。よって、振れ補正用駆動機構50の駆動力が低下することを回避できる。
Further, in this embodiment, the
また、本形態では、第1接点バネ33と第2接点バネ34が、それぞれ、接点バネ支持部312あるいは接点バネ支持部322によって光軸L方向と直交する方向で支持される
とともに、凹部311の底面あるいは突出部321によって光軸L方向の像側(−Z方向)で支持される。従って、第1接点バネ33と第2接点バネ34を確実に支持できる。また、第1接点バネ保持部31に規制部313が設けられ、第2接点バネ保持部32に規制部323が設けられているので、可動枠39が光軸L方向の移動によって第1揺動支持部36および第2揺動支持部37から外れてしまうことがないという利点がある。
In this embodiment, the
(本形態の主な効果)
以上説明したように、本形態の光学ユニット100は、光学モジュール1をホルダ40で保持した可動体10と、可動体10を揺動可能に支持する固定体20とを有しており、補正用駆動機構50(磁気駆動機構51)によって可動体10を揺動させて振れを補正する。
(Main effects of this form)
As described above, the
ここで、可動体10に用いたホルダは、光学モジュール1を内側に保持する枠部41と、枠部41から光軸L方向の被写体側に突出してコイル53を各々保持する複数の板状の壁部43、44、45、46を備えている。このため、枠部41の外周面にコイル53を保持する部分を設けた場合に比して、光軸Lに直交する方向のホルダ40のサイズを小さくできる。従って、光学ユニット100の小型化を図ることができる。
Here, the holder used for the
また、ホルダ40は、複数の壁部43、44、45、46の各々に金属部材80を備えているため、壁部43、44、45、46の強度が大きい。特に本形態では、壁部43、44、45、46が板状であるが、壁部43、44、45、46の各々に金属部材80を備えているため、壁部43、44、45、46の強度が大きい。それ故、光学ユニット100を小型化した場合でも、耐衝撃性能の低下を抑制することができる。また、複数の壁部43、44、45、46に設けた凸状のコイル保持部47を利用してストッパ機構19を構成したため、外部から加わった衝撃によって可動体10が変位したときでも、その可動範囲をストッパ機構19によって制限することができる。従って、バネ部材70の変形等を抑制することができる。この場合でも、複数の壁部43、44、45、46の各々に金属部材80を備えているため、壁部43、44、45、46をストッパ機構19に利用しても壁部43、44、45、46に変形や破損等が発生しにくい。
Further, since the
また、ホルダ40は、枠部41および複数の壁部43、44、45、46に設けられた樹脂部49と金属部材80との複合部品であるため、樹脂部49によって枠部41および壁部43、44、45、46を適正な形状とすることが容易である。また、ホルダ40は、金属部材80のインサート成形品であるため、樹脂部49と金属部材80との複合部品を効率よく形成することができる。
Further, since the
また、金属部材80は、複数の壁部43、44、45、46の各々に、枠部41の側から延在する2つの支柱部(第1支柱部86および第2支柱部87)を備えているため、壁部43、44、45、46に金属板を配置した場合に比して、金属部材80を用いたことに起因するホルダ40の重量増加を小さく抑えることができる。このため、可動体10の軽量化を図ることができるので、振れを補正する際の応答性が高い。また、金属部材80は、第1支柱部86の枠部41側の端部と第2支柱部87の枠部41側の端部とを連結する連結部88を備えている。このため、第1支柱部86および第2支柱部87の強度を高めることができるので、金属部材80による壁部43、44、45、46に対する補強効果が高い。それ故、複数の壁部43、44、45、46が折れにくい。
In addition, the
本形態では、ホルダ40の壁部43、44、45、46の先端部430、440、450、460に、可動体10の光軸L方向の重心位置を調整する金属製のウェイト11が固定されている。かかるウェイト11であれば、ウェイトを光学モジュール1に取り付けた場合より、ウェイト11の光軸Lに直交する方向のサイズが大きい。従って、ウェイト1
1によって可動体10の光軸L方向の重心位置を調整するにも、ウェイト11の光軸L方向の寸法(厚さ)が小さくてよい。それ故、ウェイト11を含めた可動体10の光軸L方向の寸法を小さくすることができるので、光学ユニット100の小型化を図ることができる。
In this embodiment, the
In order to adjust the position of the center of gravity of the
ここで、金属部材80は、壁部43、44、45、46の先端部430、440、450、460で樹脂部49から露出した凸部861、871(露出部)を備えているため、凸部861、871(露出部)と金属製のウェイト11とを溶接により連結することができる。従って、ウェイト11を強固に連結することができる。それ故、ウェイト11とカバー29のストッパ用凸部292とを利用して、可動体10の揺動範囲を規定するストッパ機構を構成した場合でも、ウェイト11がホルダ40から外れる等の不具合が発生しにくい。
Here, the
また、ウェイト11は、光軸Lを囲む枠状の部材であって、ホルダ40の枠部41から立ち上がる複数の壁部43、44、45、46の先端部430、440、450、460の各々に連結されている。従って、ウェイト11は、壁部43、44、45、46の被写体側(+Z方向側)の端部を連結する連結板の役目を担っている。このため、ウェイト11によって壁部43、44、45、46を補強することができ、壁部43、44、45、46の倒れ等を防止することができる。
The
また、ホルダ40に保持された第1磁気素子はコイル53であり、金属部材80は、非磁性材料からなる。このため、金属部材80と固定体20側の磁石52との間に磁気的吸引力が発生しないので、可動体10を適正に揺動させることができる。
The first magnetic element held by the
また、ホルダ40の枠部41の壁部43、44、45、46とは反対側では、ホルダ40および固定体20に対してバネ部材70が接続されている。このため、壁部43、44、45、46の枠部41とは反対側の先端部430、440、450、460にウェイト11を設けた場合でも、可動体10の姿勢を規制するバネ部材70を設けることができる。
Further, a
(金属部材80の変形例)
図8は、本発明を適用した光学ユニット100のホルダ40の変形例を示す説明図であり、図8(a)は第1変形例の説明図、図8(b)は第2変形例の説明図、図8(c)は第3変形例の説明図である。なお、図8(a)、(c)は、壁部45を通る位置で切断したときのXZ断面図である。
(Modification of metal member 80)
FIG. 8 is an explanatory view showing a modification of the
図4等を参照して説明した形態において、金属部材80の連結部88は、樹脂部49のうち、壁部43、44、45、46を構成する部分に内部に位置したが、図8(a)に示すように、金属部材80の枠部41側の端部81が、樹脂部49のうち、枠部41を構成する部分の内部に位置する形態を採用してもよい。かかる構成によれば、壁部43、44、45、46が折れる等の不具合が発生しにくい。
In the form described with reference to FIG. 4 and the like, the connecting
図4等を参照して説明した形態において、金属部材80は、壁部43、44、45、46毎に独立して設けられていたが、図8(b)に示すように、金属部材80が枠部41に沿って延在する枠状の連結部89を備え、複数の壁部43、44、45、46毎の各々に設けられた第1支柱部86および第2支柱部87のいずれもが、連結部89から光軸Lに沿って突出している構成を採用してもよい。かかる構成によれば、金属部材80全体の強度を高めることができるので、金属部材80による壁部43、44、45、46に対する補強効果を高めることができる。
In the embodiment described with reference to FIG. 4 and the like, the
この場合、連結部89を1個所で途切れている構成が採用される。従って、1枚の金属板を所定の形状にパターニングした後、折り曲げることによって、図8(b)に示す形態を実現することができる。
In this case, a configuration in which the connecting
本形態では、図1、図6および図7を参照して説明したように、可動枠39、可動枠39と固定体20との間において第1軸線R1方向で離間する2個所の第1揺動支点(第1揺動支持部36)、および可動枠39とホルダ40との間において第2軸線R2方向で離間する2個所の第2揺動支点(第2揺動支持部37)を備えた支持機構30(ジンバル機構)が構成されている。従って、例えば、図8(b)に点線で示すように、金属部材80の連結部89の角部に第2揺動支点(第2揺動支持部37)を補強する支点補強部82を設けてもよい。
In this embodiment, as described with reference to FIGS. 1, 6, and 7, the
図4等を参照して説明した壁部43、44、45、46の少なくとも1つにおいて、図8(c)に示すように、開口部490を形成し、開口部490をフォトリフレクタの光路として利用してもよい。例えば、樹脂部49のうち、壁部45において、第1支柱部86と第2支柱部87との間に、壁部45の先端部450から枠部41に向けて延在したスリット状の開口部490を設けてもよい。この場合、壁部45の内面に沿うように設けたセンサ基板90において、開口部490を介して固定体(図示せず)に向けて露出する部分にフォトリフレクタ91を設け、可動体10の揺動度合を検出してもよい。この場合、壁部43、44の一方にも開口部490を形成するとともに、開口部490をフォトリフレクタの光路として利用すれば、可動体10の2方向における揺動度合を検出することができる。
In at least one of the
(他の変形例)
上記形態は、ホルダ40によってコイル53を保持し、固定体20(ケース210の胴部211)に磁石52が保持されるものであったが、磁石52が第1磁気素子としてホルダ40に固定され、コイル53が第2磁気素子として固定体20(ケース210の胴部211)に固定された構成を採用してもよい。
(Other variations)
In the above embodiment, the
上記形態では、金属部材80をインサート成形してホルダ40を構成したが、樹脂部49のスリット等に金属部材80を固定してホルダ40を構成してもよい。
In the above embodiment, the
上記形態では、ホルダ40では、枠部41から被写体側に向けて壁部43、44、45、46が突出していたが、枠部41から被写体側とは反対側に向けて壁部43、44、45、46が突出している形態を採用してもよい。
In the above embodiment, in the
1・・光学モジュール、10・・可動体、11・・ウェイト、12・・切り欠き、13・・開口部、14・・段部、19・・ストッパ機構、20・・固定体、29・・カバー、30・・支持機構、36・・第1揺動支持部(第1揺動支点)、37・・第2揺動支持部(第2揺動支点)、39・・可動枠、40・・ホルダ、42・・保持孔、43、44、45、46・・壁部、47・・コイル保持部、49・・樹脂部、50・・振れ補正用駆動機構、51・・磁気駆動機構、52・・磁石(第2磁気素子)、53・・コイル(第1磁気素子)、70・・バネ部材、80・・金属部材、81・・金属部材の枠部側の端部、82・・支点補強部、86・・第1支柱部、87・・第2支柱部、88・・連結部、90・・センサ基板、91・・フォトリフレクタ、100・・光学ユニット、210・・ケース、250・・ベース、292・・ストッパ用凸部、430、440、450、460・・壁部の先端部、490・・開口部、861、871・・凸部(露出部)、L・・光軸、R1・・第1軸線、R2・・第2軸線
1 .... Optical module, 10 .... Movable body, 11 .... Weight, 12 .... Notch, 13 .... Opening, 14 .... Step, 19 .... Stopper mechanism, 20 .... Fixed body, ...
Claims (8)
前記可動体を揺動可能に支持する固定体と、
磁石およびコイルの一方からなり、前記ホルダに保持された複数の第1磁気素子と、
磁石およびコイルの他方からなり、前記固定体に保持された第2磁気素子と、
を有し、
前記ホルダは、前記光学モジュールを内側に保持する枠部と、前記枠部から光軸に沿って突出して前記複数の第1磁気素子を各々保持する複数の壁部と、を備え、
前記可動体は、前記壁部の先端部に連結された金属製のウェイトを備えていることを特徴とする振れ補正機能付き光学ユニット。 A movable body holding an optical module with a holder;
A fixed body that swingably supports the movable body;
A plurality of first magnetic elements comprising one of a magnet and a coil and held by the holder;
A second magnetic element comprising the other of a magnet and a coil and held by the fixed body;
Have
The holder includes a frame portion that holds the optical module inside, and a plurality of wall portions that protrude from the frame portion along an optical axis and hold the plurality of first magnetic elements, respectively.
The optical unit with a shake correction function, wherein the movable body includes a metal weight connected to a tip portion of the wall portion.
前記ウェイトの外周面には、前記凸部が嵌る切り欠きが設けられていることを特徴とする請求項2または3に記載の振れ補正機能付き光学ユニット。 Protruding portions protruding along the optical axis are provided at the tip portions of the plurality of wall portions,
4. The optical unit with a shake correction function according to claim 2, wherein a cutout into which the convex portion is fitted is provided on an outer peripheral surface of the weight.
前記ウェイトは、前記凸部に溶接により連結されていることを特徴とする請求項4に記載の振れ補正機能付き光学ユニット。 The convex portion is made of metal,
The optical unit with a shake correction function according to claim 4, wherein the weight is connected to the convex portion by welding.
前記カバーは、前記ウェイトの径方向内側に突出して前記可動体の揺動範囲を規制するストッパ用凸部を備えていることを特徴とする請求項2から5までの何れか一項に記載の振れ補正機能付き光学ユニット。 The fixed body includes a cover facing the weight in the optical axis direction,
The said cover is provided with the convex part for stoppers which protrudes inward in the radial direction of the said weight, and controls the rocking | fluctuation range of the said movable body, The any one of Claim 2-5 characterized by the above-mentioned. Optical unit with shake correction function.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015133682 | 2015-07-02 | ||
JP2015133682 | 2015-07-02 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017016114A true JP2017016114A (en) | 2017-01-19 |
JP6807664B2 JP6807664B2 (en) | 2021-01-06 |
Family
ID=57830721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016118549A Active JP6807664B2 (en) | 2015-07-02 | 2016-06-15 | Optical unit with runout correction function |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6807664B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190008116A (en) * | 2017-07-13 | 2019-01-23 | 니혼 덴산 산쿄 가부시키가이샤 | Method for adjusting position of shaking body of optical unit with shake correction function and optical unit with shake correction fuction |
JP2019020464A (en) * | 2017-07-12 | 2019-02-07 | 日本電産サンキョー株式会社 | Optical unit with shake correction function |
JP2019086680A (en) * | 2017-11-08 | 2019-06-06 | 日本電産サンキョー株式会社 | Optical unit with blur correction function |
JP2019132908A (en) * | 2018-01-29 | 2019-08-08 | 日本電産サンキョー株式会社 | Optical unit with tremor correction function |
JP2019174790A (en) * | 2018-03-26 | 2019-10-10 | 日本電産サンキョー株式会社 | Optical unit with focus adjustment function |
KR20200056988A (en) | 2017-09-21 | 2020-05-25 | 소니 주식회사 | Lens barrel and imaging device |
CN111752067A (en) * | 2019-03-28 | 2020-10-09 | 日本电产三协株式会社 | Optical unit with shake correction function |
JP2021015236A (en) * | 2019-07-16 | 2021-02-12 | 日本電産サンキョー株式会社 | Optical unit with shake correction function |
WO2021169738A1 (en) * | 2020-02-28 | 2021-09-02 | 维沃移动通信有限公司 | Camera module and electronic device |
CN114200732A (en) * | 2020-08-31 | 2022-03-18 | 日本电产三协株式会社 | Optical unit with shake correction function |
WO2022070449A1 (en) * | 2020-09-30 | 2022-04-07 | 日本電産株式会社 | Optical unit |
JP2022102859A (en) * | 2020-12-25 | 2022-07-07 | ジョウシュウシ レイテック オプトロニクス カンパニーリミテッド | Camera lens drive unit, camera, and electronic equipment |
US11550202B2 (en) | 2020-09-30 | 2023-01-10 | Nidec Corporation | Optical unit |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002287196A (en) * | 2001-03-28 | 2002-10-03 | Tamron Co Ltd | Blur correction optical device for image stabilizing device |
JP2013025035A (en) * | 2011-07-20 | 2013-02-04 | Micro Uintekku Kk | Lens drive device |
JP2014006522A (en) * | 2012-05-31 | 2014-01-16 | Nidec Sankyo Corp | Optical unit having hand tremor correction mechanism |
JP2015034910A (en) * | 2013-08-09 | 2015-02-19 | コニカミノルタ株式会社 | Lens drive device and camera unit |
JP2015064501A (en) * | 2013-09-25 | 2015-04-09 | 日本電産サンキョー株式会社 | Optical unit with shake correction function |
-
2016
- 2016-06-15 JP JP2016118549A patent/JP6807664B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002287196A (en) * | 2001-03-28 | 2002-10-03 | Tamron Co Ltd | Blur correction optical device for image stabilizing device |
JP2013025035A (en) * | 2011-07-20 | 2013-02-04 | Micro Uintekku Kk | Lens drive device |
JP2014006522A (en) * | 2012-05-31 | 2014-01-16 | Nidec Sankyo Corp | Optical unit having hand tremor correction mechanism |
JP2015034910A (en) * | 2013-08-09 | 2015-02-19 | コニカミノルタ株式会社 | Lens drive device and camera unit |
JP2015064501A (en) * | 2013-09-25 | 2015-04-09 | 日本電産サンキョー株式会社 | Optical unit with shake correction function |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019020464A (en) * | 2017-07-12 | 2019-02-07 | 日本電産サンキョー株式会社 | Optical unit with shake correction function |
JP7034616B2 (en) | 2017-07-12 | 2022-03-14 | 日本電産サンキョー株式会社 | Optical unit with runout correction function |
KR20190008116A (en) * | 2017-07-13 | 2019-01-23 | 니혼 덴산 산쿄 가부시키가이샤 | Method for adjusting position of shaking body of optical unit with shake correction function and optical unit with shake correction fuction |
KR102117904B1 (en) * | 2017-07-13 | 2020-06-02 | 니혼 덴산 산쿄 가부시키가이샤 | Method for adjusting position of shaking body of optical unit with shake correction function and optical unit with shake correction fuction |
US11640071B2 (en) | 2017-09-21 | 2023-05-02 | Sony Corporation | Lens barrel and imaging apparatus |
KR20200056988A (en) | 2017-09-21 | 2020-05-25 | 소니 주식회사 | Lens barrel and imaging device |
JP2019086680A (en) * | 2017-11-08 | 2019-06-06 | 日本電産サンキョー株式会社 | Optical unit with blur correction function |
JP6999435B2 (en) | 2018-01-29 | 2022-01-18 | 日本電産サンキョー株式会社 | Optical unit with runout correction function |
JP2019132908A (en) * | 2018-01-29 | 2019-08-08 | 日本電産サンキョー株式会社 | Optical unit with tremor correction function |
JP2019174790A (en) * | 2018-03-26 | 2019-10-10 | 日本電産サンキョー株式会社 | Optical unit with focus adjustment function |
JP7222719B2 (en) | 2018-03-26 | 2023-02-15 | 日本電産サンキョー株式会社 | Optical unit with anti-shake function |
CN111752067A (en) * | 2019-03-28 | 2020-10-09 | 日本电产三协株式会社 | Optical unit with shake correction function |
US11269195B2 (en) | 2019-03-28 | 2022-03-08 | Nidec Sankyo Corporation | Optical unit with shake correction function |
JP2021015236A (en) * | 2019-07-16 | 2021-02-12 | 日本電産サンキョー株式会社 | Optical unit with shake correction function |
JP7309494B2 (en) | 2019-07-16 | 2023-07-18 | ニデックインスツルメンツ株式会社 | Optical unit with anti-shake function |
WO2021169738A1 (en) * | 2020-02-28 | 2021-09-02 | 维沃移动通信有限公司 | Camera module and electronic device |
US12047666B2 (en) | 2020-02-28 | 2024-07-23 | Vivo Mobile Communication Co., Ltd. | Camera module and electronic device |
CN114200732A (en) * | 2020-08-31 | 2022-03-18 | 日本电产三协株式会社 | Optical unit with shake correction function |
CN114200732B (en) * | 2020-08-31 | 2022-12-20 | 日本电产三协株式会社 | Optical unit with shake correction function |
WO2022070449A1 (en) * | 2020-09-30 | 2022-04-07 | 日本電産株式会社 | Optical unit |
US11550202B2 (en) | 2020-09-30 | 2023-01-10 | Nidec Corporation | Optical unit |
JP7249722B2 (en) | 2020-12-25 | 2023-03-31 | ジョウシュウシ レイテック オプトロニクス カンパニーリミテッド | Camera lens driving device, camera and electronic equipment |
JP2022102859A (en) * | 2020-12-25 | 2022-07-07 | ジョウシュウシ レイテック オプトロニクス カンパニーリミテッド | Camera lens drive unit, camera, and electronic equipment |
Also Published As
Publication number | Publication date |
---|---|
JP6807664B2 (en) | 2021-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6807664B2 (en) | Optical unit with runout correction function | |
JP6637756B2 (en) | Optical unit with shake correction function and method of manufacturing the same | |
US10048508B2 (en) | Optical unit with shake correction function | |
KR102022800B1 (en) | Optical unit with shake correction function | |
JP6807663B2 (en) | Optical unit with runout correction function | |
JP6691001B2 (en) | Optical unit with shake correction function | |
US8238736B2 (en) | Optical unit with shake correcting function and photographic optical device | |
JP6742824B2 (en) | Optical unit with shake correction function and manufacturing method thereof | |
JP6942547B2 (en) | Shaking body posture adjustment method of optical unit with runout correction function and optical unit with runout correction function | |
JP7235558B2 (en) | Optical unit with anti-shake function | |
JP6709071B2 (en) | Optical unit with shake correction function | |
JP7499083B2 (en) | Optical unit with shake correction function | |
US10599009B2 (en) | Optical unit with shake correction function and having a rolling drive mechanism | |
JP7237686B2 (en) | Optical unit with anti-shake function | |
JP2019200360A (en) | Optical unit with shake correction function and manufacturing method therefor | |
JP7290444B2 (en) | Optical unit with anti-shake function | |
US11567340B2 (en) | Optical unit with correction function | |
JP2021071579A (en) | Optical unit with shake correction function | |
JP6122352B2 (en) | Optical device for photography | |
JP7186047B2 (en) | Unit with anti-shake function | |
JP7344784B2 (en) | Optical unit with shake correction function | |
JP6600563B2 (en) | Magnetic drive unit and method of manufacturing magnetic drive unit | |
JP7344785B2 (en) | Optical unit with shake correction function | |
US12096123B2 (en) | Optical unit with shake correction function | |
JP7228480B2 (en) | optical unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190513 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200316 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200512 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200702 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201124 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201208 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6807664 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |