JP2017014772A - Base-isolation structure evaluation method - Google Patents

Base-isolation structure evaluation method Download PDF

Info

Publication number
JP2017014772A
JP2017014772A JP2015131116A JP2015131116A JP2017014772A JP 2017014772 A JP2017014772 A JP 2017014772A JP 2015131116 A JP2015131116 A JP 2015131116A JP 2015131116 A JP2015131116 A JP 2015131116A JP 2017014772 A JP2017014772 A JP 2017014772A
Authority
JP
Japan
Prior art keywords
seismic isolation
collision
superstructure
base
response
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015131116A
Other languages
Japanese (ja)
Other versions
JP6507886B2 (en
Inventor
雅明 安井
Masaaki Yasui
雅明 安井
大住 和正
Kazumasa Osumi
和正 大住
拓 中嶋
Taku Nakajima
拓 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2015131116A priority Critical patent/JP6507886B2/en
Publication of JP2017014772A publication Critical patent/JP2017014772A/en
Application granted granted Critical
Publication of JP6507886B2 publication Critical patent/JP6507886B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve design efficiency.SOLUTION: A base-isolation structure evaluation method to evaluate a base-isolation structure, which has a base-isolation device between a superstructure and a substructure with a wall body of one of the superstructure or the substructure arranged at a distance in a horizontal direction from the other of the superstructure or the substructure, by assuming a collision of the wall body with the other of the superstructure or the substructure. The base-isolation structure evaluation method performs a crash response analysis of the base-isolation structure with a mass M of the superstructure and rigidity Kw of the wall body as parameters and evaluates a response value due to the collision of the base-isolation structure.SELECTED DRAWING: Figure 8

Description

本発明は、免震構造の評価方法に関する。   The present invention relates to a method for evaluating a seismic isolation structure.

鉛直方向に並ぶ上部構造(例えば建物)と下部構造(例えば基礎)との間に免震装置(例えば積層ゴム)を備えた免震構造が知られている。このような免震構造において、例えば下部構造の外周部に壁体(例えば擁壁)を設け、上部構造と下部構造との水平方向の相対変位が過大となる場合に上部構造を壁体に衝突させて変位を抑制するようにしたものも知られている(例えば、特許文献1参照)。そして、過大な地震動に対する対応として、上部構造と壁体との衝突を想定した設計も行われている。   2. Description of the Related Art A seismic isolation structure having a seismic isolation device (for example, laminated rubber) between an upper structure (for example, a building) and a lower structure (for example, a foundation) arranged in the vertical direction is known. In such a seismic isolation structure, for example, a wall (for example, a retaining wall) is provided on the outer periphery of the lower structure, and the upper structure collides with the wall when the horizontal displacement between the upper structure and the lower structure becomes excessive. Also known is one that suppresses displacement (see, for example, Patent Document 1). In response to excessive earthquake motion, a design that assumes a collision between the superstructure and the wall has been performed.

特開2014−77229号公報JP 2014-77229 A

免震建物と壁体との衝突を想定した設計を行うには、適切な壁体の剛性を想定する必要がある。しかしながら、現状では、壁体剛性を容易に想定できず、各建物毎に衝突応答解析を行い、設計可能な壁体剛性をポイントで探しているため効率が悪いという問題があった。   In order to perform a design that assumes a collision between a base-isolated building and a wall, it is necessary to assume appropriate wall rigidity. However, at present, there is a problem in that the wall body rigidity cannot be easily assumed, and a collision response analysis is performed for each building and the wall rigidity that can be designed is searched for in points, so that the efficiency is low.

本発明は、かかる課題に鑑みてなされたものであって、その主な目的は、壁体剛性を容易に想定できるようにし、衝突を想定した設計効率の向上を図ることにある。   The present invention has been made in view of such problems, and a main object thereof is to make it possible to easily assume the rigidity of the wall and to improve the design efficiency assuming a collision.

かかる目的を達成するために本発明の免震構造の評価方法は、上部構造と下部構造との間に免震装置を備え、前記上部構造又は前記下部構造の一方に属する壁体と、前記上部構造又は前記下部構造の他方とが、水平方向に所定距離をもって離間している免震構造において、前記上部構造又は前記下部構造の他方と前記壁体との衝突を想定して前記免震構造を評価する免震構造の評価方法であって、前記上部構造の質量Mと、前記壁体の剛性Kwとの比をパラメーターとして前記免震構造の衝突応答解析を行い、前記免震構造の衝突による応答値を評価することを特徴とする。
このような免震構造の評価方法によれば、壁体の剛性Kwを容易に想定することができ、衝突を想定した設計効率の向上を図ることができる。
In order to achieve such an object, the seismic isolation structure evaluation method of the present invention comprises a seismic isolation device between an upper structure and a lower structure, a wall body belonging to one of the upper structure or the lower structure, and the upper part In the seismic isolation structure in which the other of the structure or the lower structure is spaced apart by a predetermined distance in the horizontal direction, the seismic isolation structure is assumed assuming a collision between the other of the upper structure or the lower structure and the wall body. A method for evaluating a base-isolated structure to be evaluated, wherein a collision response analysis of the base-isolated structure is performed using a ratio between a mass M of the superstructure and a rigidity Kw of the wall body as a parameter. The response value is evaluated.
According to such a seismic isolation structure evaluation method, the rigidity Kw of the wall body can be easily assumed, and the design efficiency assuming a collision can be improved.

かかる免震構造の評価方法法であって、前記応答値は、前記衝突による前記上部構造の応答値であってもよい。
このような免震構造の評価方法法によれば、上部構造に過大な損傷や倒壊・崩壊が生じないように設計することができる。
In this seismic isolation method evaluation method, the response value may be a response value of the superstructure due to the collision.
According to such a method for evaluating a seismic isolation structure, it is possible to design the superstructure so as not to cause excessive damage, collapse or collapse.

かかる免震構造の評価方法法であって、前記応答値は、前記衝突による前記壁体の変形量であってもよい。
このような免震構造の評価方法法によれば、免震装置が破断したり、軸力、支持能力を失ったりしないように設計することができる。
In this seismic isolation method evaluation method, the response value may be a deformation amount of the wall body due to the collision.
According to such a method for evaluating a seismic isolation structure, it is possible to design the seismic isolation device so that it does not break or lose its axial force and support capability.

かかる免震構造の評価方法法であって、前記上部構造の質量Mと、前記壁体の剛性Kwとの比Kw/Mを横軸とし、前記衝突の衝突速度又は入力地震動の大きさを縦軸として、前記衝突による前記上部構造の応答値と、前記衝突による前記壁体の変形量とをプロットし、前記上部構造の応答値が同値となる第一ラインと、前記壁体の変形量が同値となる第二ラインとを作成することが望ましい。
このような免震構造の評価方法法によれば、上部構造の応答値のクライテリアと、壁体の変形量のクライテリアとの関係が明確になる。
In this seismic isolation structure evaluation method, the ratio Kw / M between the mass M of the superstructure and the rigidity Kw of the wall body is taken as the horizontal axis, and the collision velocity of the collision or the magnitude of the input ground motion is longitudinal As an axis, the response value of the upper structure due to the collision and the deformation amount of the wall body due to the collision are plotted, the first line where the response value of the upper structure is the same value, and the deformation amount of the wall body It is desirable to create a second line with the same value.
According to such a method for evaluating a base-isolated structure, the relationship between the criteria for the response value of the superstructure and the criteria for the amount of deformation of the wall is clarified.

かかる免震構造の評価方法法であって、前記衝突速度又は前記入力地震動の大きさが所定値のときの前記第一ラインの第一Kw/M、及び、前記第二ラインの第二Kw/Mを算出することが望ましい。
このような免震構造の評価方法法によれば、2本のラインによるクライテリアをともに満足する領域(設計可能領域)を推測することができる。
A method for evaluating the seismic isolation structure, wherein the first Kw / M of the first line and the second Kw / of the second line when the collision speed or the magnitude of the input ground motion are a predetermined value. It is desirable to calculate M.
According to such a method for evaluating a seismic isolation structure, it is possible to estimate a region (designable region) that satisfies both criteria by two lines.

かかる免震構造の評価方法法であって、前記第一Kw/Mと前記第二Kw/Mの間を設計可能領域とすることが望ましい。
このような免震構造の評価方法法によれば、設計可能な壁体剛性Kwの範囲を容易に想定することができる。
In this seismic isolation structure evaluation method, it is desirable that the designable region is between the first Kw / M and the second Kw / M.
According to such a method for evaluating a seismic isolation structure, the range of wall rigidity Kw that can be designed can be easily assumed.

本発明によれば、衝突を想定した設計効率の向上を図ることができる。   According to the present invention, it is possible to improve the design efficiency assuming a collision.

衝突応答解析モデル及び免震建物の諸元を示す図である。It is a figure which shows the specifications of a collision response analysis model and a seismic isolation building. 入力地震動レベル毎の最大応答層間変形角の増加率を示す図である。It is a figure which shows the increase rate of the maximum response interlayer deformation angle for every input ground motion level. 入力地震動レベル毎の1階最大応答層せん断力の増幅率を示す図である。It is a figure which shows the amplification factor of the 1st-floor maximum response layer shear force for every input ground motion level. 入力地震動レベル毎の免震擁壁の最大応答変形を示す図である。It is a figure which shows the maximum response deformation | transformation of the seismic isolation retaining wall for every input ground motion level. 入力地震動レベル毎の各階最大応答層間変形角を示す図である。It is a figure which shows each floor maximum response interlayer deformation angle for every input earthquake motion level. 衝突速度と上部構造の応答増幅率との関係を示す図である。It is a figure which shows the relationship between a collision speed and the response amplification factor of a superstructure. 衝突速度と免震擁壁変形量との関係を示す図である。It is a figure which shows the relationship between a collision speed and the amount of deformation of a seismic isolation retaining wall. 上部構造と擁壁との衝突を用いた設計の概念図である。It is a conceptual diagram of the design using the collision of a superstructure and a retaining wall.

===実施形態===
<<免震構造について>>
本実施形態の免震構造は、鉛直方向に並ぶ上部構造(免震建物)と下部構造(基礎)との間に免震装置(積層ゴムなど)を備えて構成されたものである。また、下部構造の外周部には上部構造の過大変位を抑制するための免震擁壁(壁体に相当)が設けられており、当該免震擁壁と上部構造との間には水平方向に所定のクリアランスが形成されている(換言すると、免震擁壁は下部構造に属し、免震擁壁と上部構造とは水平方向に所定距離をもって離間している)。
=== Embodiment ===
<< About seismic isolation structure >>
The seismic isolation structure of the present embodiment is configured by including a seismic isolation device (such as laminated rubber) between an upper structure (base isolation building) and a lower structure (foundation) arranged in the vertical direction. In addition, a seismic isolation wall (corresponding to a wall) is provided on the outer periphery of the lower structure to suppress excessive displacement of the upper structure, and there is a horizontal gap between the seismic isolation wall and the upper structure. A predetermined clearance is formed in the direction (in other words, the seismic isolation retaining wall belongs to the lower structure, and the seismic isolation retaining wall and the upper structure are separated by a predetermined distance in the horizontal direction).

本実施形態では、このような免震構造において、上部構造と免震擁壁(以下、単に擁壁ともいう)との衝突を想定した設計を行う。ここで、衝突を想定した設計を行う場合、免震構造として致命的な以下の事象を防止するように設計する必要がある。   In the present embodiment, in such a seismic isolation structure, a design that assumes a collision between the upper structure and the seismic isolation retaining wall (hereinafter also simply referred to as a retaining wall) is performed. Here, when performing a design assuming a collision, it is necessary to design so as to prevent the following fatal events as a seismic isolation structure.

事象1)衝突による衝撃力で上部構造に生じる水平力、変形が増大し、過大な損傷や倒壊・崩壊が生じる。   Event 1) The horizontal force and deformation generated in the superstructure due to the impact force caused by the collision increase, resulting in excessive damage, collapse and collapse.

事象2)衝突後の擁壁の変形により、免震装置が限界変形を超えて破断したり、軸力、支持能力を失ったりする。   Event 2) Due to the deformation of the retaining wall after the collision, the seismic isolation device breaks beyond the limit deformation, or the axial force and the supporting ability are lost.

この事象1及び事象2を防止する設計を合理的に行うためには、適切な擁壁剛性を想定する必要がある。仮に、各建物毎に衝突応答解析を行い、設計可能な擁壁剛性を探るようにした場合、効率が悪く合理的でない。そこで、本実施形態では、事象1、事象2を防止できる擁壁剛性を容易に想定できるようにし、上部構造と擁壁との衝突を想定した設計を行う場合の効率の向上を図っている。   In order to rationally design the event 1 and the event 2 to prevent, it is necessary to assume an appropriate retaining wall rigidity. If a collision response analysis is performed for each building to find a designable retaining wall rigidity, the efficiency is low and not reasonable. Therefore, in the present embodiment, the retaining wall rigidity that can prevent the event 1 and the event 2 can be easily assumed, and the efficiency in the case of performing the design assuming the collision between the upper structure and the retaining wall is improved.

<<衝突応答解析について>>
<衝突応答解析モデル>
図1は、衝突応答解析モデル及び免震建物の諸元を示す図である。上部構造は各階を一質点とした多質点等価せん断型モデルとしており、図1に示すモデルの黒丸(●)は建物の一層分についての質量を示している。また、各層の復元力特性は、弾塑性立体骨組モデルを用いた静的漸増荷重解析から得られるQ‐σ曲線をTri-Linearにモデル化している。
<< About collision response analysis >>
<Collision response analysis model>
FIG. 1 is a diagram showing specifications of a collision response analysis model and a base-isolated building. The superstructure is a multi-mass point equivalent shear type model with each floor as one mass point, and the black circle (●) in the model shown in FIG. 1 indicates the mass for one layer of the building. In addition, the restoring force characteristics of each layer are modeled as a Tri-Linear Q-σ curve obtained from static incremental load analysis using an elastoplastic three-dimensional frame model.

下部構造と上部構造との間には免震層が設けられている。この免震層には、免震装置として、天然ゴム系積層ゴム支承体(NRB)、弾性すべり支承、及び、オイルダンパーが設けられている。   A seismic isolation layer is provided between the lower structure and the upper structure. This seismic isolation layer is provided with a natural rubber-based laminated rubber bearing (NRB), an elastic sliding bearing, and an oil damper as a seismic isolation device.

また、下部構造には免震擁壁が設けられており、上部構造と免震擁壁との間には水平方向に所定のクリアランスが設けられている、なお、擁壁の外側は地盤であり、免震擁壁の剛性には、この地盤の剛性(以下、背面土剛性ともいう)も含まれる。   In addition, a seismic isolation retaining wall is provided in the lower structure, and a predetermined clearance is provided in the horizontal direction between the upper structure and the seismic isolation retaining wall. The outside of the retaining wall is the ground The rigidity of the seismic isolation retaining wall includes the rigidity of the ground (hereinafter also referred to as the back soil rigidity).

図1中には上部構造の履歴特性および内部粘性減衰、免震装置の復元力特性(内部粘性減衰はゼロとする)を示している。また、免震擁壁は弾性とし減衰はゼロとする。免震層クリアランス(上部構造と免震擁壁と間の水平距離)は、入力地震動レベル2応答時の免震層変形に設定している。   FIG. 1 shows the hysteresis characteristics and internal viscosity attenuation of the superstructure, and the restoring force characteristics of the seismic isolation device (internal viscosity attenuation is zero). The seismic isolation retaining wall is elastic and has zero attenuation. The seismic isolation layer clearance (horizontal distance between the superstructure and the seismic isolation retaining wall) is set to the seismic isolation layer deformation at the time of input ground motion level 2 response.

このようなモデルを用いて、図1に示す2つの免震建物(実施例1及び実施例2)の衝突応答解析を行った。   Using such a model, the collision response analysis of two seismic isolation buildings (Example 1 and Example 2) shown in FIG. 1 was performed.

<衝突応答解析>
擁壁との衝突を想定し、上部構造の応答増幅および免震層の応答変形を評価する場合、免震擁壁剛性(背面土剛性含む)と、建物(上部構造)質量と、衝突速度との関係は重要な影響因子と考えられる。そこで、Kw/M(免震擁壁剛性/建物質量)をパラメーターとして免震建物の衝突応答解析を行い、上部構造の応答増幅および免震層の応答変形を評価した。ここで、応答増幅とは、基準法で定められている入力地震動による変形(応答値)に対し、それより大きい地震が発生したときにどれだけ変形するかを示す値である。本実施例では入力地震動の大きさをレベル2告示スペクトル(解放工学的基盤、乱数位相)適合波の1.0〜1.5倍(加速度倍率)とし、衝突による上部構造の応答増幅率を、レベル2地震動による応答値を基準(1.0)として評価した。
<Collision response analysis>
Assuming a collision with the retaining wall, when evaluating the response amplification of the superstructure and the response deformation of the seismic isolation layer, the seismic isolation retaining wall rigidity (including back soil rigidity), the mass of the building (superstructure), the collision speed, This relationship is considered to be an important influencing factor. Therefore, the impact response analysis of the seismic isolation building was performed using Kw / M (base isolation retaining wall stiffness / building mass) as a parameter, and the response amplification of the superstructure and the response deformation of the base isolation layer were evaluated. Here, the response amplification is a value indicating how much deformation occurs when an earthquake larger than the deformation (response value) due to the input ground motion defined by the standard method occurs. In this embodiment, the magnitude of the input seismic motion is set to 1.0 to 1.5 times (acceleration magnification) of the level 2 notification spectrum (base of release engineering, random phase), and the response amplification factor of the superstructure due to the collision is The response value due to Level 2 ground motion was evaluated as the standard (1.0).

<解析結果>
以下、図面を参照しつつ、解析結果について説明する。なお、以下の図において、縦軸の値が大きくなる側を上側とし、反対側を下側とする。また、横軸の値が大きくなる側を右側とし、反対側を左側とする。また、免震擁壁剛性Kwは擁壁剛性(片持ち壁剛性)+背面土剛性として算出している。
<Analysis results>
Hereinafter, the analysis results will be described with reference to the drawings. In the following figures, the side on which the value of the vertical axis increases is the upper side, and the opposite side is the lower side. In addition, the side on which the value of the horizontal axis increases is the right side, and the opposite side is the left side. The seismic isolation retaining wall rigidity Kw is calculated as retaining wall rigidity (cantilever wall rigidity) + back soil rigidity.

図2は、入力地震動レベル毎の最大応答層間変形角の増幅率を示す図であり、図3は、入力地震動レベル毎の1階最大応答層せん断力の増幅率を示す図である。ここで、最大応答層間変形角とは、各階の層間変形角のうちの最大値のことである、図の横軸はKw/M(免震擁壁剛性/建物質量)であり、縦軸は増幅率(応答増幅)である。   FIG. 2 is a diagram showing the amplification factor of the maximum response layer deformation angle for each input ground motion level, and FIG. 3 is a diagram showing the amplification factor of the first-order maximum response layer shear force for each input ground motion level. Here, the maximum response interlayer deformation angle is the maximum value of the interlayer deformation angles of each floor. The horizontal axis in the figure is Kw / M (seismic isolation retaining wall rigidity / building mass), and the vertical axis is Amplification rate (response amplification).

図2、図3より、最大応答層間変形角、1階最大応答層せん断力とも、Kw/Mが同じである場合、入力地震動レベル(地震動倍率)が大きいほど、増幅率(応答増幅)が大きくなっている。また、Kw/Mがある程度の値までは、Kw/Mが大きくなるにつれて増幅率(応答値)は増加しているが、Kw/Mがある程度の値以上になるとほぼ増幅率は変わらない。なお、図中太い縦線は検討建物(実施例1、実施例2)の実際のKw/Mを示している。   2 and 3, when the Kw / M is the same for both the maximum response interlayer deformation angle and the first-order maximum response layer shear force, the greater the input seismic motion level (earthquake motion magnification), the greater the amplification factor (response amplification). It has become. Further, the amplification factor (response value) increases as Kw / M increases up to a certain value of Kw / M, but the amplification factor does not change substantially when Kw / M exceeds a certain value. In addition, the thick vertical line in a figure has shown actual Kw / M of the examination building (Example 1, Example 2).

図4は、入力地震動レベル毎の免震擁壁の最大応答変形を示す図である。図の横軸はKw/M(免震擁壁剛性/建物質量)であり、縦軸は衝突後の免震擁壁変形量である。なお、免震擁壁の変形量は、免震層変形量からクリアランスの値を減算することによって求められる(つまり、免震擁壁の変形量=免震層変形量−クリアランス)。図4より、Kw/Mが同じである場合、入力地震動レベル(地震動倍率)が大きいほど、擁壁変形量が大きくなっている。また、各入力地震動レベルにおいて、免震擁壁の最大応答変形はKw/Mが大きくなるにつれて減少している。   FIG. 4 is a diagram showing the maximum response deformation of the seismic isolation retaining wall for each input ground motion level. In the figure, the horizontal axis represents Kw / M (seismic isolation retaining wall rigidity / building mass), and the vertical axis represents the deformation amount of the seismic isolation retaining wall after the collision. The amount of deformation of the seismic isolation retaining wall is obtained by subtracting the clearance value from the amount of deformation of the base isolation layer (that is, the amount of deformation of the base isolation retaining wall = the amount of deformation of the base isolation layer−the clearance). From FIG. 4, when Kw / M is the same, the retaining wall deformation amount increases as the input seismic motion level (earthquake motion magnification) increases. Further, at each input ground motion level, the maximum response deformation of the seismic isolation retaining wall decreases as Kw / M increases.

図5は、入力地震動レベル毎の各階最大応答層間変形角を示す図である。図の横軸は層間変形角であり、縦軸は上部構造(免震建物)における階である。図より、最大応答層間変形角の高さ方向の分布はレベル2応答時と似たものとなるが、応答層せん断力が降伏層せん断力を超えるとその階に変形が集中している。例えば、実施例1では2階に集中し、実施例2では1階に集中している。   FIG. 5 is a diagram showing each floor maximum response interlayer deformation angle for each input ground motion level. The horizontal axis in the figure is the interlayer deformation angle, and the vertical axis is the floor in the superstructure (base-isolated building). From the figure, the distribution of the maximum response interlayer deformation angle in the height direction is similar to that at the level 2 response, but when the response layer shear force exceeds the yield layer shear force, deformation concentrates on that floor. For example, in Example 1, it concentrates on the 2nd floor and in Example 2, it concentrates on the 1st floor.

<<擁壁剛性について>>
擁壁との衝突を想定した合理的な設計を行うためには、前述した事象1及び事象2を防止するように設計する必要がある。すなわち、上部構造が倒壊しないように応答増幅を或るクライテリア以下に抑え、かつ、免震層の応答変形が限界変形以下となるような免震擁壁剛性を設定する必要がある。以下、これらについて検討する。
<< About retaining wall rigidity >>
In order to perform a rational design assuming a collision with the retaining wall, it is necessary to design so as to prevent the above-described event 1 and event 2. That is, it is necessary to set the seismic isolation retaining wall rigidity so that the response amplification is suppressed to a certain criterion or less so that the superstructure does not collapse, and the response deformation of the seismic isolation layer is the limit deformation or less. These are discussed below.

図6は、衝突速度(入力地震動レベル)と上部構造の応答増幅率との関係を示す図である。図6の横軸はKw/M(免震擁壁剛性/建物質量)である。また図6の縦軸は免震層の衝突時速度であり、入力地震動の大きさに対応している。例えば、図中のL1〜L6は、入力地震動レベルを示している。具体的には、L1はレベル2×1.05倍、L2はレベル2×1.10倍、L3はレベル2×1.20倍、L4はレベル2×1.30倍、L5はレベル2×1.40倍、及び、L6はレベル2×1.50倍の入力地震動をそれぞれ示している。   FIG. 6 is a diagram showing the relationship between the collision speed (input ground motion level) and the response amplification factor of the superstructure. The horizontal axis of FIG. 6 is Kw / M (seismic isolation retaining wall rigidity / building mass). Moreover, the vertical axis | shaft of FIG. 6 is the speed at the time of a collision of a seismic isolation layer, and respond | corresponds to the magnitude | size of an input earthquake motion. For example, L1 to L6 in the figure indicate input earthquake motion levels. Specifically, L1 is level 2 × 1.05 times, L2 is level 2 × 1.10 times, L3 is level 2 × 1.20 times, L4 is level 2 × 1.30 times, L5 is level 2 × 1.40 times and L6 indicate the input ground motions of level 2 × 1.50 times, respectively.

この図6は、図2のデータからKw/Mを横軸とし、衝突の衝突速度を縦軸として、衝突による上部構造の応答増幅率をプロットし、上部構造の応答増幅率が同値となるライン(第一ラインに相当)を作成した図である。   FIG. 6 is a line in which the response amplification factor of the superstructure due to the collision is plotted with Kw / M as the horizontal axis and the collision velocity of the collision as the vertical axis from the data of FIG. It is the figure which created (equivalent to a 1st line).

図6に示すように、実施例1、実施例2とも良く似た形となっている。図6の右下がりのラインは、上部構造の最大応答層間変形角のクライテリアを示すラインである。例えば、上部構造の最大応答層間変形角を2.0以下に設計したい場合、黒四角(■)を結ぶラインよりも下側(応答増幅率が小さい側)にすればよい。これにより、上部構造に過大な損傷や倒壊・崩壊が生じること(事象1)を抑制できる。   As shown in FIG. 6, the shape is similar to that of the first and second embodiments. 6 is a line showing the criteria for the maximum response interlayer deformation angle of the superstructure. For example, when it is desired to design the maximum response interlayer deformation angle of the upper structure to be 2.0 or less, it may be set below the line connecting the black squares (■) (side with a small response amplification factor). Thereby, it is possible to suppress the occurrence of excessive damage or collapse / collapse of the superstructure (event 1).

また、図7は、衝突速度(入力地震動レベル)と免震擁壁変形量との関係を示す図である。図7の縦軸及び横軸は図6と同じである。   FIG. 7 is a diagram showing the relationship between the collision speed (input seismic motion level) and the amount of deformation of the seismic isolation retaining wall. The vertical and horizontal axes in FIG. 7 are the same as those in FIG.

この図7は図4のデータからKw/Mを横軸とし、衝突の衝突速度を縦軸として、衝突による免震擁壁の変形量をプロットし、免震擁壁の変形量が同値となるライン(第二ラインに相当)を作成した図である。   7 plots the amount of deformation of the seismic isolation retaining wall due to the collision, with Kw / M as the horizontal axis and the collision speed of the collision as the vertical axis from the data of FIG. It is the figure which created the line (equivalent to a 2nd line).

図7においても、実施例1、実施例2とも良く似た形となっている。図7の右上がりのラインは免震擁壁(換言すると免震層)の変形量のクライテリアを示している。例えば、免震擁壁の最大変形を20mm以下(免震層の変形量を20mm+クリアランス以下)に設計したい場合、黒四角(■)を結ぶラインよりも下側(変形量が小さい側)にすればよい。これにより、免震装置が破断したり、軸力、支持能力を失ったりすること(事象2)を抑制できる。   Also in FIG. 7, the shape is similar to that of the first and second embodiments. The line rising to the right in FIG. 7 shows the criteria for the amount of deformation of the seismic isolation wall (in other words, the seismic isolation layer). For example, if you want to design the maximum deformation of the seismic isolation retaining wall to 20 mm or less (the amount of deformation of the seismic isolation layer is 20 mm + clearance or less), slide it below the line connecting the black squares (■) (the side with the smaller deformation). That's fine. Thereby, it can suppress that a seismic isolation apparatus fractures | ruptures, or loses axial force and support capability (event 2).

図8は、上部構造と擁壁との衝突を用いた設計の概念図である。この図8は、図6の右下がりのライン(第一ライン)と図7の右上がりのライン(第二ライン)との2本のラインを組み合わせた図である。前述したように、右下がりのラインは、上部構造の最大応答層間変形角のクライテリア(例えば、レベル2応答層間変形角×1.5)を示しており、また、右上がりのラインは、免震層の最大応答変形のクライテリア(例えば、積層ゴムの限界変形量)を示している。これにより、上部構造の最大応答層間変形角のクライテリアと、免震層の最大応答変形のクライテリアとの関係が明確になる。   FIG. 8 is a conceptual diagram of the design using the collision between the superstructure and the retaining wall. FIG. 8 is a diagram in which two lines, a right-down line (first line) in FIG. 6 and a right-up line (second line) in FIG. 7 are combined. As described above, the lower right line indicates the criteria for the maximum response interlayer deformation angle of the superstructure (for example, level 2 response interlayer deformation angle × 1.5), and the right upward line indicates the seismic isolation. It shows the criteria for the maximum response deformation of the layer (for example, the limit deformation amount of the laminated rubber). This clarifies the relationship between the criteria for the maximum response interlayer deformation angle of the superstructure and the criteria for the maximum response deformation of the seismic isolation layer.

この2本のラインによるクライテリアをともに満足する領域(2つのラインのそれぞれ下側の領域)が設計可能領域であり、入力地震動レベルを設定すれば、設計可能なKw/Mの範囲を容易に推測することができる。すなわち、図8に示すように、設定した入力地震動レベルのとき(換言すると、衝突速度が所定値のとき)の右上がりのラインのKw/M値(第一Kw/Mに相当)と、右上がりのラインのKw/M値(第二Kw/Mに相当)との間の領域が設計可能領域となる。上部構造の質量Mは既知であるので、上記2つのKw/Mを算出することにより擁壁剛性Kwの範囲は容易に算出できる。よって、前述した事象1及び事象2を防止できる擁壁剛性Kwの範囲を容易に求めることができる。   The area that satisfies both the criteria of these two lines (the area below each of the two lines) is the designable area. If the input seismic motion level is set, the designable Kw / M range can be easily estimated. can do. That is, as shown in FIG. 8, when the input ground motion level is set (in other words, when the collision speed is a predetermined value), the Kw / M value (corresponding to the first Kw / M) of the line rising to the right and the right The area between the Kw / M value of the rising line (corresponding to the second Kw / M) is the designable area. Since the mass M of the superstructure is known, the range of the retaining wall stiffness Kw can be easily calculated by calculating the above two Kw / M. Therefore, the range of the retaining wall rigidity Kw that can prevent the above-described event 1 and event 2 can be easily obtained.

以上説明したように、本実施形態では、上部構造と下部構造に属する免震擁壁との衝突を想定した設計をする際に、上部構造の質量Mと、免震擁壁の剛性Kwとの比(Kw/M)をパラメーターとして免震構造の衝突応答解析を行い、免震構造の衝突による応答値(上部構造の応答増幅率、免震擁壁の変形量)を評価している。この評価結果により、免震擁壁の剛性Kwを容易に想定することができ、衝突を想定した設計効率の向上を図ることができる。   As described above, in the present embodiment, when the design is made assuming a collision between the upper structure and the seismic isolation retaining wall belonging to the lower structure, the mass M of the upper structure and the rigidity Kw of the seismic isolation retaining wall The impact response analysis of the base isolation structure is performed using the ratio (Kw / M) as a parameter, and the response value (response amplification factor of the upper structure, deformation of the base isolation retaining wall) is evaluated. Based on this evaluation result, the rigidity Kw of the seismic isolation retaining wall can be easily assumed, and the design efficiency assuming a collision can be improved.

===その他の実施形態について===
上記実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれることはいうまでもない。特に、以下に述べる実施形態であっても、本発明に含まれるものである。
=== About Other Embodiments ===
The above embodiment is for facilitating the understanding of the present invention, and is not intended to limit the present invention. The present invention can be changed and improved without departing from the gist thereof, and it is needless to say that the present invention includes equivalents thereof. In particular, the embodiments described below are also included in the present invention.

前述の実施形態では、基礎(下部構造)と建物(上部構造)との間に免震層を設けており、下部構造の外周部に上部構造の過大変位を抑制するための免震擁壁を設けていたが、これには限らない。例えば、構造物を上下に分割した場合における上層部分と下層部分の間に免震層を設置してもよい。この場合、免震層よりも下側の構造体に壁(壁体)を設けてもよいし、免震層よりも上側の構造体に壁(壁体)を設けてもよい。なお、この場合、壁体の剛性には背面土剛性は含まれない。   In the above-described embodiment, a seismic isolation layer is provided between the foundation (lower structure) and the building (upper structure), and the seismic isolation retaining wall for suppressing excessive displacement of the upper structure on the outer periphery of the lower structure. However, the present invention is not limited to this. For example, you may install a seismic isolation layer between the upper layer part and lower layer part when a structure is divided | segmented up and down. In this case, a wall (wall body) may be provided in the structure below the seismic isolation layer, or a wall (wall body) may be provided in the structure above the seismic isolation layer. In this case, the back soil rigidity is not included in the rigidity of the wall body.

また、前述の実施形態では、2本のライン(上部構造の最大応答層間変形角のクライテリアを示すライン、及び、免震層の最大応答変形のクライテリアを示すライン)から免震擁壁の剛性Kwの範囲を想定していたがこれには限らない。例えば、免震擁壁の剛性Kwの最大値又は最小値が予め定まっているような場合、何れか一本のラインから免震擁壁の剛性Kwの範囲を想定してもよい。   In the above-described embodiment, the stiffness Kw of the seismic isolation retaining wall from the two lines (the line indicating the criteria for the maximum response interlayer deformation angle of the superstructure and the line indicating the criteria for the maximum response deformation of the base isolation layer). However, this is not a limitation. For example, when the maximum value or the minimum value of the rigidity Kw of the seismic isolation retaining wall is determined in advance, the range of the rigidity Kw of the seismic isolation retaining wall from any one line may be assumed.

また、前述の実施形態では、上部構造の応答値として応答増幅率を評価していたがこれには限られない。例えば、応答値そのものを評価してもよい。   In the above-described embodiment, the response amplification factor is evaluated as the response value of the superstructure. However, the present invention is not limited to this. For example, the response value itself may be evaluated.

また、図6〜図8では、縦軸を衝突速度にしていたが、縦軸を入力地震動レベルにしてもよい。   6 to 8, the vertical axis is the collision speed, but the vertical axis may be the input ground motion level.

Claims (6)

上部構造と下部構造との間に免震装置を備え、前記上部構造又は前記下部構造の一方に属する壁体と、前記上部構造又は前記下部構造の他方とが、水平方向に所定距離をもって離間している免震構造において、前記上部構造又は前記下部構造の他方と前記壁体との衝突を想定して前記免震構造を評価する免震構造の評価方法であって、
前記上部構造の質量Mと、前記壁体の剛性Kwとの比をパラメーターとして前記免震構造の衝突応答解析を行い、前記免震構造の衝突による応答値を評価することを特徴とする免震構造の評価方法。
A seismic isolation device is provided between the upper structure and the lower structure, and the wall body belonging to one of the upper structure or the lower structure and the other of the upper structure or the lower structure are separated from each other by a predetermined distance in the horizontal direction. In the seismic isolation structure, the seismic isolation structure evaluation method for evaluating the base isolation structure assuming a collision between the other of the upper structure or the lower structure and the wall body,
A collision response analysis of the base isolation structure is performed using a ratio between a mass M of the superstructure and a rigidity Kw of the wall body as a parameter, and a response value due to the collision of the base isolation structure is evaluated. Structure evaluation method.
請求項1に記載の免震構造の評価方法であって、
前記応答値は、前記衝突による前記上部構造の応答値である
ことを特徴とする免震構造の評価方法。
A method for evaluating a base-isolated structure according to claim 1,
The seismic isolation structure evaluation method, wherein the response value is a response value of the superstructure due to the collision.
請求項1に記載の免震構造の評価方法であって、
前記応答値は、前記衝突による前記壁体の変形量である
ことを特徴とする免震構造の評価方法。
A method for evaluating a base-isolated structure according to claim 1,
The seismic isolation structure evaluation method, wherein the response value is a deformation amount of the wall body due to the collision.
請求項1に記載の免震装置の評価方法であって、
前記上部構造の質量Mと、前記壁体の剛性Kwとの比Kw/Mを横軸とし、前記衝突の衝突速度又は入力地震動の大きさを縦軸として、前記衝突による前記上部構造の応答値と、前記衝突による前記壁体の変形量とをプロットし、前記上部構造の応答値が同値となる第一ラインと、前記壁体の変形量が同値となる第二ラインとを作成する
ことを特徴とする免震構造の評価方法。
A method for evaluating a seismic isolation device according to claim 1,
The ratio Kw / M between the mass M of the superstructure and the rigidity Kw of the wall body is taken as the horizontal axis, and the collision velocity of the collision or the magnitude of the input ground motion is taken as the vertical axis. And plotting the deformation amount of the wall body due to the collision, and creating a first line where the response value of the superstructure is the same and a second line where the deformation amount of the wall body is the same value. Evaluation method for the seismic isolation structure.
請求項4に記載の免震装置の評価方法であって、
前記衝突速度又は前記入力地震動の大きさが所定値のときの前記第一ラインの第一Kw/M、及び、前記第二ラインの第二Kw/Mを算出する
ことを特徴とする免震構造の評価方法。
A method for evaluating a seismic isolation device according to claim 4,
A first seismic isolation structure that calculates the first Kw / M of the first line and the second Kw / M of the second line when the collision speed or the magnitude of the input ground motion is a predetermined value. Evaluation method.
請求項5に記載の免震装置の評価方法であって、
前記第一Kw/Mと前記第二Kw/Mの間を設計可能領域とする
ことを特徴とする免震構造の評価方法。
An evaluation method for a seismic isolation device according to claim 5,
A seismic isolation structure evaluation method, wherein a designable region is defined between the first Kw / M and the second Kw / M.
JP2015131116A 2015-06-30 2015-06-30 Evaluation method of seismic isolation structure Active JP6507886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015131116A JP6507886B2 (en) 2015-06-30 2015-06-30 Evaluation method of seismic isolation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015131116A JP6507886B2 (en) 2015-06-30 2015-06-30 Evaluation method of seismic isolation structure

Publications (2)

Publication Number Publication Date
JP2017014772A true JP2017014772A (en) 2017-01-19
JP6507886B2 JP6507886B2 (en) 2019-05-08

Family

ID=57828090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015131116A Active JP6507886B2 (en) 2015-06-30 2015-06-30 Evaluation method of seismic isolation structure

Country Status (1)

Country Link
JP (1) JP6507886B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS606002U (en) * 1983-06-24 1985-01-17 株式会社日立製作所 Seismic isolation support device for structures
JPH02125231U (en) * 1989-03-27 1990-10-16

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS606002U (en) * 1983-06-24 1985-01-17 株式会社日立製作所 Seismic isolation support device for structures
JPH02125231U (en) * 1989-03-27 1990-10-16

Also Published As

Publication number Publication date
JP6507886B2 (en) 2019-05-08

Similar Documents

Publication Publication Date Title
Kim et al. Seismic fragility analysis of 5 MW offshore wind turbine
Jameel et al. Non-linear FEM analysis of seismic induced pounding between neighbouring multi-storey structures
Panchal et al. Seismic response of structures with variable friction pendulum system
Terzic et al. Using PBEE to assess and improve performance of different structural systems for low-rise steel buildings
JP6569465B2 (en) Design method of seismic isolation structure
JP2011190598A (en) Vibration control structure of viaduct
JP2017014772A (en) Base-isolation structure evaluation method
JP2017203297A (en) Base-isolation construction and method of designing base-isolation construction
Wang Seismic racking of a dual-wall subway station box embedded in soft soil strata
JP6750414B2 (en) A method for determining the rigidity of shock absorbers used in seismic isolation structures
JP6308741B2 (en) Intermediate seismic isolation structure
JP6241096B2 (en) Seismic isolation building and seismic isolation method
JP2022185213A (en) Displacement suppression device
JP6398421B2 (en) Vibration control structure
Bagheri et al. Seismic response of base isolated liquid storage tanks under near fault ground motions
Khoshnoudian et al. A new control algorithm to protect nonlinear base‐isolated structures against earthquakes
JP2003254384A (en) Hybrid type base isolation device
Patel et al. Effect of base isolation on seismic performance of RC irregular buildings
JP6384174B2 (en) Vibration control structure
JP6397174B2 (en) Seismic isolation structure
Phocas et al. Structures with multiple seismic isolation levels
Sarkar et al. A frequency domain study on deck isolation effectiveness in control of wave-induced vibration of offshore jacket platform
Gowardhan et al. Protection of the buildings from the earthquake risk using high damping rubber bearing
JP7055985B2 (en) Construction method of seismic isolation structure and connection structure of seismic isolation structure
Smith et al. Damping in tall buildings–uncertainties and solutions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190318

R150 Certificate of patent or registration of utility model

Ref document number: 6507886

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150