JP2017014583A - Heat-resistant iridium alloy - Google Patents

Heat-resistant iridium alloy Download PDF

Info

Publication number
JP2017014583A
JP2017014583A JP2015133672A JP2015133672A JP2017014583A JP 2017014583 A JP2017014583 A JP 2017014583A JP 2015133672 A JP2015133672 A JP 2015133672A JP 2015133672 A JP2015133672 A JP 2015133672A JP 2017014583 A JP2017014583 A JP 2017014583A
Authority
JP
Japan
Prior art keywords
mass
alloy
oxidation
heat
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015133672A
Other languages
Japanese (ja)
Inventor
俊介 横田
Shunsuke Yokota
俊介 横田
今井 庸介
Yosuke Imai
庸介 今井
土井 義規
Yoshinori Doi
義規 土井
恭徳 江川
Yasunori Egawa
恭徳 江川
大助 今
Daisuke Kon
大助 今
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishifuku Metal Industry Co Ltd
Original Assignee
Ishifuku Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishifuku Metal Industry Co Ltd filed Critical Ishifuku Metal Industry Co Ltd
Priority to JP2015133672A priority Critical patent/JP2017014583A/en
Publication of JP2017014583A publication Critical patent/JP2017014583A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spark Plugs (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an iridium alloy having excellent oxidation resistance at a high temperature and also having excellent strength.SOLUTION: The present invention provides a heat-resistant Ir alloy comprising Rh of 10-27 mass%, Re of 5-30 mass%, Ni of 3 mass% or less, with the balance being Ir. The invention can provide an iridium alloy having excellent oxidation resistance at a high temperature and also having excellent strength.SELECTED DRAWING: None

Description

本発明は、耐熱性イリジウム合金に関する。   The present invention relates to a heat resistant iridium alloy.

白金族元素であるIrは、融点が高く、酸化による消耗も少ないことから、高温強度、化学的安定性、耐酸化性とも優れた高温材料及び合金元素として、高温用るつぼ、耐熱器具、ガスタービン、スパークプラグ、高温用センサ、ジェットエンジンなどの広い分野で用いられている。一方でIrは、高温における耐酸化性が、他の高融点金属よりは優れるものの、十分でなく、これまでに合金設計による改善が多数試みられてきた。   Ir, a platinum group element, has a high melting point and little consumption due to oxidation. Therefore, as a high-temperature material and alloy element excellent in high-temperature strength, chemical stability, and oxidation resistance, a high-temperature crucible, heat-resistant appliance, gas turbine It is used in a wide range of fields such as spark plugs, high temperature sensors, and jet engines. On the other hand, Ir is superior in oxidation resistance at high temperatures to other refractory metals, but it is not sufficient, and many improvements have been attempted by alloy design so far.

特許文献1には、Rh又はPtを0.5〜40%を含有するイリジウム二元合金製るつぼが開示されている。同文献によれば、これらの二元合金は、純Ir製と比較して外観上の変化や酸化が起こらないという。   Patent Document 1 discloses an iridium binary alloy crucible containing 0.5 to 40% of Rh or Pt. According to the document, these binary alloys are not changed in appearance or oxidized as compared with pure Ir.

特許文献2には、高温機器、ガスタービン、センサ、高融点材料溶解用るつぼ、耐熱器具など高温強度・耐酸化性が要求される耐熱材料に関するものとして、Irをベースとし、第二元素としてRhを0.1〜30wt%の範囲内で添加し、更に第三元素としてPt、Ru、Re、Cr、V、Moこれらいずれか一種を0.1〜20wt%の固溶範囲内で添加し、この第三元素と前記第二元素との添加総量が0.2〜50wt%の固溶範囲内であることを特徴とするイリジウム基合金が開示されている。同文献によれば、合金表面に安定被膜が形成されることにより耐酸化性が向上するとされている。   Patent Document 2 includes Ir as a base and Rh as a second element for heat-resistant materials that require high-temperature strength and oxidation resistance, such as high-temperature equipment, gas turbines, sensors, crucibles for melting high-melting-point materials, and heat-resistant appliances. Is added within the range of 0.1-30 wt%, and further, any one of Pt, Ru, Re, Cr, V, and Mo is added as the third element within the solid solution range of 0.1-20 wt%, An iridium-based alloy is disclosed in which the total addition amount of the third element and the second element is within a solid solution range of 0.2 to 50 wt%. According to the document, oxidation resistance is improved by forming a stable coating on the alloy surface.

特許文献3には、中心電極と接地電極との少なくとも一方に固着される発火部が、Irを主体としてRhを0.1〜35重量%の範囲で含有し、さらにRu及びReの少なくともいずれかを合計で0.1〜17重量%の範囲で含有する合金により構成されるスパークプラグが開示されている。かかる組成範囲で含有する合金で構成することで、高温でのIr成分の酸化揮発による消耗が、Ir−Rh合金と比較してさらに効果的に抑制され、ひいてはより耐久性に優れたスパークプラグが実現されるとしている。   In Patent Document 3, the ignition portion fixed to at least one of the center electrode and the ground electrode contains Ir in the range of 0.1 to 35% by weight, and further includes at least one of Ru and Re. A spark plug made of an alloy containing a total amount of 0.1 to 17% by weight is disclosed. By comprising the alloy contained in such a composition range, consumption due to oxidation and volatilization of the Ir component at a high temperature is further effectively suppressed as compared with the Ir-Rh alloy, and as a result, a spark plug having higher durability can be obtained. It will be realized.

特許文献4には、中心電極に、貴金属チップを溶接された放電部が形成され、貴金属チップは、主成分としてのIrと、1〜4質量%のNiとを含有する共に、Rhが0.5〜40質量%、RuあるいはReの少なくとも一方が1〜5質量%含有されているスパークプラグが開示されている。   In Patent Document 4, a discharge part in which a noble metal tip is welded to a center electrode is formed. The noble metal tip contains Ir as a main component and 1 to 4% by mass of Ni, and Rh is 0.00. A spark plug containing 5 to 40% by mass and at least one of Ru or Re of 1 to 5% by mass is disclosed.

特開2000−290739号公報JP 2000-290739 A 特開平10−259435号公報Japanese Patent Laid-Open No. 10-259435 特開平10−321342号公報JP-A-10-321342 特開2002−359050号公報JP 2002-359050 A

以上の従来例では、従来のイリジウム合金の開発は、耐酸化性向上に着目してなされている。しかしながら、耐酸化特性を確保しつつさらに強度を高めることが望まれている。   In the above conventional examples, development of conventional iridium alloys has been made with a focus on improving oxidation resistance. However, it is desired to further increase the strength while ensuring oxidation resistance characteristics.

本発明の目的は、高温における耐酸化性に優れ、強度にも優れるイリジウム合金を提供することである。   An object of the present invention is to provide an iridium alloy having excellent oxidation resistance at high temperatures and excellent strength.

本発明は、Rhを10〜27mass%、Reを5〜30mass%、Niを3mass%以下、残部がIrからなる耐熱性Ir合金である。   The present invention is a heat-resistant Ir alloy in which Rh is 10 to 27 mass%, Re is 5 to 30 mass%, Ni is 3 mass% or less, and the balance is Ir.

Rhの含有量が10mass%を下回る場合には、合金の酸化消耗性が不十分である。一方、Rhの含有量が27mass%を超えると、合金の酸化消耗性は良いが、融点が低下し、硬さが小さくなる。   When the content of Rh is less than 10 mass%, the oxidative consumption of the alloy is insufficient. On the other hand, if the content of Rh exceeds 27 mass%, the oxidative wear of the alloy is good, but the melting point is lowered and the hardness is reduced.

Reの含有量が5mass%を下回ると合金の硬さが低く強度が不十分である。一方、Reの含有量が30mass%を超えると合金の硬さは大きいが、耐酸化消耗性が損なわれる。   If the Re content is less than 5 mass%, the hardness of the alloy is low and the strength is insufficient. On the other hand, when the Re content exceeds 30 mass%, the hardness of the alloy is large, but the oxidation resistance is deteriorated.

Ni添加により硬さが大きくなる。Ni含有量が3mass%を超えると合金の硬さは大きいが、酸化消耗性が損なわれる。Niの含有量は、0.1mass%以上とするのが好ましい。さらに、0.5mass%以上とするのがより好ましい。また、Ni含有量の上限は、2.5mass%とするのが好ましい。   Hardness increases by adding Ni. If the Ni content exceeds 3 mass%, the hardness of the alloy is large, but the oxidation consumability is impaired. The Ni content is preferably 0.1 mass% or more. Furthermore, it is more preferable to set it as 0.5 mass% or more. Moreover, it is preferable that the upper limit of Ni content shall be 2.5 mass%.

本発明によれば、高温における耐酸化性に優れ、強度にも優れるイリジウム合金を提供することができる。   According to the present invention, an iridium alloy having excellent oxidation resistance at high temperatures and excellent strength can be provided.

本発明の具体的実施形態としては、例えば、Rhを10〜27mass%、Reを5〜20mass%、Niを3mass%以下、残部がIrからなる耐熱性Ir合金が挙げられる。Reの含有量は、10〜20mass%とするのが好ましい。   As a specific embodiment of the present invention, for example, a heat-resistant Ir alloy having Rh of 10 to 27 mass%, Re of 5 to 20 mass%, Ni of 3 mass% or less, and the balance of Ir is cited. The content of Re is preferably 10 to 20 mass%.

また、別の実施形態としては、例えば、Rhを10〜27mass%、Reを20〜30mass%、残部がIrからなる耐熱性Ir合金が挙げられる。この場合、耐熱性Ir合金は、Niを3mass%以下含有してもよい。   Further, as another embodiment, for example, a heat-resistant Ir alloy having Rh of 10 to 27 mass%, Re of 20 to 30 mass%, and the balance of Ir is cited. In this case, the heat resistant Ir alloy may contain 3 mass% or less of Ni.

本発明の実施例について説明する。実施例及び比較例の合金の組成及び試験結果を表1に示す。
まず、各原料粉末(Ir粉末、Rh粉末、Ni粉末、Re粉末、Co粉末)を所定の割合で混合し、試験片の原料粉末を作製した。次いで、得られた原料粉末を一軸加圧成形機を用いて成形し圧粉体を得た。得られた圧粉体をアーク溶解法により溶解し、インゴットを作製した。次いで、作製したインゴットに対して、放電加工によってインゴットから所定の大きさ(直径:0.6 mm、軸方向長さ:1.0 mm)の円柱形状のチップを切り出し、試験片とした。
Examples of the present invention will be described. Table 1 shows the compositions and test results of the alloys of Examples and Comparative Examples.
First, each raw material powder (Ir powder, Rh powder, Ni powder, Re powder, Co powder) was mixed at a predetermined ratio to prepare a raw material powder of a test piece. Subsequently, the obtained raw material powder was molded using a uniaxial pressure molding machine to obtain a green compact. The obtained green compact was melted by an arc melting method to produce an ingot. Next, a cylindrical chip having a predetermined size (diameter: 0.6 mm, axial length: 1.0 mm) was cut out of the ingot from the ingot by electric discharge machining to obtain a test piece.

硬さは、上記で作製した試験片の断面を研磨にて鏡面に仕上げ、マイクロビッカース硬さ試験機にて、荷重200gf、10秒の条件で測定した。   The hardness was measured by polishing the cross section of the test piece prepared above into a mirror surface by polishing and using a micro Vickers hardness tester under a load of 200 gf for 10 seconds.

酸化消耗性の評価は、切り出した各試験片を用いて高温酸化試験により行った。高温酸化試験は、電気炉内に試験片をセットし、大気中、1200℃の条件で20時間保持した。酸化消耗性は、前記高温酸化試験における質量減少と定義した。質量減少ΔM(mg/mm)は、試験片の試験前の質量をM0(mg)、試験後の質量をM1(mg)、試験片の試験前の表面積をS(mm)とし、ΔM=(M1−M0)/Sの式から求めた。また、試験片の表面積S(mm)は、試験片の寸法から算出した。 The evaluation of oxidation consumability was performed by a high temperature oxidation test using each cut out test piece. In the high-temperature oxidation test, a test piece was set in an electric furnace and held in the atmosphere at 1200 ° C. for 20 hours. Oxidation depletion was defined as mass loss in the high temperature oxidation test. The mass decrease ΔM (mg / mm 2 ) is defined as M0 (mg) before the test of the test piece, M1 (mg) after the test, and S (mm 2 ) as the surface area of the test piece before the test. = (M1-M0) / S. Moreover, the surface area S (mm < 2 >) of the test piece was computed from the dimension of the test piece.

酸化消耗性の評価は、質量減少の値が「−0.15以上」の場合、酸化消耗性が良好である(○)とした(酸化消耗量が少ない)。質量減少の値が「−0.15未満」の場合、酸化消耗性が悪い(×)とした(酸化消耗量が多い)。   In the evaluation of oxidation depletion, when the mass reduction value is “−0.15 or more”, the oxidation depletion is good (◯) (the amount of oxidation depletion is small). When the value of mass reduction was “less than −0.15”, the oxidation consumption was poor (x) (the oxidation consumption was large).

Figure 2017014583
Figure 2017014583

以上の結果から、実施例の試験片は、酸化消耗性が−0.15以上を示したことから優れた耐酸化を有し強度も優れていることがわかった。   From the above results, it was found that the test pieces of the examples had excellent oxidation resistance and excellent strength because the oxidation wear resistance was -0.15 or more.

実施例8のNiをCoに置換した比較例10は、酸化消耗性が劣っており、Niを含有する効果が確認された。   Comparative Example 10 in which Ni in Example 8 was replaced with Co was inferior in oxidation consumability, and the effect of containing Ni was confirmed.

Claims (1)

Rhを10〜27mass%、Reを5〜30mass%、Niを3mass%以下、残部がIrからなる耐熱性Ir合金。   A heat-resistant Ir alloy in which Rh is 10 to 27 mass%, Re is 5 to 30 mass%, Ni is 3 mass% or less, and the balance is Ir.
JP2015133672A 2015-07-02 2015-07-02 Heat-resistant iridium alloy Pending JP2017014583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015133672A JP2017014583A (en) 2015-07-02 2015-07-02 Heat-resistant iridium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015133672A JP2017014583A (en) 2015-07-02 2015-07-02 Heat-resistant iridium alloy

Publications (1)

Publication Number Publication Date
JP2017014583A true JP2017014583A (en) 2017-01-19

Family

ID=57829166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015133672A Pending JP2017014583A (en) 2015-07-02 2015-07-02 Heat-resistant iridium alloy

Country Status (1)

Country Link
JP (1) JP2017014583A (en)

Similar Documents

Publication Publication Date Title
JP5619843B2 (en) Spark plug
US11131008B2 (en) Heat-resistant Ir alloy
JP2005166683A (en) Silver-based contact material, use of such contact material in switching device for power and method for manufacturing the contact material
JP4944433B2 (en) Spark plug
JP2004235040A (en) Spark plug and its manufacturing method
WO2018021028A1 (en) Spark plug electrode material
JP2009035750A (en) HEAT RESISTANT PtRh ALLOY
US11486024B2 (en) Heat-resistant Ir alloy wire
JP2017014583A (en) Heat-resistant iridium alloy
JP4991433B2 (en) Spark plug for internal combustion engine
JP5581153B2 (en) Oxidation resistant heat resistant alloy
JPWO2011152004A1 (en) Spark plug
JP2009245640A (en) Spark plug
JP7493316B2 (en) Spark plug
US2189756A (en) Molybdenum composition
JP5581152B2 (en) Oxidation resistant heat resistant alloy
USRE24242E (en) Alloys and electrical resistance
JP5590979B2 (en) Spark plug electrode material with excellent spark wear resistance
CN115707787B (en) Iridium alloy
US1943027A (en) Electron emitting element
WO2011102355A1 (en) Spark plug electrode material having excellent spark consumption resistance and excellent discharge characteristics
WO2018104705A1 (en) Rhodium alloys
JP5794890B2 (en) Materials for spark plug electrodes
JP2019218572A (en) HEAT-RESISTANT Ir ALLOY
US20230383381A1 (en) Heat-resistant ir-pt alloy