JP2017013744A - Suspension device - Google Patents

Suspension device Download PDF

Info

Publication number
JP2017013744A
JP2017013744A JP2015135276A JP2015135276A JP2017013744A JP 2017013744 A JP2017013744 A JP 2017013744A JP 2015135276 A JP2015135276 A JP 2015135276A JP 2015135276 A JP2015135276 A JP 2015135276A JP 2017013744 A JP2017013744 A JP 2017013744A
Authority
JP
Japan
Prior art keywords
damper
flow path
accumulator
side chamber
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015135276A
Other languages
Japanese (ja)
Inventor
聡 近松
Satoshi Chikamatsu
聡 近松
英樹 川上
Hideki Kawakami
英樹 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
KYB Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYB Corp filed Critical KYB Corp
Priority to JP2015135276A priority Critical patent/JP2017013744A/en
Priority to PCT/JP2016/069742 priority patent/WO2017006890A1/en
Publication of JP2017013744A publication Critical patent/JP2017013744A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G21/00Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
    • B60G21/02Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
    • B60G21/06Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected fluid

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a suspension device that can suppress generation of abnormal noise without impairing ride comfort in a vehicle and without increasing vehicle-height variations.SOLUTION: A suspension device 1 is configured to comprise: a first check valve GL that permits exclusively flow of liquid flowing from a first accumulator AL toward a first flow path P1 in parallel to a first attenuation valve VL, provided between the first flow path P1, communicating an extension side chamber EL of a first damper DL with a pressure side chamber CR of a second damper DR, and the first accumulator AL; and comprises a second check valve GR that permits exclusively flow of liquid flowing from a second accumulator AR toward a second flow path P2 in parallel to a second attenuation valve VR, provided between the second flow path P2, communicating a pressure side chamber CL of the first damper DL with an extension side chamber ER of the second damper DR, and the second accumulator AR.SELECTED DRAWING: Figure 1

Description

本発明は、サスペンション装置に関する。   The present invention relates to a suspension device.

従来、車両の姿勢変化を抑制するサスペンション装置としては、シリンダと、シリンダ内に移動自在に挿入されシリンダ内を伸側室と圧側室とに区画するピストンと、ピストンに連結されたピストンロッドとを備えて構成された油圧ダンパを、車体と左右または前後の車輪との間にそれぞれ介装し、一方の油圧ダンパの伸側室と他方の油圧ダンパの圧側室とを減衰弁を備えた第一流路で連通するとともに、一方の油圧ダンパの圧側室と他方の油圧ダンパの伸側室とを減衰弁を備えた第二流路で連通し、各流路の途中に減衰弁を介してアキュムレータをそれぞれ接続したものが知られている(たとえば、特許文献1参照)。   2. Description of the Related Art Conventionally, a suspension device that suppresses a change in the posture of a vehicle includes a cylinder, a piston that is movably inserted into the cylinder and divides the cylinder into an extension side chamber and a pressure side chamber, and a piston rod connected to the piston. The hydraulic damper constructed in this way is interposed between the vehicle body and the left and right or front and rear wheels, respectively, and the extension side chamber of one hydraulic damper and the pressure side chamber of the other hydraulic damper are arranged in a first flow path having a damping valve. In addition to communication, the pressure side chamber of one hydraulic damper and the extension side chamber of the other hydraulic damper are communicated with a second flow path provided with a damping valve, and an accumulator is connected to each of the flow paths through the damping valve. Those are known (for example, see Patent Document 1).

このサスペンション装置では、各油圧ダンパが同位相で伸縮する場合、シリンダ内へ進退するピストンロッドの体積分の作動油が双方の油圧ダンパのシリンダ内で過不足となるので、各アキュムレータが前記過不足分の作動油を吸収或いはシリンダ内へ供給する。対して、各油圧ダンパが逆位相で伸縮する場合には、シリンダに出入りする作動油量が同位相で伸縮する場合に比較して多くなるので、各アキュムレータで吸収或いはシリンダ内へ供給される作動油量も多くなる。   In this suspension device, when each hydraulic damper expands and contracts in the same phase, the hydraulic oil for the volume of the piston rod that advances and retreats into the cylinder becomes excessive and insufficient in the cylinders of both hydraulic dampers. Absorb or supply the hydraulic oil in the cylinder. On the other hand, when each hydraulic damper expands and contracts in the opposite phase, the amount of hydraulic oil entering and exiting the cylinder is larger than when expanding and contracting in the same phase, so the operation that is absorbed by each accumulator or supplied into the cylinder The amount of oil also increases.

したがって、各油圧ダンパが逆位相で伸縮する場合には、各油圧ダンパが同位相で伸縮する場合に比較して、各アキュムレータ内の気室の容積変化が大きくなり、各アキュムレータのバネ反力が大きくなるとともに、各減衰弁を通過する作動油の量も多くなる。その結果、各油圧ダンパは大きな減衰力を発揮して車体のロールまたはピッチを抑制する。他方、各油圧ダンパが同位相で伸縮する場合には、逆に、各アキュムレータに出入りする作動油量が少なくなって各アキュムレータのバネ反力は小さくなり、各減衰弁を通過する作動油の量も少なくなる。その結果、各油圧ダンパが同位相で伸縮する場合には、各油圧ダンパが逆位相で伸縮する場合に比較して、各油圧ダンパが発生する減衰力は小さくなり、路面凹凸等によって車輪に入力される振動の車体側への伝達が抑制される。   Therefore, when each hydraulic damper expands and contracts in the opposite phase, the volume change of the air chamber in each accumulator becomes larger than when each hydraulic damper expands and contracts in the same phase, and the spring reaction force of each accumulator becomes larger. As the size increases, the amount of hydraulic fluid that passes through each damping valve also increases. As a result, each hydraulic damper exerts a large damping force to suppress the roll or pitch of the vehicle body. On the other hand, when each hydraulic damper expands and contracts in the same phase, conversely, the amount of hydraulic oil entering and exiting each accumulator decreases, the spring reaction force of each accumulator decreases, and the amount of hydraulic oil that passes through each damping valve Less. As a result, when each hydraulic damper expands and contracts in the same phase, the damping force generated by each hydraulic damper becomes smaller than when each hydraulic damper expands and contracts in the opposite phase and is input to the wheels due to road surface unevenness etc. Transmission of the generated vibration to the vehicle body side is suppressed.

特開2013−82432号公報JP 2013-82432 A

このサスペンション装置では、各油圧ダンパが逆位相で高速で伸縮する場合、各油圧ダンパの拡大される室へアキュムレータから大量の作動油を供給する必要がある。しかしながら、アキュムレータが各流路に減衰弁を介して接続されているので、この減衰弁が抵抗となって、アキュムレータから各油圧ダンパへ速やかに作動油を供給できない場合がある。すると、各油圧ダンパの拡大される室の圧力が大気圧以下となって油中に気泡が発生し、この気泡の発生の際に異音を生ずる恐れがある。   In this suspension device, when each hydraulic damper expands and contracts at high speed in the opposite phase, it is necessary to supply a large amount of hydraulic oil from the accumulator to the chamber in which each hydraulic damper is expanded. However, since the accumulator is connected to each flow path via a damping valve, the damping valve becomes a resistance, and the hydraulic oil may not be supplied promptly from the accumulator to each hydraulic damper. Then, the pressure of the chamber in which each hydraulic damper is expanded becomes less than atmospheric pressure, bubbles are generated in the oil, and abnormal noise may be generated when the bubbles are generated.

これを避けるには、アキュムレータ内の圧力を高く設定する方法があるが、そうすると、油圧ダンパ内のベース圧力が高くなり、サスペンション装置の摺動部におけるシール部分で生じるフリクションが増大してサスペンション装置の円滑な伸縮が妨げられてしまう。すると、車両における乗り心地が悪化してしまう。また、油圧ダンパ内のベース圧力が高くなると、油温変動に起因する作動油体積変化による車高変動量も大きくなる問題も生じる。さらに、システムの最大圧力が高くなり、シール耐久性に影響を及ぼす。   In order to avoid this, there is a method of setting the pressure in the accumulator high. However, if this is done, the base pressure in the hydraulic damper becomes high, and the friction generated at the seal portion in the sliding portion of the suspension device increases, so that the suspension device Smooth expansion and contraction will be hindered. Then, the ride comfort in the vehicle is deteriorated. Further, when the base pressure in the hydraulic damper becomes high, there is a problem that the vehicle height fluctuation amount due to the hydraulic oil volume change due to the oil temperature fluctuation also increases. In addition, the maximum pressure of the system is increased, affecting the seal durability.

そこで、本発明は前記不具合を改善するために創案されたものであって、その目的とするところは、車両における乗り心地を損なわず、かつ、車高変動の増加も招かずに異音の発生を抑制できるサスペンション装置の提供である。   Therefore, the present invention was devised to improve the above-mentioned problems, and the object of the present invention is to generate abnormal noise without impairing the ride comfort in the vehicle and without increasing the vehicle height fluctuation. The suspension apparatus which can suppress is provided.

前記した目的を達成するために、本発明の課題解決手段におけるサスペンション装置は、第一ダンパの伸側室および第二ダンパの圧側室を連通する第一流路と第一アキュムレータとの間に、第一減衰弁と並列して第一アキュムレータから第一流路へ向かう液体の流れのみを許容する第一逆止弁を備え、第一ダンパの圧側室および第二ダンパの伸側室を連通する第二流路と第二アキュムレータとの間に、第二減衰弁と並列して第二アキュムレータから第二流路へ向かう液体の流れのみを許容する第二逆止弁を備えて構成されている。   In order to achieve the above-described object, the suspension device according to the means for solving problems of the present invention includes a first accumulator between a first flow path communicating with an extension side chamber of a first damper and a pressure side chamber of a second damper. A second flow path having a first check valve that allows only a liquid flow from the first accumulator to the first flow path in parallel with the damping valve, and communicates the pressure side chamber of the first damper and the extension side chamber of the second damper. Between the first accumulator and the second accumulator, a second check valve that allows only the flow of liquid from the second accumulator toward the second flow path in parallel with the second damping valve.

したがって、第一アキュムレータと第二アキュムレータへ液体が流入する場合、第一減衰弁或いは第二減衰弁によって作動油の流れに抵抗を与えられるので、第一ダンパと第二ダンパが逆位相で伸縮する場合に大きな減衰力を得ることができ、車体が傾斜するのを効果的に抑制できる。   Therefore, when the liquid flows into the first accumulator and the second accumulator, the first damper valve and the second damper expand and contract in opposite phases because resistance is given to the flow of hydraulic oil by the first damping valve or the second damping valve. In this case, a large damping force can be obtained, and the vehicle body can be effectively prevented from tilting.

また、第一減衰弁に対しては第一逆止弁を並列させ、第二減衰弁に対しては第二逆止弁を並列させているので、第一アキュムレータと第二アキュムレータから第一ダンパと第二ダンパへの液体の供給に際して、第一逆止弁と第二逆止弁が開弁するため第一減衰弁と第二減衰弁が抵抗とならず、速やかに液体が供給される。よって、第一ダンパと第二ダンパが逆位相で伸縮する場合にあっても、第一ダンパと第二ダンパのそれぞれの伸側室と圧側室内の圧力が大気圧以下になることもなくなる。さらに、第一アキュムレータと第二アキュムレータのガス圧を高める必要もないので、作動油の温度変化によって体積が変化しても、第一アキュムレータと第二アキュムレータのガス圧変動も少なくなる。そしてさらに、第一アキュムレータと第二アキュムレータのガス圧を高くせずに済むので、サスペンション装置の摺動部におけるシール部材に作用する圧力も低くて済む。よって、シール部材で発生する摩擦力が高くならずに済み、シール耐久性にも影響を及ぼさない。   In addition, since the first check valve is arranged in parallel to the first damping valve and the second check valve is arranged in parallel to the second damping valve, the first damper is connected to the first damper from the first accumulator and the second accumulator. When the liquid is supplied to the second damper, the first check valve and the second check valve are opened, so that the first damping valve and the second damping valve do not become resistance and the liquid is supplied promptly. Therefore, even when the first damper and the second damper expand and contract in opposite phases, the pressures in the extension side chamber and the pressure side chamber of the first damper and the second damper do not become lower than the atmospheric pressure. Furthermore, since it is not necessary to increase the gas pressures of the first accumulator and the second accumulator, the gas pressure fluctuations of the first accumulator and the second accumulator are reduced even if the volume changes due to the temperature change of the hydraulic oil. Furthermore, since it is not necessary to increase the gas pressure of the first accumulator and the second accumulator, the pressure acting on the seal member in the sliding portion of the suspension device can be reduced. Therefore, the frictional force generated in the seal member does not have to be increased, and the seal durability is not affected.

さらに、請求項2のサスペンション装置は、第一流路に第一アキュムレータの接続点を挟んで、第一伸側減衰弁と第一伸側吸込弁とを並列に設けるとともに、第一圧側減衰弁と第一圧側吸込弁とを並列に設け、第二流路に第二アキュムレータの接続点を挟んで、第二伸側減衰弁と第二伸側吸込弁とを並列に設けるとともに、第二圧側減衰弁と第二圧側吸込弁とを並列に設けたので、第一ダンパと第二ダンパが同位相で伸長する場合には、第一伸側減衰弁と第二伸側減衰弁によって伸長動作を抑制する減衰力を発揮し、第一ダンパと第二ダンパが同位相で圧縮される場合、第二圧側減衰弁、第二減衰弁、第一圧側減衰弁および第一減衰弁によって圧縮動作を抑制する減衰力を発揮する。このように、このサスペンション装置では、第一ダンパと第二ダンパが同位相で伸長する場合と圧縮される場合とで、減衰力を発揮する減衰弁が異なる。よって、サスペンション装置は、第一ダンパと第二ダンパが同位相で伸長する際に発揮する減衰力と第一ダンパと第二ダンパが同位相で圧縮される際に発揮する減衰力とを別個独立に設定可能であり、圧縮側の減衰力を小さくしたい要望に対しても応え得る。   Furthermore, the suspension device according to claim 2 is provided with a first extension side damping valve and a first extension side suction valve in parallel with the connection point of the first accumulator interposed between the first flow path and the first pressure side damping valve, The first pressure side suction valve is provided in parallel, the second expansion side damping valve and the second extension side suction valve are provided in parallel with the second flow path sandwiching the connection point of the second accumulator, and the second pressure side damping is provided. Since the valve and the second pressure side suction valve are provided in parallel, when the first damper and the second damper extend in the same phase, the first extension side damping valve and the second extension side damping valve suppress the extension operation. When the first damper and the second damper are compressed in the same phase, the compression operation is suppressed by the second pressure-side damping valve, the second damping valve, the first pressure-side damping valve, and the first damping valve. Demonstrates damping force. Thus, in this suspension device, the damping valve that exhibits the damping force differs depending on whether the first damper and the second damper are expanded in phase or compressed. Therefore, the suspension device is independent of the damping force that is exhibited when the first damper and the second damper are expanded in the same phase and the damping force that is exhibited when the first damper and the second damper are compressed in the same phase. It is possible to meet the demand for reducing the compression side damping force.

本発明のサスペンション装置によれば、車両における乗り心地を損なわず、かつ、車高変動の増加も招かずに異音の発生を抑制できる。   According to the suspension device of the present invention, it is possible to suppress the generation of abnormal noise without impairing the ride comfort in the vehicle and without causing an increase in vehicle height fluctuation.

一実施の形態におけるサスペンション装置の回路図である。It is a circuit diagram of a suspension device in one embodiment.

以下、本発明の実施の形態を図に基づいて説明する。本発明の一実施の形態におけるサスペンション装置1は、第一ダンパDLおよび第二ダンパDRと、第一ダンパDLの伸側室ELと第二ダンパDRの圧側室CRとを接続する第一流路P1と、第一ダンパDLの圧側室CLと第二ダンパDRの伸側室ERとを接続する第二流路P2と、第一流路P1に接続される第一アキュムレータALと、第二流路P2に接続される第二アキュムレータARと、第一流路P1と第一アキュムレータALとの間に設けた第一減衰弁VLおよび第一逆止弁GLと、第二流路P2と第二アキュムレータARとの間に設けた第二減衰弁VRと第二逆止弁GRとを備えて構成されており、たとえば、四輪自動車の左前輪と車体との間に第一ダンパDLを介装し、右前輪と車体との間に第二ダンパDRを介装して使用される。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The suspension device 1 according to the embodiment of the present invention includes a first flow path P1 that connects the first damper DL and the second damper DR, the extension side chamber EL of the first damper DL, and the compression side chamber CR of the second damper DR. The second flow path P2 connecting the pressure side chamber CL of the first damper DL and the expansion side chamber ER of the second damper DR, the first accumulator AL connected to the first flow path P1, and the second flow path P2. The second accumulator AR, the first damping valve VL and the first check valve GL provided between the first flow path P1 and the first accumulator AL, and the second flow path P2 and the second accumulator AR. For example, a first damper DL is interposed between the left front wheel and the vehicle body of a four-wheeled vehicle, and the right front wheel Used with a second damper DR between the vehicle body .

まず、第一ダンパDLおよび第二ダンパDRは、図1に示すように、筒状のシリンダ2L,2Rと、シリンダ2L,2R内に摺動自在に挿入されシリンダ2L,2R内を伸側室EL,ERと圧側室CL,CRに区画するピストン3L,3Rと、一端をピストン3L,3Rに連結したピストンロッド4L,4Rとを備えて構成され、シリンダ2L,2R内には作動液体として、たとえば、作動油が油密状態とされて充満されている。なお、作動液体としては、作動油以外にも水、水溶液、電気粘性流体、磁気粘性流体といった液体の利用も可能である。また、前記したところでは、液圧ダンパDL,DRは、所謂片ロッド型のダンパとされているが、ピストン3L,3Rの両側にピストンロッドが設けられる両ロッド型とされてもよい。   First, as shown in FIG. 1, the first damper DL and the second damper DR are slidably inserted into the cylindrical cylinders 2L and 2R and the cylinders 2L and 2R, and the inside of the cylinders 2L and 2R is extended to the extension side chamber EL. , ER and pressure side chambers CL, CR are divided into pistons 3L, 3R, and piston rods 4L, 4R having one ends connected to the pistons 3L, 3R. The hydraulic oil is filled in an oiltight state. In addition to the working oil, a liquid such as water, an aqueous solution, an electrorheological fluid, or a magnetorheological fluid can be used as the working liquid. In addition, as described above, the hydraulic dampers DL and DR are so-called single rod type dampers, but they may be of a double rod type in which piston rods are provided on both sides of the pistons 3L and 3R.

そして、各液圧ダンパDL,DRは、第一流路P1と第二流路P2で接続されている。具体的には、第一流路P1は、第一ダンパDLの伸側室ELと第二ダンパDRの圧側室CRとを連通し、他方の第二流路P2は、第一ダンパDLの圧側室CLと第二ダンパDRの伸側室ERとを連通している。つまり、第一流路P1と第二流路P2は、第一ダンパDLおよび第二ダンパDRの伸側室EL,ERと圧側室CL,CRとを襷掛けに連通している。   And each hydraulic damper DL and DR is connected by the 1st flow path P1 and the 2nd flow path P2. Specifically, the first flow path P1 communicates the extension side chamber EL of the first damper DL and the pressure side chamber CR of the second damper DR, and the other second flow path P2 is the pressure side chamber CL of the first damper DL. And the extension side chamber ER of the second damper DR. That is, the first flow path P1 and the second flow path P2 communicate the extending side chambers EL and ER of the first damper DL and the second damper DR with the compression side chambers CL and CR in a hooked manner.

第一アキュムレータALは、第一流路P1の途中に接続される第一接続路JLを通じて第一流路P1に接続されている。この第一接続路JLには、第一流路P1から第一アキュムレータALへ向かう作動油の流れに対して抵抗を与える第一減衰弁VLが設けられている。第一減衰弁VLは、図中ではリリーフ弁として構成されているが、絞り等の作動油の双方向の流れを許容する弁とされてもよい。また、第一接続路JLには、図1に示すように、第一減衰弁VLに並列されて、第一アキュムレータALから第一流路P1へ向かう作動油の流れのみを許容する第一逆止弁GLが設けられている。よって、第一流路P1から第一アキュムレータALへ向かう作動油の流れに対しては第一逆止弁GLが閉弁し、作動油は第一減衰弁VLを通過するので、作動油の流れに対して第一減衰弁VLにより抵抗が与えられる。反対に、第一アキュムレータALから第一流路P1へ向かう作動油の流れに対しては第一逆止弁GLが開弁するため、作動油は、第一逆止弁GLをわずかな抵抗を受けるのみで通過できる。   The first accumulator AL is connected to the first flow path P1 through a first connection path JL connected in the middle of the first flow path P1. The first connection path JL is provided with a first damping valve VL that provides resistance to the flow of hydraulic fluid from the first flow path P1 toward the first accumulator AL. Although the first damping valve VL is configured as a relief valve in the drawing, the first damping valve VL may be a valve that allows bidirectional flow of hydraulic oil such as a throttle. Further, as shown in FIG. 1, the first connection path JL is arranged in parallel with the first damping valve VL and allows only the flow of hydraulic oil from the first accumulator AL toward the first flow path P1. A valve GL is provided. Therefore, the first check valve GL is closed with respect to the flow of hydraulic oil from the first flow path P1 toward the first accumulator AL, and the hydraulic oil passes through the first damping valve VL. On the other hand, resistance is given by the first damping valve VL. On the contrary, since the first check valve GL opens with respect to the flow of the hydraulic oil from the first accumulator AL toward the first flow path P1, the hydraulic oil receives a slight resistance on the first check valve GL. Can only pass.

他方の第二アキュムレータARは、第二流路P2の途中に接続される第二接続路JRを通じて第二流路P2に接続されている。この第二接続路JRには、第二流路P2から第二アキュムレータARへ向かう作動油の流れに対して抵抗を与える第二減衰弁VRが設けられている。第二減衰弁VRも第一減衰弁VLと同様にリリーフ弁として構成されているが、絞り等の作動油の双方向の流れを許容する弁とされてもよい。また、第二接続路JRには、図1に示すように、第二減衰弁VRに並列されて、第二アキュムレータARから第二流路P2へ向かう作動油の流れのみを許容する第二逆止弁GRが設けられている。よって、第二流路P2から第二アキュムレータARへ向かう作動油の流れに対しては第二逆止弁GRが閉弁し、作動油は第二減衰弁VRを通過するので、作動油の流れに対して第二減衰弁VRにより抵抗が与えられる。反対に、第二アキュムレータARから第二流路P2へ向かう作動油の流れに対しては第二逆止弁GRが開弁するため、作動油は、第二逆止弁GRをわずかな抵抗を受けるのみで通過できる。   The other second accumulator AR is connected to the second flow path P2 through a second connection path JR connected in the middle of the second flow path P2. The second connection path JR is provided with a second damping valve VR that provides resistance to the flow of hydraulic fluid from the second flow path P2 toward the second accumulator AR. Similarly to the first damping valve VL, the second damping valve VR is also configured as a relief valve, but may be a valve that allows bidirectional flow of hydraulic oil such as a throttle. Further, as shown in FIG. 1, the second connection path JR is arranged in parallel with the second damping valve VR and allows only the flow of hydraulic oil from the second accumulator AR toward the second flow path P2. A stop valve GR is provided. Therefore, the second check valve GR is closed with respect to the flow of hydraulic oil from the second flow path P2 toward the second accumulator AR, and the hydraulic oil passes through the second damping valve VR. On the other hand, resistance is given by the second damping valve VR. On the contrary, since the second check valve GR is opened with respect to the flow of the hydraulic oil from the second accumulator AR to the second flow path P2, the hydraulic oil has a slight resistance to the second check valve GR. You can pass just by receiving.

また、第一流路P1の途中であって、第一アキュムレータALが第一接続路JLによって接続される接続点CPLよりも第一ダンパDL側には、第一ダンパDLの伸側室ELから第一流路P1へ向かう作動油の流れに抵抗を与える第一伸側減衰弁EVLと、第一流路P1から伸側室ELへ向かう作動油の流れのみを許容する第一伸側吸込弁ESLとが並列に設けられている。第一伸側減衰弁EVLは、図中ではリリーフ弁として構成されているが、絞り等の作動油の双方向の流れを許容する弁とされてもよい。よって、伸側室ELから第一流路P1へ向かう方向の作動油の流れに対しては第一伸側吸込弁ESLが閉弁し、作動油は第一伸側減衰弁EVLを通過するので、作動油の流れに対して第一伸側減衰弁EVLにより抵抗が与えられる。反対に、第一流路P1から伸側室ELへ向かう方向の作動油の流れに対しては第一伸側吸込弁ESLが開弁するため、作動油は、第一伸側吸込弁ESLをわずかな抵抗を受けるのみで通過できる。   Further, in the middle of the first flow path P1, the first flow from the extension side chamber EL of the first damper DL is closer to the first damper DL side than the connection point CPL where the first accumulator AL is connected by the first connection path JL. A first extension side damping valve EVL that provides resistance to the flow of hydraulic oil toward the path P1 and a first extension side suction valve ESL that permits only the flow of hydraulic oil from the first flow path P1 to the extension side chamber EL are arranged in parallel. Is provided. Although the first expansion side damping valve EVL is configured as a relief valve in the drawing, it may be a valve that allows bidirectional flow of hydraulic oil such as a throttle. Therefore, the first extension side suction valve ESL is closed with respect to the flow of hydraulic oil in the direction from the extension side chamber EL toward the first flow path P1, and the operation oil passes through the first extension side damping valve EVL. A resistance is given to the oil flow by the first expansion side damping valve EVL. On the contrary, since the first extension side suction valve ESL is opened with respect to the flow of the hydraulic oil in the direction from the first flow path P1 to the extension side chamber EL, the hydraulic oil slightly passes through the first extension side suction valve ESL. You can pass only by receiving resistance.

さらに、第一流路P1の途中であって、接続点CPLよりも第二ダンパDR側には、第二ダンパDRの圧側室CRから第一流路P1へ向かう作動油の流れに抵抗を与える第一圧側減衰弁CVRと、第一流路P1から圧側室CRへ向かう作動油の流れのみを許容する第一圧側吸込弁CSRとが並列に設けられている。第一圧側減衰弁CVRは、図中ではリリーフ弁として構成されているが、絞り等の作動油の双方向の流れを許容する弁とされてもよい。よって、圧側室CRから第一流路P1へ向かう方向の作動油の流れに対しては第一圧側吸込弁CSRが閉弁し、作動油は第一圧側減衰弁CVRを通過するので、作動油の流れに対して第一圧側減衰弁CVRにより抵抗が与えられる。反対に、第一流路P1から圧側室CRへ向かう方向の作動油の流れに対しては第一圧側吸込弁CSRが開弁するため、作動油は、第一圧側吸込弁CSRをわずかな抵抗を受けるのみで通過できる。   Further, in the middle of the first flow path P1 and closer to the second damper DR than the connection point CPL, the first is given resistance to the flow of hydraulic oil from the pressure side chamber CR of the second damper DR toward the first flow path P1. A pressure-side damping valve CVR and a first pressure-side suction valve CSR that allows only the flow of hydraulic oil from the first flow path P1 toward the pressure-side chamber CR are provided in parallel. The first pressure-side damping valve CVR is configured as a relief valve in the drawing, but may be a valve that allows bidirectional flow of hydraulic oil such as a throttle. Therefore, the first pressure side suction valve CSR is closed with respect to the flow of hydraulic oil in the direction from the pressure side chamber CR toward the first flow path P1, and the hydraulic oil passes through the first pressure side damping valve CVR. A resistance is given to the flow by the first pressure side damping valve CVR. On the contrary, since the first pressure side suction valve CSR is opened with respect to the flow of hydraulic oil in the direction from the first flow path P1 to the pressure side chamber CR, the hydraulic oil has a slight resistance to the first pressure side suction valve CSR. You can pass just by receiving.

他方、第二流路P2の途中であって、第二アキュムレータARが第二接続路JRによって接続される接続点CPRよりも第二ダンパDR側には、第二ダンパDRの伸側室ERから第二流路P2へ向かう作動油の流れに抵抗を与える第二伸側減衰弁EVRと、第二流路P2から伸側室ERへ向かう作動油の流れのみを許容する第二伸側吸込弁ESRとが並列に設けられている。第二伸側減衰弁EVRは、図中ではリリーフ弁として構成されているが、絞り等の作動油の双方向の流れを許容する弁とされてもよい。よって、伸側室ERから第二流路P2へ向かう方向の作動油の流れに対しては第二伸側吸込弁ESRが閉弁し、作動油は第二伸側減衰弁EVRを通過するので、作動油の流れに対して第二伸側減衰弁EVRにより抵抗が与えられる。反対に、第二流路P2から伸側室ERへ向かう方向の作動油の流れに対しては第二伸側吸込弁ESRが開弁するため、作動油は、第二伸側吸込弁ESRをわずかな抵抗を受けるのみで通過できる。   On the other hand, in the middle of the second flow path P2, the second damper DR is closer to the second damper DR than the connection point CPR where the second accumulator AR is connected by the second connection path JR. A second expansion side damping valve EVR that provides resistance to the flow of hydraulic oil toward the second flow path P2, and a second expansion side suction valve ESR that permits only the flow of hydraulic oil from the second flow path P2 to the expansion side chamber ER; Are provided in parallel. Although the second extension side damping valve EVR is configured as a relief valve in the drawing, it may be a valve that allows bidirectional flow of hydraulic oil such as a throttle. Therefore, the second extension side suction valve ESR is closed with respect to the flow of hydraulic oil in the direction from the extension side chamber ER toward the second flow path P2, and the hydraulic oil passes through the second extension side damping valve EVR. A resistance is given to the flow of hydraulic oil by the second expansion side damping valve EVR. On the contrary, since the second expansion side suction valve ESR is opened with respect to the flow of the hydraulic oil in the direction from the second flow path P2 toward the expansion side chamber ER, the hydraulic oil slightly opens the second expansion side suction valve ESR. You can pass only by receiving the resistance.

さらに、第二流路P2の途中であって、接続点CPRよりも第一ダンパDL側には、第一ダンパDLの圧側室CLから第二流路P2へ向かう作動油の流れに抵抗を与える第二圧側減衰弁CVLと、第二流路P2から圧側室CLへ向かう作動油の流れのみを許容する第二圧側吸込弁CSLとが並列に設けられている。第二圧側減衰弁CVLは、図中ではリリーフ弁として構成されているが、絞り等の作動油の双方向の流れを許容する弁とされてもよい。よって、圧側室CLから第二流路P2へ向かう方向の作動油の流れに対しては第二圧側吸込弁CSLが閉弁し、作動油は第二圧側減衰弁CVLを通過するので、作動油の流れに対して第二圧側減衰弁CVLにより抵抗が与えられる。反対に、第二流路P2から圧側室CLへ向かう方向の作動油の流れに対しては第二圧側吸込弁CSLが開弁するため、作動油は、第二圧側吸込弁CSLをわずかな抵抗を受けるのみで通過できる。   Furthermore, in the middle of the second flow path P2 and closer to the first damper DL than the connection point CPR, resistance is given to the flow of hydraulic oil from the pressure side chamber CL of the first damper DL toward the second flow path P2. A second pressure side damping valve CVL and a second pressure side suction valve CSL that allow only the flow of hydraulic fluid from the second flow path P2 toward the pressure side chamber CL are provided in parallel. The second pressure side damping valve CVL is configured as a relief valve in the drawing, but may be a valve that allows bidirectional flow of hydraulic oil such as a throttle. Therefore, the second pressure side suction valve CSL is closed with respect to the flow of hydraulic oil in the direction from the pressure side chamber CL toward the second flow path P2, and the hydraulic oil passes through the second pressure side damping valve CVL. Is given resistance by the second pressure side damping valve CVL. On the contrary, since the second pressure side suction valve CSL opens with respect to the flow of hydraulic oil in the direction from the second flow path P2 toward the pressure side chamber CL, the hydraulic oil has a slight resistance to the second pressure side suction valve CSL. You can pass only by receiving.

以上のように、サスペンション装置1は構成され、つづいて、その作動について説明する。まず、第一ダンパDLと第二ダンパDRが同位相で伸縮する場合、つまり、シリンダ2L,2Rに対するピストン3L,3Rの変位の位相が第一ダンパDLと第二ダンパDRで同一となる場合について説明する。   The suspension device 1 is configured as described above, and the operation thereof will be described. First, when the first damper DL and the second damper DR expand and contract in the same phase, that is, when the displacement phases of the pistons 3L and 3R relative to the cylinders 2L and 2R are the same in the first damper DL and the second damper DR. explain.

第一ダンパDLと第二ダンパDRが共に同速度で伸長する場合、第一ダンパDLと第二ダンパDRの伸側室EL,ERの容積が減少し圧側室CL,CRの容積が増大する。そして、第一ダンパDLにおける伸側室ELから流出する作動油は、第一流路P1に設けた第一伸側減衰弁EVLと第一圧側吸込弁CSRを通過して、第二ダンパDRの容積が増大する圧側室CRへ流入する。また、第二ダンパDRにおける伸側室ERから流出する作動油は、第二流路P2に設けた第二伸側減衰弁EVRと第二圧側吸込弁CSLを通過して、第一ダンパDLの容積が増大する圧側室CLへ流入する。   When both the first damper DL and the second damper DR extend at the same speed, the volumes of the extension side chambers EL and ER of the first damper DL and the second damper DR are decreased, and the volumes of the compression side chambers CL and CR are increased. The hydraulic fluid flowing out from the expansion side chamber EL in the first damper DL passes through the first expansion side damping valve EVL and the first pressure side suction valve CSR provided in the first flow path P1, and the volume of the second damper DR is increased. It flows into the increasing pressure side chamber CR. Further, the hydraulic oil flowing out from the expansion side chamber ER in the second damper DR passes through the second expansion side damping valve EVR and the second pressure side suction valve CSL provided in the second flow path P2, and the volume of the first damper DL. Flows into the pressure side chamber CL where the pressure increases.

第一ダンパDLおよび第二ダンパDRにおいて、伸側室EL,ERで減少する容積より圧側室CL,CRで増大する容積の方が、ピストンロッド4L,4Rがシリンダ2L,2Rから退出する体積分だけ大きくなるので、圧側室CL,CR内で作動油が不足する。圧側室CLで不足する体積分の作動油は、第二アキュムレータARから第二逆止弁GRと第二圧側吸込弁CSLを介して供給される。圧側室CRで不足する体積分の作動油は、第一アキュムレータALから第一逆止弁GLと第一圧側吸込弁CSRを介して供給される。   In the first damper DL and the second damper DR, the volume that increases in the compression side chambers CL and CR is more than the volume that decreases in the extension side chambers EL and ER, only the volume that the piston rods 4L and 4R retract from the cylinders 2L and 2R. Since it becomes large, there is insufficient hydraulic oil in the pressure side chambers CL and CR. The volume of hydraulic oil that is insufficient in the pressure side chamber CL is supplied from the second accumulator AR via the second check valve GR and the second pressure side suction valve CSL. The volume of hydraulic oil that is insufficient in the pressure side chamber CR is supplied from the first accumulator AL via the first check valve GL and the first pressure side suction valve CSR.

圧側室CLには、第二アキュムレータARから供給されるが、作動油が第二逆止弁GRと第二圧側吸込弁CSLを通過する際に抵抗がほとんどないので、圧側室CL内の圧力は第二アキュムレータARとほぼ等しくなる。さらに、圧側室CRには、第一アキュムレータALから供給されるが、作動油が第一逆止弁GLと第一圧側吸込弁CSRを通過する際に抵抗がほとんどないので、圧側室CR内の圧力は第一アキュムレータALとほぼ等しくなる。そして、作動油が第一伸側減衰弁EVLと第二伸側減衰弁EVRを通過するので、伸側室ELと圧側室CLの圧力および伸側室ERと圧側室CRの圧力に差が生じる。よって、第一ダンパDLと第二ダンパDRが共に同速度で伸長する場合、第一ダンパDLと第二ダンパDRは、第一伸側減衰弁EVLと第二伸側減衰弁EVRによって伸長動作を抑制する減衰力を発揮する。   Although the pressure side chamber CL is supplied from the second accumulator AR, since there is almost no resistance when the hydraulic oil passes through the second check valve GR and the second pressure side suction valve CSL, the pressure in the pressure side chamber CL is It becomes almost equal to the second accumulator AR. Further, the pressure side chamber CR is supplied from the first accumulator AL, but there is almost no resistance when the hydraulic oil passes through the first check valve GL and the first pressure side suction valve CSR. The pressure is approximately equal to the first accumulator AL. And since hydraulic fluid passes the 1st expansion side damping valve EVL and the 2nd expansion side damping valve EVR, a difference arises in the pressure of the expansion side chamber EL and the compression side chamber CL, and the pressure of the expansion side chamber ER and the compression side chamber CR. Therefore, when both the first damper DL and the second damper DR are extended at the same speed, the first damper DL and the second damper DR are extended by the first extension side damping valve EVL and the second extension side damping valve EVR. Demonstrate damping force.

逆に、第一ダンパDLと第二ダンパDRが共に同速度で圧縮される場合、第一ダンパDLと第二ダンパDRの伸側室EL,ERの容積が増大し圧側室CL,CRの容積が減少する。そして、第一ダンパDLにおける圧側室CLから流出する作動油は、第二流路P2に設けた第二圧側減衰弁CVLと第二伸側吸込弁ESRを通過して、第二ダンパDRの容積が増大する伸側室ERへ流入する。また、第二ダンパDRにおける圧側室CRから流出する作動油は、第一流路P1に設けた第一圧側減衰弁CVRと第一伸側吸込弁ESLを通過して、第一ダンパDLの容積が増大する伸側室ELへ流入する。   On the contrary, when both the first damper DL and the second damper DR are compressed at the same speed, the volumes of the extension side chambers EL and ER of the first damper DL and the second damper DR are increased, and the volumes of the compression side chambers CL and CR are increased. Decrease. The hydraulic oil flowing out from the pressure side chamber CL in the first damper DL passes through the second pressure side damping valve CVL and the second extension side suction valve ESR provided in the second flow path P2, and the volume of the second damper DR. Flows into the expanding chamber ER. In addition, the hydraulic oil flowing out from the pressure side chamber CR in the second damper DR passes through the first pressure side damping valve CVR and the first extension side suction valve ESL provided in the first flow path P1, and the volume of the first damper DL is increased. It flows into the expanding extension chamber EL.

第一ダンパDLおよび第二ダンパDRにおいて、伸側室EL,ERで増大する容積より圧側室CL,CRで減少する容積の方が、ピストンロッド4L,4Rがシリンダ2L,2Rへ進入する体積分だけ大きくなるので、圧側室CL,CR内で作動油が過剰となる。圧側室CLで過剰となる体積分の作動油は、第二アキュムレータARに第二減衰弁VRを介して吸収される。圧側室CRで過剰となる体積分の作動油は、第一アキュムレータALに第一減衰弁VLを介して吸収される。   In the first damper DL and the second damper DR, the volume that decreases in the compression chambers CL and CR is only the volume that the piston rods 4L and 4R enter the cylinders 2L and 2R than the volume that increases in the expansion chambers EL and ER. Since it becomes large, hydraulic fluid becomes excessive in the pressure side chambers CL and CR. The volume of hydraulic oil that is excessive in the pressure side chamber CL is absorbed by the second accumulator AR through the second damping valve VR. The volume of hydraulic oil that is excessive in the pressure side chamber CR is absorbed by the first accumulator AL through the first damping valve VL.

第一ダンパDLと第二ダンパDRが共に同速度で圧縮される場合、作動油は、圧側室CLから第二圧側減衰弁CVLと第二減衰弁VRを通過して第二アキュムレータARへ、第二圧側減衰弁CVLと第二伸側吸込弁ESRを介して伸側室ERへ移動する。また、作動油は、圧側室CRから第一圧側減衰弁CVRと第一減衰弁VLを通過して第一アキュムレータALへ、第一圧側減衰弁CVRと第一伸側吸込弁ESLを介して伸側室ELへ移動する。これにより、圧側室CLと伸側室ELの圧力に差が生じるとともに、圧側室CRと伸側室ERの圧力に差が生じる。よって、第一ダンパDLと第二ダンパDRが共に同速度で圧縮される場合、第一ダンパDLと第二ダンパDRは、第二圧側減衰弁CVL、第二減衰弁VR、第一圧側減衰弁CVRおよび第一減衰弁VLによって圧縮動作を抑制する減衰力を発揮する。   When both the first damper DL and the second damper DR are compressed at the same speed, the hydraulic oil passes through the second pressure side damping valve CVL and the second damping valve VR from the pressure side chamber CL to the second accumulator AR. It moves to the expansion side chamber ER via the second pressure side damping valve CVL and the second expansion side suction valve ESR. Further, the hydraulic oil passes through the first pressure side damping valve CVR and the first damping valve VL from the pressure side chamber CR, and extends to the first accumulator AL via the first pressure side damping valve CVR and the first extension side suction valve ESL. Move to side chamber EL. As a result, a difference occurs in the pressure between the compression side chamber CL and the extension side chamber EL, and a difference occurs in the pressure between the compression side chamber CR and the extension side chamber ER. Therefore, when both the first damper DL and the second damper DR are compressed at the same speed, the first damper DL and the second damper DR are the second pressure side damping valve CVL, the second damping valve VR, and the first pressure side damping valve. A damping force that suppresses the compression operation is exhibited by the CVR and the first damping valve VL.

つづいて、第一ダンパDLと第二ダンパDRが逆位相で伸縮する場合、つまり、シリンダ2L,2Rに対するピストン3L,3Rの変位の位相が第一ダンパDLと第二ダンパDRとで全く逆となる場合について説明する。   Subsequently, when the first damper DL and the second damper DR expand and contract in opposite phases, that is, the displacement phases of the pistons 3L and 3R relative to the cylinders 2L and 2R are completely opposite between the first damper DL and the second damper DR. A case will be described.

第一ダンパDLが伸長し、第二ダンパDRが第一ダンパDLと同速度で逆に圧縮されると、第一ダンパDLの伸側室ELの容積が減少し圧側室CLの容積が増大し、第二ダンパDRの伸側室ERの容積が増大し圧側室CRの容積が減少する。   When the first damper DL is expanded and the second damper DR is compressed at the same speed as the first damper DL, the volume of the expansion side chamber EL of the first damper DL decreases and the volume of the compression side chamber CL increases, The volume of the extension side chamber ER of the second damper DR increases and the volume of the compression side chamber CR decreases.

この場合、第一流路P1で接続される第一ダンパDLの伸側室ELと第二ダンパDRの圧側室CRの容積が共に減少する。第一ダンパDLの伸側室ELから流出する作動油は、第一伸側減衰弁EVLと第一減衰弁VLを介して第一アキュムレータALに吸収される。また、第二ダンパDRの圧側室CRから流出する作動油は、第一圧側減衰弁CVRと第一減衰弁VLを介して第一アキュムレータALに吸収される。   In this case, the volumes of the extension side chamber EL of the first damper DL and the compression side chamber CR of the second damper DR connected by the first flow path P1 are both reduced. The hydraulic fluid flowing out from the expansion side chamber EL of the first damper DL is absorbed by the first accumulator AL through the first expansion side damping valve EVL and the first damping valve VL. Further, the hydraulic oil flowing out from the pressure side chamber CR of the second damper DR is absorbed by the first accumulator AL through the first pressure side damping valve CVR and the first damping valve VL.

他方、第二流路P2で接続される第一ダンパDLの圧側室CLと第二ダンパDRの伸側室ERの容積が共に増大する。第一ダンパDLの圧側室CLに対しては、第二逆止弁GRと第二圧側吸込弁CSLを介して第二アキュムレータARから作動油が供給される。第二ダンパDRの伸側室ERに対しては、第二逆止弁GRと第二伸側吸込弁ESRを介して第二アキュムレータARから作動油が供給される。つまり、第一ダンパDLの圧側室CLと第二ダンパDRの伸側室ERには、第二アキュムレータARから作動油がほとんど抵抗なく供給されるので、圧側室CLと伸側室ERの圧力は第二アキュムレータARとほぼ等しくなる。   On the other hand, the volumes of the compression side chamber CL of the first damper DL and the extension side chamber ER of the second damper DR connected by the second flow path P2 both increase. The hydraulic oil is supplied from the second accumulator AR to the pressure side chamber CL of the first damper DL via the second check valve GR and the second pressure side suction valve CSL. The hydraulic oil is supplied from the second accumulator AR to the extension side chamber ER of the second damper DR via the second check valve GR and the second extension side suction valve ESR. That is, since the hydraulic oil is supplied from the second accumulator AR to the compression side chamber CL of the first damper DL and the expansion side chamber ER of the second damper DR with almost no resistance, the pressure in the compression side chamber CL and the expansion side chamber ER is the second pressure. It becomes almost equal to the accumulator AR.

これにより、圧側室CLと伸側室ELの圧力に差が生じるとともに、圧側室CRと伸側室ERの圧力に差が生じる。よって、第一ダンパDLが伸長し、第二ダンパDRが第一ダンパDLと同速度で圧縮される場合、第一ダンパDLと第二ダンパDRは、第一伸側減衰弁EVL、第一圧側減衰弁CVRおよび第一減衰弁VLによって自身の伸縮動作を抑制する減衰力を発揮する。   As a result, a difference occurs in the pressure between the compression side chamber CL and the extension side chamber EL, and a difference occurs in the pressure between the compression side chamber CR and the extension side chamber ER. Therefore, when the first damper DL is expanded and the second damper DR is compressed at the same speed as the first damper DL, the first damper DL and the second damper DR are provided with the first expansion side damping valve EVL, the first pressure side, The damping valve CVR and the first damping valve VL exhibit a damping force that suppresses its own expansion and contraction operation.

そして、第一ダンパDLが伸長し、第二ダンパDRが第一ダンパDLと同速度で圧縮される場合、第一アキュムレータALと第二アキュムレータALへ出入りする作動油量は、第一ダンパDLと第二ダンパDRが同位相で伸縮する場合に比較して多くなる。   When the first damper DL is extended and the second damper DR is compressed at the same speed as the first damper DL, the amount of hydraulic oil entering and exiting the first accumulator AL and the second accumulator AL is the same as that of the first damper DL. More than when the second damper DR expands and contracts in the same phase.

そのため、第一ダンパDLが伸長し、第二ダンパDRが第一ダンパDLと同速度で圧縮される場合、第一ダンパDLと第二ダンパDRが共に同位相で伸縮する場合に比較して、第一アキュムレータAL内の圧力が高くなる。加えて、作動油は、第一伸側減衰弁EVL、第一圧側減衰弁CVRおよび第一減衰弁VLを通過するため圧力損失が大きくなり、伸側室ELと圧側室CLの圧力差および伸側室ERと圧側室CRの圧力差も大きくなる。   Therefore, when the first damper DL is expanded and the second damper DR is compressed at the same speed as the first damper DL, compared to the case where the first damper DL and the second damper DR both expand and contract in the same phase, The pressure in the first accumulator AL increases. In addition, since the hydraulic oil passes through the first expansion side damping valve EVL, the first pressure side damping valve CVR, and the first damping valve VL, the pressure loss increases, and the pressure difference between the expansion side chamber EL and the pressure side chamber CL and the expansion side chamber are increased. The pressure difference between the ER and the pressure side chamber CR also increases.

したがって、第一ダンパDLが伸長し、第二ダンパDRが第一ダンパDLと同速度で圧縮される場合、第一ダンパDLと第二ダンパDRが共に同位相で伸縮する場合に比較して、第一ダンパDLと第二ダンパDRが発揮する減衰力は大きくなる。   Therefore, when the first damper DL is expanded and the second damper DR is compressed at the same speed as the first damper DL, compared to the case where the first damper DL and the second damper DR both expand and contract in the same phase, The damping force exhibited by the first damper DL and the second damper DR increases.

反対に第一ダンパDLが圧縮され、第二ダンパDRが第一ダンパDLと同速度で伸長すると、第一ダンパDLの圧側室CLの容積が減少し伸側室ELの容積が増大し、第二ダンパDRの圧側室CRの容積が増大し伸側室ERの容積が減少する。   On the contrary, when the first damper DL is compressed and the second damper DR is extended at the same speed as the first damper DL, the volume of the compression side chamber CL of the first damper DL is decreased and the volume of the extension side chamber EL is increased. The volume of the compression side chamber CR of the damper DR increases and the volume of the extension side chamber ER decreases.

この場合、第二流路P2で接続される第一ダンパDLの圧側室CLと第二ダンパDRの伸側室ERの容積が共に減少する。第一ダンパDLの圧側室CLから流出する作動油は、第二圧側減衰弁CVLと第二減衰弁VRを介して第二アキュムレータARに吸収される。また、第二ダンパDRの伸側室ERから流出する作動油は、第二伸側減衰弁EVRと第二減衰弁VRを介して第二アキュムレータARに吸収される。   In this case, the volumes of the compression side chamber CL of the first damper DL and the extension side chamber ER of the second damper DR connected by the second flow path P2 are both reduced. The hydraulic fluid flowing out from the pressure side chamber CL of the first damper DL is absorbed by the second accumulator AR through the second pressure side damping valve CVL and the second damping valve VR. Further, the hydraulic oil flowing out from the extension side chamber ER of the second damper DR is absorbed by the second accumulator AR through the second extension side damping valve EVR and the second damping valve VR.

他方、第一流路P1で接続される第一ダンパDLの伸側室ELと第二ダンパDRの圧側室CRの容積が共に増大する。第一ダンパDLの伸側室ELに対しては、第一逆止弁GLと第一伸側吸込弁ESLを介して第一アキュムレータALから作動油が供給される。第二ダンパDRの圧側室CRに対しては、第一逆止弁GLと第一圧側吸込弁CSRを介して第一アキュムレータALから作動油が供給される。つまり、第一ダンパDLの伸側室ELと第二ダンパDRの圧側室CRには、第一アキュムレータALから作動油がほとんど抵抗なく供給されるので、伸側室ELと圧側室CRの圧力は第一アキュムレータALとほぼ等しくなる。   On the other hand, the volumes of the extension side chamber EL of the first damper DL and the compression side chamber CR of the second damper DR connected by the first flow path P1 both increase. Hydraulic fluid is supplied from the first accumulator AL to the extension side chamber EL of the first damper DL via the first check valve GL and the first extension side suction valve ESL. The hydraulic oil is supplied from the first accumulator AL to the pressure side chamber CR of the second damper DR via the first check valve GL and the first pressure side suction valve CSR. That is, since the hydraulic oil is supplied from the first accumulator AL to the expansion side chamber EL of the first damper DL and the compression side chamber CR of the second damper DR with almost no resistance, the pressure in the expansion side chamber EL and the compression side chamber CR is the first pressure. It is almost equal to the accumulator AL.

これにより、圧側室CLと伸側室ELの圧力に差が生じるとともに、圧側室CRと伸側室ERの圧力に差が生じる。よって、第一ダンパDLが圧縮され、第二ダンパDRが第一ダンパDLと同速度で伸長する場合、第一ダンパDLと第二ダンパDRは、第二圧側減衰弁CVL、第二伸側減衰弁EVRおよび第二減衰弁VRによって自身の伸縮動作を抑制する減衰力を発揮する。   As a result, a difference occurs in the pressure between the compression side chamber CL and the extension side chamber EL, and a difference occurs in the pressure between the compression side chamber CR and the extension side chamber ER. Therefore, when the first damper DL is compressed and the second damper DR extends at the same speed as the first damper DL, the first damper DL and the second damper DR are provided with the second pressure side damping valve CVL and the second extension side damping. The valve EVR and the second damping valve VR exhibit a damping force that suppresses its own expansion and contraction operation.

そして、第一ダンパDLが圧縮され、第二ダンパDRが第一ダンパDLと同速度で伸長する場合、第一アキュムレータALと第二アキュムレータARへ出入りする作動油量は、第一ダンパDLと第二ダンパDRが同位相で伸縮する場合に比較して多くなる。   When the first damper DL is compressed and the second damper DR extends at the same speed as the first damper DL, the amount of hydraulic oil entering and leaving the first accumulator AL and the second accumulator AR is the same as that of the first damper DL and the second damper DL. More than when the two dampers DR expand and contract in the same phase.

そのため、第一ダンパDLが圧縮され、第二ダンパDRが第一ダンパDLと同速度で伸長する場合、第一ダンパDLと第二ダンパDRが共に同位相で伸縮する場合に比較して、第二アキュムレータAR内の圧力が高くなる。加えて、作動油は、第二圧側減衰弁CVL、第二伸側減衰弁EVRと第二減衰弁VRを通過するため圧力損失が大きくなり、伸側室ELと圧側室CLの圧力差および伸側室ERと圧側室CRの圧力差も大きくなる。   Therefore, when the first damper DL is compressed and the second damper DR is expanded at the same speed as the first damper DL, the first damper DL and the second damper DR are both expanded and contracted in the same phase. The pressure in the second accumulator AR increases. In addition, since hydraulic fluid passes through the second pressure side damping valve CVL, the second extension side damping valve EVR, and the second damping valve VR, the pressure loss increases, and the pressure difference between the extension side chamber EL and the pressure side chamber CL and the extension side chamber are increased. The pressure difference between the ER and the pressure side chamber CR also increases.

したがって、第一ダンパDLが圧縮され、第二ダンパDRが第一ダンパDLと同速度で伸長する場合、第一ダンパDLと第二ダンパDRが共に同位相で伸縮する場合に比較して、第一ダンパDLと第二ダンパDRが発揮する減衰力は大きくなる。   Therefore, when the first damper DL is compressed and the second damper DR is expanded at the same speed as the first damper DL, the first damper DL and the second damper DR are both expanded and contracted in the same phase. The damping force exerted by the first damper DL and the second damper DR increases.

なお、前記の説明では、第一ダンパDLと第二ダンパDRが同位相および逆位相で伸縮し、かつ、ピストン速度が同じ状況について説明しているが、第一ダンパDLと第二ダンパDRの発生減衰力は、各アキュムレータAL,ARで供排する作動油量に依存して変化する。よって、第一ダンパDLと第二ダンパDRの一方のみが伸縮したり、これら第一ダンパDLと第二ダンパDRが位相をずらして伸縮したりするような場合には、第一ダンパDLと第二ダンパDRは各アキュムレータAL,ARで供排される作動油量に応じて、減衰力を発揮する。したがって、このような場合、第一ダンパDLと第二ダンパDRは、同位相で伸縮する場合と逆位相で伸縮する場合の中間の減衰力を発生する。   In the above description, the first damper DL and the second damper DR are expanded and contracted in the same phase and the opposite phase, and the piston speed is the same. However, the first damper DL and the second damper DR The generated damping force varies depending on the amount of hydraulic oil supplied and discharged by the accumulators AL and AR. Therefore, when only one of the first damper DL and the second damper DR expands or contracts, or when the first damper DL and the second damper DR expand or contract with a phase shift, the first damper DL and the second damper DR The two dampers DR exhibit a damping force according to the amount of hydraulic oil supplied and discharged by the accumulators AL and AR. Therefore, in such a case, the first damper DL and the second damper DR generate an intermediate damping force when expanding and contracting in the same phase and when expanding and contracting in the opposite phase.

このように、第一ダンパDLと第二ダンパDRが逆位相で伸縮する場合に第一ダンパDLと第二ダンパDRが発生する減衰力は、第一ダンパDLと第二ダンパDRが同位相で伸縮する場合に第一ダンパDLと第二ダンパDRが発生する減衰力よりも大きくなる。よって、このサスペンション装置1では、車体がロールする場合には、減衰力が大きくなって車体のロールを効果的に抑制できるともに、車体が上下動する場合には減衰力は小さくなるので、車両における乗り心地を向上できる。   As described above, when the first damper DL and the second damper DR expand and contract in opposite phases, the damping force generated by the first damper DL and the second damper DR is the same in the first damper DL and the second damper DR. When expanding and contracting, the damping force is greater than the damping force generated by the first damper DL and the second damper DR. Therefore, in this suspension device 1, when the vehicle body rolls, the damping force becomes large and the rolling of the vehicle body can be effectively suppressed, and when the vehicle body moves up and down, the damping force becomes small. Ride comfort can be improved.

そして、本発明のサスペンション装置1にあっては、第一ダンパDLの伸側室ELと第二ダンパDRの圧側室CRとを連通する第一流路P1と第一アキュムレータALとの間に、第一減衰弁VLと並列して第一アキュムレータALから第一流路P1へ向かう作動油の流れのみを許容する第一逆止弁GLを備え、第一ダンパDLの圧側室CLと第二ダンパDRの伸側室ERとを連通する第二流路P2と第二アキュムレータARとの間に、第二減衰弁VRと並列して第二アキュムレータARから第二流路P2へ向かう作動油の流れのみを許容する第二逆止弁GRを備えて構成されている。したがって、第一アキュムレータALと第二アキュムレータARへ作動油が流入する場合、第一減衰弁VL或いは第二減衰弁VRによって作動油の流れに抵抗を与えられるので、第一ダンパDLと第二ダンパDRが逆位相で伸縮する場合に大きな減衰力を得ることができ、車体のロールを効果的に抑制できる。また、第一減衰弁VLに対しては第一逆止弁GLを並列させ、第二減衰弁VRに対しては第二逆止弁GRを並列させているので、第一アキュムレータALと第二アキュムレータARから第一ダンパDL或いは第二ダンパDRへの作動油の供給に際して、第一逆止弁GLと第二逆止弁GRが開弁するため第一減衰弁VLと第二減衰弁VRが抵抗とならず、速やかに作動油が供給されるので、第一ダンパDLと第二ダンパDRが逆位相で伸縮する場合にあっても、伸側室EL,ERと圧側室CL,CR内の圧力が大気圧以下になることもなくなる。そのため、サスペンション装置1にあっては、第一ダンパDLと第二ダンパDRが逆位相で伸縮する際に、伸側室EL,ERと圧側室CL,CRのうち容積が増大する室が大気圧以下とならないので、作動油中に気泡が生じず異音の発生が抑制される。   In the suspension device 1 of the present invention, the first accumulator AL is connected between the first flow path P1 that communicates the extension side chamber EL of the first damper DL and the pressure side chamber CR of the second damper DR. A first check valve GL that allows only the flow of hydraulic oil from the first accumulator AL to the first flow path P1 in parallel with the damping valve VL is provided, and the pressure side chamber CL of the first damper DL and the extension of the second damper DR are provided. Only the flow of hydraulic oil from the second accumulator AR to the second flow path P2 is allowed in parallel with the second damping valve VR between the second flow path P2 communicating with the side chamber ER and the second accumulator AR. A second check valve GR is provided. Therefore, when the hydraulic fluid flows into the first accumulator AL and the second accumulator AR, resistance is given to the flow of the hydraulic fluid by the first damping valve VL or the second damping valve VR, so the first damper DL and the second damper A large damping force can be obtained when the DR expands and contracts in the opposite phase, and the roll of the vehicle body can be effectively suppressed. Further, since the first check valve GL is arranged in parallel with the first damping valve VL and the second check valve GR is arranged in parallel with the second damping valve VR, the first accumulator AL and the second check valve VL are arranged in parallel. When the hydraulic oil is supplied from the accumulator AR to the first damper DL or the second damper DR, the first check valve GL and the second check valve GR are opened. Since the hydraulic oil is supplied quickly without resistance, even if the first damper DL and the second damper DR expand and contract in opposite phases, the pressures in the extension side chambers EL and ER and the pressure side chambers CL and CR No longer falls below atmospheric pressure. Therefore, in the suspension device 1, when the first damper DL and the second damper DR expand and contract in opposite phases, the chamber whose volume increases among the expansion side chambers EL and ER and the compression side chambers CL and CR is below atmospheric pressure. Therefore, bubbles are not generated in the hydraulic oil, and generation of abnormal noise is suppressed.

さらに、第一アキュムレータALと第二アキュムレータARのガス圧を高める必要もないので、作動油の温度変化によって体積が変化しても、第一アキュムレータALと第二アキュムレータARのガス圧変動も少なくなって、車両における車高変動を抑制できる。また、図示はしないが、第一ダンパDLと第二ダンパDRの摺動部であるピストンロッド4L,4Rの外周には、シリンダ2L,2R内を油密に保つためにシール部材が設けられ、さらには、第一アキュムレータALと第二アキュムレータARにあっても気室をフリーピストン等で区画する場合にはフリーピストンの外周にシール部材が設けられて摺動部がシールされるが、第一アキュムレータALと第二アキュムレータARのガス圧を高くせずに済むので、図外のシール部材に作用する圧力も低くて済む。そのため、サスペンション装置1の摺動部におけるシール部材で発生する摩擦力が高くならずに済み、第一ダンパDLと第二ダンパDRは円滑に伸縮できみ、シール耐久性にも影響を及ぼさない。   Furthermore, since it is not necessary to increase the gas pressure of the first accumulator AL and the second accumulator AR, even if the volume changes due to the temperature change of the hydraulic oil, the gas pressure fluctuations of the first accumulator AL and the second accumulator AR are reduced. Thus, vehicle height fluctuations in the vehicle can be suppressed. Although not shown, a seal member is provided on the outer periphery of the piston rods 4L and 4R which are sliding portions of the first damper DL and the second damper DR in order to keep the cylinders 2L and 2R oil-tight. Furthermore, when the air chamber is partitioned by a free piston or the like even in the first accumulator AL and the second accumulator AR, a seal member is provided on the outer periphery of the free piston to seal the sliding portion. Since it is not necessary to increase the gas pressure of the accumulator AL and the second accumulator AR, the pressure acting on the seal member (not shown) can be reduced. Therefore, the frictional force generated by the seal member at the sliding portion of the suspension device 1 does not need to be high, and the first damper DL and the second damper DR can be smoothly expanded and contracted, and the seal durability is not affected.

さらに、本実施の形態のサスペンション装置1では、第一流路P1に接続点CPLを挟んで、第一伸側減衰弁EVLと第一伸側吸込弁ESLとを並列に設けるとともに、第一圧側減衰弁CVRと第一圧側吸込弁CSRとを並列に設け、第二流路P2に接続点CPRを挟んで、第二伸側減衰弁EVRと第二伸側吸込弁ESRとを並列に設けるとともに、第二圧側減衰弁CVLと第二圧側吸込弁CSLとを並列に設けたので、第一ダンパDLと第二ダンパDRが同位相で伸長する場合には、第一伸側減衰弁EVLと第二伸側減衰弁EVRによって伸長動作を抑制する減衰力を発揮し、第一ダンパDLと第二ダンパDRが同位相で圧縮される場合、第二圧側減衰弁CVL、第二減衰弁VR、第一圧側減衰弁CVRおよび第一減衰弁VLによって圧縮動作を抑制する減衰力を発揮する。このように、本実施の形態のサスペンション装置1では、第一ダンパDLと第二ダンパDRが同位相で伸長する場合と圧縮される場合とで、減衰力を発揮する減衰弁が異なる。よって、本実施の形態のサスペンション装置1は、第一ダンパDLと第二ダンパDRが同位相で伸長する際に発揮する減衰力と第一ダンパDLと第二ダンパDRが同位相で圧縮される際に発揮する減衰力とを別個独立に設定可能である。したがって、本実施の形態のサスペンション装置1によれば、特に、圧縮側の減衰力を小さくしたい要望に対しても応え得る。   Furthermore, in the suspension device 1 of the present embodiment, the first extension side damping valve EVL and the first extension side suction valve ESL are provided in parallel with the connection point CPL sandwiched between the first flow path P1, and the first pressure side damping is provided. The valve CVR and the first pressure side suction valve CSR are provided in parallel, and the second extension side damping valve EVR and the second extension side suction valve ESR are provided in parallel with the connection point CPR sandwiched between the second flow path P2. Since the second pressure side damping valve CVL and the second pressure side suction valve CSL are provided in parallel, when the first damper DL and the second damper DR extend in the same phase, the first expansion side damping valve EVL and the second When the first damper DL and the second damper DR are compressed in the same phase by exhibiting a damping force that suppresses the extension operation by the extension side damping valve EVR, the second pressure side damping valve CVL, the second damping valve VR, Compression by compression side damping valve CVR and first damping valve VL It exerts a damping force for restricting the work. As described above, in the suspension device 1 according to the present embodiment, the damping valve that exhibits the damping force is different depending on whether the first damper DL and the second damper DR are expanded in phase or compressed. Therefore, in the suspension device 1 of the present embodiment, the damping force exhibited when the first damper DL and the second damper DR extend in the same phase, and the first damper DL and the second damper DR are compressed in the same phase. The damping force exhibited at the time can be set separately and independently. Therefore, according to the suspension device 1 of the present embodiment, it is possible to meet a demand for reducing the compression side damping force.

なお、第一ダンパDLと第二ダンパDRの車両への配置であるが、前述したところでは、第一ダンパDLと第二ダンパDRをそれぞれ車両の左右輪と車体との間に配置して車体のロールを抑制する例を説明したが、第一ダンパDLと第二ダンパDRをそれぞれ車両の前後輪と車体との間に配置すると車体のピッチング時に減衰力が大きくなって当該車体のピッチングを抑制できる。また、第一ダンパDLと第二ダンパDRをそれぞれ車両の右前輪と左後輪と車体の間、或いは、車両の左前輪と右後輪と車体の間に配置すると、車体のロールだけでなくピッチング時に減衰力が大きくなって当該車体のロールとピッチングの双方を抑制できる。   The first damper DL and the second damper DR are arranged on the vehicle. However, as described above, the first damper DL and the second damper DR are arranged between the left and right wheels of the vehicle and the vehicle body, respectively. Although an example of suppressing the roll of the vehicle has been described, if the first damper DL and the second damper DR are respectively disposed between the front and rear wheels of the vehicle and the vehicle body, the damping force is increased when the vehicle body is pitched, thereby suppressing the vehicle body pitching. it can. Further, if the first damper DL and the second damper DR are respectively disposed between the right front wheel and the left rear wheel of the vehicle and the vehicle body, or between the left front wheel and the right rear wheel of the vehicle and the vehicle body, A damping force becomes large at the time of pitching, and both roll and pitching of the vehicle body can be suppressed.

以上で、本発明の実施の形態についての説明を終えるが、本発明の範囲は図示されまたは説明された詳細そのものには限定されないことは勿論である。   This is the end of the description of the embodiment of the present invention, but the scope of the present invention is of course not limited to the details shown or described.

1・・・サスペンション装置、2L,2R・・・シリンダ、3L,3R・・・ピストン、AL・・・第一アキュムレータ、AR・・・第二アキュムレータ、CL,CR・・・圧側室、CPL,CPR・・・接続点、CSL・・・第二圧側吸込弁、CSR・・・第一圧側吸込弁、CVL・・・第二圧側減衰弁、CVR・・・第一圧側減衰弁、DL・・・第一ダンパ、DR・・・第二ダンパ、EL,ER・・・伸側室、ESL・・・第一伸側吸込弁、ESR・・・第二伸側吸込弁、EVL・・・第一伸側減衰弁、EVR・・・第二圧側減衰弁、GL・・・第一逆止弁、GR・・・第二逆止弁、P1・・・第一流路、P2・・・第二流路、VL・・・第一減衰弁、VR・・・第二減衰弁 DESCRIPTION OF SYMBOLS 1 ... Suspension apparatus, 2L, 2R ... Cylinder, 3L, 3R ... Piston, AL ... 1st accumulator, AR ... 2nd accumulator, CL, CR ... Pressure side chamber, CPL, CPR ... Connection point, CSL ... Second pressure side suction valve, CSR ... First pressure side suction valve, CVL ... Second pressure side damping valve, CVR ... First pressure side damping valve, DL ... First damper, DR ... second damper, EL, ER ... extension side chamber, ESL ... first extension side suction valve, ESR ... second extension side suction valve, EVL ... first Extension side damping valve, EVR ... second pressure side damping valve, GL ... first check valve, GR ... second check valve, P1 ... first flow path, P2 ... second flow Road, VL ... first damping valve, VR ... second damping valve

Claims (2)

シリンダと、前記シリンダ内に摺動自在に挿入されて前記シリンダ内に伸側室と圧側室を区画するピストンとを備えた第一ダンパおよび第二ダンパと、
前記第一ダンパにおける伸側室と前記第二ダンパの圧側室とを連通する第一流路と
前記第一ダンパにおける圧側室と前記第二ダンパの伸側室とを連通する第二流路と、
前記第一流路の途中に接続される第一アキュムレータと、
前記第二流路の途中に接続される第二アキュムレータと、
前記第一流路から前記第一アキュムレータへ向かう液体の流れに抵抗を与える第一減衰弁と、
前記第一減衰弁に並列されて前記第一アキュムレータから前記第一流路へ向かう液体の流れのみを許容する第一逆止弁と、
前記第二流路から前記第二アキュムレータへ向かう液体の流れに抵抗を与える第二減衰弁と、
前記第二減衰弁に並列されて前記第二アキュムレータから前記第二流路へ向かう液体の流れのみを許容する第二逆止弁と
を備えたことを特徴とするサスペンション装置。
A first damper and a second damper each having a cylinder and a piston that is slidably inserted into the cylinder and defines an extension side chamber and a pressure side chamber in the cylinder;
A first flow path communicating the extension side chamber of the first damper and the pressure side chamber of the second damper; a second flow path communicating the pressure side chamber of the first damper and the extension side chamber of the second damper;
A first accumulator connected in the middle of the first flow path;
A second accumulator connected in the middle of the second flow path;
A first damping valve that provides resistance to the flow of liquid from the first flow path to the first accumulator;
A first check valve that allows only the flow of liquid from the first accumulator to the first flow path in parallel with the first damping valve;
A second damping valve that provides resistance to the flow of liquid from the second flow path to the second accumulator;
A suspension device comprising: a second check valve arranged in parallel with the second damping valve and allowing only a liquid flow from the second accumulator toward the second flow path.
前記第一流路の途中であって、前記第一アキュムレータの接続点よりも前記第一ダンパ側に、前記第一ダンパの伸側室から前記第一流路へ向かう液体の流れに抵抗を与える第一伸側減衰弁と、前記第一流路から前記第一ダンパの伸側室へ向かう液体のみを許容する第一伸側吸込弁とを並列に設け、
前記第一流路の途中であって、前記第一アキュムレータの接続点よりも前記第二ダンパ側に、前記第二ダンパの圧側室から前記第一流路へ向かう液体の流れに抵抗を与える第一圧側減衰弁と、前記第一流路から前記第二ダンパの圧側室へ向かう液体のみを許容する第一圧側吸込弁とを並列に設け、
前記第二流路の途中であって、前記第二アキュムレータの接続点よりも前記第二ダンパ側に、前記第二ダンパの伸側室から前記第二流路へ向かう液体の流れに抵抗を与える第二伸側減衰弁と、前記第二流路から前記第二ダンパの伸側室へ向かう液体のみを許容する第二伸側吸込弁とを並列に設け、
前記第二流路の途中であって、前記第二アキュムレータの接続点よりも前記第一ダンパ側に、前記第一ダンパの圧側室から前記第二流路へ向かう液体の流れに抵抗を与える第二圧側減衰弁と、前記第二流路から前記第一ダンパの圧側室へ向かう液体のみを許容する第二圧側吸込弁とを並列に設けた
ことを特徴とする請求項1に記載のサスペンション装置。
In the middle of the first flow path, the first extension that provides resistance to the flow of liquid from the extension side chamber of the first damper toward the first flow path, closer to the first damper side than the connection point of the first accumulator. A side damping valve and a first extension side suction valve that allows only liquid from the first flow path to the extension side chamber of the first damper are provided in parallel.
A first pressure side that provides resistance to the flow of liquid from the pressure side chamber of the second damper toward the first flow path in the middle of the first flow path, closer to the second damper side than the connection point of the first accumulator A damping valve and a first pressure side suction valve that allows only liquid from the first flow path to the pressure side chamber of the second damper are provided in parallel.
In the middle of the second flow path, a resistance is given to the flow of the liquid from the extension side chamber of the second damper toward the second flow path to the second damper side from the connection point of the second accumulator. In parallel, a double extension side damping valve and a second extension side suction valve that allows only liquid from the second flow path to the extension side chamber of the second damper are provided,
In the middle of the second flow path, a resistance is given to the flow of liquid from the pressure side chamber of the first damper toward the second flow path, closer to the first damper side than the connection point of the second accumulator. 2. The suspension device according to claim 1, wherein a second pressure side damping valve and a second pressure side suction valve that allows only liquid from the second flow path to the pressure side chamber of the first damper are provided in parallel. .
JP2015135276A 2015-07-06 2015-07-06 Suspension device Pending JP2017013744A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015135276A JP2017013744A (en) 2015-07-06 2015-07-06 Suspension device
PCT/JP2016/069742 WO2017006890A1 (en) 2015-07-06 2016-07-04 Suspension device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015135276A JP2017013744A (en) 2015-07-06 2015-07-06 Suspension device

Publications (1)

Publication Number Publication Date
JP2017013744A true JP2017013744A (en) 2017-01-19

Family

ID=57685504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015135276A Pending JP2017013744A (en) 2015-07-06 2015-07-06 Suspension device

Country Status (2)

Country Link
JP (1) JP2017013744A (en)
WO (1) WO2017006890A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018121671A (en) * 2017-01-30 2018-08-09 株式会社三洋物産 Game machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114852118A (en) * 2022-04-29 2022-08-05 株洲时代新材料科技股份有限公司 Connecting rod length adjusting method and hydraulic connecting rod
CN114852117B (en) * 2022-04-29 2024-03-12 株洲时代新材料科技股份有限公司 Adjustable torsion bar system and anti-rolling method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6278510U (en) * 1985-11-06 1987-05-20
EP0893321A1 (en) * 1997-07-24 1999-01-27 Gec Alsthom Transport Sa An oleopneumatic anti-roll or anti-yaw suspension device
JP5761578B2 (en) * 2011-09-27 2015-08-12 アイシン精機株式会社 Vehicle suspension system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018121671A (en) * 2017-01-30 2018-08-09 株式会社三洋物産 Game machine

Also Published As

Publication number Publication date
WO2017006890A1 (en) 2017-01-12

Similar Documents

Publication Publication Date Title
JP6595831B2 (en) Suspension device and accumulator
JP5961129B2 (en) Shock absorber
US9500256B2 (en) Suspension device
CN1965174A (en) Electronically controlled frequency dependent damping
JP5827871B2 (en) Hydraulic shock absorber
CN110869224A (en) Spring damper system with variable spring rate
WO2017006890A1 (en) Suspension device
WO2016199666A1 (en) Damper
JP5603817B2 (en) Shock absorber
WO2016088536A1 (en) Damper
WO2016199667A1 (en) Damper
WO2017051752A1 (en) Suspension device
WO2017038886A1 (en) Shock-absorbing device
JP5672502B2 (en) Vehicle suspension system
JP2015098277A (en) Suspension
JP4487192B2 (en) Controllable piston valve and / or bottom valve for shock absorber
JP6361414B2 (en) Vehicle suspension system
JP5549889B2 (en) Vehicle suspension system
CN106314061B (en) The hydro-pneumatic suspension system and vehicle of active fixing fabric structure
JP5226275B2 (en) Shock absorber
JP5426853B2 (en) Hydraulic buffer
WO2018082958A1 (en) Shock absorber and vehicle
CN114559781B (en) Rigidity damping actively-adjustable hydro-pneumatic suspension structure and control method thereof
RU2737978C1 (en) Damper
JP2010112423A (en) Hydraulic shock absorber