JP2017012956A - Arsenic-containing soil cleaning method - Google Patents

Arsenic-containing soil cleaning method Download PDF

Info

Publication number
JP2017012956A
JP2017012956A JP2015129366A JP2015129366A JP2017012956A JP 2017012956 A JP2017012956 A JP 2017012956A JP 2015129366 A JP2015129366 A JP 2015129366A JP 2015129366 A JP2015129366 A JP 2015129366A JP 2017012956 A JP2017012956 A JP 2017012956A
Authority
JP
Japan
Prior art keywords
arsenic
soil
solid
containing soil
cationic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015129366A
Other languages
Japanese (ja)
Inventor
川又 睦
Mutsumi Kawamata
睦 川又
真依子 赤塚
Maiko Akatsuka
真依子 赤塚
祐介 忠野
Yusuke Tadano
祐介 忠野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2015129366A priority Critical patent/JP2017012956A/en
Publication of JP2017012956A publication Critical patent/JP2017012956A/en
Pending legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Water Treatment By Sorption (AREA)
  • Processing Of Solid Wastes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an arsenic-containing soil cleaning method having the reduced waste amount to be generated.SOLUTION: Provided is an arsenic-containing soil cleaning method at least having the first to third steps in this order: the first step where arsenic-containing soil and a cationic cleaning agent selected from a chitosan series and a polyacrylic acid ester series are mixed and stirred in water; the second step where a solid phase and a liquid phase including arsenic are subjected to solid-liquid separation; and the third step where the arsenic in the liquid phase is treated.SELECTED DRAWING: Figure 1

Description

本発明は、ヒ素含有土壌の浄化方法に関する。   The present invention relates to a method for purifying arsenic-containing soil.

ヒ素は、自然界で岩石や土壌中に広く存在する。ヒ素が存在する鉱床地帯で、土木工事やシールド掘削等を行うと、ヒ素を含む排土や泥水が大量に発生する。これらは、自然由来の汚染であるため、日本国の土壌汚染対策法における「土壌1kgにつき砒素150mg以下であること」との土壌含有量基準は満足するが、「検液1リットルにつき砒素0.01mg以下であること」との土壌溶出量基準を超過してしまうことがある。そのため、ヒ素を含む排土や泥水は、不溶化法、または洗浄法により処理される。   Arsenic is widely present in rocks and soils in nature. When civil engineering work or shield excavation is carried out in a deposit area where arsenic is present, a large amount of soil and mud containing arsenic is generated. Since these are naturally-occurring pollutions, the soil content standard “150 mg or less of arsenic per kg of soil” in the Japanese soil pollution control law is satisfied, but “arsenic of 0. The soil elution amount standard of “being 01 mg or less” may be exceeded. For this reason, waste soil and mud containing arsenic are treated by an insolubilization method or a cleaning method.

図2に、不溶化法によるヒ素含有土壌の処理方法を示す。不溶化法は、ヒ素を含む泥水中に凝集剤を加え、ヒ素を土粒子等の懸濁物質とともに凝集、沈殿させた後に固液分離して、固相中にヒ素を回収する方法である。不溶化法は、ヒ素が懸濁物質ととともに固相として沈殿するため、ヒ素を含む排土が大量に発生する。そして、この排土は、汚染土壌処理施設や最終処分場等で適正処分をする必要がある。   FIG. 2 shows a method for treating arsenic-containing soil by an insolubilization method. The insolubilization method is a method in which a flocculant is added to mud water containing arsenic, and arsenic is coagulated and precipitated together with suspended substances such as soil particles, followed by solid-liquid separation to recover arsenic in the solid phase. In the insolubilization method, since arsenic precipitates as a solid phase together with suspended solids, a large amount of soil containing arsenic is generated. And it is necessary to dispose of this soil appropriately at a contaminated soil treatment facility or a final disposal site.

図3に、洗浄法によるヒ素含有土壌の処理方法を示す。洗浄法は、ヒ素を含む泥水を酸性またはアルカリ性の洗浄剤で洗浄し、ヒ素を液中に溶解させたまま粗大粒子を沈降させた後に固液分離して、ヒ素を含む液相から凝集沈殿または吸着によりヒ素を除去するものである。特許文献1には、ヒ素で汚染された土壌を酸性の洗浄液で洗浄し、土壌からヒ素を洗浄液に移動させ、土壌と洗浄液とを固液分離した後、洗浄液に酸化剤を投入してヒ素を沈殿させて、固液分離により洗浄液からヒ素を除去する方法が提案されている。特許文献2には、汚染土壌中のヒ素をアルカリ抽出した後、高分子凝集剤を添加して粒径5〜10μm以上の土粒子のみを凝集させてフロックを形成し、フロックを沈降分離して中和安定化処理することにより浄化土を得るとともに、5〜10μm未満の微細粒子と溶存態としてのヒ素を含む上澄水をさらに凝集沈殿処理してヒ素を含む濃縮汚染土を得る方法が提案されている。
洗浄法では、粗大粒子の沈殿が固液分離により回収されるが、この沈殿はヒ素を含まないため一般処分が可能である。固液分離した後の液相からヒ素を除去する際にヒ素含有廃棄物が発生するが、不溶化法と比べると廃棄物量を大幅に減少させることができるという利点がある。
ただし、洗浄法は、洗浄効果の高い強酸性または強アルカリ性の洗浄剤で洗浄を行うため、取り扱う薬品の危険性が高く、洗浄後に固液分離した固相を中和しなければならない。固液分離された直後の固相は遊離したヒ素を含まないが、強酸性または強アルカリ性の洗浄液を含むため中和する前にヒ素が再溶出してしまうことがある。また、洗浄が強酸性または強アルカリ性で行われるため、ヒ素以外の金属種や有機化合物も液相に溶解する。この液相からヒ素を凝集沈殿させると、その他の金属種や有機化合物も沈殿するため、ヒ素濃度の低い沈殿が多量に発生する。この液相からヒ素を吸着により取り除く際には、その他の金属も吸着してしまうため多量の吸着剤が必要である。さらに、固液分離した後の液相は微細粒子で懸濁しており、そのまま吸着剤に通すと吸着剤が目詰りしてしまうため、予め微細粒子を遠心分離機等で取り除く必要がある。
FIG. 3 shows a method for treating arsenic-containing soil by a cleaning method. In the cleaning method, mud containing arsenic is washed with an acidic or alkaline cleaning agent, coarse particles are allowed to settle while arsenic is dissolved in the liquid, and then solid-liquid separation is performed. Arsenic is removed by adsorption. In Patent Document 1, soil contaminated with arsenic is washed with an acidic washing solution, arsenic is transferred from the soil to the washing solution, and the soil and the washing solution are separated into solid and liquid, and then an oxidant is added to the washing solution to remove arsenic. A method for precipitating and removing arsenic from the cleaning liquid by solid-liquid separation has been proposed. In Patent Document 2, arsenic in contaminated soil is alkali-extracted, then a polymer flocculant is added to agglomerate only soil particles having a particle size of 5 to 10 μm or more to form flocs. A method has been proposed in which purified soil is obtained by neutralization and stabilization treatment, and a concentrated contaminated soil containing arsenic is obtained by further coagulating and precipitating supernatant water containing fine particles of less than 5 to 10 μm and dissolved arsenic. ing.
In the cleaning method, a precipitate of coarse particles is recovered by solid-liquid separation, but since this precipitate does not contain arsenic, general disposal is possible. Arsenic-containing waste is generated when arsenic is removed from the liquid phase after solid-liquid separation, but there is an advantage that the amount of waste can be greatly reduced as compared with the insolubilization method.
However, since the cleaning method uses a highly acidic or strongly alkaline cleaning agent having a high cleaning effect, there is a high risk of chemicals to be handled, and the solid phase after solid-liquid separation must be neutralized after cleaning. The solid phase immediately after the solid-liquid separation does not contain free arsenic, but since it contains a strongly acidic or strongly alkaline washing solution, arsenic may be re-eluted before neutralization. In addition, since washing is performed with strong acidity or strong alkalinity, metal species other than arsenic and organic compounds also dissolve in the liquid phase. When arsenic is coagulated and precipitated from this liquid phase, other metal species and organic compounds are also precipitated, so that a large amount of precipitates with a low arsenic concentration is generated. When arsenic is removed from the liquid phase by adsorption, a large amount of adsorbent is required because other metals are also adsorbed. Furthermore, the liquid phase after solid-liquid separation is suspended in fine particles, and if passed through the adsorbent as it is, the adsorbent is clogged, so it is necessary to remove the fine particles in advance with a centrifuge or the like.

特開2012−40544号公報JP 2012-40544 A 特開2012−81386号公報JP 2012-81386 A

本発明は、発生する廃棄物量の少ないヒ素含有土壌浄化方法を提供する。   The present invention provides an arsenic-containing soil purification method that generates a small amount of waste.

1.少なくとも下記第一〜第三工程をこの順で有することを特徴とするヒ素含有土壌浄化方法。
ヒ素を含む土壌と、キトサン系またはポリアクリル酸エステル系から選択されるカチオン性浄化剤とを水中で混合撹拌する第一工程
固相とヒ素を含む液相とを固液分離する第二工程
液相中のヒ素を処理する第三工程。
2.前記第一工程が、pH6.0〜8.0の条件下で行われることを特徴とする1.に記載のヒ素含有土壌浄化方法。
3.前記第一工程において、カチオン性浄化剤の濃度が4〜40mg/Lの範囲であることを特徴とする1.または2.に記載のヒ素含有土壌浄化方法。
4.前記第三工程が、共沈法であることを特徴とする1.〜3.のいずれかに記載のヒ素含有土壌浄化方法。
5.前記第三工程が、吸着法であることを特徴とする1.〜3.のいずれかに記載のヒ素含有土壌浄化方法。
1. An arsenic-containing soil purification method comprising at least the following first to third steps in this order.
The first step of mixing and stirring the arsenic-containing soil and the cationic purifier selected from chitosan or polyacrylate ester in water The second step of solid-liquid separating the solid phase and the liquid phase containing arsenic Third step of processing arsenic in the phase.
2. The first step is performed under conditions of pH 6.0 to 8.0. The arsenic-containing soil purification method according to claim 1.
3. In the first step, the concentration of the cationic purifier is in the range of 4 to 40 mg / L. Or 2. The arsenic-containing soil purification method according to claim 1.
4). The third step is a coprecipitation method. ~ 3. The arsenic-containing soil purification method according to any one of the above.
5. The third step is an adsorption method. ~ 3. The arsenic-containing soil purification method according to any one of the above.

本発明のヒ素含有土壌浄化方法は、土壌洗浄時に懸濁物質を凝集、沈殿させるが、ヒ素は凝集、沈殿しない。固相と液相とを固液分離すると、ヒ素は液相に留まり、固相中にヒ素は含まれないため、固相は一般処分することができる。土壌洗浄を中性で行うと、固液分離した後の固相の中和が不要である。分離後の固相は中性であるため、固相からヒ素が再溶出することはない。また、中性の液相は、ヒ素以外の金属や有機化合物の溶解量が少ない。本発明の固液分離後の液相を再沈法で処理すると、生じる沈殿は高濃度でヒ素を含み、他の金属や有機化合物含有量が少ないため、廃棄物の容量を大幅に減らすことができる。また、ヒ素を含む液相は微細粒子が含まれておらず透明であり、そのまま吸着剤に通しても吸着剤が目詰りせず、遠心分離等することなく容易にヒ素を除去することができる。さらに、ヒ素以外の金属成分量が少ないため、吸着剤の量を減らすことができる。   The arsenic-containing soil purification method of the present invention aggregates and precipitates suspended substances during soil washing, but arsenic does not aggregate and precipitate. When the solid phase and the liquid phase are subjected to solid-liquid separation, the arsenic remains in the liquid phase, and the solid phase does not contain arsenic. Therefore, the solid phase can be disposed of in general. If the soil is washed neutral, neutralization of the solid phase after solid-liquid separation is unnecessary. Since the solid phase after the separation is neutral, arsenic is not re-eluted from the solid phase. Further, the neutral liquid phase has a small amount of dissolution of metals and organic compounds other than arsenic. When the liquid phase after solid-liquid separation of the present invention is processed by the reprecipitation method, the resulting precipitate contains arsenic at a high concentration, and the content of other metals and organic compounds is low, so that the volume of waste can be greatly reduced. it can. In addition, the liquid phase containing arsenic does not contain fine particles and is transparent, and even if it passes through the adsorbent as it is, the adsorbent does not clog and can be easily removed without centrifugation. . Furthermore, since the amount of metal components other than arsenic is small, the amount of adsorbent can be reduced.

本発明によるヒ素含有土壌の処理方法。A method for treating arsenic-containing soil according to the present invention. 不溶化法によるヒ素含有土壌の処理方法。A method for treating arsenic-containing soil by insolubilization. 洗浄法によるヒ素含有土壌の処理方法。A method for treating soil containing arsenic by a cleaning method.

図1に、本発明によるヒ素含有土壌の処理方法を示す。
本発明のヒ素含有土壌浄化処理方法は、
ヒ素を含む土壌と、キトサン系またはポリアクリル酸エステル系から選択されるカチオン性浄化剤とを水中で混合撹拌する第一工程、
固相とヒ素を含む液相とを固液分離する第二工程、
液相中のヒ素を処理する第三工程、
を少なくともこの順で有することを特徴とする。
FIG. 1 shows a method for treating arsenic-containing soil according to the present invention.
The arsenic-containing soil purification treatment method of the present invention,
A first step of mixing and stirring the soil containing arsenic and a cationic purifying agent selected from chitosan-based or polyacrylic acid ester-based in water;
A second step of solid-liquid separation of the solid phase and the liquid phase containing arsenic,
A third step of treating arsenic in the liquid phase,
At least in this order.

本発明は、ヒ素を含む土壌の浄化剤としてキトサン系またはポリアクリル酸エステル系から選択されるカチオン性浄化剤を用いることを特徴とする。特定の浄化剤を用いることにより、ヒ素を水中に溶解させたまま、懸濁物質を凝集、沈殿させることができる。なお、キトサン系浄化剤とポリアクリル酸エステル系浄化剤とは併用してもよい。   The present invention is characterized by using a cationic purification agent selected from chitosan-based or polyacrylic acid ester-based as a purification agent for soil containing arsenic. By using a specific cleaning agent, the suspended substance can be aggregated and precipitated while arsenic is dissolved in water. In addition, you may use together a chitosan type | system | group cleaning agent and a polyacrylic acid ester type | system | group cleaning agent.

本発明で使用するキトサン系浄化剤は、水に溶解して懸濁物質に対して凝集能を示すものであれば特に制限することなく使用することができる。例えば、脱アセチル化度が40〜90モル%のキトサンを用いることができる。脱アセチル化度が40モル%より小さいと水への溶解性に劣り、脱アセチル化度が90モル%より大きいものは、キチンからの製造に手間がかかるため高価であり、脱アセチル化反応時に主鎖が切断されてしまうため重量平均分子量が低くなる。
キトサンの重量平均分子量は、1,000〜3,000,000のものが好ましく、3,000〜2,000,000のものがより好ましく、10,000〜1,500,000のものがさらに好ましい。重量平均分子量が高いほど、一分子あたりのアミノ基が多くなるため、泥水中の粒子を凝集する能力に優れ、少ない量で懸濁物質を凝集沈殿させることができる。ただし、重量平均分子量が大きくなると、水へ溶解しにくくなり取り扱い性が低下してしまう。
キトサンは、本発明の浄化剤として利用できるものであれば、ヒドロキシル基、アミノ基の一部がポリオキシアルキレン基、アシル基、糖側鎖などで置換されていてもよい。これらで置換されることにより、水への溶解性を向上させることができる。ポリオキシアルキレン基としてはポリエチレングリコール基、カルボキシル基としてはアセチル基、プロピオニル基等を挙げることができる。また、キトサンは、単独、または分子量や脱アセチル化度の異なる2種以上を併用してもよい。
The chitosan type | system | group purification agent used by this invention can be used without a restriction | limiting especially if it melt | dissolves in water and shows the coagulation ability with respect to a suspended substance. For example, chitosan having a degree of deacetylation of 40 to 90 mol% can be used. If the degree of deacetylation is less than 40 mol%, the solubility in water is poor, and those having a degree of deacetylation greater than 90 mol% are expensive because it takes time to produce from chitin. Since the main chain is cleaved, the weight average molecular weight is lowered.
The weight average molecular weight of chitosan is preferably 1,000 to 3,000,000, more preferably 3,000 to 2,000,000, and still more preferably 10,000 to 1,500,000. . The higher the weight average molecular weight, the greater the number of amino groups per molecule, so that the ability to agglomerate particles in the muddy water is excellent, and the suspended matter can be agglomerated and precipitated in a small amount. However, when the weight average molecular weight increases, it becomes difficult to dissolve in water and the handleability decreases.
Chitosan may be partially substituted with a polyoxyalkylene group, an acyl group, a sugar side chain, or the like, as long as it can be used as a cleaning agent of the present invention. By substituting with these, solubility in water can be improved. Examples of the polyoxyalkylene group include a polyethylene glycol group, and examples of the carboxyl group include an acetyl group and a propionyl group. Chitosan may be used alone or in combination of two or more different in molecular weight and degree of deacetylation.

本発明で使用するポリアクリル酸エステル系浄化剤は、水に溶解して懸濁物質に対して凝集能を示すものであれば特に制限することなく使用することができる。ポリアクリル酸エステル系浄化剤は、カチオン性単量体を重合させて製造することができる。この際、他の単量体を共重合させてもよい。カチオン性単量体としては、ジメチルアミノエチルアクリレート、ジエチルアミノエチルアクリレート、ジエチルアミノ−2−ヒドロキシプロピルアクリレートなどのジアルキルアミノアルキルアクリレート類、ジメチルアミノプロピルアクリルアミドなどのジアルキルアミノアルキルアクリルアミドの塩酸塩、硫酸塩などの第3級アミン塩を用いることができる。これらのカチオン性単量体は単独、または2種以上を混合して使用することもできる。
ポリアクリル酸エステル系浄化剤の重量平均分子量は、1,000,000〜10,000,000のものが好ましく、3,000,000〜7,000,000がより好ましく、4,000,000〜6,000,000がさらに好ましい。また、0.25%溶液粘度が100〜4000mPa・s(25℃)であることが好ましい。
The polyacrylic acid ester cleaning agent used in the present invention can be used without particular limitation as long as it dissolves in water and exhibits a coagulation ability with respect to a suspended substance. The polyacrylic acid ester cleaning agent can be produced by polymerizing a cationic monomer. At this time, other monomers may be copolymerized. Examples of the cationic monomer include dialkylaminoalkyl acrylates such as dimethylaminoethyl acrylate, diethylaminoethyl acrylate and diethylamino-2-hydroxypropyl acrylate, dialkylaminoalkyl acrylamide hydrochlorides such as dimethylaminopropyl acrylamide, and sulfates. Tertiary amine salts can be used. These cationic monomers can be used alone or in admixture of two or more.
The weight average molecular weight of the polyacrylic ester cleaner is preferably 1,000,000 to 10,000,000, more preferably 3,000,000 to 7,000,000, and 4,000,000 to 6,000,000 is more preferred. Moreover, it is preferable that a 0.25% solution viscosity is 100-4000 mPa * s (25 degreeC).

キトサン系またはポリアクリル酸エステル系から選択されるカチオン性浄化剤は、アミノ基等のカチオン性官能基を有し、カチオン性官能基は水中で電離して正に帯電する。泥水中に分散している懸濁物質は、通常、負に帯電して反発しあっており、その反発のために凝集しない。泥水中に正に帯電している凝集剤を加えると、負に帯電している物質と正に帯電している凝集剤とが中和して複合体を形成し、反発が弱まることで凝集、沈殿する。酸性溶液では、より多くのカチオン性官能基が電離するため、凝集能が高まる。pHが小さいほど正に帯電しているカチオン性官能基が多くなり、浄化剤の使用量を少なくすることができる。ただし、pHが小さくなりすぎると、酸性が強く、後の中和処理に手間がかかり、危険性も高くなる。また、土壌中に含有されているヒ素以外の金属種や有機化合物の液相への溶解量が増加する。そのため、本発明のカチオン性浄化剤は、pH6.0〜8.0の中性条件下で用いることが好ましい。また、カチオン性浄化剤の濃度は懸濁粒子が沈殿する濃度であれば特に制限されないが、通常、4〜40mg/Lの範囲内である。   A cationic cleaning agent selected from chitosan-based or polyacrylic ester-based has a cationic functional group such as an amino group, and the cationic functional group is ionized in water to be positively charged. Suspended substances dispersed in the muddy water are usually negatively charged and repelled, and do not aggregate due to the repulsion. When a positively charged flocculant is added to the muddy water, the negatively charged substance and the positively charged flocculant are neutralized to form a complex, and the repulsion is weakened to agglomerate. Precipitate. In the acidic solution, more cationic functional groups are ionized, so that the aggregation ability is increased. The smaller the pH, the more cationic functional groups that are positively charged, and the amount of purifier used can be reduced. However, if the pH is too low, the acidity is strong, the subsequent neutralization process is troublesome, and the danger increases. In addition, the amount of metal species other than arsenic and organic compounds dissolved in the liquid phase increases in the liquid phase. Therefore, it is preferable to use the cationic cleaning agent of the present invention under neutral conditions of pH 6.0 to 8.0. Further, the concentration of the cationic cleaning agent is not particularly limited as long as it is a concentration at which suspended particles are precipitated, but it is usually within a range of 4 to 40 mg / L.

次に、本発明のヒ素含有土壌浄化処理方法を順に説明する。
「ヒ素を含む土壌と、キトサン系またはポリアクリル酸エステル系から選択されるカチオン性浄化剤とを水中で混合撹拌する第一工程」
ヒ素を含む土壌と、キトサン系またはポリアクリル酸エステル系から選択されるカチオン性浄化剤とを水中で混合撹拌する。ヒ素を含む土壌としては、土木工事で発生した排土やこの排土を水に分散させたもの、シールド掘削工事で発生した泥水が挙げられる。ヒ素を含む土壌は、土、泥漿、泥水等の状態でカチオン性浄化剤と混合される。カチオン性浄化剤は、固体または水溶液にしてヒ素を含む土壌と混合する。固体の状態で混合すると、水に溶解するのに時間がかかるため、水溶液として混合することが好ましい。
ヒ素を含む土壌とカチオン性浄化剤とを水中で混合撹拌すると、泥水中の負に帯電した懸濁粒子は、正に帯電したカチオン性浄化剤により中和されて反発しなくなり凝集し、最終的には沈殿して固相となる。
ヒ素を含む土壌とカチオン性浄化剤との混合撹拌を、pH6.0〜8.0の中性条件下で行うと、中和処理が不要となる。また、ヒ素以外の金属種や有機化合物は中性条件下では溶解しにくく液相に移行しないため、液相を処理した後に発生するヒ素を含む廃棄物量を減らすことができる。なお、自然由来の排土では、通常、カドミウム、鉛等のヒ素以外の重金属濃度が問題となることはない。
Next, the arsenic-containing soil purification method of the present invention will be described in order.
"First step of mixing and stirring the soil containing arsenic and a cationic purifier selected from chitosan or polyacrylate ester" in water.
A soil containing arsenic and a cationic purifying agent selected from chitosan-based or polyacrylate-based are mixed and stirred in water. Examples of arsenic-containing soil include soil discharged during civil engineering work, dispersed soil in water, and muddy water generated during shield excavation work. The soil containing arsenic is mixed with a cationic purification agent in the state of soil, mud, mud and the like. The cationic cleaning agent is mixed with soil containing arsenic in a solid or aqueous solution. When mixed in a solid state, it takes time to dissolve in water, so mixing as an aqueous solution is preferable.
When the arsenic-containing soil and the cationic cleaning agent are mixed and stirred in water, the negatively charged suspended particles in the mud are neutralized by the positively charged cationic cleaning agent and do not repel and aggregate. Precipitates into a solid phase.
When the mixing and stirring of the arsenic-containing soil and the cationic purifier is performed under neutral conditions of pH 6.0 to 8.0, neutralization is not necessary. In addition, since metal species other than arsenic and organic compounds are difficult to dissolve under neutral conditions and do not shift to the liquid phase, the amount of waste containing arsenic generated after processing the liquid phase can be reduced. In the case of naturally-derived soil, the concentration of heavy metals other than arsenic, such as cadmium and lead, usually does not become a problem.

「固相とヒ素を含む液相とを固液分離する第二工程」
前記第一工程において沈殿した固相とヒ素を含む液相とを固液分離する。固液分離の方法は特に限定されず、沈降分離機、ベルトプレス、スクリュープレス、加圧脱水機、遠心脱水機等を用いることができる。第一工程をpH6.0〜8.0の中性条件下で行うと、固液分離に用いる装置に耐酸性が要求されないため、安価な装置を利用することができる。固液分離された後の固相は、ヒ素を含んでいない浄化された土壌であるため、土壌汚染対策法におけるヒ素の土壌含有量基準、土壌溶出量基準を下回る処理土として一般処理が可能である。さらに、固相のpHが6.0〜8.0であると、中和処理が不要である。
"Second step of solid-liquid separation of solid phase and liquid phase containing arsenic"
The solid phase precipitated in the first step and the liquid phase containing arsenic are subjected to solid-liquid separation. The solid-liquid separation method is not particularly limited, and a sedimentation separator, a belt press, a screw press, a pressure dehydrator, a centrifugal dehydrator, or the like can be used. When the first step is performed under neutral conditions of pH 6.0 to 8.0, acid resistance is not required for the apparatus used for solid-liquid separation, so that an inexpensive apparatus can be used. Since the solid phase after solid-liquid separation is purified soil that does not contain arsenic, general treatment is possible as treated soil below the soil content standard and soil elution standard in the Soil Contamination Countermeasures Law. is there. Furthermore, the neutralization process is unnecessary when the pH of the solid phase is 6.0 to 8.0.

「液相中のヒ素を処理する第三工程」
液相中のヒ素は、共沈法または吸着法で処理することができる。
共沈法は、凝集剤中の金属が金属酸化物として沈殿する際に、ヒ素を沈殿に吸着させて共沈させることにより、ヒ素を液相から取り除くものである。凝集剤としては、ヒ素を吸着して沈殿する金属種を含むものであれば特に制限することなく使用することができ、鉄、マンガン、アルミニウム、カルシウム、マグネシウム、シリカ等を含むもの、具体的には、ポリ硫酸第二鉄、ポリ塩化第二鉄、硫酸第二鉄、塩化第二鉄、ポリ塩化アルミニウム、ポリ硫酸アルミニウム、ミョウバン、ポリシリカ鉄などが挙げられる。なお、これらの凝集剤は、従来の不溶化法における凝集剤としても用いられている。
本発明において、上記第一工程がpH6.0〜8.0の中性条件下で行われると、液相中にヒ素以外の金属種や有機化合物はほとんど溶解しない。沈殿する固相に含まれるヒ素以外の化合物濃度は低く、ヒ素含有物として適正な処理が必要な廃棄物の発生量を大幅に減容することができる。
"Third process for treating arsenic in liquid phase"
Arsenic in the liquid phase can be treated by coprecipitation or adsorption.
In the coprecipitation method, arsenic is removed from the liquid phase by adsorbing arsenic to the precipitate and coprecipitating the metal in the flocculant as a metal oxide. The flocculant can be used without particular limitation as long as it contains a metal species that adsorbs and precipitates arsenic, and includes iron, manganese, aluminum, calcium, magnesium, silica, etc., specifically Examples thereof include polyferric sulfate, polyferric chloride, ferric sulfate, ferric chloride, polyaluminum chloride, polyaluminum sulfate, alum, and polysilica iron. These flocculants are also used as flocculants in conventional insolubilization methods.
In the present invention, when the first step is carried out under neutral conditions of pH 6.0 to 8.0, metal species and organic compounds other than arsenic are hardly dissolved in the liquid phase. The concentration of compounds other than arsenic contained in the precipitated solid phase is low, and the volume of waste that requires proper treatment as an arsenic-containing material can be greatly reduced.

吸着法は、吸着剤にヒ素を含有する液相を通し、吸着剤にヒ素を吸着させて取り除くものである。吸着剤としては、ヒ素を吸着することができるものであれば特に制限されず、水酸化鉄、活性アルミナ、水酸化セリウムなどを利用することができる。
本発明において、泥水中の粒子は上記第二工程で凝集沈殿しており、液相は透明で微細粒子を含まない。そのため、固液分離した液相を遠心分離等することなく、そのまま吸着剤に通しても吸着剤が目詰りすることがない。また、上記第一工程をpH6.0〜8.0の中性条件下で行うと、液相中に含まれるヒ素以外の金属種の量が少なく、吸着剤は主としてヒ素を吸着する。ヒ素の吸着に必要な吸着剤の量と交換頻度とを少なくでき、吸着剤の廃棄量を減らすことができる。
次に、本発明を実施例に基づいて、さらに具体的に説明するが、本発明はこれらのみに限定されるものではない。
In the adsorption method, a liquid phase containing arsenic is passed through an adsorbent, and the adsorbent is adsorbed and removed. The adsorbent is not particularly limited as long as it can adsorb arsenic, and iron hydroxide, activated alumina, cerium hydroxide and the like can be used.
In the present invention, the particles in the mud are coagulated and precipitated in the second step, and the liquid phase is transparent and does not contain fine particles. Therefore, the adsorbent is not clogged even if it passes through the adsorbent as it is without centrifuging the solid-liquid separated liquid phase. Further, when the first step is performed under neutral conditions of pH 6.0 to 8.0, the amount of metal species other than arsenic contained in the liquid phase is small, and the adsorbent mainly adsorbs arsenic. The amount of adsorbent necessary for arsenic adsorption and the replacement frequency can be reduced, and the amount of adsorbent discarded can be reduced.
Next, the present invention will be described more specifically based on examples, but the present invention is not limited to these examples.

ヒ素を含有する土壌5kgに水1.85kgを加えて混合した後、目開き75μmの篩に通し、さらに5倍に希釈してヒ素を含有する土壌が分散した模擬泥水とした。
「実施例1」
この模擬泥水500mlを、130rpmで撹拌しながらキトサン系浄化剤(富士エンジニアリング株式会社製、商品名:フジクリーン)の2%水溶液を、それぞれ2mg/L、10mg/L、20mg/Lとなるように加え、さらに130rpmで1分間撹拌した後、5分間放置した。
放置後の上澄み液を0.45μmフィルターでろ過した後、濁度計(ハンナインスツルメンツ・ジャパン社製、装置名:HI 98703)を用いて濁度を測定した。また、ろ過後の上澄み液中のヒ素濃度を、誘導結合プラズマ質量分析計(ICP−MS)で測定した。
After adding 1.85 kg of water to 5 kg of soil containing arsenic and mixing, the mixture was passed through a sieve having an opening of 75 μm, and further diluted 5 times to obtain simulated mud water in which the soil containing arsenic was dispersed.
"Example 1"
While stirring 500 ml of this simulated mud at 130 rpm, 2% aqueous solution of chitosan-based purifying agent (manufactured by Fuji Engineering Co., Ltd., trade name: Fujiclean) is adjusted to 2 mg / L, 10 mg / L, and 20 mg / L, respectively. In addition, the mixture was further stirred at 130 rpm for 1 minute and then allowed to stand for 5 minutes.
The supernatant after standing was filtered with a 0.45 μm filter, and the turbidity was measured using a turbidimeter (manufactured by Hanna Instruments Japan, apparatus name: HI 98703). Moreover, the arsenic density | concentration in the supernatant liquid after filtration was measured with the inductively coupled plasma mass spectrometer (ICP-MS).

「実施例2」
キトサン系浄化剤の代わりに、ポリアクリル酸エステル系浄化剤(MTアクアポリマー株式会社製、商品名:アロンフロックC−508UL)を用いた以外は、上記実施例1と同様にした。
「比較例1」
キトサン系浄化剤の代わりに、ポリメタアクリル酸エステル系浄化剤(MTアクアポリマー株式会社製、商品名:アロンフロックC−300)を用いた以外は、上記実施例1と同様にした。
「比較例2」
キトサン系浄化剤の代わりに、ポリエチレンイミン系浄化剤(林化学工業株式会社製、商品名:EB−a)を用いた以外は、上記実施例1と同様にした。
実施例1、2、比較例1、2の濁度とヒ素濃度とを表1に示す。また、模擬泥水の上澄み液の濁度とヒ素濃度とをコントロールとして表1に示す。
"Example 2"
The same procedure as in Example 1 was performed except that a polyacrylic acid ester-based cleaner (manufactured by MT Aquapolymer Co., Ltd., trade name: Aron Flock C-508UL) was used instead of the chitosan-based cleaner.
“Comparative Example 1”
It was carried out similarly to the said Example 1 except having used the polymethacrylic-ester type | system | group cleaning agent (The product made from MT Aqua Polymer Co., Ltd., brand name: Aron Flock C-300) instead of the chitosan-type cleaning agent.
“Comparative Example 2”
It was carried out similarly to the said Example 1 except having used the polyethyleneimine type | system | group cleaning agent (The Hayashi Chemical Co., Ltd. make, brand name: EB-a) instead of the chitosan type | system | group cleaning agent.
Table 1 shows the turbidity and arsenic concentration of Examples 1 and 2 and Comparative Examples 1 and 2. Table 1 shows the turbidity and arsenic concentration of the supernatant of the simulated mud water as controls.

実施例1、2と比較例1、2で使用したいずれのカチオン性浄化剤も、模擬泥水中のヒ素を沈殿させず、液相中のヒ素濃度はほぼコントロールと同一であった。本発明のカチオン性浄化剤を用いた実施例1、2は、模擬泥水中の懸濁物質を凝集・沈殿させる能力に優れており、浄化剤濃度が高くなるにつれ、上澄み液の濁度は低下した。それに対し、比較例1、2は、懸濁物質を凝集・沈殿させる能力に劣り、上澄み液の濁度が高く濁っていた。この結果から、本発明の浄化剤の濃度は4〜40mg/Lが好適である。
本発明のカチオン性浄化剤を用いると、液相中のヒ素を沈殿させることなく懸濁物質のみを沈殿させることができ、固液分離後の固相がヒ素を含まず、固相の一般処理が可能であることが確かめられた。
None of the cationic cleaners used in Examples 1 and 2 and Comparative Examples 1 and 2 precipitated arsenic in the simulated mud water, and the arsenic concentration in the liquid phase was almost the same as the control. Examples 1 and 2 using the cationic purification agent of the present invention are excellent in the ability to aggregate and precipitate suspended substances in simulated mud water, and the turbidity of the supernatant liquid decreases as the concentration of the purification agent increases. did. On the other hand, Comparative Examples 1 and 2 were inferior in the ability to aggregate and precipitate suspended substances, and the turbidity of the supernatant liquid was high and cloudy. From this result, the concentration of the purifying agent of the present invention is preferably 4 to 40 mg / L.
When the cationic cleaning agent of the present invention is used, only suspended substances can be precipitated without precipitating arsenic in the liquid phase, the solid phase after solid-liquid separation does not contain arsenic, and the general treatment of the solid phase Is confirmed to be possible.

上記で使用した模擬濁水のヒ素濃度は、実際の現場で発生する汚染水でのヒ素濃度と比較して低い。実際の現場で発生する汚染水を想定して、以下の実験を行った。
ヒ素を含有する土壌10.0kgに水3.7kgを加えて混合した後、目開き75μmの篩に通し、さらに5倍に希釈して模擬汚染水とした。
「実施例3」
この模擬汚染水500mlを、130rpmで撹拌しながらキトサン系浄化剤(富士エンジニアリング株式会社製、商品名:フジクリーン)の2%水溶液を、10mg/Lとなるように加え、さらに130rpmで3分間撹拌した後、5分間放置した。
実施例1と同様にして、濁度とヒ素濃度とを測定した。
「比較例3」
キトサン系浄化剤の代わりに、ポリ硫酸第二鉄(南海化学株式会社製)をそれぞれ200mg/L、400mg/Lとなるように加えた以外は、上記実施例3と同様にした。
「比較例4」
キトサン系浄化剤の代わりに、液状ポリ塩化アルミニウム(大明化学工業株式会社製、商品名:タイパック)を200mg/Lとなるように加えた以外は、上記実施例3と同様にした。
実施例3、比較例3、4の濁度とヒ素濃度とを表2に示す。また、模擬汚染水の上澄みの濁度とヒ素濃度をコントロールとして表2に示す。
The arsenic concentration of the simulated muddy water used above is lower than the arsenic concentration in the contaminated water generated in the actual field. The following experiment was conducted assuming contaminated water generated at the actual site.
After adding 3.7 kg of water to 10.0 kg of soil containing arsenic, the mixture was passed through a sieve having an opening of 75 μm, and further diluted 5 times to obtain simulated contaminated water.
"Example 3"
While stirring 500 ml of this simulated contaminated water at 130 rpm, a 2% aqueous solution of a chitosan-based purifying agent (manufactured by Fuji Engineering Co., Ltd., trade name: Fujiclean) is added to 10 mg / L, and further stirred at 130 rpm for 3 minutes. And left for 5 minutes.
In the same manner as in Example 1, turbidity and arsenic concentration were measured.
“Comparative Example 3”
Instead of the chitosan-based cleaner, poly ferric sulfate (manufactured by Nankai Chemical Co., Ltd.) was added in the same manner as in Example 3 except that it was added to 200 mg / L and 400 mg / L, respectively.
“Comparative Example 4”
It carried out similarly to the said Example 3 except having added liquid polyaluminum chloride (the Daimei Chemical Co., Ltd. make, brand name: Thai pack) so that it might become 200 mg / L instead of a chitosan type | system | group purifier.
The turbidity and arsenic concentration of Example 3 and Comparative Examples 3 and 4 are shown in Table 2. Table 2 shows the turbidity and arsenic concentration of the supernatant of the simulated contaminated water as controls.

本発明のカチオン性浄化剤を用いた実施例3は、濁度の低下と、ヒ素濃度の維持とが確認できた。比較例3で用いたポリ硫酸第二鉄は、ヒ素と吸着する能力が高く、濁度低下に先駆けてヒ素濃度の低下が確認できた。懸濁物質が凝集、沈殿した後の上澄み液中からは、ヒ素が検出できず、ヒ素は全て固相に移行した。ポリ塩化アルミニウムを用いた比較例4は、実施例3よりも凝集能に劣り濁度が低下しにくかった。また、実施例3よりもヒ素濃度が低下し、ヒ素が固相中に移行しやすいことが示唆された。   In Example 3 using the cationic cleaning agent of the present invention, it was confirmed that the turbidity was lowered and the arsenic concentration was maintained. The ferric sulfate used in Comparative Example 3 has a high ability to adsorb arsenic, and a decrease in the arsenic concentration was confirmed prior to the decrease in turbidity. Arsenic could not be detected from the supernatant after the suspended material aggregated and precipitated, and all the arsenic was transferred to the solid phase. In Comparative Example 4 using polyaluminum chloride, the coagulation ability was inferior to that of Example 3, and the turbidity was less likely to decrease. In addition, the arsenic concentration was lower than in Example 3, suggesting that arsenic tends to migrate into the solid phase.

Claims (5)

少なくとも下記第一〜第三工程をこの順で有することを特徴とするヒ素含有土壌浄化方法。
ヒ素を含む土壌と、キトサン系またはポリアクリル酸エステル系から選択されるカチオン性浄化剤とを水中で混合撹拌する第一工程
固相とヒ素を含む液相とを固液分離する第二工程
液相中のヒ素を処理する第三工程。
An arsenic-containing soil purification method comprising at least the following first to third steps in this order.
The first step of mixing and stirring the arsenic-containing soil and the cationic purifier selected from chitosan or polyacrylate ester in water The second step of solid-liquid separating the solid phase and the liquid phase containing arsenic Third step of processing arsenic in the phase.
前記第一工程が、pH6.0〜8.0の条件下で行われることを特徴とする請求項1に記載のヒ素含有土壌浄化方法。   The arsenic-containing soil purification method according to claim 1, wherein the first step is performed under conditions of pH 6.0 to 8.0. 前記第一工程において、カチオン性浄化剤の濃度が4〜40mg/Lの範囲であることを特徴とする請求項1または2に記載のヒ素含有土壌浄化方法。   The arsenic-containing soil purification method according to claim 1 or 2, wherein in the first step, the concentration of the cationic purification agent is in the range of 4 to 40 mg / L. 前記第三工程が、共沈法であることを特徴とする請求項1〜3のいずれかに記載のヒ素含有土壌浄化方法。   The arsenic-containing soil purification method according to any one of claims 1 to 3, wherein the third step is a coprecipitation method. 前記第三工程が、吸着法であることを特徴とする請求項1〜3のいずれかに記載のヒ素含有土壌浄化方法。
The arsenic-containing soil purification method according to any one of claims 1 to 3, wherein the third step is an adsorption method.
JP2015129366A 2015-06-29 2015-06-29 Arsenic-containing soil cleaning method Pending JP2017012956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015129366A JP2017012956A (en) 2015-06-29 2015-06-29 Arsenic-containing soil cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015129366A JP2017012956A (en) 2015-06-29 2015-06-29 Arsenic-containing soil cleaning method

Publications (1)

Publication Number Publication Date
JP2017012956A true JP2017012956A (en) 2017-01-19

Family

ID=57827937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015129366A Pending JP2017012956A (en) 2015-06-29 2015-06-29 Arsenic-containing soil cleaning method

Country Status (1)

Country Link
JP (1) JP2017012956A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115502195A (en) * 2022-09-16 2022-12-23 浙江乾精新材料科技有限责任公司 Method for quickly restoring saline-alkali soil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115502195A (en) * 2022-09-16 2022-12-23 浙江乾精新材料科技有限责任公司 Method for quickly restoring saline-alkali soil
CN115502195B (en) * 2022-09-16 2024-01-09 浙江乾精新材料科技有限责任公司 Quick restoration method for saline-alkali soil

Similar Documents

Publication Publication Date Title
US20160214874A1 (en) Combination of flocculant with surfactant for wastewater treatment
JP2011230038A (en) Water treatment apparatus
JP5950562B2 (en) Volume reduction method for cesium-containing soil using powder treatment agent and volume reduction treatment system for cesium-containing soil
JP4806426B2 (en) Method and apparatus for detoxifying heavy metal ions simultaneously with inorganic suspended particles
US20230150848A1 (en) Sequestering agents, kits therefor, and methods of using sequestering agents and kits therefor
KR20150106073A (en) Compostion and method for treating waste water
CN110272107A (en) A kind of waste-water treatment efficient composite flocculation agent and its application
JP2016013540A5 (en)
JP2017012956A (en) Arsenic-containing soil cleaning method
JP2018153729A (en) Water treatment agent, water treatment method, and water treatment device
JP4471112B2 (en) Method for coagulating and dewatering muddy water
JP2002001356A (en) Method and apparatus for treating service water
JP2008006382A (en) Method of treating oil-containing waste water
JP2011167656A (en) Treatment method of inorganic material-suspended waste water
JP4086297B2 (en) Boron-containing wastewater treatment method and chemicals used therefor
WO2004046046A1 (en) Agents for purifying waste water and muddy water
JP5769044B2 (en) How to clean cyan contaminated soil
JPH1076279A (en) Treatment method for drainage containing heavy metal
JP2002153866A (en) Method for treating waste water containing dioxin
KR20160066620A (en) Pressurized membrane filtration system with submerged membrane filtration process and water treatment method using the same
JP5154898B2 (en) Flocculant
JP7189744B2 (en) Water treatment method and water treatment equipment
JPH1043770A (en) Treatment of waste water containing suspended particle
CN103043763A (en) Preparation method of multi-effect seawater flocculating agent
JP2012232308A (en) Water cleaning device