JP2017011283A - METHOD FOR MANUFACTURING α-Fe/R2TM14B NANOCOMPOSITE MAGNET - Google Patents

METHOD FOR MANUFACTURING α-Fe/R2TM14B NANOCOMPOSITE MAGNET Download PDF

Info

Publication number
JP2017011283A
JP2017011283A JP2016157865A JP2016157865A JP2017011283A JP 2017011283 A JP2017011283 A JP 2017011283A JP 2016157865 A JP2016157865 A JP 2016157865A JP 2016157865 A JP2016157865 A JP 2016157865A JP 2017011283 A JP2017011283 A JP 2017011283A
Authority
JP
Japan
Prior art keywords
ribbon
nanocomposite magnet
less
roll
paddle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016157865A
Other languages
Japanese (ja)
Inventor
山下 文敏
Fumitoshi Yamashita
文敏 山下
紫保 大矢
Shiho Oya
紫保 大矢
真作 西村
Shinsaku Nishimura
真作 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Co Ltd
Original Assignee
Minebea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minebea Co Ltd filed Critical Minebea Co Ltd
Priority to JP2016157865A priority Critical patent/JP2017011283A/en
Publication of JP2017011283A publication Critical patent/JP2017011283A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide B(boron)-rich nanocomposite magnet which enables a thin band to be cut to a predetermined length or to be punched out in an arbitrary shape, is unstable in magnetism because of small coercive force, and there is no way but forming a bond magnet of arbitrary shape together with resin after powderization since only thin piece of several millimeters in length is available with a composition of 6-8 atom % of B(boron) quantity near NdTMB stoichiometric composition.SOLUTION: A crystallized thin band of coercive force 600 kA/m or larger with a content of thin piece of less than 10 mm in length being less than 20% is formed into a composite thin band mixed with resin, which is cut to a predetermined length, bent, or punched out into an arbitrary shape, thereby providing α-Fe/RTMB nanocomposite magnet in predetermined shape. Further preferably, a crystallized thin band of average thickness 40-45 μm is used which is available by forming a molten metal alloy paddle of 1300°C or higher in the vertical direction (apex) of Cu roll having a diameter of 500 mm or longer which is moved at 14-15 m/sec, and quench-solidifying with roll surface contact distance 10-15 mm, being collected with a flat shooter.SELECTED DRAWING: Figure 2

Description

本発明は、磁気安定性に優れた比較的長尺な結晶化α-Fe/R2TM14B系薄帯を、そのまま直接、或いは樹脂複合薄帯として、所定の長さに切断、曲げ、又は任意形状に打抜加工するナノコンポジット磁石の製造方法に関する。 The present invention is a relatively long crystallized α-Fe / R 2 TM 14 B-based ribbon with excellent magnetic stability, directly or as a resin composite ribbon, cut and bent to a predetermined length, Alternatively, the present invention relates to a method for producing a nanocomposite magnet that is punched into an arbitrary shape.

比較的長尺な薄帯を、そのまま直接、或いは樹脂複合希土類-鉄系薄帯として、所定の長さに切断、又は任意形状に打抜加工できるナノコンポジット磁石薄帯に関して、例えば、特許文献1では、合金組成式Fe100-x-yRxAy(但し、RはPr、Nd、Dy、Tbの1種又は2種以上、AはC(炭素)、又はB(硼素)の1種又は2種、1≦x<6原子%、15≦y≦30原子%)のようなB(硼素)-richな溶湯合金を、特定の急冷凝固条件にて厚さ10〜100μm、90%以上が非晶質の薄帯とし、その優れた靭性および弾性変形能を利用して、当該薄帯をそのまま直接、或いは所定の長さに切断、又は任意形状に打抜加工した後、更に非晶質組織から、Fe3B相とNd2Fe14B相が混在した、平均結晶粒径が10〜50nmの微細結晶組織にする、550〜750℃の熱処理を施し、保磁力が160kA/m以上、残留磁化が0.8T以上の結晶化薄帯を作製し、これを2枚以上積層し、エポキシ樹脂にて積層した結晶化薄帯同士を密着、一体化することで、薄帯、或いは薄片の粉砕、ボンド磁石化の方法を用いることなく、任意の肉厚、或いは所望の形状を有するナノコンポジット磁石の製造技術を開示している。 With respect to a nanocomposite magnet ribbon that can cut a relatively long ribbon directly or as a resin-composite rare earth-iron-based ribbon into a predetermined length or stamping into an arbitrary shape, for example, Patent Document 1 In the alloy composition formula Fe 100-xy RxAy (where R is one or more of Pr, Nd, Dy and Tb, A is one or two of C (carbon) or B (boron), 1 ≦ x <6 atomic%, 15 ≦ y ≦ 30 atomic%) B (boron) -rich molten alloy with a thickness of 10-100 μm and 90% or more amorphous under specific rapid solidification conditions Using the excellent toughness and elastic deformability as a ribbon, the ribbon is directly or directly cut into a predetermined length or punched into an arbitrary shape. 3 B phase and Nd 2 Fe 14 B phase mixed, with an average crystal grain size of 10 to 50 nm and a fine crystal structure, heat treatment at 550 to 750 ° C, coercive force of 160 kA / m or more, residual magnetization of 0.8 T or later A method for pulverizing a thin ribbon or flakes and making a bonded magnet by laminating two or more crystallized ribbons, laminating two or more of them, and bonding and integrating the crystallized ribbons laminated with an epoxy resin The manufacturing technique of the nanocomposite magnet which has arbitrary thickness or a desired shape is disclosed, without using.

又、特許文献2では、上記のようなB(硼素)-richな溶湯合金を急冷凝固し、90%以上が非晶質の組織からなる、厚み10〜100μmの薄帯表面に、200〜550℃の融点を有する金属を鍍金、又は蒸着し、この急冷薄帯を、そのまま直接、或いは所定形状に加工した後に積層し、更に非晶質組織から、Fe3B相、α-Fe相、Nd2Fe14B相が混在した、平均結晶粒径が10〜50nmの微細結晶組織とする、550〜750℃の熱処理を施し、同時に表面の金属層を溶融させて一体化するナノコンポジット磁石の製造技術を開示している。 Further, in Patent Document 2, a B (boron) -rich molten alloy as described above is rapidly solidified, and a surface of a thin ribbon having a thickness of 10 to 100 μm and having an amorphous structure of 90% or more is applied to 200 to 550. A metal having a melting point of ° C. is plated or vapor-deposited, and this rapidly cooled ribbon is laminated directly or after being processed into a predetermined shape, and further laminated from an amorphous structure, Fe 3 B phase, α-Fe phase, Nd 2 Manufacture of nanocomposite magnets with a mixture of Fe 14 B phases and a fine crystal structure with an average crystal grain size of 10 to 50 nm, heat treatment at 550 to 750 ° C, and simultaneously melting and integrating the surface metal layer The technology is disclosed.

更に、特許文献3では、Fe100-y-zCo10RyBz、又はFe100-y-zCo9.5TM2RyBz(但し、TMはV、Ti、Cr、Mn、Cu、Nb、Mo、W、Ta、Hf、又はZrのうちから選択される1種又は2種以上の元素、Rは希土類元素のうちから選択される1種又は2種以上の元素、Bは硼素、組成比を示すy、zは原子%で、2.5<y<4.0、19<z<25)であり、かつΔTx=Tx-Tg(但し、Txは結晶化開始温度、Tgはガラス遷移温度)の式で表される過冷却液体領域の温度間隔ΔTxが35℃以上、Tg/Tm(但し、Tmは合金の融解温度)の式で表される換算ガラス化温度が0.55以上であり、単ロール急冷凝固法により得られた、厚さ200〜300μm、非晶質相の体積比率90%以上の、金属ガラス合金を熱処理した合金であって、R2Fe14B、Fe3B、α-Fe相および残存アモルファス相からなる平均粒径50nm以下の組織を有し、残留磁化Mrが1T以上、保磁力が150kA/m以上、厚さ200〜300μmの薄帯状ナノコンポジット磁石の製造技術を開示している。 Furthermore, in Patent Document 3, Fe 100-yz Co 10 RyBz or Fe 100-yz Co 9.5 TM 2 RyBz (where TM is V, Ti, Cr, Mn, Cu, Nb, Mo, W, Ta, Hf, Or one or more elements selected from Zr, R is one or more elements selected from rare earth elements, B is boron, y indicating composition ratio, z is atomic% And 2.5 <y <4.0, 19 <z <25), and ΔTx = Tx−Tg (where Tx is the crystallization start temperature and Tg is the glass transition temperature). The temperature interval ΔTx is 35 ° C or more, the converted vitrification temperature expressed by the formula of Tg / Tm (where Tm is the melting temperature of the alloy) is 0.55 or more, and the thickness 200 obtained by the single roll rapid solidification method An alloy obtained by heat-treating a metallic glass alloy with an amorphous phase volume ratio of 90% or more and having an average particle size of 50 nm consisting of R 2 Fe 14 B, Fe 3 B, α-Fe phase and residual amorphous phase It has the following structure and remanent magnetization Disclosed is a technology for producing a ribbon-shaped nanocomposite magnet with Mr of 1T or more, a coercive force of 150 kA / m or more, and a thickness of 200 to 300 μm.

特開平11−026272号公報JP-A-11-026272 特開平11−016715号公報JP-A-11-016715 特開2001−254159号公報JP 2001-254159 A 特開2003−277892号公報JP 2003-277892 A

D. Goll, I. Kleinschroth, H. Kronmuller, Proc.17th Int. workshop on rare-earth magnets and their applications, Vol.2, pp.641-657 (2000).D. Goll, I. Kleinschroth, H. Kronmuller, Proc. 17th Int. Workshop on rare-earth magnets and their applications, Vol.2, pp.641-657 (2000). F. Yamashita, K. Takasugi, H. Yamamoto, H. Fukunaga, Transaction on Magn. Soc. Japan, Vol.2, No.2, pp.32-35 (2002).F. Yamashita, K. Takasugi, H. Yamamoto, H. Fukunaga, Transaction on Magn. Soc. Japan, Vol.2, No.2, pp.32-35 (2002). Zhongmin Chena, Y.Q. Wub, M.J. Kramer, Benjamin R. Smitha, Bao-Min Maa, Mei-Qing Huang, Journal of Magnetism and Magnetic Materials Vol.268. pp.105-113 (2004).Zhongmin Chena, Y.Q.Wub, M.J.Kramer, Benjamin R. Smitha, Bao-Min Maa, Mei-Qing Huang, Journal of Magnetism and Magnetic Materials Vol.268.pp.105-113 (2004).

特許文献1、および特許文献2のB(硼素)量は、15≦B≦30原子%、特許文献3のB(硼素)量は、19<B<25原子%である。このようなB(硼素)-richとする理由は、90%以上の非晶質形成に必要であるほか、R2TM14B化学量論組成よりもB(硼素)を約2.5倍以上、或いは約3倍量以上とすることで、長尺な非晶質薄帯の作製を容易にすることができる。それ故に、薄帯状のナノコンポジット磁石を、そのまま直接、或いは所定の長さに切断、又は任意形状に打抜加工することができる。 The amount of B (boron) in Patent Document 1 and Patent Document 2 is 15 ≦ B ≦ 30 atomic%, and the amount of B (boron) in Patent Document 3 is 19 <B <25 atomic%. The reason for such B (boron) -rich is that it is necessary to form 90% or more of amorphous, and B (boron) is about 2.5 times or more than R 2 TM 14 B stoichiometric composition, or By making the amount about 3 times or more, production of a long amorphous ribbon can be facilitated. Therefore, the ribbon-shaped nanocomposite magnet can be cut directly or directly into a predetermined length, or can be punched into an arbitrary shape.

しかし、B(硼素)の量を、R2TM14B化学量論組成付近の6〜8原子%とした、PrxFe83-xCo8V1Nb1B7(X=2〜7)を、例えば1400℃程度の溶湯合金とし、急冷凝固したとき、その薄帯形状(リボン形状)は、数mm程度の幅と長さで、厚さが数十μm程度のものとしている([特許文献4]参照)。このように、B(硼素)量をR2TM14B化学量論組成付近とした場合の薄帯は、数mm程度の長さのものしか得られない。従って、このような合金組成から作られる急冷薄帯、或いは薄片は、それを粉砕して樹脂と共に固めるボンド磁石化の方法を用いて、任意の肉厚、或いは所望の形状とすることが行なわれる。 However, PrxFe 83-x Co 8 V 1 Nb 1 B 7 (X = 2 to 7) in which the amount of B (boron) is 6 to 8 atomic% in the vicinity of the R 2 TM 14 B stoichiometric composition, For example, when a molten alloy of about 1400 ° C. is rapidly solidified, the ribbon shape (ribbon shape) has a width and length of about several mm and a thickness of about several tens of μm ([Patent Document 4] ]reference). As described above, when the amount of B (boron) is set to the vicinity of the R 2 TM 14 B stoichiometric composition, a ribbon having a length of about several millimeters can be obtained. Therefore, a quenched ribbon or flake made from such an alloy composition is formed into an arbitrary thickness or a desired shape by using a bond magnetization method in which it is pulverized and solidified with a resin. .

一方、長尺な非晶質薄帯にかかる特許文献1、および特許文献2で示される、B(硼素)-richナノコンポジット磁石の保磁力の範囲は160〜568kA/mであり、同様な特許文献3では171〜284kA/mである。このように保磁力が低い原因は、特許文献1、特許文献2、および特許文献3の何れもが、非晶質相を結晶化したとき、少なくともFe3B相、α-Fe相、Nd2Fe14B相の3相が混在した微細な結晶組織となるが、ハード相を形成する希土類元素Rの上限が6原子%と、R2TM14B化学量論組成の約1/2以下([特許文献1]、[特許文献2]参照)、或いは希土類元素Rの上限が4原子%と、R2TM14B化学量論組成の約1/3以下に限定される([特許文献3]参照)。このように、希土類元素が7原子%以下でB(硼素)-richな合金組成のナノコンポジット磁石は、ソフト相の含有量が増すことで残留磁化は向上するものの、600kA/mを越える高い保磁力が得られない。 On the other hand, the coercive force range of B (boron) -rich nanocomposite magnets shown in Patent Document 1 and Patent Document 2 for a long amorphous ribbon is 160 to 568 kA / m, and similar patents. In Reference 3, it is 171 to 284 kA / m. The reason why the coercive force is so low is that all of Patent Document 1, Patent Document 2, and Patent Document 3 show that when the amorphous phase is crystallized, at least Fe 3 B phase, α-Fe phase, Nd 2 Although it has a fine crystal structure in which three phases of Fe 14 B phase are mixed, the upper limit of the rare earth element R forming the hard phase is 6 atomic%, which is about 1/2 or less of the R 2 TM 14 B stoichiometric composition ( [Patent Document 1] and [Patent Document 2]), or the upper limit of the rare earth element R is limited to 4 atomic%, which is about 1/3 or less of the R 2 TM 14 B stoichiometric composition ([Patent Document 3] ]reference). In this way, nanocomposite magnets with an alloy composition of rare earth elements of 7 atomic% or less and B (boron) -rich improve the residual magnetization by increasing the soft phase content, but maintain a high retention of over 600 kA / m. Magnetic force cannot be obtained.

ところで、特許文献1、特許文献2、および特許文献3に開示された、B(硼素)-richナノコンポジット磁石の磁気トルクを利用するモータ、アクチュエータ、センサなどでは、その保磁力の水準から、外部磁界に対するトルクの直線性、トルク曲線の歪、或いは熱による初期不可逆減磁など、磁気安定性に欠ける点がある。従って、このような磁気安定性は、当該モータ、アクチュエータ、センサなどの動作、ならびに信頼性に、重大な影響を及ぼす場合がある。   By the way, in the motors, actuators, sensors, etc. that utilize the magnetic torque of B (boron) -rich nanocomposite magnets disclosed in Patent Document 1, Patent Document 2, and Patent Document 3, the level of coercive force causes the external There is a lack of magnetic stability such as linearity of torque with respect to a magnetic field, distortion of a torque curve, or initial irreversible demagnetization due to heat. Therefore, such magnetic stability may have a significant effect on the operation and reliability of the motor, actuator, sensor, etc.

例えば、特許文献1、特許文献2、および特許文献3に開示されているような、残留磁化が1T以上の高残留磁化型B(硼素)-richナノコンポジット磁石を用いて、高パーミアンス磁気回路としたモータは、R2TM14B化学量論組成付近の結晶化薄帯から作製したボンド磁石のモータよりも、高いトルクが得られる。しかしながら、電流(回転磁界のような外部磁界)対トルクにおける直線性、正弦波トルク曲線が要求される位置制御(サーボモータ)、或いは高温暴露での初期不可逆減磁など、所謂磁気安定性の観点からの課題がある。又、高パーミアンス磁気回路が構造上困難な用途では、高残留磁化型B(硼素)-richナノコンポジット磁石の利点を活かすことが困難であった。 For example, using a high remanence type B (boron) -rich nanocomposite magnet having a remanent magnetization of 1 T or more as disclosed in Patent Document 1, Patent Document 2, and Patent Document 3, The obtained motor can obtain a higher torque than a bonded magnet motor made from a crystallized ribbon near the R 2 TM 14 B stoichiometric composition. However, from the viewpoint of so-called magnetic stability such as linearity in current (external magnetic field such as rotating magnetic field) versus torque, position control (servo motor) where a sinusoidal torque curve is required, or initial irreversible demagnetization at high temperature exposure. There is a problem from. Further, in applications where a high permeance magnetic circuit is structurally difficult, it is difficult to take advantage of the high remanent magnetization type B (boron) -rich nanocomposite magnet.

本発明の目的は、磁気安定性に優れ、かつ比較的長尺なα-Fe/R2TM14B系薄帯を、そのまま直接、或いは樹脂との複合薄帯とし、これを所定の長さに切断、曲げ、又は任意形状に打抜加工する、ナノコンポジット磁石の製造方法を提供し、これにより、モータ、アクチュエータ、センサなどの高トルク化、或いはその信頼性を高めることにある。 An object of the present invention is to make an α-Fe / R 2 TM 14 B thin ribbon having excellent magnetic stability and a relatively long length as it is or directly as a composite thin ribbon with a resin, which has a predetermined length. It is intended to provide a method for producing a nanocomposite magnet that is cut, bent, or punched into an arbitrary shape, thereby increasing the torque of a motor, actuator, sensor, or the like, or improving its reliability.

(発明の態様)
以下の発明の態様は、本発明の構成を例示するものであり、本発明の多様な構成の理解を容易にするために、項別けして説明するものである。各項は、本発明の技術的範囲を限定するものではなく、発明を実施するための最良の形態を参酌しつつ、各項の構成要素の一部を置換し、削除し、又は、更に他の構成要素を付加したものについても、本願発明の技術的範囲に含まれ得るものである。
(Aspect of the Invention)
The following aspects of the present invention exemplify the configuration of the present invention, and will be described separately for easy understanding of various configurations of the present invention. Each section does not limit the technical scope of the present invention, and some of the components of each section are replaced, deleted, or further while referring to the best mode for carrying out the invention. Those to which the above components are added can also be included in the technical scope of the present invention.

(1)α-Fe/R2TM14B(Rは9原子%以上、かつR2TM14B化学量論組成未満のNd又はPr、TMはFe又はFeの一部を20原子%以下のCoで置換したもの、Bは6〜8原子%)系ナノコンポジット磁石の製造方法であって、合金組成PrFeCoBVNb(Vは0〜4原子%、Nbは0〜3原子%)の溶湯合金をα-Fe及びR2TM14Bの結晶化温度以下まで急速冷却し、熱処理を施すことなく結晶化した、長さ10mm未満の薄片の含有を20%未満とした比較的長尺な、保磁力600kA/m以上の結晶化薄帯と、樹脂組成物とを複合化し、所定の長さに切断、曲げ、又は任意形状に打抜加工するα-Fe/R2TM14B系ナノコンポジット磁石の製造方法(請求項1)。 (1) α-Fe / R 2 TM 14 B (R is 9 atomic% or more and less than R 2 TM 14 B stoichiometric composition Nd or Pr, TM is Fe or Fe part of 20 atomic% or less Co substituted, B is 6-8 atom%) based nanocomposite magnet manufacturing method, and alloy of alloy of PrFeCoBVNb (V is 0-4 atom%, Nb is 0-3 atom%) α A relatively long coercive force of 600 kA containing less than 20% of flakes of less than 10 mm in length, rapidly cooled to below the crystallization temperature of Fe and R 2 TM 14 B and crystallized without heat treatment of α-Fe / R 2 TM 14 B-based nanocomposite magnets by compounding a crystallized ribbon with a thickness of at least 10 m / m and a resin composition and cutting, bending, or punching into a desired length A method (claim 1).

本項に記載の発明は、特許文献1、特許文献2、ならびに特許文献3のような、R2TM14B化学量論組成に比べB(硼素)-richとした溶湯合金を急冷凝固し、非晶質相が90%以上の薄帯とし、これにより、当該薄帯を必要に応じて適宜切断し、所定形状になるように機械的な加工を施し、積層し、所望の磁石とするものではなく、6〜8原子%のB(硼素)、および9原子%以上R2TM14B化学量論組成未満のRを必須とすることで、保磁力を600kA/m以上とする、磁気安定性に優れ、かつ比較的長尺なα-Fe/R2TM14B系結晶化薄帯とし、これを樹脂との複合薄帯として、所定の長さに切断、曲げ、又は任意の形状に打抜加工、積層する、α-Fe/R2TM14B系ナノコンポジット磁石の製造方法である。
ここで、本項に記載の発明にかかる磁気安定性とは、保磁力600kA/m以上であることを基本とする。このような磁気安定性を、合金組成PrFeCoBVNb(Vは0〜4原子%、Nbは0〜3原子%)の溶湯合金をα-Fe及びR2TM14Bの結晶化温度以下まで急速冷却し、熱処理を施すことなく結晶化した結晶化薄帯を用いて実現するものである。又、本項に記載の発明にかかる比較的長尺な薄帯とは、樹脂組成物と複合化した薄帯として、所定の長さに切断、曲げ、又は任意形状に打抜加工することが容易な、長さ10mm以上の薄帯を意味し、具体的には薄帯の作製において、長さ10mm未満の薄片の含有を20%未満とした、α-Fe/R2TM14B系結晶化薄帯である。なお、製造時に発生する加工屑、薄片は粉末化し、樹脂とともに固めるボンド磁石の原料とすることができる。
The invention described in this section rapidly solidifies a molten alloy having B (boron) -rich as compared to R 2 TM 14 B stoichiometric composition, such as Patent Document 1, Patent Document 2, and Patent Document 3, A thin ribbon with an amorphous phase of 90% or more is cut, and the thin ribbon is appropriately cut as necessary, mechanically processed into a predetermined shape, and laminated to obtain a desired magnet. Rather than using 6 to 8 atomic% B (boron) and 9 atomic% or more R less than R 2 TM 14 B stoichiometric composition, the coercive force is 600 kA / m or more. The α-Fe / R 2 TM 14 B-based crystallized ribbon with excellent properties and a relatively long length is cut into a predetermined length, bent, or formed into any shape as a composite ribbon with resin. This is a method for producing an α-Fe / R 2 TM 14 B-based nanocomposite magnet that is stamped and laminated.
Here, the magnetic stability according to the invention described in this section is basically based on a coercive force of 600 kA / m or more. Such magnetic stability is rapidly cooled to a temperature below the crystallization temperature of α-Fe and R 2 TM 14 B for a molten alloy with an alloy composition of PrFeCoBVNb (V is 0-4 atom%, Nb is 0-3 atom%). This is realized by using a crystallized ribbon that has been crystallized without heat treatment. In addition, the relatively long ribbon according to the invention described in this section is a thin ribbon combined with the resin composition, which can be cut, bent or punched into an arbitrary shape to a predetermined length. This means an easy ribbon with a length of 10 mm or more, specifically, an α-Fe / R 2 TM 14 B-based crystal containing less than 20% of a slice with a length of less than 10 mm in the production of the ribbon. It is a thin ribbon. In addition, the processing waste and the flakes generated at the time of manufacture can be used as a raw material for the bond magnet that is pulverized and hardened together with the resin.

(2)上記(1)項において、前記結晶化薄帯の平均膜厚を、35〜50μmとするα-Fe/R2TM14B系ナノコンポジット磁石の製造方法(請求項2)。
本項に記載の発明は、結晶化薄帯の平均膜厚を35〜50μmとすることで、磁気特性の安定化及び加工の容易化を図るものである。
(2) A method for producing an α-Fe / R 2 TM 14 B-based nanocomposite magnet according to (1) above, wherein the average thickness of the crystallized ribbon is 35-50 μm.
The invention described in this section aims to stabilize the magnetic properties and facilitate the processing by setting the average thickness of the crystallized ribbon to 35 to 50 μm.

(3)上記(1)(2)項において、前記結晶化薄帯が、アルゴンガス雰囲気50〜90kPaにおいて、周速14〜15m/secで表面移動する直径500mm以上のCu製単ロールの鉛直方向(頂点)に形成される、1300℃以上のR-TM-B系溶湯合金のパドルから、ロール表面接触距離10〜15mmで急冷凝固させて生成したものであるα-Fe/R2TM14B系ナノコンポジット磁石の製造方法(請求項3)。
本項に記載の発明では、磁気安定に優れ、かつ比較的長尺なα-Fe/R2TM14B系結晶化薄帯の生成に、液体急冷凝固装置が使用される。より好ましくは、アルゴンガス雰囲気50〜90kPa、周速14〜15m/secで回転する、直径500mm以上のCu製単ロールの鉛直方向(頂点)に、1300℃以上のR-TM-B系溶湯合金のパドルを定常状態となるように形成し、更には薄帯のロール表面接触距離Lcntが、10〜15mmの範囲にて急冷凝固するよう調整するものである。
(3) In the above paragraphs (1) and (2), the vertical direction of the single roll made of Cu having a diameter of 500 mm or more in which the crystallized ribbon moves on the surface at an ambient speed of 14 to 15 m / sec in an argon gas atmosphere of 50 to 90 kPa. Α-Fe / R 2 TM 14 B produced by rapid solidification at a roll surface contact distance of 10 to 15 mm from a paddle of R-TM-B molten alloy at 1300 ° C or higher formed at (vertex) Method for producing a nanocomposite magnet (claim 3).
In the invention described in this section, a liquid rapid solidification apparatus is used to produce an α-Fe / R 2 TM 14 B crystallization ribbon having excellent magnetic stability and a relatively long length. More preferably, an R-TM-B-based molten alloy at 1300 ° C or higher in the vertical direction (vertex) of a single roll made of Cu having a diameter of 500 mm or more rotating at an argon gas atmosphere of 50 to 90 kPa and a peripheral speed of 14 to 15 m / sec. The paddle is formed so as to be in a steady state, and further, the roll surface contact distance L cnt of the ribbon is adjusted so as to rapidly cool and solidify within a range of 10 to 15 mm.

(4)上記(3)項において、前記パドルの中心でロールに接する周方向接線と、前記パドルから剥離点まで薄帯が描く接触円弧の弦とが成す角度が、1.7度以下であるα-Fe/R2TM14B系ナノコンポジット磁石の製造方法(請求項4)。
本項に記載の発明では、形成したパドルの中心でロールに接する周方向接線と、パドルから剥離点まで描く、薄帯接触円弧の弦とが成す角をθとしたとき、θを1.7度以下とする。これにより、平均結晶粒径10〜50nmのγ-Feから相変態したα-Fe相、ならびにR2TM14B相を主相とする、保磁力が600kA/m以上、平均厚さ40〜45μmで、かつ比較的長尺な結晶化薄帯とするものである。
(4) In the above item (3), the angle formed by the circumferential tangent that contacts the roll at the center of the paddle and the chord of the contact arc drawn by the ribbon from the paddle to the peeling point is α − or less. A method for producing an Fe / R 2 TM 14 B-based nanocomposite magnet (Claim 4).
In the invention described in this section, when the angle formed by the circumferential tangent that contacts the roll at the center of the formed paddle and the chord of the ribbon contact arc drawn from the paddle to the peeling point is θ, θ is 1.7 degrees or less. And As a result, the coercive force is 600 kA / m or more and the average thickness is 40 to 45 μm, the main phase being the α-Fe phase transformed from γ-Fe having an average crystal grain size of 10 to 50 nm and the R 2 TM 14 B phase. And a relatively long crystallized ribbon.

(5)上記(1)から(4)項において、2.4MA/m以上で面内方向に磁化した、前記結晶化薄帯の円板の、外部磁界40kA/mにおける磁気トルク曲線歪率が、1.2%以下であるα-Fe/R2TM14B系ナノコンポジット磁石の製造方法(請求項5)。
本項に記載の発明は、2.4MA/m以上で面内方向に磁化した等方性円板試料の、外部磁界40kA/mにおけるトルク曲線の歪率が1.2%以下であり、回転磁界のような外部磁界に対するトルクの可逆性、直線性をも確保するものである。これにより、α-Fe/R2TM14B系ナノコンポジット磁石でありながら、熱による初期不可逆減磁は、R2TM14B化学量論組成付近の結晶化薄帯、又は薄片を粉末化し樹脂で固めたボンド磁石と、ほぼ同水準となるなど、実使用における優れた磁気安定性を確保できる。
(5) In the above items (1) to (4), the distortion factor of the magnetic torque curve at an external magnetic field of 40 kA / m of the crystallized ribbon disk magnetized in the in-plane direction at 2.4 MA / m or more, A method for producing an α-Fe / R 2 TM 14 B nanocomposite magnet that is 1.2% or less (claim 5).
In the invention described in this section, an isotropic disk sample magnetized in the in-plane direction at 2.4 MA / m or more has a torque curve distortion rate of 1.2% or less at an external magnetic field of 40 kA / m, which is like a rotating magnetic field. This ensures the reversibility and linearity of torque with respect to an external magnetic field. As a result, although it is an α-Fe / R 2 TM 14 B nanocomposite magnet, the initial irreversible demagnetization due to heat is caused by pulverizing the crystallized ribbon or flake near the R 2 TM 14 B stoichiometric composition. Excellent magnetic stability in actual use, such as almost the same level as the bonded magnets hardened with

(6)上記(3)から(5)項において、飛行する前記結晶化薄帯を、平板状のシュータにて捕集するα-Fe/R2TM14B系ナノコンポジット磁石の製造方法(請求項6)。
本項に記載の発明は、液体急冷凝固装置のロールから剥離する際に飛行する結晶化薄帯を、平板状のシュータで捕集するものである。
(6) A method for producing an α-Fe / R 2 TM 14 B-based nanocomposite magnet, wherein the flying crystallized ribbon is collected by a flat plate shooter according to the above items (3) to (5). Item 6).
In the invention described in this section, the crystallization ribbon that flies when peeling from the roll of the liquid rapid solidification apparatus is collected by a flat shooter.

本発明はこのように構成したので、磁気安定性に優れ、かつ比較的長尺なα-Fe/R2TM14B系薄帯を、そのまま直接、或いは樹脂との複合薄帯とし、これを所定の長さに切断、曲げ、又は任意形状に打抜加工する、ナノコンポジット磁石の製造方法を提供し、これにより、モータ、アクチュエータ、センサなどの高トルク化、或いはその信頼性を高めることが可能となる。 Since the present invention is configured as described above, an α-Fe / R 2 TM 14 B thin ribbon having excellent magnetic stability and a relatively long length is used as it is or directly as a composite thin ribbon with a resin. Provided is a method for producing a nanocomposite magnet that is cut, bent or punched into a predetermined length, thereby increasing the torque of a motor, actuator, sensor, etc., or improving its reliability. It becomes possible.

(a)は、R/B=2タイラインに沿ったR-Fe-B系疑似2元状態図であり、(b)は、急冷凝固における要部斜視図である。(A) is an R-Fe-B system pseudo binary phase diagram along the R / B = 2 tie line, and (b) is a perspective view of a main part in rapid solidification. (a)は、薄帯の長さの分布を表す特性図であり、(b)は、ロール径と薄帯回転角度の関係を示す特性図である。(A) is a characteristic view showing the distribution of the length of the ribbon, and (b) is a characteristic diagram showing the relationship between the roll diameter and the ribbon rotation angle. (a)は、保磁力、および膜厚の関係を示す特性図であり、(b)は、熱処理温度と保磁力の関係を示す特性図である。(A) is a characteristic diagram showing the relationship between the coercive force and the film thickness, and (b) is a characteristic diagram showing the relationship between the heat treatment temperature and the coercive force. (a)は、トルクの外部磁界依存性を示す特性図であり、(b)は、トルク曲線歪率の外部磁界依存性を示す特性図である。(A) is a characteristic figure which shows the external magnetic field dependence of a torque, (b) is a characteristic figure which shows the external magnetic field dependence of a torque curve distortion. トルク曲線歪率、ならびに初期不可逆減磁率の保磁力依存性を示す特性図である。It is a characteristic view which shows the coercive force dependence of a torque curve distortion rate and an initial irreversible demagnetization factor.

本発明にかかる比較的長尺な薄帯は、α-Fe相、R2TM14B相からなる主相の結晶粒径の範囲を10〜50nm程度に制御した、磁気的に等方性のα-Fe/R2TM14B系結晶化薄帯であることが望ましい。このような薄帯は、レマネンスエンハンスメント(残留磁化促進効果)によって残留磁化が高まる。例えば、D.Gollらは、合金組成Pr8Fe87B5の溶湯合金を急冷凝固し、α-Fe相の結晶粒径を略15nm、Pr2Fe14B相の結晶粒径を20〜30nmとすると、α-Fe相とPr2Fe14B相との接触界面で充分な磁気的結合が生じ、残留磁化1.17T、保磁力470kA/m、(BH)max180.7kJ/m3が得られるとしている([非特許文献1]参照)。 The relatively long ribbon according to the present invention is a magnetically isotropic film in which the crystal grain size range of the main phase composed of α-Fe phase and R 2 TM 14 B phase is controlled to about 10 to 50 nm. An α-Fe / R 2 TM 14 B-based crystallized ribbon is desirable. Such ribbons have increased remanence due to remanence enhancement (residual magnetization promoting effect). For example, D. Goll et al. Rapidly solidified a molten alloy having an alloy composition of Pr 8 Fe 87 B 5 with an α-Fe phase grain size of approximately 15 nm and a Pr 2 Fe 14 B phase grain size of 20 to 30 nm. Then, sufficient magnetic coupling occurs at the contact interface between the α-Fe phase and the Pr 2 Fe 14 B phase, and a residual magnetization of 1.17 T, a coercive force of 470 kA / m, and (BH) max of 180.7 kJ / m 3 can be obtained. (Refer to [Non-Patent Document 1]).

ところで、上記のようなナノコンポジット磁石の、高温における減磁曲線の劣化による初期不可逆減磁は、保磁力が600kA/m以上であれば概ね抑制することができる。そして、その初期不可逆減磁は、保磁力の水準と、保磁力の温度係数ΔHcJ/ΔT(%/℃)に支配されるようになり、例えば、120℃までの環境下では、モータなどに実装した磁石として、実用的な磁気安定性が確保される([非特許文献2])参照)。   By the way, the initial irreversible demagnetization due to the deterioration of the demagnetization curve at high temperature of the nanocomposite magnet as described above can be generally suppressed if the coercive force is 600 kA / m or more. The initial irreversible demagnetization is governed by the level of coercive force and the temperature coefficient ΔHcJ / ΔT (% / ° C) of the coercive force. For example, in an environment up to 120 ° C, it is mounted on a motor or the like. As a magnet, practical magnetic stability is ensured (see [Non-Patent Document 2]).

しかしながら、Prが8原子%(Pr8Fe87B5)であっても、保磁力は470kA/m([非特許文献1]参照)、Prが6原子%(Pr6Fe86-x-y-zCo8VxNbyBz、x=0〜4、y=0〜3、z=6〜9)では、365kA/mに止まる。そこで、本発明では9原子%以上のRとし、かつ、6〜8原子%のB(硼素)とすることで、保磁力を600kA/m以上とする。但し、本発明はα-Fe相とのナノコンポジット磁石であるから、Rの上限はR2TM14B化学量論組成における11.76原子%未満とする必要がある。又、Feは20原子%以下のCoで置換することができる。FeのCo置換は1原子%当り、キュリー温度を概ね10℃上昇させ、残留磁化の温度係数を調整できる。又、初期減磁に影響を及ぼす保磁力値とともに、保磁力の温度係数ΔHcJ/ΔT(%/℃)の改善、或いはレマネンスエンハンスメントによる残留磁化の改善には、非特許文献2のような主相の微細化が必要であり、急冷凝固の際の粒成長を抑える第4元素(grain boundary)としてNb([非特許文献3]参照)、或いはNbとV([特許文献4]参照)などを、通常1原子%程度添加する手法が有効である。 However, even if Pr is 8 atomic% (Pr 8 Fe 87 B 5 ), the coercive force is 470 kA / m (see [Non-patent Document 1]), and Pr is 6 atomic% (Pr 6 Fe 86-xyz Co 8 In V x Nb y B z , x = 0 to 4, y = 0 to 3, z = 6 to 9), it stops at 365 kA / m. Therefore, in the present invention, the coercive force is set to 600 kA / m or more by setting R to 9 atomic% or more and 6 to 8 atomic% B (boron). However, since the present invention is a nanocomposite magnet with an α-Fe phase, the upper limit of R needs to be less than 11.76 atomic% in the R 2 TM 14 B stoichiometric composition. Further, Fe can be substituted with 20 atomic% or less of Co. Co substitution of Fe can increase the Curie temperature by approximately 10 ° C per atomic% and adjust the temperature coefficient of remanent magnetization. Further, in order to improve the coercivity temperature coefficient ΔHcJ / ΔT (% / ° C.) as well as the coercive force value that affects the initial demagnetization, or to improve the remanence by remanence enhancement, as in Non-Patent Document 2. Nb (see [Non-patent Document 3]), or Nb and V (see [Patent Document 4]) as the fourth element (grain boundary) that suppresses grain growth during rapid solidification, which requires refinement of the main phase. In general, a technique of adding about 1 atomic% is effective.

又、上記のような保磁力水準のとき、2極に面内方向磁化した円板状試料の、室温での外部磁界240kA/m以下での磁気トルクの直線性は、相関係数Rで0.9999以上、かつその40kA/mにおけるトルク曲線の歪率は、1.15%以下となる。なお、本発明にかかるα-Fe/R2Fe14B系ナノコンポジット磁石の保磁力を600kA/m以上とするには、9原子%以上R2TM14B化学量論組成未満のR、6〜8原子%のB(硼素)を必須とする。 In addition, when the coercive force level is as described above, the linearity of the magnetic torque of the disk-shaped sample magnetized in the in-plane direction to two poles at an external magnetic field of 240 kA / m or less at room temperature is 0.9999 as a correlation coefficient R. The distortion rate of the torque curve at 40 kA / m is 1.15% or less. In order to set the coercive force of the α-Fe / R 2 Fe 14 B nanocomposite magnet according to the present invention to 600 kA / m or more, R of 6 atomic% or more and less than R 2 TM 14 B stoichiometric composition, 6 ˜8 atomic% B (boron) is essential.

つぎに、本発明にかかるα-Fe/R2TM14B系ナノコンポジット磁石の好ましい製造方法を、図1(a)、(b)により説明する。図1(a)は、R/B(Nd又はPrと、Bとの比)が2のタイラインに沿ったR-TM-B系疑似2元状態図、図1(b)は、急冷凝固における要部斜視図である。但し、図1(a)は、Feの一部のCo置換量を一定としている。又、図1(b)において、1は溶湯合金、11はノズル(オリフィス)、2はロール表面、3はパドル、4は薄帯、Aは薄帯4のロール表面2との剥離点、5はコイルである。 Next, a preferred method for producing an α-Fe / R 2 TM 14 B-based nanocomposite magnet according to the present invention will be described with reference to FIGS. 1 (a) and 1 (b). Fig. 1 (a) shows an R-TM-B system pseudo binary phase diagram along the tie line with R / B (ratio of Nd or Pr to B) of 2, and Fig. 1 (b) shows rapid solidification. FIG. However, in FIG. 1 (a), the amount of Co substitution in part of Fe is constant. In FIG. 1B, 1 is a molten alloy, 11 is a nozzle (orifice), 2 is a roll surface, 3 is a paddle, 4 is a ribbon, and A is a peeling point of the ribbon 4 from the roll surface 2. Is a coil.

図1(a)のR/B=2タイラインに沿ったR-TM-B系疑似2元状態図から、溶湯合金1は1300℃以上とする。このような溶湯合金1の急冷凝固では、先ず液相+γ-Fe域を経てγ-Fe+R2Fe14B域となると推定される。なお、γ-Feは室温に冷却される過程でα-Feに相変態し、α-Fe相とR2Fe14B相とを主相とする急冷凝固薄帯となる。 From the R-TM-B system pseudo binary phase diagram along the R / B = 2 tie line in Fig. 1 (a), the molten alloy 1 is set to 1300 ° C or higher. In such rapid solidification of the molten alloy 1, it is presumed that the liquid phase + γ-Fe region first passes through the γ-Fe + R 2 Fe 14 B region. Note that γ-Fe undergoes phase transformation to α-Fe in the process of being cooled to room temperature, and becomes a rapidly solidified ribbon with the α-Fe phase and the R 2 Fe 14 B phase as main phases.

急冷凝固は、例えば、アルゴンガス雰囲気50〜90kPa(図示せず)において、14〜15m/secの速度で移動する、直径500mm以上のCu製単ロール表面2の鉛直方向(頂点)に、1300℃以上のR-TM-B系溶湯合金1のパドル(湯溜り)3を形成する。そして、パドル3で急冷凝固した薄帯4は、剥離点Aまでロール表面2にて抜熱される。そして、剥離点Aにてロール表面2から離れた薄帯4は、アルゴンガス雰囲気中にて更に冷却されて、平均結晶粒径10〜50nmのγ-Fe相(α-Feに相変態)、およびR2TM14B相を主相とする、保磁力が600kA/m以上の結晶化急冷薄帯4となる。 Rapid solidification is performed at 1300 ° C. in the vertical direction (vertex) of a single roll surface 2 made of Cu having a diameter of 500 mm or more and moving at a speed of 14 to 15 m / sec in an argon gas atmosphere of 50 to 90 kPa (not shown), for example. The paddle (water pool) 3 of the R-TM-B molten metal alloy 1 is formed. Then, the ribbon 4 rapidly solidified by the paddle 3 is removed from the roll surface 2 up to the peeling point A. The ribbon 4 separated from the roll surface 2 at the peeling point A is further cooled in an argon gas atmosphere, and a γ-Fe phase (phase transformation to α-Fe) having an average crystal grain size of 10 to 50 nm, And the crystallization quenching ribbon 4 having a coercive force of 600 kA / m or more and having a R 2 TM 14 B phase as a main phase.

上記のような、本発明にかかる急冷凝固を安定して行うには、溶湯合金1の供給源であるノズル11と、移動するCu製のロール表面2との間に、溶湯合金1のパドル3を安定的に形成する必要がある。このような溶湯合金1のパドル3は、コイル5に高周波電流を通電するなどの手段により、融点以上に加熱したノズル(オリフィス)11を通して一定範囲内の圧力、例えば30〜50kPaにて、溶湯合金1を栓流化して供給すれば形成できる。換言すれば、溶湯合金1が急冷凝固されて薄帯4となり、ロールの移動によって運び去られる量に見合う溶湯合金1を供給することで、パドル3の安定化が達成される。   In order to stably perform the rapid solidification according to the present invention as described above, the paddle 3 of the molten alloy 1 is provided between the nozzle 11 which is a supply source of the molten alloy 1 and the moving Cu roll surface 2. Must be formed stably. Such a paddle 3 of the molten alloy 1 is made of a molten alloy at a pressure within a certain range, for example, 30 to 50 kPa, through a nozzle (orifice) 11 heated to a melting point or higher by means such as applying a high-frequency current to the coil 5. If 1 is plugged and supplied, it can be formed. In other words, the melted alloy 1 is rapidly solidified to form the ribbon 4, and by supplying the molten alloy 1 corresponding to the amount carried away by the movement of the roll, stabilization of the paddle 3 is achieved.

又、パドル3の大きさがある一定範囲を越えると、パドル3の生成が不安定となり、定常状態を維持できなくなる。更に、パドル3の安定維持には、冷却ロールの冷却能力が損なわれることなく安定していることも重要である。 If the size of the paddle 3 exceeds a certain range, the generation of the paddle 3 becomes unstable and the steady state cannot be maintained. Furthermore, it is important for the stable maintenance of the paddle 3 that the cooling capability of the cooling roll is not impaired.

上記のような安定したパドル3の凝固界面移動速度Vsldは、当該溶湯合金1とロール表面2との伝熱係数により変化する。例えば、14.5m/secの速度で移動する、直径500mmのCu製単ロール表面2の鉛直方向(頂点)に、1300℃以上のPr9Fe73Co9 B7V1Nb1溶湯合金1のパドル3を形成し、急冷凝固したとき、薄帯4の平均厚さは42μmであった。又、パドル3から生成した薄帯4の剥離点Aまでの距離、すなわち、薄帯4とロール表面2との接触距離Lcntは、概ね12.0〜12.5mmであった。従って、凝固界面移動速度Vsldは50mm/sec、薄帯4のロール表面2との接触時間は0.84msecであった。更に、1300℃の溶湯合金1が、薄帯4としてロール表面2から離れるときの温度を700〜800℃とすれば、急冷凝固における冷却速度は概ね7×105 〜6×105℃/secとなる。 The solidification interface moving speed V sld of the stable paddle 3 as described above varies depending on the heat transfer coefficient between the molten alloy 1 and the roll surface 2. For example, a paddle of Pr 9 Fe 73 Co 9 B 7 V 1 Nb 1 molten alloy 1 above 1300 ° C in the vertical direction (vertex) of a single roll surface 2 made of Cu having a diameter of 500 mm moving at a speed of 14.5 m / sec When 3 was formed and rapidly solidified, the average thickness of the ribbon 4 was 42 μm. Further, the distance from the paddle 3 to the peeling point A of the thin ribbon 4, that is, the contact distance L cnt between the thin ribbon 4 and the roll surface 2 was approximately 12.0 to 12.5 mm. Therefore, the solidification interface moving speed V sld was 50 mm / sec, and the contact time of the ribbon 4 with the roll surface 2 was 0.84 msec. Furthermore, if the temperature when the molten alloy 1 of 1300 ° C. leaves the roll surface 2 as the ribbon 4 is 700 to 800 ° C., the cooling rate in the rapid solidification is approximately 7 × 10 5 to 6 × 10 5 ° C / sec. It becomes.

更に、本発明にかかる比較的長尺な薄帯4とするには、接触距離Lcntにおける薄帯4の円弧状の軌跡を小さくする必要がある。例えば、パドル3の周方向接線と、パドル3を起点とし剥離点Aを終点とする、薄帯4が描く円弧の弦とが成す角をθとすれば、角θが小さいほどロール表面2と接する薄帯4の直線性が増す。本発明は、θを約1.4度以下とすれば、剥離点Aの位置も安定化し、比較的長尺な薄帯4が得やすくなることを見出した。 Furthermore, in order to make the relatively long ribbon 4 according to the present invention, it is necessary to reduce the arc-shaped locus of the ribbon 4 at the contact distance L cnt . For example, if the angle formed by the circumferential tangent of the paddle 3 and the arc chord drawn by the ribbon 4 starting from the paddle 3 and ending at the peeling point A is θ, the smaller the angle θ is, The linearity of the ribbon 4 in contact is increased. The present invention has found that when θ is about 1.4 ° or less, the position of the peeling point A is also stabilized, and a relatively long ribbon 4 can be easily obtained.

剥離点Aを通過した薄帯4は、50〜90kPaのアルゴンガス雰囲気中で飛行し、R2TM14B(結晶化温度約590℃)、α-Fe(結晶化温度約420℃)以下まで急速冷却される。そして、薄帯4を、好ましくは平板状のシュータ(滑り台)により捕集する。なお、特許文献1、特許文献2、および特許文献3のような、B(硼素)-richの合金組成の薄帯は、通常連続した薄帯4となるが、通常ねじれや反りが生じる。薄帯4を平板状のシュータにより捕集する理由は、直線的に飛行する本発明にかかる薄帯4が、壁面に衝突したときに起こるねじれや反り、或いは破砕される薄片の生成を抑制し、比較的長尺で直線的な薄帯の収率を高めるためである。このように薄帯のねじれや反りを抑制することで、当該薄帯をそのまま直接、或いは樹脂組成物と複合化した薄帯とし、所定の長さに切断、曲げ、又は任意形状への打抜加工を容易にすることができる。 The ribbon 4 that has passed the peeling point A flies in an argon gas atmosphere of 50 to 90 kPa, and is below R 2 TM 14 B (crystallization temperature about 590 ° C.) and α-Fe (crystallization temperature about 420 ° C.). Quick cooling. Then, the ribbon 4 is collected preferably by a flat shooter (slide). In addition, although the thin ribbon of the alloy composition of B (boron) -rich like patent document 1, patent document 2, and patent document 3 turns into the continuous continuous ribbon 4, normally a twist and curvature generate | occur | produce. The reason why the ribbon 4 is collected by the flat shooter is that the ribbon 4 according to the present invention that flies linearly suppresses the generation of twisting and warping that occurs when the ribbon 4 collides with the wall surface, or the generation of flakes to be crushed. This is to increase the yield of a relatively long and linear ribbon. In this way, by suppressing twisting and warping of the ribbon, the ribbon is directly or as a ribbon combined with the resin composition, cut to a predetermined length, bent, or punched into an arbitrary shape. Processing can be facilitated.

次に、本発明にかかるα-Fe/R2TM14B系ナノコンポジット磁石の、機械的な加工について説明する。本発明にかかる薄帯の機械的な加工としては、超音波加工、マイクロブラスト加工などが適用可能である。又、好ましくはファインブランキング法、シェービング法などの精密打抜型を用いた打抜加工であり、更に好ましくは、対向ダイス法による精密打抜加工を挙げることができる。 Next, mechanical processing of the α-Fe / R 2 TM 14 B-based nanocomposite magnet according to the present invention will be described. As the mechanical processing of the ribbon according to the present invention, ultrasonic processing, microblast processing and the like can be applied. Further, punching using a precision punching die such as a fine blanking method and a shaving method is preferable, and a precision punching method using an opposing die method is more preferable.

本発明にかかるα-Fe/R2TM14B系ナノコンポジット磁石の製造方法を、実施例により、更に詳しく説明する。但し、本発明は実施例に限定されるものではない。 The production method of the α-Fe / R 2 TM 14 B-based nanocomposite magnet according to the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the examples.

(長さとロール径)
1350℃の溶湯合金(合金組成Pr9Fe73Co9 B7V1Nb1)20gを、60kPaのアルゴンガス雰囲気中、直径0.8mmのオリフィスを介し、14.5m/secで表面移動する直径500mmのCu製ロール表面の鉛直方向(頂点)にてパドルを形成し、急冷凝固した。なお、幅約2mmの急冷凝固した薄帯は、板状のシュータにて捕集した。又、比較例として、Cu製ロールの直径を200mmとしたこと以外は全て同一条件にて、比較例の薄帯を作製した。
(Length and roll diameter)
20 mm of molten metal alloy (alloy composition Pr 9 Fe 73 Co 9 B 7 V 1 Nb 1 ) at 1350 ° C is 500 mm in diameter moving at 14.5 m / sec through an orifice of 0.8 mm in an argon gas atmosphere at 60 kPa Paddles were formed in the vertical direction (vertex) on the surface of the Cu roll and rapidly solidified. The rapidly solidified ribbon with a width of about 2 mm was collected with a plate-like shooter. In addition, as a comparative example, a ribbon of the comparative example was produced under the same conditions except that the diameter of the Cu roll was 200 mm.

図2(a)は、本発明にかかる直径500mmのCu製ロールで作製した、急冷薄帯の長さ分布を、比較例(直径200mmのCu製ロール)と共に示している。図から明らかなように、比較例では、長さ10mm未満の短冊状の薄帯が75%、又、30mm未満の短冊状薄片の割合は99%であった。つまり、数mm程度の長さのものしか得られない([特許文献4]参照)。これに対し、本発明にかかる薄帯は、長さ10mm未満の短冊状の薄帯は約17%であり、比較的長尺な薄帯と言える。このような比較的長尺な薄帯は、樹脂組成物と複合化して所定の長さに切断、曲げ、又は任意形状に打抜加工し、所定形状のα-Fe/R2TM14B系ナノコンポジット磁石とすることができる。 FIG. 2 (a) shows the length distribution of a quenched ribbon produced with a 500 mm diameter Cu roll according to the present invention, together with a comparative example (200 mm diameter Cu roll). As is apparent from the figure, in the comparative example, the strip-shaped ribbon having a length of less than 10 mm was 75%, and the ratio of the strip-shaped strip having a length of less than 30 mm was 99%. That is, only a length of about several mm can be obtained (see [Patent Document 4]). On the other hand, the strip according to the present invention is a strip-shaped strip having a length of less than 10 mm, which is about 17%, and can be said to be a relatively long strip. Such a relatively long ribbon is compounded with a resin composition, cut to a predetermined length, bent, or punched into an arbitrary shape, and an α-Fe / R 2 TM 14 B system having a predetermined shape It can be a nanocomposite magnet.

なお、パドル3とロール表面2との接触距離Lcntは、本実施例ではロール径に依存せず、本合金系では12.0〜12.5mmであった。本発明にかかる比較的長尺な薄帯4を安定して得るためには、接触距離Lcntにおける薄帯4の円弧状の軌跡を小さくする必要がある。例えば、図2(b)中のパドル3のロール周方向接線X-X’と、パドル3と剥離点Aの区間で薄帯4が描く円弧の弦とが成す角をθとすれば、θの値が小さいほどロール表面2と接する薄帯4の直線性が増すことになる。図2(a)の結果から、角度θを1.4度程度とすれば、パドル3の形成とともに剥離点Aの位置も安定化し、ロール表面2と接する薄帯4の直線性が増す。例えば、ロール径を500mmとし、接触距離Lcntが最大15mmとしたときの角度θは1.7度であり、比較例と比べると、ロール表面2における薄帯4の直線性は2.5倍となっており、このことが比較的長尺な薄帯4が得やすくなる理由と言える。 Note that the contact distance L cnt between the paddle 3 and the roll surface 2 did not depend on the roll diameter in this example, and was 12.0 to 12.5 mm in this alloy system. In order to stably obtain the relatively long ribbon 4 according to the present invention, it is necessary to reduce the arc-shaped locus of the ribbon 4 at the contact distance L cnt . For example, if θ is an angle formed by the roll circumferential tangent XX ′ of the paddle 3 in FIG. 2B and the arc string drawn by the ribbon 4 in the section between the paddle 3 and the peeling point A, θ The smaller the value of, the greater the linearity of the ribbon 4 in contact with the roll surface 2. From the result of FIG. 2A, when the angle θ is about 1.4 degrees, the position of the peeling point A is stabilized along with the formation of the paddle 3, and the linearity of the ribbon 4 in contact with the roll surface 2 is increased. For example, when the roll diameter is 500 mm and the contact distance L cnt is 15 mm at the maximum, the angle θ is 1.7 degrees. Compared with the comparative example, the linearity of the ribbon 4 on the roll surface 2 is 2.5 times. This is the reason why a relatively long ribbon 4 can be easily obtained.

(保磁力と厚さ)
1350℃の溶湯合金(合金組成Pr9Fe73Co9 B7V1Nb1)20gを、60kPaのアルゴンガス雰囲気中、直径0.8 mmのオリフィスを介し、10.0、14.0、14.5、15.0、20.0、30.0m/secでロール表面が移動する直径500mmのCu製ロール表面で急冷凝固した。なお、幅約2mmの急冷薄帯は、平板状のシュータにて捕集した。
(Coercivity and thickness)
10.0 ° C molten alloy (alloy composition Pr 9 Fe 73 Co 9 B 7 V 1 Nb 1 ) 20 g in an argon gas atmosphere of 60 kPa, through a 0.8 mm diameter orifice, 10.0, 14.0, 14.5, 15.0, 20.0, 30.0 Rapid solidification was performed on the surface of a roll made of Cu having a diameter of 500 mm where the roll surface moves at m / sec. The quenched ribbon with a width of about 2 mm was collected with a flat plate shooter.

図3(a)は、直径500mmのCu製ロール表面の移動速度と薄帯の保磁力、および膜厚の関係、図3(b)は、Cu製ロール表面の移動速度を20、30m/secとして作製した薄帯の、熱処理温度と保磁力HcJの関係を示す特性図である。但し、保磁力は、外部磁界±2.4MA/mのVSM(振動試料磁力計)で測定した室温での値であり、熱処理は、アルゴンガスフロー(1.5L/min)中、約10℃/secで設定温度まで昇温し、保持時間なしで、かつガスフロー中にて100℃以下まで冷却した。 Fig. 3 (a) shows the relationship between the moving speed of the 500 mm diameter Cu roll surface, the coercive force of the ribbon, and the film thickness. Fig. 3 (b) shows the moving speed of the Cu roll surface at 20 and 30 m / sec. 5 is a characteristic diagram showing the relationship between the heat treatment temperature and the coercive force HcJ of the ribbon manufactured as described above. However, the coercive force is a value at room temperature measured with an external magnetic field ± 2.4 MA / m VSM (vibrating sample magnetometer), and the heat treatment is about 10 ° C./sec in an argon gas flow (1.5 L / min). The temperature was raised to the set temperature at, and cooled to 100 ° C. or lower in the gas flow without holding time.

図3(a)の本発明例のように、本発明は保磁力値から、急冷凝固におけるCuロール表面の移動速度を最適化することができる。なお、Cu製ロール表面の移動速度が14〜15m/sec付近であれば、平均の保磁力は686kA/mであり、これを570〜600℃で熱処理しても保磁力は殆ど変化せず、むしろα-Fe相やR2TM14B相の粗大化による磁気特性の低下がある。 Like the example of this invention of Fig.3 (a), this invention can optimize the moving speed of the Cu roll surface in rapid solidification from a coercive force value. In addition, if the moving speed of the Cu roll surface is around 14-15 m / sec, the average coercive force is 686 kA / m, and the coercive force hardly changes even when heat-treated at 570-600 ° C. Rather, there is a decrease in magnetic properties due to the coarsening of the α-Fe phase and the R 2 TM 14 B phase.

なお、この合金系で特許文献1、特許文献2、および特許文献3のような非晶質急冷薄帯を得るには、Cu製ロール表面の移動速度を40m/sec以上に設定する必要がある。そして、Cu製ロール表面の移動速度が20、および30m/secでは、結晶化はしているが、その保磁力は数kA/mに過ぎず、図3(b)のように結晶化のための熱処理が必要である。しかし、570〜600℃の温度範囲で熱処理した薄帯の保磁力は、Cu製ロール表面の移動速度を14〜15m/secとした、非熱処理薄帯の保磁力686kA/mには及ばない。なお、本発明にかかる、1辺が約2mmの面内方向に、4.8MA/mパルス着磁後の代表的な磁気特性は、残留磁化0.95T、保磁力652kA/m、(BH)max140kJ/m3であった。 In addition, in order to obtain an amorphous quenching thin ribbon like patent document 1, patent document 2, and patent document 3 by this alloy type, it is necessary to set the moving speed of the surface made from Cu to 40 m / sec or more. . When the moving speed of the Cu roll surface is 20 and 30 m / sec, crystallization occurs, but the coercive force is only a few kA / m, and the crystallization is performed as shown in FIG. Heat treatment is required. However, the coercive force of the ribbon heat-treated in the temperature range of 570 to 600 ° C. does not reach the coercivity 686 kA / m of the non-heat-treated ribbon with the moving speed of the Cu roll surface of 14 to 15 m / sec. According to the present invention, typical magnetic characteristics after 4.8 MA / m pulse magnetization in an in-plane direction with a side of about 2 mm are a residual magnetization of 0.95 T, a coercive force of 652 kA / m, and (BH) max 140 kJ. / m 3 .

ところで、薄帯の厚さtは、t=Tcnt×Vsldで律則される。又、Tcnt=Lcnt/Vrollなる関係がある。但し、Tcntは薄帯のロール表面との接触時間、Vsldは凝固界面移動速度、Vrollはロール表面の移動速度、Lcntは薄帯とロール表面との接触距離である。本発明例であるロール表面の移動速度Vrollが14.5m/secのとき、Lcntは12.0〜12.5 mm、tは41〜43μm、Vsldは50mm/secであった。このことから本実施例のような合金組成で、特許文献1、特許文献2、および特許文献3のような90%以上非晶質急冷薄帯とするには、ロール表面の移動速度Vrollを40m/secとする必要があり、その場合の厚さtは約16μm程度となる。このような厚さになると薄帯は極めて機械的に脆弱になり、シュータで捕集しても、その長さは数mm以下となり、目的とする比較的長尺な薄帯は得られない。従って、薄帯を、そのまま直接、或いは樹脂と複合化しても、所定の長さに切断、曲げ、又は任意形状に打抜加工することはできない。 By the way, the thickness t of the ribbon is regulated by t = T cnt × V sld . Further, there is a relationship of T cnt = L cnt / V roll . Where T cnt is the contact time with the roll surface of the ribbon , V sld is the solidification interface moving speed, V roll is the moving speed of the roll surface, and L cnt is the contact distance between the ribbon and the roll surface. L cnt was 12.0 to 12.5 mm, t was 41 to 43 μm, and V sld was 50 mm / sec when the moving speed V roll on the roll surface according to the present invention was 14.5 m / sec. Therefore, in order to obtain an amorphous quenching ribbon of 90% or more as in Patent Document 1, Patent Document 2, and Patent Document 3 with the alloy composition as in this example, the moving speed V roll of the roll surface is set to In this case, the thickness t is about 16 μm. At such a thickness, the ribbon becomes extremely mechanically fragile, and even when collected with a shooter, the length is several mm or less, and the intended relatively long ribbon cannot be obtained. Therefore, even if the ribbon is directly or combined with a resin, it cannot be cut, bent, or punched into a desired shape.

(トルクとトルク曲線の歪)
実施例1で得た、本発明にかかる1辺が約2mmの面内方向に、4.8MA/mパルス着磁後の代表的な磁気特性は、残留磁化0.95T、保磁力652kA/m、(BH)max140kJ/m3であった。この試料を対向ダイス法により、直径1.6mmの円板状に打抜き、更に、4MA/mのパルス磁界で面内方向に磁化した。
(Torque and torque curve distortion)
In the in-plane direction with one side of about 2 mm according to the present invention obtained in Example 1, typical magnetic characteristics after 4.8 MA / m pulse magnetization are residual magnetization 0.95 T, coercive force 652 kA / m, ( BH) max 140 kJ / m 3 . This sample was punched into a disk shape with a diameter of 1.6 mm by the facing die method, and further magnetized in the in-plane direction with a 4 MA / m pulsed magnetic field.

比較例として、特許文献1に記載される合金組成式Fe100-x-yRxAy(但し、RはPr、Nd、Dy、Tbの1種又は2種以上、AはC(炭素)、又はB(硼素)の1種又は2種、1≦x<6原子%、15≦y≦30原子%)の範囲に対応するB(硼素)-richな合金組成Nd4.5Fe70Co5B18.5Cr2母合金を高周波溶解し、当該溶湯合金を1200℃で直径0.8mmのオリフィスを介し、表面が30m/secで移動する直径500mmのCu製ロールの鉛直方向(頂点)にパドルを形成し、急冷凝固し、厚さ約45μmの非晶質薄帯を得た。なお、薄帯の捕集は板状シュータを用いた。得られた非晶質薄帯は、長さ方向にほぼ連続したものであるが、速度30m/secで飛行するため、ねじれや反りが大きい。 As a comparative example, the alloy composition formula Fe 100-xy RxAy described in Patent Document 1 (where R is one or more of Pr, Nd, Dy, and Tb, A is C (carbon), or B (boron) 1) or 2 types, 1 ≦ x <6 atomic%, 15 ≦ y ≦ 30 atomic%) B (boron) -rich alloy composition Nd 4.5 Fe 70 Co 5 B 18.5 Cr 2 master alloy , The paddle is formed in the vertical direction (vertex) of a 500 mm diameter Cu roll whose surface moves at 30 m / sec through an orifice with a diameter of 0.8 mm at 1200 ° C., and rapidly solidified. An amorphous ribbon having a thickness of about 45 μm was obtained. A thin film shooter was used to collect the ribbon. The obtained amorphous ribbon is substantially continuous in the length direction, but has a large twist and warp because it flies at a speed of 30 m / sec.

上記薄帯をアルゴンガスフロー中、約10℃/secで560℃まで昇温し、結晶化した。X線回折ではFe3B相、α-Fe相、Nd2Fe14B相の3相からなるナノコンポジット磁石であり、外部磁界±2.4MA/mのVSMで測定した室温での残留磁化は1.1T、保磁力は330kA/m、(BH)maxは95kJ/m3であった。この試料を対向ダイス法により、直径1.6mmの円板状に打抜き、更に、4MA/mのパルス磁界で面内方向に磁化した。 The ribbon was heated to 560 ° C. at about 10 ° C./sec in an argon gas flow and crystallized. X-ray diffraction is a nanocomposite magnet composed of three phases, Fe 3 B phase, α-Fe phase, and Nd 2 Fe 14 B phase, and the residual magnetization at room temperature measured by VSM with external magnetic field ± 2.4 MA / m is 1.1. T, coercive force was 330 kA / m, and (BH) max was 95 kJ / m 3 . This sample was punched into a disk shape with a diameter of 1.6 mm by the facing die method, and further magnetized in the in-plane direction with a 4 MA / m pulsed magnetic field.

図4(a)は、試料(極対数2)の外部磁界に対する磁気トルク、図4(b)は、磁気トルク曲線の歪率の変化を示す特性図である。但し、磁気トルクは、試料の直径は同じであるが厚さが異なるために、それぞれの体積で除した体積磁気トルクで表している。又、磁気トルク曲線の歪率とは、磁気トルク曲線をフーリエ分解し、高調波成分を基本波成分で除したものである。   4A is a magnetic torque with respect to the external magnetic field of the sample (pole pair number 2), and FIG. 4B is a characteristic diagram showing a change in distortion rate of the magnetic torque curve. However, the magnetic torque is expressed by volume magnetic torque divided by each volume because the sample has the same diameter but different thickness. The distortion rate of the magnetic torque curve is obtained by Fourier-decomposing the magnetic torque curve and dividing the harmonic component by the fundamental wave component.

ところで、面内方向に極対数1で磁化した試料を、一様な回転する外部磁界に暴露したとする。ここで、外部磁界の回転方向(磁気トルクの発生方向)の反時計回りを正とし、外部磁界のS極中心が、試料のN極の真上から反時計回りに廻ると考える。すると外部磁界のS極中心が、試料のN極の真上にある場合、トルクはゼロ、半時計回りに外部磁界のS極中心が回転すると、磁気トルクは徐々に増加し、90度回転した位置で最大磁気トルクとなる。更に回転すると、磁気トルクは再び徐々に減少し、180度でゼロとなる。つまり、磁気トルク計での計測値は極対数1のDCモータのトルクと等価である。又、外部磁界を変化させたとき、外部磁界Hexに対するトルク勾配dT/dHexは、DCモータにおけるトルク定数に相当する。   By the way, it is assumed that a sample magnetized with a pole pair number of 1 in the in-plane direction is exposed to a uniform rotating external magnetic field. Here, it is assumed that the counterclockwise direction of the rotation direction of the external magnetic field (magnetic torque generation direction) is positive, and that the S pole center of the external magnetic field rotates counterclockwise from directly above the N pole of the sample. Then, when the south pole center of the external magnetic field is directly above the north pole of the sample, the torque is zero, and when the south pole center of the external magnetic field rotates counterclockwise, the magnetic torque gradually increases and rotates 90 degrees. Maximum magnetic torque at the position. With further rotation, the magnetic torque gradually decreases again and becomes zero at 180 degrees. That is, the measured value with the magnetic torque meter is equivalent to the torque of a DC motor having a pole pair number of 1. When the external magnetic field is changed, the torque gradient dT / dHex with respect to the external magnetic field Hex corresponds to a torque constant in the DC motor.

図4(a)の本発明にかかる試料では、8〜240kA/mの外部磁界(モータの電流値に対応)とトルクとの直線近似における相関係数は0.9999である。又、比較例([特許文献1]に対応)の相関係数は0.9363であった。加えて、DCモータにおけるトルク定数に相当する傾きも、本発明にかかる試料が大であることも明らかである。更に、図4(b)の磁気トルク曲線歪率は、8〜240kA/mの広範囲の外部磁界において、本発明例が比較例に比べて著しく小さく、かつ安定的であることは明らかである。なお、外部磁界40kA/mでの歪率は本発明例で0.94%、比較例で3.84%であった。   In the sample according to the present invention shown in FIG. 4A, the correlation coefficient in the linear approximation between the external magnetic field of 8 to 240 kA / m (corresponding to the current value of the motor) and the torque is 0.9999. The correlation coefficient of the comparative example (corresponding to [Patent Document 1]) was 0.9363. In addition, it is apparent that the slope corresponding to the torque constant in the DC motor is also large for the sample according to the present invention. Furthermore, it is clear that the magnetic torque curve distortion rate of FIG. 4 (b) is significantly smaller and more stable in the example of the present invention than in the comparative example in a wide range of external magnetic field of 8 to 240 kA / m. The distortion rate at an external magnetic field of 40 kA / m was 0.94% in the inventive example and 3.84% in the comparative example.

(初期不可逆減磁)
図5は、実施例3で示した本発明例、ならびに比較例の保磁力と外部磁界40kA/mでの磁気トルク曲線歪率の関係、ならびにα-Fe相とNd2TM14B相とを主相とする急冷薄帯、ならびにNd2Fe14B相を主相とする急冷薄帯を粉砕して粉末とし、樹脂と共に固めたボンド磁石の保磁力と初期不可逆減磁の関係を示す特性図である。但し、初期不可逆減磁率は、直径4.1mmの円筒磁石の外周に8極着磁した磁石をロータとしたステッピングモータを、120℃雰囲気に1時間暴露した前後の誘起電圧減少率である。
(Initial irreversible demagnetization)
FIG. 5 shows the relationship between the coercive force of the present invention example shown in Example 3 and the comparative example and the magnetic torque curve distortion rate at an external magnetic field of 40 kA / m, and the α-Fe phase and the Nd 2 TM 14 B phase. Characteristic diagram showing the relationship between the coercive force and initial irreversible demagnetization of a bonded magnet that is made by pulverizing a quenched ribbon with the main phase and a quenched ribbon with the Nd 2 Fe 14 B phase as the main phase and solidifying it with resin It is. However, the initial irreversible demagnetization rate is an induced voltage reduction rate before and after a stepping motor having a rotor made of a magnet magnetized with 8 poles on the outer periphery of a cylindrical magnet having a diameter of 4.1 mm is exposed to an atmosphere of 120 ° C. for 1 hour.

図から明らかなように、磁気トルク曲線の歪率が1.2%を越えると、初期不可逆減磁率も急激に増加する傾向がある。このように磁気トルク曲線の歪率と高温暴露での初期不可逆減磁は、何れも磁化反転に由来するもので、本発明例は合金組成Nd12Fe77Co5B6、すなわち、R2TM14B化学量論組成付近の長さ数μmの急冷薄帯を粉砕し、樹脂と共に固めたボンド磁石と、同等の磁気安定性を有している。更に、本発明例によれば、比較的長尺な薄帯を得ることが可能であることから、比較例([特許文献1]に対応)と同様に、当該薄帯を樹脂と複合化した薄帯とし、所定の長さに切断、又は任意形状に打抜加工したα-Fe/Nd2TM14B系ナノコンポジット磁石とすることができる。 As is apparent from the figure, when the distortion rate of the magnetic torque curve exceeds 1.2%, the initial irreversible demagnetization rate tends to increase rapidly. Thus, both the distortion rate of the magnetic torque curve and the initial irreversible demagnetization at high temperature exposure are derived from magnetization reversal, and the examples of the present invention are alloy compositions Nd 12 Fe 77 Co 5 B 6 , that is, R 2 TM It has the same magnetic stability as a bonded magnet obtained by crushing a quenched ribbon with a length of several μm near the 14 B stoichiometric composition and solidifying it with a resin. Furthermore, according to the example of the present invention, it is possible to obtain a relatively long ribbon, so that the ribbon is combined with a resin, as in the comparative example (corresponding to [Patent Document 1]). It is possible to make an α-Fe / Nd 2 TM 14 B-based nanocomposite magnet that is a thin ribbon, cut to a predetermined length, or stamped into an arbitrary shape.

1:溶湯合金、2:ロール表面、3:パドル、4:薄帯、5:コイル、11:ノズル(オリフィス)、A:薄帯4のロール表面2との剥離点、X-X’:パドル3のロール周方向接線、θ:パドル3のロール周方向接線X-X’と、パドル3と剥離点Aの区間で薄帯4が描く円弧の弦とが成す角   1: Molten alloy, 2: Roll surface, 3: Paddle, 4: Strip, 5: Coil, 11: Nozzle (orifice), A: Strip point of roll 4 with roll surface 2, X-X ′: Paddle 3 is the angle formed between the paddle 3 and the arc string drawn by the ribbon 4 in the section of the peeling point A.

Claims (6)

α-Fe/R2TM14B(Rは9原子%以上、かつR2TM14B化学量論組成未満のNd又はPr、TMはFe又はFeの一部を20原子%以下のCoで置換したもの、Bは6〜8原子%)系ナノコンポジット磁石の製造方法であって、
合金組成PrFeCoBVNb(Vは0〜4原子%、Nbは0〜3原子%)の溶湯合金をα-Fe及びR2TM14Bの結晶化温度以下まで急速冷却し、熱処理を施すことなく結晶化した、長さ10mm未満の薄片の含有を20%未満とした比較的長尺な、保磁力600kA/m以上の結晶化薄帯と、樹脂組成物とを複合化し、所定の長さに切断、曲げ、又は任意形状に打抜加工することを特徴とするα-Fe/R2TM14B系ナノコンポジット磁石の製造方法。
α-Fe / R 2 TM 14 B (R is 9 atomic% or more and less than R 2 TM 14 B stoichiometric composition Nd or Pr, TM is part of Fe or Fe is replaced by 20 atomic% or less Co And B is a method for producing a nanocomposite magnet).
Rapidly cool molten alloy with alloy composition PrFeCoBVNb (V is 0-4 atom%, Nb is 0-3 atom%) to below crystallization temperature of α-Fe and R 2 TM 14 B, and crystallize without heat treatment A relatively long crystallized ribbon with a coercive force of 600 kA / m and a resin composition containing less than 20% flakes with a length of less than 10 mm and a resin composition are combined and cut into a predetermined length. A method for producing an α-Fe / R 2 TM 14 B-based nanocomposite magnet, characterized by bending or stamping into an arbitrary shape.
前記結晶化薄帯の平均膜厚を、35〜50μmとすることを特徴とする請求項1記載のα-Fe/R2TM14B系ナノコンポジット磁石の製造方法。 The method for producing an α-Fe / R 2 TM 14 B-based nanocomposite magnet according to claim 1, wherein an average film thickness of the crystallized ribbon is 35 to 50 µm. 前記結晶化薄帯が、アルゴンガス雰囲気50〜90kPaにおいて、周速14〜15m/secで表面移動する直径500mm以上のCu製単ロールの鉛直方向(頂点)に形成される、1300℃以上のR-TM-B系溶湯合金のパドルから、ロール表面接触距離10〜15mmで急冷凝固させて生成したものであることを特徴とする請求項1又は2記載のα-Fe/R2TM14B系ナノコンポジット磁石の製造方法。 The crystallized ribbon is formed in the vertical direction (vertex) of a single roll made of Cu having a diameter of 500 mm or more and moving at a peripheral speed of 14 to 15 m / sec in an argon gas atmosphere of 50 to 90 kPa. The α-Fe / R 2 TM 14 B system according to claim 1 or 2, wherein the α-Fe / R 2 TM 14 B system is produced by rapid solidification at a roll surface contact distance of 10 to 15 mm from a paddle of a molten TM-B alloy A method for producing a nanocomposite magnet. 前記パドルの中心でロールに接する周方向接線と、前記パドルから剥離点まで薄帯が描く接触円弧の弦とが成す角度が、1.7度以下であることを特徴とする請求項3記載のα-Fe/R2TM14B系ナノコンポジット磁石の製造方法。 The α- of claim 3, wherein an angle formed by a circumferential tangent that is in contact with the roll at the center of the paddle and a chord of a contact arc drawn by a ribbon from the paddle to a peeling point is 1.7 degrees or less. A method for producing a Fe / R 2 TM 14 B nanocomposite magnet. 2.4MA/m以上で面内方向に磁化した、前記結晶化薄帯の円板の、外部磁界40kA/mにおける磁気トルク曲線歪率が、1.2%以下であることを特徴とする請求項1から4のいずれか1項記載のα-Fe/R2TM14B系ナノコンポジット磁石の製造方法。 The magnetic torque curve distortion rate at an external magnetic field of 40 kA / m of the crystallized ribbon disk magnetized in the in-plane direction at 2.4 MA / m or more is 1.2% or less. 5. A method for producing an α-Fe / R 2 TM 14 B-based nanocomposite magnet according to any one of 4 above. 飛行する前記結晶化薄帯を、平板状のシュータにて捕集することを特徴とする請求項3から5のいずれか1項記載のα-Fe/R2TM14B系ナノコンポジット磁石の製造方法。
6. The production of an α-Fe / R 2 TM 14 B-based nanocomposite magnet according to claim 3, wherein the flying crystallized ribbon is collected by a flat shooter. Method.
JP2016157865A 2016-08-10 2016-08-10 METHOD FOR MANUFACTURING α-Fe/R2TM14B NANOCOMPOSITE MAGNET Pending JP2017011283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016157865A JP2017011283A (en) 2016-08-10 2016-08-10 METHOD FOR MANUFACTURING α-Fe/R2TM14B NANOCOMPOSITE MAGNET

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016157865A JP2017011283A (en) 2016-08-10 2016-08-10 METHOD FOR MANUFACTURING α-Fe/R2TM14B NANOCOMPOSITE MAGNET

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011178358A Division JP6042602B2 (en) 2011-08-17 2011-08-17 Method for producing α-Fe / R2TM14B nanocomposite magnet

Publications (1)

Publication Number Publication Date
JP2017011283A true JP2017011283A (en) 2017-01-12

Family

ID=57763798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016157865A Pending JP2017011283A (en) 2016-08-10 2016-08-10 METHOD FOR MANUFACTURING α-Fe/R2TM14B NANOCOMPOSITE MAGNET

Country Status (1)

Country Link
JP (1) JP2017011283A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107424693A (en) * 2017-04-20 2017-12-01 江苏品和天磁科技有限公司 A kind of magnetic production method of mischmetal substitution part praseodymium neodymium

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01276705A (en) * 1988-04-28 1989-11-07 Namiki Precision Jewel Co Ltd Rare earth resin permanent magnet and manufacture thereof
JP2000234137A (en) * 1998-12-07 2000-08-29 Sumitomo Special Metals Co Ltd Raw material alloy for nanocomposite magnet, its powder and production and production of nanocomposite magnet powder and magnet
JP2002222723A (en) * 2001-01-29 2002-08-09 Tdk Corp Method of manufacturing magnet
JP2003277892A (en) * 2002-03-22 2003-10-02 Meiji Univ Exchange spring magnet and production method thereof
JP2004148406A (en) * 2003-10-29 2004-05-27 Seiko Epson Corp Method for producing magnet material, magnet material and bond magnet
US20050247376A1 (en) * 2004-05-07 2005-11-10 Chang Wen C Magnetic materials containing praseodymium
WO2006064794A1 (en) * 2004-12-16 2006-06-22 Neomax Co., Ltd. Iron base rare earth nano-composite magnet and method for production thereof
WO2006101117A1 (en) * 2005-03-24 2006-09-28 Neomax Co., Ltd. Iron-based rare-earth-containing nanocomposite magnet and process for producing the same
JP6042602B2 (en) * 2011-08-17 2016-12-14 ミネベア株式会社 Method for producing α-Fe / R2TM14B nanocomposite magnet

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01276705A (en) * 1988-04-28 1989-11-07 Namiki Precision Jewel Co Ltd Rare earth resin permanent magnet and manufacture thereof
JP2000234137A (en) * 1998-12-07 2000-08-29 Sumitomo Special Metals Co Ltd Raw material alloy for nanocomposite magnet, its powder and production and production of nanocomposite magnet powder and magnet
JP2002222723A (en) * 2001-01-29 2002-08-09 Tdk Corp Method of manufacturing magnet
JP2003277892A (en) * 2002-03-22 2003-10-02 Meiji Univ Exchange spring magnet and production method thereof
JP2004148406A (en) * 2003-10-29 2004-05-27 Seiko Epson Corp Method for producing magnet material, magnet material and bond magnet
US20050247376A1 (en) * 2004-05-07 2005-11-10 Chang Wen C Magnetic materials containing praseodymium
WO2006064794A1 (en) * 2004-12-16 2006-06-22 Neomax Co., Ltd. Iron base rare earth nano-composite magnet and method for production thereof
WO2006101117A1 (en) * 2005-03-24 2006-09-28 Neomax Co., Ltd. Iron-based rare-earth-containing nanocomposite magnet and process for producing the same
JP6042602B2 (en) * 2011-08-17 2016-12-14 ミネベア株式会社 Method for producing α-Fe / R2TM14B nanocomposite magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107424693A (en) * 2017-04-20 2017-12-01 江苏品和天磁科技有限公司 A kind of magnetic production method of mischmetal substitution part praseodymium neodymium

Similar Documents

Publication Publication Date Title
JP6503483B2 (en) Highly heat-stable rare earth permanent magnet material, method for producing the same, and magnet including the same
JP4988713B2 (en) Thin film rare earth magnet and method for manufacturing the same
Rong et al. Nanocrystalline and nanocomposite permanent magnets by melt spinning technique
EP0898287B1 (en) Hard magnetic alloy having supercooled liquid region, sintered product thereof and applications
CN105957673B (en) A kind of isotropism rare earth permanent magnet powder and preparation method thereof
JP6042602B2 (en) Method for producing α-Fe / R2TM14B nanocomposite magnet
JP2011187624A (en) Rare-earth system permanent magnet and method of manufacturing the same
USRE37666E1 (en) Iron-based permanent magnets and their fabrication as well as iron-based permanent magnet alloy powders for permanent bonded magnets and iron-based bonded magnets
KR20200108402A (en) Soft magnetic alloy and magnetic device
JP2727506B2 (en) Permanent magnet and manufacturing method thereof
JP2970809B2 (en) Rare earth permanent magnet
JP2019160946A (en) Rare earth permanent magnet
JPH1088294A (en) Hard magnetic material
JP2017011283A (en) METHOD FOR MANUFACTURING α-Fe/R2TM14B NANOCOMPOSITE MAGNET
JP3886317B2 (en) Iron-based permanent magnet alloy with high glass-forming ability
JP4216918B2 (en) Co-based amorphous soft magnetic alloy
JPH03149804A (en) Fibrous anisotropic permanent magnet and manufacture thereof
JPH01171209A (en) Manufacture of permanent magnet
JPH0851007A (en) Permanent magnet and production thereof
JP3643215B2 (en) Method for producing laminated permanent magnet
CN110211759A (en) Sm-Fe-N magnet material and Sm-Fe-N bonded permanent magnet
JP2002239688A (en) Thin sheet-shaped magnet alloy and production method therefor
JP2006055903A (en) Alloy thin strip for rare earth magnet, production method therefor and alloy for rare earth magnet
JPS63213324A (en) Resin-bonded rare earth magnet
CN1858861A (en) Re-Fe-B base high performance nano composite permanent magnetic material containing titanium and carbon

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180725