JP2017009408A - Dielectric spectroscopic device - Google Patents

Dielectric spectroscopic device Download PDF

Info

Publication number
JP2017009408A
JP2017009408A JP2015124420A JP2015124420A JP2017009408A JP 2017009408 A JP2017009408 A JP 2017009408A JP 2015124420 A JP2015124420 A JP 2015124420A JP 2015124420 A JP2015124420 A JP 2015124420A JP 2017009408 A JP2017009408 A JP 2017009408A
Authority
JP
Japan
Prior art keywords
splitter
optical signal
optical
coupler
couplers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015124420A
Other languages
Japanese (ja)
Other versions
JP6426540B2 (en
Inventor
卓郎 田島
Takuro Tajima
卓郎 田島
克裕 味戸
Katsuhiro Ajito
克裕 味戸
昌人 中村
Masato Nakamura
昌人 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2015124420A priority Critical patent/JP6426540B2/en
Publication of JP2017009408A publication Critical patent/JP2017009408A/en
Application granted granted Critical
Publication of JP6426540B2 publication Critical patent/JP6426540B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PROBLEM TO BE SOLVED: To secure reproducibility and measurement accuracy of the measurement even when a refraction index of the fiber changes due to the environmental variation.SOLUTION: A phase modulation spectrum circuit 4 handles a fiber from a coupler 13A to a radiator 16 and the fiber from a coupler 13B to a detector 17 as an equivalent delay length, and provides a delay line 20 of the delay length equivalent to a space propagation length of a terahertz wave emitted from a radiator 16 to the detector 17 between the coupler 13B and the detector 17 and phase modulators 14A, 14B and between splitters 12A, 12B, couplers 13A, 13B and the splitter 12A and the couplers 13A, 13B. An optical path from the splitter 12A to each of the couplers 13A, 13B and the optical path from the splitter 12B to each of couplers 13A, 13B are made equal. As a result, a refractive index variation of the optical path length can be made equal, and a phase change accompanied with an environmental change can be suppressed, and the data can be obtained at a high accuracy.SELECTED DRAWING: Figure 1

Description

本発明は、人間や動物などの血液成分の濃度を非侵襲で測定する装置に関し、特に、光電変換を利用した誘電分光装置に関する。   The present invention relates to an apparatus for noninvasively measuring the concentration of blood components such as humans and animals, and more particularly to a dielectric spectroscopic apparatus using photoelectric conversion.

高齢化が進み、成人病に対する対応が大きな課題になっている。特に血糖値などの血液検査は針による血液の採取が必要なために患者にとって大きな負担である。そのため、血液を採取しない非侵襲な成分濃度測定装置が注目されている。   As aging progresses, the response to adult diseases has become a major issue. In particular, blood tests such as blood sugar levels are a heavy burden on patients because blood collection with a needle is necessary. Therefore, a non-invasive component concentration measuring apparatus that does not collect blood has attracted attention.

非侵襲な成分濃度測定装置として、誘電分光法を用いた装置が提案されている。誘電分光法は、皮膚内に電磁波を照射し、測定対象の血液成分、例えば、グルコース分子と水の相互作用に従い、電磁波を吸収させ、電磁波の周波数に対する振幅及び位相を観測する。観測される電磁波の周波数に対する振幅及び位相から、誘電緩和スペクトルを算定する。一般的には、Cole−Cole式に基づき緩和カーブの線形結合として表現し、媒質や溶媒の複素誘電率を算定する。生体成分の計測では、例えば血液中に含まれるグルコースやコレステロール等の血液成分の量に複素誘電率は相関があり、その変化に対応した電気信号(振幅、位相)として測定される。複素誘電率変化と成分濃度との相関を予め測定することによって検量モデルを構築し、計測した誘電緩和スペクトルの変化から成分濃度の検量を行う。   An apparatus using dielectric spectroscopy has been proposed as a noninvasive component concentration measuring apparatus. Dielectric spectroscopy irradiates the skin with electromagnetic waves, absorbs the electromagnetic waves according to the interaction of blood components to be measured, for example, glucose molecules and water, and observes the amplitude and phase with respect to the frequency of the electromagnetic waves. The dielectric relaxation spectrum is calculated from the amplitude and phase with respect to the frequency of the observed electromagnetic wave. Generally, it is expressed as a linear combination of relaxation curves based on the Cole-Cole equation, and the complex dielectric constant of the medium or solvent is calculated. In the measurement of biological components, for example, the complex dielectric constant has a correlation with the amount of blood components such as glucose and cholesterol contained in blood, and is measured as an electrical signal (amplitude, phase) corresponding to the change. A calibration model is constructed by measuring the correlation between the complex dielectric constant change and the component concentration in advance, and the component concentration is calibrated from the measured change in the dielectric relaxation spectrum.

従来の測定法としては、マイクロ波からミリ波以上の周波数帯では、光電気変換(フォトミキシング)を利用した誘電分光装置がある(特許文献1参照)。特許文献1の誘電分光装置は、周波数の異なる2つの連続光波が合成された光信号を光電変換して電磁波、例えばテラヘルツ波を発生し、発生したテラヘルツ波を被測定対象物に照射し、被測定対象物を透過したテラヘルツ波を受信するとともに、2つの連続光波のうちの一方の位相を変調して合成した参照光を入力してホモダインミキシングする構成である。ホモダインミキシングする検出器には例えば、光伝導アンテナを用い、参照光の照射によりアンテナ間のコンダクタンスが参照光に含まれる2つの連続光波間の差周波数にて変調されることで実現される。従来の誘電分光装置においては、電磁波をホモダイン検波する際には、検出器でのミキシング時における2つの光路長差が一致していることが必要である。そのため、空間を伝搬するテラヘルツ波の伝搬長や光が伝搬するファイバの長さ等を調節する。   As a conventional measurement method, there is a dielectric spectroscopic device using photoelectric conversion (photomixing) in a frequency band from microwave to millimeter wave or more (see Patent Document 1). The dielectric spectroscopic device of Patent Document 1 photoelectrically converts an optical signal in which two continuous light waves having different frequencies are combined to generate an electromagnetic wave, for example, a terahertz wave, irradiates the object to be measured with the generated terahertz wave, The configuration is such that the terahertz wave transmitted through the measurement object is received and the reference light synthesized by modulating the phase of one of the two continuous light waves is input to perform homodyne mixing. For example, a detector that performs homodyne mixing uses a photoconductive antenna, and the conductance between the antennas is modulated by the difference frequency between two continuous light waves included in the reference light by irradiation with the reference light. In a conventional dielectric spectroscopic device, when homodyne detection of electromagnetic waves, it is necessary that the two optical path length differences coincide with each other when mixing with a detector. Therefore, the propagation length of the terahertz wave propagating in space, the length of the fiber through which light propagates, and the like are adjusted.

特開2013−32933号公報JP 2013-32933 A

Andrew P. Gregory, and Robert N. Clarke, “A Review of RF and Microwave Techniques for Dielectric Measurements on Polar Liquids”, IEEE Transactions on Dielectrics and Electrical Insulation, August 2006, Vol. 13, No. 4, pp.727-743Andrew P. Gregory, and Robert N. Clarke, “A Review of RF and Microwave Techniques for Dielectric Measurements on Polar Liquids”, IEEE Transactions on Dielectrics and Electrical Insulation, August 2006, Vol. 13, No. 4, pp.727- 743 Jae-Young Kim, Ho-Jin Song, Katsuhiro Ajito, Makoto Yaita, and Naoya Kukutsu, “Continuous-Wave THz Homodyne Spectroscopy and Imaging System With Electro-Optical Phase Modulation for High Dynamic Range”, IEEE Transactions on terahertz science and technology, March 2013, Vol. 3, No. 2, pp.158-164Jae-Young Kim, Ho-Jin Song, Katsuhiro Ajito, Makoto Yaita, and Naoya Kukutsu, “Continuous-Wave THz Homodyne Spectroscopy and Imaging System With Electro-Optical Phase Modulation for High Dynamic Range”, IEEE Transactions on terahertz science and technology, March 2013, Vol. 3, No. 2, pp.158-164

しかしながら、温度等の環境変動によりファイバの屈折率が変動し、2つの光路長差が変動すると、信号の振幅・位相が不安定となり、測定再現性や測定精度が得られないという問題があった。   However, if the refractive index of the fiber fluctuates due to environmental fluctuations such as temperature, and the difference between the two optical path lengths fluctuates, there is a problem that the amplitude and phase of the signal become unstable and measurement reproducibility and measurement accuracy cannot be obtained. .

本発明は、上記に鑑みてなされたものであり、環境変動によりファイバの屈折率が変化する場合でも、測定の再現性や測定精度を確保することを目的とする。   The present invention has been made in view of the above, and an object thereof is to ensure measurement reproducibility and measurement accuracy even when the refractive index of a fiber changes due to environmental fluctuations.

本発明に係る誘電分光装置は、第1の光信号を出力する第1の光源と、前記第1の光信号とは周波数の異なる第2の光信号を出力する第2の光源と、前記第1の光信号を分波する第1のスプリッタと、前記第2の光信号を分波する第2のスプリッタと、前記第1のスプリッタで分波された第1の光信号のそれぞれの位相を電気的に変調する第1、第2の位相変調器と、位相が変調された前記第1の光信号と前記第2のスプリッタで分波された前記第2の光信号とをそれぞれ合波して第3、第4の光信号を出力する第1、第2のカプラと、前記第3の光信号を光電変換してミリ波又はテラヘルツ波の電磁波を発生させて被測定対象物に照射する放射器と、前記被測定対象物を透過又は反射した前記電磁波を受信し、前記電磁波と前記第4の光信号をホモダインミキシングする検出器と、を有し、前記第1のスプリッタから第1のカプラまでの光路長と前記第1のスプリッタから第2のカプラまでの光路長とを等しく、前記第2のスプリッタから第1のカプラまでの光路長と前記第2のスプリッタから第2のカプラまでの光路長とを等しくしたことを特徴とする。   The dielectric spectroscopic device according to the present invention includes a first light source that outputs a first optical signal, a second light source that outputs a second optical signal having a frequency different from that of the first optical signal, and the first light signal. The first splitter for demultiplexing one optical signal, the second splitter for demultiplexing the second optical signal, and the phases of the first optical signal demultiplexed by the first splitter, respectively. The first and second phase modulators that are electrically modulated, the first optical signal whose phase is modulated, and the second optical signal that is demultiplexed by the second splitter are multiplexed. The first and second couplers for outputting the third and fourth optical signals and the third optical signal are photoelectrically converted to generate millimeter wave or terahertz electromagnetic waves to irradiate the object to be measured. A radiator and the electromagnetic wave transmitted or reflected by the object to be measured; and the electromagnetic wave and the fourth optical signal. A detector for homodyne mixing, and an optical path length from the first splitter to the first coupler is equal to an optical path length from the first splitter to the second coupler, and the second splitter The optical path length from the first coupler to the first coupler is equal to the optical path length from the second splitter to the second coupler.

上記誘電分光装置において、前記第1のスプリッタを第1の平面光回路上に形成し、前記第2のスプリッタ及び第1、第2のカプラを第2の平面光回路上に形成し、前記第1、第2の位相変調器として第1、第2の導波路と第1、第2の変調電極とを位相変調基板上に形成し、前記第1のスプリッタの分波先を前記第1、第2の導波路に接続し、前記第1、第2の導波路を前記第1、第2のカプラに接続したことを特徴とする。   In the dielectric spectroscopic device, the first splitter is formed on a first planar optical circuit, the second splitter and the first and second couplers are formed on a second planar optical circuit, and the first 1. First and second waveguides as first and second phase modulators and first and second modulation electrodes are formed on a phase modulation substrate, and the first and second splitting destinations of the first splitter are the first and second phase modulators. A first waveguide is connected to a second waveguide, and the first and second waveguides are connected to the first and second couplers.

上記誘電分光装置において、前記第1のスプリッタの入力と前記第2のスプリッタの入力を結ぶ線を中心として前記第1、第2のカプラ、前記第1、第2の導波路及び前記第1、第2の変調電極を対称に配置したことを特徴とする。   In the dielectric spectroscopic device, the first and second couplers, the first and second waveguides, and the first and second waveguides centering on a line connecting the input of the first splitter and the input of the second splitter. The second modulation electrode is arranged symmetrically.

本発明によれば、環境変動によりファイバの屈折率が変化する場合でも、測定の再現性や測定精度を確保することができる。   According to the present invention, measurement reproducibility and measurement accuracy can be ensured even when the refractive index of the fiber changes due to environmental fluctuations.

本実施の形態における誘電分光装置の構成を示すブロック図である。It is a block diagram which shows the structure of the dielectric spectroscopy apparatus in this Embodiment. 上記誘電分光装置で用いる位相変調光回路の構成を示す平面図である。It is a top view which shows the structure of the phase modulation optical circuit used with the said dielectric spectroscopy apparatus. 誘電分光センサの測定系を示す図である。It is a figure which shows the measurement system of a dielectric spectroscopy sensor. 別の誘電分光センサの測定系を示す図である。It is a figure which shows the measurement system of another dielectric spectroscopy sensor.

以下、本発明の実施の形態について図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本実施の形態における誘電分光装置の構成を示すブロック図である。   FIG. 1 is a block diagram showing a configuration of a dielectric spectroscopic apparatus according to the present embodiment.

図1に示す誘電分光装置は、連続波光源11A,11B、スプリッタ12A,12B、カプラ13A,13B、位相変調器14A,14B、発振器15、放射器16、検出器17、ロックインアンプ18、モニタ19、および遅延線20を備える。   1 includes a continuous wave light source 11A, 11B, splitters 12A, 12B, couplers 13A, 13B, phase modulators 14A, 14B, an oscillator 15, a radiator 16, a detector 17, a lock-in amplifier 18, and a monitor. 19 and a delay line 20.

連続波光源11A,11Bは、周波数が互いに異なる連続波光信号を出力する。以下の説明では、連続波光源11Aから出力された連続波光信号を第1光信号、連続波光源11Bから出力された連続波光信号を第2光信号とする。   The continuous wave light sources 11A and 11B output continuous wave optical signals having different frequencies. In the following description, the continuous wave optical signal output from the continuous wave light source 11A is referred to as a first optical signal, and the continuous wave optical signal output from the continuous wave light source 11B is referred to as a second optical signal.

スプリッタ12Aは、第1光信号を2つに分波し、スプリッタ12Bは、第2光信号を2つに分波する。   The splitter 12A demultiplexes the first optical signal into two, and the splitter 12B demultiplexes the second optical signal into two.

位相変調器14A,14Bは、制御信号により電気的に位相変調が可能な電気光学結晶を用いた位相変調器であり、スプリッタ12Aの後段、つまり、スプリッタ12Aとカプラ13A,13Bとの間にそれぞれ配置される。位相変調器14A,14Bに、発振器15からの単一周波数wの制御信号を印加してセロダイン位相変調を行い、変調周波数wと同等の周波数シフトを第1光信号に生じさせる。なお、位相変調器14A,14Bを、スプリッタ12Bの後段に配置し、変調周波数wと同等の周波数シフトを第2光信号に生じさせてもよい。   The phase modulators 14A and 14B are phase modulators that use an electro-optic crystal that can be electrically phase-modulated by a control signal. Be placed. A control signal having a single frequency w from the oscillator 15 is applied to the phase modulators 14A and 14B to perform serodyne phase modulation, and a frequency shift equivalent to the modulation frequency w is generated in the first optical signal. Note that the phase modulators 14A and 14B may be arranged at the subsequent stage of the splitter 12B, and a frequency shift equivalent to the modulation frequency w may be generated in the second optical signal.

カプラ13A,13Bのそれぞれは、位相変調器14A,14Bのそれぞれで位相変調された第1光信号とスプリッタ12Bで分波された第2光信号とを合波する。カプラ13Aで合波された光信号はファイバを通って放射器16に入力される。カプラ13Bで合波された参照光は遅延線20が配置されたファイバを通って検出器17に入力される。   Each of the couplers 13A and 13B combines the first optical signal phase-modulated by the phase modulators 14A and 14B and the second optical signal demultiplexed by the splitter 12B. The optical signal combined by the coupler 13A is input to the radiator 16 through the fiber. The reference light combined by the coupler 13B is input to the detector 17 through the fiber in which the delay line 20 is disposed.

遅延線20は、カプラ13Bと検出器17とを結ぶファイバ上に配置される。カプラ13Bで合波された参照光は遅延線20を通って検出器17に入力される。遅延線20は、通常の光ファイバでも良いが、ファイバ端にレンズコリメータを接続し、2つのレンズを対向させ、平行光を伝搬させることで低損失で実現できる。   The delay line 20 is disposed on a fiber connecting the coupler 13B and the detector 17. The reference light combined by the coupler 13B is input to the detector 17 through the delay line 20. The delay line 20 may be a normal optical fiber, but can be realized with low loss by connecting a lens collimator to the fiber end, making two lenses face each other, and propagating parallel light.

放射器16は、カプラ13Aで合波された光信号を光電変換し、第1光信号と第2光信号の周波数差に一致する周波数の電磁波(ミリ波又はテラヘルツ波)を発生する。放射器16としては、例えば単一走行キャリア・フォトダイオード(UTC−PD:Uni−Traveling−Carrier Photodiode)を利用できる。   The radiator 16 photoelectrically converts the optical signal combined by the coupler 13A, and generates an electromagnetic wave (millimeter wave or terahertz wave) having a frequency matching the frequency difference between the first optical signal and the second optical signal. As the radiator 16, for example, a single traveling carrier photodiode (UTC-PD) can be used.

検出器17は、カプラ13Bで合波された参照光を照射されるとともに、放射器16から放射されてサンプル100を透過した電磁波を受信し、電磁波と参照光をホモダインミキシングして周波数wの電気信号を出力する。検出器17は、アンテナ付きSBD(ショットキー・バリア・ダイオード)で構成されるTHzミキサと、アンテナ付きUTC−PDで構成されるフォトミキサと、光ファイバとを同一パッケージに実装することで実現できる。検出器17には、光伝導アンテナ(PCA:Photo−Conductive Antenna)を用いてもよい。光伝導アンテナでは、参照光の照射によりアンテナ間のコンダクタンスが参照光に含まれる2つの連続波光信号間の差周波数にて変調されることで実現される。   The detector 17 is irradiated with the reference light combined by the coupler 13B, receives the electromagnetic wave radiated from the radiator 16 and transmitted through the sample 100, and performs homodyne mixing of the electromagnetic wave and the reference light to generate an electric wave of frequency w. Output a signal. The detector 17 can be realized by mounting a THz mixer composed of an SBD (Schottky barrier diode) with an antenna, a photomixer composed of an UTC-PD with an antenna, and an optical fiber in the same package. . The detector 17 may be a photoconductive antenna (PCA: Photo-Conductive Antenna). In the photoconductive antenna, the conductance between the antennas is modulated by the difference frequency between two continuous wave optical signals included in the reference light by irradiation of the reference light.

ロックインアンプ18は、検出器17が出力する電気信号を同期検波して振幅及び位相を検出し、モニタ19は、ロックインアンプ18が検出した振幅及び位相を処理する。   The lock-in amplifier 18 detects the amplitude and phase by synchronously detecting the electrical signal output from the detector 17, and the monitor 19 processes the amplitude and phase detected by the lock-in amplifier 18.

テラヘルツ波帯では、放物面鏡31A,31Bを用いた擬似光学系によるフリースペース法により、テラヘルツ波を測定対象であるサンプル100に照射し、透過信号から複素誘電率を計測する。放物面鏡31A,31Bを利用した場合は、レンズを利用するのに比べてレンズ内の多重反射が生じないので測定値が安定する。   In the terahertz wave band, the complex dielectric constant is measured from the transmitted signal by irradiating the sample 100 as a measurement target with a terahertz wave by a free space method using a pseudo optical system using parabolic mirrors 31A and 31B. When the parabolic mirrors 31A and 31B are used, since the multiple reflection in the lens does not occur as compared with the case where the lens is used, the measurement value is stabilized.

従来の誘電分光装置においては、電磁波をホモダイン検波する際に、検出器でのミキシング時における2つの光路長差が一致するように光が伝搬するファイバの長さ等を予め調整する。本実施の形態では、カプラ13Aから放射器16までのファイバと、カプラ13Bから検出器17までのファイバとを同等の遅延長とし、さらにカプラ13Bと検出器17の間に、放射器16から検出器17に出射されるテラヘルツ波の空間伝搬長と同等の長さ(遅延長)を有する遅延線20を備える。   In the conventional dielectric spectroscopic apparatus, when homodyne detection of electromagnetic waves, the length of the fiber through which light propagates is adjusted in advance so that the two optical path length differences at the time of mixing at the detector coincide. In the present embodiment, the fiber from the coupler 13A to the radiator 16 and the fiber from the coupler 13B to the detector 17 have the same delay length, and further, the detection from the radiator 16 is performed between the coupler 13B and the detector 17. A delay line 20 having a length (delay length) equivalent to the spatial propagation length of the terahertz wave emitted to the device 17 is provided.

ここで、遅延線の作用効果について説明する。   Here, the effect of the delay line will be described.

ファイバの屈折率温度係数dns/dTは6.6×10−6/℃であり、空気の屈折率温度係数dna/dTは−1.4×10−7/℃である。カプラ13Aから放射器16までのファイバの長さをL、カプラ13Bから検出器17までのファイバの長さをLとする。テラヘルツ波の空間伝搬長をLとする。ホモダイン検波の条件は以下となる。 The refractive index temperature coefficient dns / dT of the fiber is 6.6 × 10 −6 / ° C., and the refractive index temperature coefficient dna / dT of air is −1.4 × 10 −7 / ° C. The length of the fiber from coupler 13A to the radiator 16 L 1, the length of the fiber from coupler 13B to the detector 17 and L 2. The space propagation length of the terahertz wave and L 3. The conditions for homodyne detection are as follows.

+L=n
ここで、nはファイバコアの屈折率1.4である。空気の屈折率は1である。
n s L 1 + L 3 = n s L 2
Here, ns is the refractive index of the fiber core 1.4. The refractive index of air is 1.

温度変化をΔTとすると、光路長差ΔLは以下の式で表すことができる。   If the temperature change is ΔT, the optical path length difference ΔL can be expressed by the following equation.

ΔL=(L−L)(dns/dT)ΔT+L(dna/dT)ΔT ΔL = (L 1 −L 2 ) (dns / dT) ΔT + L 3 (dna / dT) ΔT

遅延差Δτは以下となる。   The delay difference Δτ is as follows.

Δτ=2πΔL/λ
ここで、λはテラヘルツ波の波長である。例えば、L−L=20cm、L=28cmとし、ΔT=1℃の変化が生じた場合、テラヘルツ波の波長λは、1THzのときにλ=0.3mmであるので、遅延差Δτ=0.03rad=1.8度の温度に付随する位相信号の変動が生じる。
Δτ = 2πΔL / λ
Here, λ is the wavelength of the terahertz wave. For example, when L 1 −L 2 = 20 cm and L 3 = 28 cm and a change of ΔT = 1 ° C. occurs, the wavelength λ of the terahertz wave is λ = 0.3 mm at 1 THz, so the delay difference Δτ = 0.03 rad = 1.8 degrees of phase signal variation associated with a temperature.

本実施の形態では、遅延線20の長さをLとして、2つの光路長差を合わせて、それぞれの長さを以下とする。 In this embodiment, the length of the delay line 20 as L 4, together two optical path length difference, and the following respective lengths.

+L=n+L
つまり、L≒L、L≒Lとすることで、ΔL≒0とすることができ、Δτ≒0となり、温度変動に対して位相信号の変動を低減することができる。また、湿度によって空気の屈折率変化がある場合も同様にその変動をキャンセルすることができる。なお、カプラ13Aと放射器16との間に、上記の式を満たすよう遅延線20を配置してもよいし、あるいは遅延線20を備えなくてもよい。
n s L 1 + L 3 = n s L 2 + L 4
That is, by setting L 1 ≈L 2 and L 3 ≈L 4 , ΔL≈0 can be obtained, and Δτ≈0 can be obtained, so that the fluctuation of the phase signal can be reduced with respect to the temperature fluctuation. Also, when there is a change in the refractive index of air due to humidity, the change can be canceled in the same manner. It should be noted that the delay line 20 may be disposed between the coupler 13A and the radiator 16 so as to satisfy the above expression, or the delay line 20 may not be provided.

以上、初期的なファイバ長の差によって、温度変動の影響をテラヘルツ波の位相信号が受けることを示した。このような影響は、スプリッタ12A,12Bからカプラ13A,13Bまでの光路においても顕著に生じうる。   As described above, it was shown that the phase signal of the terahertz wave is affected by the temperature fluctuation due to the difference in the initial fiber length. Such an effect can be prominent also in the optical path from the splitters 12A and 12B to the couplers 13A and 13B.

スプリッタ12Aからカプラ13Aまで、スプリッタ12Aからカプラ13Bまでのファイバの長さをD11,D12とする。スプリッタ12Bからカプラ13Aまで、スプリッタ12Bからカプラ13Bまでのファイバの長さをD21,D22とする。また、位相変調器14A,14BにおけるLN結晶の長さを等しいものとする。 The lengths of the fibers from the splitter 12A to the coupler 13A and from the splitter 12A to the coupler 13B are D 11 and D 12 . The lengths of the fibers from the splitter 12B to the coupler 13A and from the splitter 12B to the coupler 13B are D 21 and D 22 . Further, the lengths of the LN crystals in the phase modulators 14A and 14B are assumed to be equal.

温度変化をΔTとすると、光路長差ΔLは以下の式で表すことができる。   If the temperature change is ΔT, the optical path length difference ΔL can be expressed by the following equation.

ΔD=(D11−D12)(dns/dT)ΔT+(D21−D22)(dns/dT)ΔT ΔD = (D 11 −D 12 ) (dns / dT) ΔT + (D 21 −D 22 ) (dns / dT) ΔT

遅延差Δτは以下となる。   The delay difference Δτ is as follows.

Δτ=2πΔD/λ
ここで、λは光波の波長である。例えば、D11−D12=2mm、D21−D22=2mmとし、ΔT=1℃の変化が生じた場合、光波の波長λが1.55μmのときに、遅延差Δτ=0.1rad≒11度の温度に付随する位相信号の変動が生じる。なお、従来の構成では、LN結晶は対称に配置されていない。LN結晶の長さをDLNとすると、LN結晶の屈折率温度係数dnl/dTは、5〜50×10−6/℃であり、DLN(dnl/dT)ΔTの影響を受ける。DLNは、数cmであることが一般的であり、さらに影響を受けることが推定される。したがって、本実施の形態では、D11=D12及びD21=D22となるように、位相変調器を配置し、光路長を揃える。
Δτ = 2πΔD / λ
Here, λ is the wavelength of the light wave. For example, when D 11 −D 12 = 2 mm and D 21 −D 22 = 2 mm and a change of ΔT = 1 ° C. occurs, the delay difference Δτ = 0.1 rad≈when the wavelength λ of the light wave is 1.55 μm. Variations in the phase signal associated with a temperature of 11 degrees occur. In the conventional configuration, the LN crystals are not arranged symmetrically. When the length of the LN crystal is D LN , the refractive index temperature coefficient dnl / dT of the LN crystal is 5-50 × 10 −6 / ° C., and is affected by D LN (dnl / dT) ΔT. D LN is typically a few centimeters and is estimated to be further affected. Therefore, in the present embodiment, the phase modulators are arranged so that D 11 = D 12 and D 21 = D 22 and the optical path lengths are made uniform.

図2は、本実施の形態における位相変調光回路の構成を示す平面図である。同図に示す位相変調光回路4は、図1の誘電分光装置における、スプリッタ12A,12Bからカプラ13A,13Bまでの部分の構成を備えた回路であり、第1入力及び第2入力を軸として対称に形成される。   FIG. 2 is a plan view showing the configuration of the phase modulation optical circuit according to the present embodiment. The phase modulation optical circuit 4 shown in the figure is a circuit having a configuration from the splitters 12A and 12B to the couplers 13A and 13B in the dielectric spectroscopic device shown in FIG. 1, and the first and second inputs are used as axes. It is formed symmetrically.

位相変調光回路4は、平面光回路41A,41Bと位相変調部42で構成される。   The phase modulation optical circuit 4 includes planar optical circuits 41A and 41B and a phase modulation unit.

平面光回路41Aには、第1入力、スプリッタ12A、および位相変調部42との接続部が形成される。第1入力から入力された第1光信号は、スプリッタ12Aにより2分岐され、接続部から位相変調部42に形成された導波路44A,44Bに入力される。   The planar optical circuit 41A is formed with a connection portion between the first input, the splitter 12A, and the phase modulation unit. The first optical signal input from the first input is branched into two by the splitter 12A, and input from the connection portion to the waveguides 44A and 44B formed in the phase modulation portion 42.

位相変調部42には、導波路44A,44Bと導波路44A,44Bに対する変調電極43A,43Bが形成される。変調電極43A,43Bに外部から変調電圧が供給されて、光波が通過する部分に電圧が印加され、通過する光波の位相を変調する。   In the phase modulation section 42, waveguides 44A and 44B and modulation electrodes 43A and 43B for the waveguides 44A and 44B are formed. A modulation voltage is supplied to the modulation electrodes 43A and 43B from the outside, and a voltage is applied to a portion through which the light wave passes to modulate the phase of the light wave that passes.

平面光回路41Bには、第2入力、スプリッタ12B、位相変調部42との接続部、カプラ13A,13B、および第1、第2出力が形成される。第2入力から入力された第2光信号は、スプリッタ12Bにより2分岐されてカプラ13A,13Bに入力される。位相変調された第1光信号は、位相変調部42の導波路44A,44Bのそれぞれからカプラ13A,13Bに入力される。カプラ13A,13Bのそれぞれで、第2光信号と位相変調された第1光信号が合波されて、第1出力及び第2出力へ出力される。   In the planar optical circuit 41B, a second input, a splitter 12B, a connection portion with the phase modulation unit 42, couplers 13A and 13B, and first and second outputs are formed. The second optical signal input from the second input is branched into two by the splitter 12B and input to the couplers 13A and 13B. The phase-modulated first optical signal is input to the couplers 13A and 13B from the waveguides 44A and 44B of the phase modulation unit 42, respectively. In each of the couplers 13A and 13B, the second optical signal and the phase-modulated first optical signal are combined and output to the first output and the second output.

位相変調部42は、電気光学効果を用いたLN結晶基板を用いることができる。位相変調部42に、発振器15からの単一周波数w(例えば1GHz)の鋸状波形の信号を印加してセロダイン位相変調を行い、変調周波数wと同等の周波数シフトを光信号に生じさせて、周波数F2(=F1+2w)の光信号を出力する。位相変調部42の制御電圧は、整数Nと2Vπ(Vπは位相がπ変化する制御電圧)の積により、Vm(t)=N2Vπwtと表すことができる。   The phase modulation unit 42 can use an LN crystal substrate using an electro-optic effect. A sawtooth waveform signal is applied to the phase modulation unit 42 by applying a sawtooth waveform signal having a single frequency w (for example, 1 GHz) from the oscillator 15, and a frequency shift equivalent to the modulation frequency w is generated in the optical signal. An optical signal having a frequency F2 (= F1 + 2w) is output. The control voltage of the phase modulator 42 can be expressed as Vm (t) = N2Vπwt by the product of an integer N and 2Vπ (Vπ is a control voltage whose phase changes by π).

位相変調器が1つのときは、制御電圧の周波数wの2N倍の周波数遷移が生じ、検出器で検出される信号の周波数は制御電圧の周波数の2N倍となる(非特許文献2参照)。   When there is one phase modulator, a frequency transition 2N times the frequency w of the control voltage occurs, and the frequency of the signal detected by the detector becomes 2N times the frequency of the control voltage (see Non-Patent Document 2).

平面光回路41A,41Bは、シリコン等の半導体基板上に形成した石英、ポリマー、シリコンや化合物半導体の導波路(平面光波回路 PLC:Planar Lightwave Circuit)を用いることができる。位相変調部42には、電気光学ポリマーを用いても良く、またシリコン基板上や化合物半導体基板上に形成したキャリア注入型のPIN位相変調器や熱光学効果による位相変調器を用いることができ、モノリシックに平面光波回路と形成してもよい。   As the planar optical circuits 41A and 41B, quartz, polymer, silicon or compound semiconductor waveguides (planar light wave circuit PLC: Planar Lightwave Circuit) formed on a semiconductor substrate such as silicon can be used. For the phase modulation unit 42, an electro-optic polymer may be used, and a carrier injection type PIN phase modulator formed on a silicon substrate or a compound semiconductor substrate or a phase modulator based on a thermo-optic effect may be used. The planar lightwave circuit may be formed monolithically.

位相変調光回路4を温度調節可能なボード上に実装することにより、さらに環境依存の温度の影響を低減できる。   By mounting the phase modulation optical circuit 4 on a temperature-adjustable board, the influence of the environment-dependent temperature can be further reduced.

次に、集束レンズを用いた誘電分光センサの測定系について説明する。   Next, a measurement system of a dielectric spectroscopic sensor using a focusing lens will be described.

図3は、本実施の形態の誘電分光センサの測定系を示す図である。図3の例では、誘電分光センサの測定系に透過型の配置をして水溶液や油等の液体を透過した透過信号の振幅、位相を測定する。放射器16から放射されたテラヘルツ波は、レンズ51を通過し、固定治具54に保持された誘電率測定用セル53のサンプルセルに入射する。サンプルセルのサイズは、例えば、ビームサイズ以上として数ミリ×数ミリ角以上である。サンプルを固定する窓板52の材料は、高抵抗Si,Zカット水晶、HDPE、TPX、Tsurupica等を用いてもよく、測定周波数に応じて透過率の高い材料を選択する。サンプルセルを通過したテラヘルツ波は、レンズ51を通過し、検出器17で受信される。なお、サンプルセルは、インレットとアウトレットを備えるフローセル構成としてもよい。また、固体を測定してもよい。   FIG. 3 is a diagram showing a measurement system of the dielectric spectroscopic sensor of the present embodiment. In the example of FIG. 3, a transmission type is arranged in the measurement system of the dielectric spectroscopic sensor, and the amplitude and phase of a transmission signal transmitted through a liquid such as an aqueous solution or oil are measured. The terahertz wave radiated from the radiator 16 passes through the lens 51 and enters the sample cell of the dielectric constant measurement cell 53 held by the fixing jig 54. The size of the sample cell is, for example, several millimeters × several millimeters or more as the beam size or more. The material of the window plate 52 for fixing the sample may be a high resistance Si, Z cut crystal, HDPE, TPX, Tsurupica, etc., and a material having a high transmittance is selected according to the measurement frequency. The terahertz wave that has passed through the sample cell passes through the lens 51 and is received by the detector 17. Note that the sample cell may have a flow cell configuration including an inlet and an outlet. Moreover, you may measure solid.

図4は、本実施の形態の別の誘電分光センサの測定系を示す図である。図4の例では、シリコンを材料とするATRプリズム55上にサンプルセルを配置し、サンプルセルで反射した反射信号の振幅、位相を測定する。放射器16から放射されたテラヘルツ波は、レンズ51、ATRプリズム55を通過し、固定治具54に保持された誘電率測定用セル53のサンプルセルとATRプリズム55の界面で反射する。サンプルセルは、窓板52で誘電率測定用セル53に封止される。サンプルセルで反射したテラヘルツ波は、ATRプリズム55、レンズ51を通過し、検出器17で受信される。   FIG. 4 is a diagram showing a measurement system of another dielectric spectroscopic sensor of the present embodiment. In the example of FIG. 4, a sample cell is disposed on the ATR prism 55 made of silicon, and the amplitude and phase of the reflected signal reflected by the sample cell are measured. The terahertz wave radiated from the radiator 16 passes through the lens 51 and the ATR prism 55 and is reflected at the interface between the sample cell of the dielectric constant measurement cell 53 held by the fixing jig 54 and the ATR prism 55. The sample cell is sealed in the dielectric constant measurement cell 53 by the window plate 52. The terahertz wave reflected by the sample cell passes through the ATR prism 55 and the lens 51 and is received by the detector 17.

以上説明したように、本実施の形態によれば、カプラ13Aから放射器16までのファイバとカプラ13Bから検出器17までのファイバとを同等の遅延長とし、カプラ13Bと検出器17の間に、放射器16から検出器17に出射されるテラヘルツ波の空間伝搬長と同等の遅延長の遅延線20を備え、スプリッタ12A,12B、カプラ13A,13B及びスプリッタ12Aとカプラ13A,13Bとの間に位相変調器14A,14Bを備えた位相変調光回路4において、スプリッタ12Aから各カプラ13A,13Bまでの光路及びスプリッタ12Bから各カプラ13A,13Bまでの光路をそれぞれ等長とすることにより、光路長の屈折率変動を同等にでき、環境変動に伴う位相変化を抑制し、高精度にデータを取得することが可能となる。   As described above, according to the present embodiment, the fiber from the coupler 13A to the radiator 16 and the fiber from the coupler 13B to the detector 17 have the same delay length, and the gap between the coupler 13B and the detector 17 is set. And a delay line 20 having a delay length equivalent to the spatial propagation length of the terahertz wave emitted from the radiator 16 to the detector 17, and between the splitters 12A and 12B, the couplers 13A and 13B, and the splitter 12A and the couplers 13A and 13B. In the phase modulation optical circuit 4 provided with the phase modulators 14A and 14B, the optical paths from the splitter 12A to the couplers 13A and 13B and the optical paths from the splitter 12B to the couplers 13A and 13B are made equal in length. Long refractive index fluctuations can be made equal, phase changes caused by environmental fluctuations can be suppressed, and data can be acquired with high accuracy. That.

11A,11B…連続波光源
12A,12B…スプリッタ
13A,13B…カプラ
14A,14B…位相変調器
15…発振器
16…放射器
17…検出器
18…ロックインアンプ
19…モニタ
20…遅延線
31A,31B…放物面鏡
4…位相変調光回路
41A,41B…平面光回路
42…位相変調部
43A,43B…変調電極
44A,44B…導波路
51…レンズ
52…窓板
53…誘電率測定用セル
54…固定治具
55…ATRプリズム
100…サンプル
11A, 11B ... Continuous wave light source 12A, 12B ... Splitter 13A, 13B ... Coupler 14A, 14B ... Phase modulator 15 ... Oscillator 16 ... Radiator 17 ... Detector 18 ... Lock-in amplifier 19 ... Monitor 20 ... Delay line 31A, 31B Parabolic mirror 4 ... Phase modulation optical circuit 41A, 41B ... Planar optical circuit 42 ... Phase modulation unit 43A, 43B ... Modulation electrode 44A, 44B ... Waveguide 51 ... Lens 52 ... Window plate 53 ... Dielectric constant measurement cell 54 ... Fixing jig 55 ... ATR prism 100 ... Sample

Claims (3)

第1の光信号を出力する第1の光源と、
前記第1の光信号とは周波数の異なる第2の光信号を出力する第2の光源と、
前記第1の光信号を分波する第1のスプリッタと、
前記第2の光信号を分波する第2のスプリッタと、
前記第1のスプリッタで分波された第1の光信号のそれぞれの位相を電気的に変調する第1、第2の位相変調器と、
位相が変調された前記第1の光信号と前記第2のスプリッタで分波された前記第2の光信号とをそれぞれ合波して第3、第4の光信号を出力する第1、第2のカプラと、
前記第3の光信号を光電変換してミリ波又はテラヘルツ波の電磁波を発生させて被測定対象物に照射する放射器と、
前記被測定対象物を透過又は反射した前記電磁波を受信し、前記電磁波と前記第4の光信号をホモダインミキシングする検出器と、を有し、
前記第1のスプリッタから第1のカプラまでの光路長と前記第1のスプリッタから第2のカプラまでの光路長とを等しく、前記第2のスプリッタから第1のカプラまでの光路長と前記第2のスプリッタから第2のカプラまでの光路長とを等しくしたことを特徴とする誘電分光装置。
A first light source that outputs a first optical signal;
A second light source that outputs a second optical signal having a frequency different from that of the first optical signal;
A first splitter for demultiplexing the first optical signal;
A second splitter for demultiplexing the second optical signal;
First and second phase modulators that electrically modulate the respective phases of the first optical signal demultiplexed by the first splitter;
The first and second optical signals, which are combined with the first optical signal whose phase is modulated and the second optical signal demultiplexed by the second splitter, are output as third and fourth optical signals, respectively. Two couplers,
A radiator for photoelectrically converting the third optical signal to generate an electromagnetic wave of millimeter wave or terahertz wave and irradiating the object to be measured;
A detector that receives the electromagnetic wave transmitted or reflected from the object to be measured and performs homodyne mixing of the electromagnetic wave and the fourth optical signal;
The optical path length from the first splitter to the first coupler is equal to the optical path length from the first splitter to the second coupler, and the optical path length from the second splitter to the first coupler is 2. A dielectric spectroscopic apparatus characterized in that the optical path length from the second splitter to the second coupler is made equal.
前記第1のスプリッタを第1の平面光回路上に形成し、
前記第2のスプリッタ及び第1、第2のカプラを第2の平面光回路上に形成し、
前記第1、第2の位相変調器として第1、第2の導波路と第1、第2の変調電極とを位相変調基板上に形成し、
前記第1のスプリッタの分波先を前記第1、第2の導波路に接続し、前記第1、第2の導波路を前記第1、第2のカプラに接続したことを特徴とする請求項1記載の誘電分光装置。
Forming the first splitter on a first planar optical circuit;
Forming the second splitter and the first and second couplers on a second planar optical circuit;
Forming first and second waveguides and first and second modulation electrodes on the phase modulation substrate as the first and second phase modulators;
The demultiplexing destination of the first splitter is connected to the first and second waveguides, and the first and second waveguides are connected to the first and second couplers. Item 2. The dielectric spectroscopic apparatus according to Item 1.
前記第1のスプリッタの入力と前記第2のスプリッタの入力を結ぶ線を中心として前記第1、第2のカプラ、前記第1、第2の導波路及び前記第1、第2の変調電極を対称に配置したことを特徴とする請求項2記載の誘電分光装置。   The first and second couplers, the first and second waveguides, and the first and second modulation electrodes are centered on a line connecting the input of the first splitter and the input of the second splitter. 3. The dielectric spectroscopic apparatus according to claim 2, wherein the dielectric spectroscopic apparatus is arranged symmetrically.
JP2015124420A 2015-06-22 2015-06-22 Dielectric spectroscopy Active JP6426540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015124420A JP6426540B2 (en) 2015-06-22 2015-06-22 Dielectric spectroscopy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015124420A JP6426540B2 (en) 2015-06-22 2015-06-22 Dielectric spectroscopy

Publications (2)

Publication Number Publication Date
JP2017009408A true JP2017009408A (en) 2017-01-12
JP6426540B2 JP6426540B2 (en) 2018-11-21

Family

ID=57763200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015124420A Active JP6426540B2 (en) 2015-06-22 2015-06-22 Dielectric spectroscopy

Country Status (1)

Country Link
JP (1) JP6426540B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018205156A (en) * 2017-06-06 2018-12-27 日本電信電話株式会社 Dielectric spectroscopic device
JP7398672B2 (en) 2020-06-10 2023-12-15 国立大学法人三重大学 Optical electric field sensor head

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090180122A1 (en) * 2008-01-14 2009-07-16 New Jersey Institute Of Technology Methods and apparatus for rapid scanning continuous wave terahertz spectroscopy and imaging
WO2011027883A1 (en) * 2009-09-04 2011-03-10 古河電気工業株式会社 90-degree hybrid
JP2013032933A (en) * 2011-08-01 2013-02-14 Nippon Telegr & Teleph Corp <Ntt> Homodyne detection-type electromagnetic wave spectroscopic measurement system
WO2014045820A1 (en) * 2012-09-24 2014-03-27 株式会社アドバンテスト Optical measuring device, method, program, and recording medium
JP2014185885A (en) * 2013-03-22 2014-10-02 Nippon Telegr & Teleph Corp <Ntt> Homodyne detection type electromagnetic wave spectroscopic measurement system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090180122A1 (en) * 2008-01-14 2009-07-16 New Jersey Institute Of Technology Methods and apparatus for rapid scanning continuous wave terahertz spectroscopy and imaging
WO2011027883A1 (en) * 2009-09-04 2011-03-10 古河電気工業株式会社 90-degree hybrid
JP2013032933A (en) * 2011-08-01 2013-02-14 Nippon Telegr & Teleph Corp <Ntt> Homodyne detection-type electromagnetic wave spectroscopic measurement system
WO2014045820A1 (en) * 2012-09-24 2014-03-27 株式会社アドバンテスト Optical measuring device, method, program, and recording medium
JP2014185885A (en) * 2013-03-22 2014-10-02 Nippon Telegr & Teleph Corp <Ntt> Homodyne detection type electromagnetic wave spectroscopic measurement system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018205156A (en) * 2017-06-06 2018-12-27 日本電信電話株式会社 Dielectric spectroscopic device
JP7398672B2 (en) 2020-06-10 2023-12-15 国立大学法人三重大学 Optical electric field sensor head

Also Published As

Publication number Publication date
JP6426540B2 (en) 2018-11-21

Similar Documents

Publication Publication Date Title
US9863815B2 (en) Method and apparatus for multifrequency optical comb generation
US9152009B2 (en) Terahertz-wave generating element, terahertz-wave detecting element, and terahertz time-domain spectroscopy device
JP6238058B2 (en) Terahertz spectroscopy system
US8179527B2 (en) Terahertz spectrometer
JP6936560B2 (en) Electromagnetic wave measuring device and electromagnetic wave measuring method
US9244331B2 (en) Electromagnetic wave generating device, electromagnetic wave detecting device, and time-domain spectroscopy apparatus
JP2013032933A (en) Homodyne detection-type electromagnetic wave spectroscopic measurement system
US8901477B2 (en) Electromagnetic wave detection device
JP6804061B2 (en) Dielectric spectroscope
JP6426540B2 (en) Dielectric spectroscopy
US20160377958A1 (en) Terahertz wave generating apparatus and information obtaining apparatus
JP2017003341A (en) Dielectric spectroscopic apparatus
JP6219867B2 (en) Component concentration measuring device
JP6163109B2 (en) Homodyne detection system electromagnetic spectrum measurement system
JP2017194361A (en) Dielectric spectroscopic device
JP6278917B2 (en) Component concentration measuring apparatus and component concentration measuring method
JP6254543B2 (en) Dielectric spectrometer
JP2023079135A (en) Fiber sensing device
CN116710740A (en) Photonic integrated circuit
JP5181384B2 (en) Optical interference tomography device, optical shape measurement device
JP6401694B2 (en) Dielectric spectrometer
Song et al. Terahetz homodyne spectroscopy system based silicon photonic integrated circuit
Dmitriev et al. Photonic system for spectrum analysis of SHF-band signals based on stimulated Mandelstam-Brillouin scattering
Pham et al. Monitoring the oscillation frequency drift of an optoelectronic oscillator with a vector network analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181025

R150 Certificate of patent or registration of utility model

Ref document number: 6426540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150