JP2017008162A - Yag-based fluophor and manufacturing method therefor - Google Patents

Yag-based fluophor and manufacturing method therefor Download PDF

Info

Publication number
JP2017008162A
JP2017008162A JP2015122976A JP2015122976A JP2017008162A JP 2017008162 A JP2017008162 A JP 2017008162A JP 2015122976 A JP2015122976 A JP 2015122976A JP 2015122976 A JP2015122976 A JP 2015122976A JP 2017008162 A JP2017008162 A JP 2017008162A
Authority
JP
Japan
Prior art keywords
powder
yag
raw material
metal
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015122976A
Other languages
Japanese (ja)
Other versions
JP6602066B2 (en
Inventor
秋山 友宏
Tomohiro Akiyama
友宏 秋山
純平 大山
Junpei Oyama
純平 大山
春宇 朱
Chunyu Zhu
春宇 朱
元貴 齊藤
Genki Saito
元貴 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Original Assignee
Hokkaido University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC filed Critical Hokkaido University NUC
Priority to JP2015122976A priority Critical patent/JP6602066B2/en
Publication of JP2017008162A publication Critical patent/JP2017008162A/en
Application granted granted Critical
Publication of JP6602066B2 publication Critical patent/JP6602066B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technology excellent in energy cost and capable of manufacturing a YAG-based fluophor in short time.SOLUTION: The manufacturing method of a YAG-based fluophor includes combustion synthesizing the YAG-based fluophor by using oxidation heat of metal Al powders with raw powders containing YOpowders, AlOpowders and metal Al powders as a raw material. It is preferably to set x in a range of 1.5 to 1.8 when a ratio of the YOpowders, the AlOpowders and the metal Al powders in the raw material, by molar ratio, is YO:AlO:Al=1.5:x:(5-2x).SELECTED DRAWING: Figure 1

Description

本発明は、エネルギーコストに優れ且つ短時間にYAG系蛍光体を製造可能とする技術に関する。   The present invention relates to a technology that is excellent in energy cost and enables a YAG phosphor to be manufactured in a short time.

LEDは、その変換効率の高さや長寿命といった特長から、白熱電球や蛍光灯に代わる次世代照明として注目されており、現在では、発光素子から発生した光を蛍光体で色変換させて出力させるLEDが主流となっている。   LEDs are attracting attention as next-generation lighting that replaces incandescent bulbs and fluorescent lamps because of their high conversion efficiency and long life. Currently, light emitted from light-emitting elements is color-converted by phosphors and output. LEDs are the mainstream.

このようなLEDで用いられる蛍光体の代表的なものとして、Ceで賦活したYAG系蛍光体がある。Ce賦活YAG(YAG:Ce)蛍光体は、Y23とAl23の複合酸化物であるY3Al512(イットリウム・アルミニウム・ガーネット)中の一部のY原子をCe原子に置換した蛍光体であり、青色の光(波長約460nm)を吸収し黄色の光(波長約530nm)を放出する特性をもった物質で、1990年代の初めに開発された青色LEDとの組み合わせにより、青色光と黄色光を組み合わせた擬似白色光を得ることができるため、現在では白色LEDに広く使用されている(例えば、特許文献1(特許第3503139号明細書)および特許文献2(特許第3700502号明細書))。 A typical phosphor used in such an LED is a YAG phosphor activated with Ce. A Ce-activated YAG (YAG: Ce) phosphor is formed by converting some Y atoms in Y 3 Al 5 O 12 (yttrium, aluminum, garnet), which is a composite oxide of Y 2 O 3 and Al 2 O 3 , to Ce atoms. Is a phosphor that has a characteristic of absorbing blue light (wavelength of about 460 nm) and emitting yellow light (wavelength of about 530 nm) in combination with a blue LED developed in the early 1990s. Thus, pseudo white light combining blue light and yellow light can be obtained. Therefore, currently, it is widely used for white LEDs (for example, Patent Document 1 (Patent No. 3503139) and Patent Document 2 (Patent Document 2). No. 3700502))).

このような蛍光体は、その製造時に大きなエネルギーを必要とする。例えば、特許文献3(特開2014−148677号公報)の段落0003には、「YAG蛍光体は、一般に、固相反応法を介し、(約1600℃を上回る)高い温度で調製される。」旨の記載があり、このような高温熱処理には数時間を要する。   Such a phosphor requires a large amount of energy when manufactured. For example, in paragraph 0003 of Patent Document 3 (Japanese Patent Application Laid-Open No. 2014-148677), “YAG phosphors are generally prepared at a high temperature (above about 1600 ° C.) via a solid-phase reaction method.” The high temperature heat treatment requires several hours.

特許第3503139号明細書Japanese Patent No. 3503139 特許第3700502号明細書Japanese Patent No. 3700502 特開2014−148677号公報Japanese Patent Laid-Open No. 2014-148677 特開2005−305320号公報JP 2005-305320 A

Zuhair A. Munir et al. Self-propagating exothermic reactions: The synthesis of high-temperature materials by combustion, Materials Science Reports, 3, (1989), p277-365.Zuhair A. Munir et al. Self-propagating exothermic reactions: The synthesis of high-temperature materials by combustion, Materials Science Reports, 3, (1989), p277-365. 燃焼合成研究会,「燃焼合成の化学:材料合成・加工の瞬間プロセス」、p32-33(1992年)。Combustion Synthesis Study Group, “Chemistry of Combustion Synthesis: Instant Process of Material Synthesis and Processing”, p32-33 (1992). Y. Song et al, "Predicting the Adiabatic Temperature of Transparent Y3Al5O12 Prepared via Combustion Synthesis under Ultra-High Gravity", Materials Transactions, 51, (2010), p2230-2235.Y. Song et al, "Predicting the Adiabatic Temperature of Transparent Y3Al5O12 Prepared via Combustion Synthesis under Ultra-High Gravity", Materials Transactions, 51, (2010), p2230-2235. 日本金属学会、金属化学入門シリーズ1「金属物理化学」(1996), p31-33.The Japan Institute of Metals, Introduction to Metal Chemistry Series 1 “Metal Physical Chemistry” (1996), p31-33. T.Hirano et al. Self-propagating high-temperature synthesis of Sr-doped LaMnO3perovskite as oxidation catalyst, Alloys and Compounds, 441, (2007), p263-266.T.Hirano et al. Self-propagating high-temperature synthesis of Sr-doped LaMnO3perovskite as oxidation catalyst, Alloys and Compounds, 441, (2007), p263-266. V. Bachmann et al. Temperature Quenching of Yellow Ce3+ Luminescence in YAG:Ce, Chem. Mater., 21, (2009), p2077-2084.V. Bachmann et al. Temperature Quenching of Yellow Ce3 + Luminescence in YAG: Ce, Chem. Mater., 21, (2009), p2077-2084. C.W.Won et al. Efficient solid-state route for the preparation of spherical YAG:Ce phosphor particles, Alloys and Compounds, 509, (2011), p2621-2626.C.W.Won et al. Efficient solid-state route for the preparation of spherical YAG: Ce phosphor particles, Alloys and Compounds, 509, (2011), p2621-2626.

従来の合成方法に比較して省エネルギー且つ短時間での材料合成を可能とする技術として、燃焼合成法が知られている。この合成法は、燃焼反応時に生じる燃焼波の自己伝播を利用して連続的に材料合成を行うもので、化合物を合成する際の自己発熱を利用することから、別名SHS法(Self-propagating High-temperature Synthesis)とも呼ばれる。   A combustion synthesis method is known as a technique that enables energy-saving and short-time material synthesis compared to conventional synthesis methods. This synthesis method continuously synthesizes materials using the self-propagation of combustion waves generated during the combustion reaction. Since this method uses self-heating during compound synthesis, it is also known as the SHS method (Self-propagating High -temperature synthesis).

燃焼合成法では、原料となる素粉末間の発熱反応を秒単位の短時間で連鎖反応的に進行させ、目的化合物を連続的かつ短時間に合成するため、外部からのエネルギー供給がほぼ皆無であり、製造時間が短縮でき、製造装置の構造も簡単なものとなり、材料合成にかかるコストを低減することができる等の特長を有する。   In the combustion synthesis method, the exothermic reaction between the raw material powders as raw materials proceeds in a chain reaction in a short time in seconds, and the target compound is synthesized continuously and in a short time, so there is almost no external energy supply. The manufacturing time can be shortened, the structure of the manufacturing apparatus can be simplified, and the cost for material synthesis can be reduced.

しかし、これまで、燃焼合成法のYAG系蛍光体の合成への適用例の報告は殆どなく、蛍光特性に優れるYAG蛍光体を合成するための条件についての検討はなされていないのが実情である。   However, until now, there have been few reports on application examples of the combustion synthesis method to the synthesis of YAG-based phosphors, and the actual condition is that the conditions for synthesizing YAG phosphors with excellent fluorescence characteristics have not been studied. .

本発明は、上述の問題に鑑みてなされたもので、その目的とするところは、燃焼合成法でYAG系蛍光体を製造する際の好適な条件を明らかにし、エネルギーコストに優れ且つ短時間にYAG系蛍光体を製造可能とする技術を提供することにある。   The present invention has been made in view of the above-mentioned problems, and the object of the present invention is to clarify suitable conditions for producing a YAG phosphor by a combustion synthesis method, and is excellent in energy cost and in a short time. The object is to provide a technique that makes it possible to produce a YAG phosphor.

上記課題を解決するために、本発明に係るYAG系蛍光体の製造方法は、酸化イットリウム(Y23)粉末と酸化アルミニウム(Al23)粉末と金属Al粉末を含む素粉末を原料とし、前記金属Al粉末の酸化熱を利用してYAG(Y3Al512)系蛍光体を燃焼合成する。 In order to solve the above-mentioned problems, a method for producing a YAG phosphor according to the present invention uses raw powder containing yttrium oxide (Y 2 O 3 ) powder, aluminum oxide (Al 2 O 3 ) powder, and metal Al powder as a raw material. A YAG (Y 3 Al 5 O 12 ) -based phosphor is combusted and synthesized using the heat of oxidation of the metal Al powder.

好ましくは、前記原料中のY23粉末と前記Al23粉末と前記金属Al粉末の比をモル比でY23:Al23:Al=1.5:x:(5−2x)としたときに、前記xを1.5〜1.8の範囲に設定する。 Preferably, the molar ratio of Y 2 O 3 powder, Al 2 O 3 powder and metal Al powder in the raw material is Y 2 O 3 : Al 2 O 3 : Al = 1.5: x: (5 -2x), x is set in the range of 1.5 to 1.8.

ある態様では、前記原料中に、さらにセリウム酸化物(CeO2)粉末を添加し、前記Y23粉末と前記CeO2粉末と前記Al23粉末と前記金属Al粉末の比をモル比でY23:CeO2:Al23:Al=(1.5−α):2α:x:(5−2x)としたときに、前記xを1.5〜1.8の範囲に設定する。 In one embodiment, a cerium oxide (CeO 2 ) powder is further added to the raw material, and the molar ratio of the Y 2 O 3 powder, the CeO 2 powder, the Al 2 O 3 powder, and the metal Al powder is calculated. And Y 2 O 3 : CeO 2 : Al 2 O 3 : Al = (1.5−α): 2α: x: (5-2x), x is in the range of 1.5 to 1.8. Set to.

このとき、好ましくは、2α/[2(1.5−α)+2α]で定義される前記αと(1.5−α)の比を、1.0%以上で5.0%以下に設定する。   At this time, preferably, the ratio of α and (1.5−α) defined by 2α / [2 (1.5−α) + 2α] is set to 1.0% or more and 5.0% or less. To do.

これらの態様において、さらに好ましくは、前記xを1.70〜1.75の範囲に設定する。   In these embodiments, more preferably, the x is set in the range of 1.70 to 1.75.

前記原料に、さらに酸素供給剤として過塩素酸物を加えるようにしてもよい。   A perchlorate may be added to the raw material as an oxygen supply agent.

例えば、前記酸素供給剤はNaClO4である。 For example, the oxygen supply agent is NaClO 4 .

ある態様では、前記原料に、更にフッ化バリウム(BaF2)粉末を添加する。 In one embodiment, barium fluoride (BaF 2 ) powder is further added to the raw material.

好ましくは、前記BaF2粉末の添加量を、原料の素粉末の全量に対して4〜6wt%の範囲に設定する。 Preferably, the addition amount of the BaF 2 powder is set in a range of 4 to 6 wt% with respect to the total amount of raw material powder.

また、好ましくは前記Al23粉末および金属Al粉末として、純度99.99%以上のものを用いる。 Preferably, the Al 2 O 3 powder and the metal Al powder are those having a purity of 99.99% or more.

本発明に係るYAG系蛍光体は、上述の何れかの方法で合成されたYAG系蛍光体である。   The YAG phosphor according to the present invention is a YAG phosphor synthesized by any one of the methods described above.

本発明により、燃焼合成法でYAG系蛍光体を製造する際の好適な条件を明らかにされ、その結果、エネルギーコストに優れ且つ短時間にYAG系蛍光体を製造可能とする技術が提供される。   According to the present invention, suitable conditions for producing a YAG phosphor by a combustion synthesis method are clarified, and as a result, a technology is provided that is excellent in energy cost and can produce a YAG phosphor in a short time. .

原料に含有させるAl23の素粉末の添加量xをパラメータとした場合の断熱火炎温度である。It is the adiabatic flame temperature when the addition amount x of the Al 2 O 3 elementary powder contained in the raw material is used as a parameter. 燃焼合成装置の概略図で、(a)は上面図、(b)は断面図である。It is the schematic of a combustion synthesis apparatus, (a) is a top view, (b) is sectional drawing. x=1.5〜1.9の条件で燃焼合成して得られた試料の光学写真である。It is an optical photograph of the sample obtained by carrying out combustion synthesis on the conditions of x = 1.5-1.9. 燃焼合成された試料のうちの、x=1.5〜1.8のYAG:Ce(Ce含有量は1at%)のX線回折チャートである。It is a X-ray diffraction chart of YAG: Ce (Ce content is 1 at%) of x = 1.5 to 1.8 among samples synthesized by combustion. 燃焼合成された試料のうちの、x=1.5〜1.8のYAG:Ce(Ce含有量は1at%)の発光強度測定結果である。It is a luminescence intensity measurement result of YAG: Ce (Ce content is 1 at%) of x = 1.5 to 1.8 among the samples synthesized by combustion. x=1.70の条件で燃焼合成して得られたYAG:Ce(Ce含有量は1.0at%)のX線回折チャートである。It is an X-ray diffraction chart of YAG: Ce (Ce content is 1.0 at%) obtained by combustion synthesis under the condition of x = 1.70. x=1.725の条件で燃焼合成して得られたYAG:Ce(Ce含有量は1.0at%)のX線回折チャートである。It is an X-ray diffraction chart of YAG: Ce (Ce content is 1.0 at%) obtained by combustion synthesis under the condition of x = 1.725. x=1.75の条件で燃焼合成して得られたYAG:Ce(Ce含有量は1.0at%)のX線回折チャートである。It is an X-ray diffraction chart of YAG: Ce (Ce content is 1.0 at%) obtained by combustion synthesis under the condition of x = 1.75. x=1.70の条件で燃焼合成して得られたYAG:Ce(Ce含有量は1.0at%)の発光強度測定結果である。It is a luminescence intensity measurement result of YAG: Ce (Ce content is 1.0 at%) obtained by combustion synthesis under the condition of x = 1.70. x=1.725の条件で燃焼合成して得られたYAG:Ce(Ce含有量は1.0at%)の発光強度測定結果である。It is a luminescence intensity measurement result of YAG: Ce (Ce content is 1.0 at%) obtained by combustion synthesis under the condition of x = 1.725. x=1.75の条件で燃焼合成して得られたYAG:Ce(Ce含有量は1.0at%)の発光強度測定結果である。It is a luminescence intensity measurement result of YAG: Ce (Ce content is 1.0 at%) obtained by combustion synthesis under the condition of x = 1.75. x=1.70、x=1.725、x=1.75の条件で燃焼合成された3つのYAG:Ceの発光強度を比較した図である。It is the figure which compared the emitted light intensity of three YAG: Ce combustion-synthesized on the conditions of x = 1.70, x = 1.725, x = 1.75. x=1.725の条件で燃焼合成された5つのYAG:Ce(Ce:1.0at%、2.0at%、3.0at%、4.0at%、5.0at%)のX線回折チャートである。X-ray diffraction charts of five YAG: Ce (Ce: 1.0 at%, 2.0 at%, 3.0 at%, 4.0 at%, 5.0 at%) synthesized by combustion under the condition of x = 1.725 It is. 5つのYAG:Ceの発光強度を比較した図である。It is the figure which compared the emitted light intensity of five YAG: Ce. フラックスとしてBaF2を加えて燃焼合成したYAG:Ce試料とBaF2を添加しないで燃焼合成したYAG:Ce試料のX線回折チャートである。 2 is an X-ray diffraction chart of a YAG: Ce sample burned and synthesized with BaF 2 added as a flux and a YAG: Ce sample burned and synthesized without adding BaF 2 . 図15に示した5つのうちの、BaF2をフラックスとして燃焼合成を行って得られた4つのYAG:Ceの発光強度を比較した図である。Five out as shown in FIG. 15, four YAG obtained by performing combustion synthesis of BaF 2 as a flux: is a graph comparing the emission intensity of Ce.

以下に、図面を参照して本発明に係るYAG系蛍光体の製造方法について説明する。なお、以降の説明では賦活剤としてCeを例示するが、ユーロピウム(Eu)、イッテルビウム(Yb)、クロム(Cr)等であってもよい。   Hereinafter, a method for producing a YAG phosphor according to the present invention will be described with reference to the drawings. In the following description, Ce is exemplified as the activator, but europium (Eu), ytterbium (Yb), chromium (Cr), or the like may be used.

燃焼合成法においては、断熱火炎温度の制御が重要である。断熱火炎温度が1800K以下の温度では反応の伝播が生じず、逆にこれより高い温度では原料の融着等により目的化合物が生成しないことが知られている(非特許文献1)。   In the combustion synthesis method, control of the adiabatic flame temperature is important. It is known that the reaction does not propagate when the adiabatic flame temperature is 1800 K or less, and conversely, when the temperature is higher than this, the target compound is not generated due to fusion of raw materials (Non-patent Document 1).

本発明者らは、誠意検討した結果、燃焼合成法によりYAG系蛍光体を製造するに際し、金属Al粉末の酸化熱を利用することを検討し、本発明を成すに至った。すなわち、本発明に係るYAG系蛍光体の製造方法では、Y23粉末とAl23粉末と金属Al粉末を含む素粉末を原料とし、金属Al粉末の酸化熱を利用してYAG系蛍光体を燃焼合成する。 As a result of sincerity studies, the present inventors have examined the use of oxidation heat of metal Al powder when producing a YAG-based phosphor by a combustion synthesis method, and have achieved the present invention. That is, in the method for producing a YAG phosphor according to the present invention, a YAG-based phosphor is produced by using raw powder containing Y 2 O 3 powder, Al 2 O 3 powder, and metal Al powder as a raw material, and utilizing the oxidation heat of the metal Al powder. Combustion synthesis of phosphor.

さらに、本発明者らは、燃焼合成反応によって得られるYAG:Ce蛍光体を燃焼合成する際に、その特性を優れたものとするために好適な、Al23の添加量、原料となる素粉末の純度、Ce濃度、フラックスとしてのBaF2の添加量についても検討した。 Furthermore, the present inventors provide an additive amount of Al 2 O 3 and a raw material suitable for improving the characteristics when the YAG: Ce phosphor obtained by the combustion synthesis reaction is subjected to combustion synthesis. The purity of the elementary powder, the Ce concentration, and the amount of BaF 2 added as a flux were also examined.

[Al23の添加量の検討]
本発明者らは、反応温度を制御するための希釈剤として、YAGのAl源としてのAl23を利用することを検討し、その適正な添加量の検討を行った。
[Examination of Al 2 O 3 Addition]
The present inventors examined the use of Al 2 O 3 as an Al source of YAG as a diluent for controlling the reaction temperature, and examined the appropriate addition amount.

そのための実験に先立ち、下記の要領で断熱火炎温度(Tad)の計算を行った。 Prior to the experiment, the adiabatic flame temperature (T ad ) was calculated as follows.

断熱火炎温度とは、完全断熱下における燃焼時の最高到達温度のことを指す。断熱火炎温度は、反応開始温度(To)での原料系と生成物系のエンタルピー差(-ΔHT0)として定義される生成エンタルピーのすべてが、生成物の温度上昇に用いられたと仮定した場合の下式(1)〜(4)から求めることができる(非特許文献2)。 The adiabatic flame temperature refers to the highest temperature achieved during combustion under completely adiabatic. The adiabatic flame temperature is based on the assumption that all of the production enthalpy, defined as the enthalpy difference (-ΔH T0 ) between the raw and product systems at the reaction start temperature (T o ), was used to increase the product temperature. It can obtain | require from the following Formula (1)-(4) (nonpatent literature 2).

ここで、Cp(s)は固体生成物の熱容量、Cp(l)は溶融状態の熱容量、Cp(g)は気体状態の熱容量、Tmは生成物の融点、Tbは生成物の沸点、ΔHm は融解熱、ΔHeは蒸発熱、νmは生成物が融解した際の融解した割合、νeは生成物が蒸発した際の蒸発した割合である。 Where Cp (s) is the heat capacity of the solid product, Cp (l) is the heat capacity in the molten state, Cp (g) is the heat capacity in the gaseous state, T m is the melting point of the product, T b is the boiling point of the product, ΔH m is the heat of fusion, ΔH e is the heat of evaporation, ν m is the rate of melting when the product is melted, and ν e is the rate of evaporation when the product is evaporated.

下式(5)は、Al23の添加量をパラメータとした場合の、YAGの燃焼合成反応の化学反応式である。 The following equation (5) is a chemical reaction formula of the combustion synthesis reaction of YAG when the addition amount of Al 2 O 3 is used as a parameter.

なお、上式(5)において、yは約(7.5-3x)/4(y ≒ (7.5-3x)/4)である。   In the above equation (5), y is about (7.5-3x) / 4 (y≈ (7.5-3x) / 4).

YAGの燃焼合成における生成エンタルピーの計算には、表1の各エンタルピーの値(何れも単位はkJ/mol)を用いた。ここで、ΔH0 298は生成熱、ΔHmは融解熱、ΔHeは蒸発熱である。なお、YAGの生成熱ΔH0 298の値および融解熱ΔHmの値は、非特許文献3による。 In calculating the enthalpy of formation in the combustion synthesis of YAG, the value of each enthalpy shown in Table 1 (the unit is kJ / mol) was used. Here, [Delta] H 0 298 generating heat, [Delta] H m is the heat of fusion, [Delta] H e is the heat of vaporization. The value of the heat of formation ΔH 0 298 of YAG and the value of the heat of fusion ΔH m are according to Non-Patent Document 3.

また、下式(6)〜(11)を用いて、生成物のモル比熱(Cp)を計算した(非特許文献3および非特許文献4を参照)。 Moreover, the molar specific heat (C p ) of the product was calculated using the following formulas (6) to (11) (see Non-Patent Document 3 and Non-Patent Document 4).

上記表1に示したデータを用い、副産物としてのNaClも含むYAGの生成エンタルピーを計算し、上式(6)〜(11)を用いて上式(1)〜(4)が成立する温度Tを求め、これを断熱火炎温度Tadとした。 Using the data shown in Table 1 above, the enthalpy of formation of YAG containing NaCl as a byproduct is calculated, and the temperature T at which the above equations (1) to (4) are established using the above equations (6) to (11). Was determined as the adiabatic flame temperature Tad .

上記手順で、x=1.5〜2.25の範囲で断熱火炎温度Tadを計算し、xをパラメータとした反応の断熱火炎温度変化の概略図を作成した。 In the above procedure, it calculates the adiabatic flame temperature T ad in the range of x = from 1.5 to 2.25, have created a schematic diagram of adiabatic flame temperature change of the reaction in which the x and parameters.

図1は、上述の方法で作製した、原料に含有させるAl23の素粉末の添加量xをパラメータとした場合の断熱火炎温度である。この図1から、完全断熱下では、xが約2.0以下で反応時にYAGが融解することが読み取れる。 FIG. 1 shows the adiabatic flame temperature when the addition amount x of the Al 2 O 3 elementary powder to be contained in the raw material prepared by the above method is used as a parameter. It can be seen from FIG. 1 that, under completely adiabatic, x is about 2.0 or less and YAG melts during the reaction.

上述のようにして求めた断熱火炎温度のAl23素粉末添加量依存性を目安として、蛍光特性の高いYAG:Ce蛍光体を得るためのAl23素粉末の添加量xを検討した。 Using the dependency of the adiabatic flame temperature obtained as described above on the amount of Al 2 O 3 powder added as a guide, the amount x of Al 2 O 3 powder added to obtain a YAG: Ce phosphor with high fluorescence characteristics was examined. did.

原料として、Y23粉末(関東化学製:純度99.99%)、CeO2粉末(高純度化学製:純度99.99%、平均径0.2μm)、金属Al粉末(高純度化学製:純度99.9%、平均径3μm)、Al23粉末(キシダ化学製:純度99.0%)、NaClO4粉末(ALDRICH製:純度98.0%)を原料とし、Ceを1.0at%含有するYAG蛍光体(YAG:Ce)を燃焼合成した。その際の反応式は、下式(12)となる。ここで、上記NaClO4は酸素供給剤として用いており、これに限らず他の過塩素酸物を用いてもよい。 As raw materials, Y 2 O 3 powder (manufactured by Kanto Chemical: purity 99.99%), CeO 2 powder (manufactured by high purity chemical: purity 99.99%, average diameter 0.2 μm), metal Al powder (manufactured by high purity chemical) : Purity 99.9%, average diameter 3 μm), Al 2 O 3 powder (manufactured by Kishida Chemical: purity 99.0%), NaClO 4 powder (manufactured by ALDRICH: purity 98.0%). A YAG phosphor (YAG: Ce) containing 0 at% was synthesized by combustion. The reaction formula in that case becomes the following formula (12). Here, the NaClO 4 is used as an oxygen supply agent, and the present invention is not limited to this, and other perchlorates may be used.

なお、上式(12)において、yは約(7.485-3x)/4 (y ≒ (7.485-3x)/4)である。   In the above equation (12), y is about (7.485-3x) / 4 (y≈ (7.485-3x) / 4).

YAG合成の際の断熱火炎温度(図1)を目安とし、x=1.5〜1.9の範囲で、上式(12)で定まる化学量論比にしたがって各素粉末を秤量した。秤量した素粉末を転動式ボールミルで混合(100rpmで4時間)した後、混合粉末をグラファイト製蓋付き坩堝(縦12cm×横4cm×深さ3.5cm)に封入し、燃焼合成装置内に断熱材とともに設置した。燃焼合成装置内をロータリーポンプで真空にした後、常圧Ar雰囲気にし、カーボンホイルに通電して着火した。   Using the adiabatic flame temperature during YAG synthesis (FIG. 1) as a guide, each elementary powder was weighed in the range of x = 1.5 to 1.9 according to the stoichiometric ratio determined by the above equation (12). After the weighed elementary powder is mixed with a rolling ball mill (4 hours at 100 rpm), the mixed powder is sealed in a crucible with a graphite lid (length 12 cm x width 4 cm x depth 3.5 cm) and insulated in the combustion synthesizer. Installed with materials. The inside of the combustion synthesizer was evacuated with a rotary pump, and then an atmospheric pressure Ar atmosphere was established.

図2は、上述の燃焼合成装置100の概略図で、図2(a)は上面図、図2(b)は断面図である(非特許文献5を参照)。図中、符号10は原料としての混合素粉末(試料)、符号20は坩堝、符号30は断熱材、符号40はカーボンホイル、符号50はロータリーポンプ、符号60はガス導入口、符号70はガス排出口、符号80はコントロールボックスである。   2A and 2B are schematic views of the above-described combustion synthesis apparatus 100, in which FIG. 2A is a top view and FIG. 2B is a cross-sectional view (see Non-Patent Document 5). In the figure, reference numeral 10 is a mixed powder (sample) as a raw material, reference numeral 20 is a crucible, reference numeral 30 is a heat insulating material, reference numeral 40 is a carbon foil, reference numeral 50 is a rotary pump, reference numeral 60 is a gas inlet, and reference numeral 70 is a gas. A discharge port 80 is a control box.

着火した後、安全のため、装置100内で坩堝20を4時間ほど冷まし、試料10を取り出した。得られた試料10は、着火部分を取り除きタングステンカーバイド鋼製乳鉢で手粉砕した。粉砕した試料10を湯とともにビーカーに入れ、マグネチックスターラーで撹拌洗浄し、吸引濾過器でろ過し、乾燥機内で乾燥させた。最後に、乾燥後の粉末をふるいにかけ、粒径が150〜355μmの範囲の粉末を回収して評価サンプルとした。   After ignition, for safety, the crucible 20 was cooled in the apparatus 100 for about 4 hours, and the sample 10 was taken out. The obtained sample 10 was pulverized by hand in a tungsten carbide steel mortar after removing the ignition portion. The pulverized sample 10 was put in a beaker together with hot water, stirred and washed with a magnetic stirrer, filtered with a suction filter, and dried in a dryer. Finally, the dried powder was sieved, and the powder having a particle size in the range of 150 to 355 μm was collected and used as an evaluation sample.

これらのサンプルについてX線回折法(MiniFlex Rigaku)で生成物を同定し、蛍光分光計(FP-6200 JASCO)で蛍光強度を測定した。サンプルのXRD測定結果および発光強度測定結果から、最適なxの値を決定した。   For these samples, products were identified by X-ray diffraction (MiniFlex Rigaku), and fluorescence intensity was measured by a fluorescence spectrometer (FP-6200 JASCO). The optimum value of x was determined from the XRD measurement result and the emission intensity measurement result of the sample.

図3は、上述の条件(x=1.5〜1.9)で燃焼合成して得られた試料の光学写真である。   FIG. 3 is an optical photograph of a sample obtained by combustion synthesis under the above conditions (x = 1.5 to 1.9).

白色の物質は副産物として生成したNaClである。これは粉砕後に湯で洗浄することで除去可能である。x=1.5および1.6の試料は、坩堝内での反応温度がYAGの融点を大きく超えてしまったために生成物が融解し、写真で確認できるような融着状態になったと考えられる。また、NaClはその生成と同時に気化し、その気化に伴って試料が飛散してしまった可能性もある。   The white material is NaCl produced as a by-product. This can be removed by washing with hot water after pulverization. The samples with x = 1.5 and 1.6 were considered to be in a fused state that the product melted because the reaction temperature in the crucible greatly exceeded the melting point of YAG, and could be confirmed with a photograph. . Further, NaCl vaporizes at the same time as its generation, and the sample may be scattered with the vaporization.

また、x=1.8までは反応が伝播しているが、x=1.9では反応は伝播しなかった様子が見て取れる。このことから、YAG:Ceの燃焼合成は、x=1.5〜1.8の範囲で可能であると結論付けた。   Also, the reaction propagates up to x = 1.8, but it can be seen that the reaction did not propagate at x = 1.9. From this, it was concluded that combustion synthesis of YAG: Ce is possible in the range of x = 1.5 to 1.8.

よって、原料中のY23粉末とAl23粉末と金属Al粉末の比をモル比でY23:Al23:Al=1.5:x:(5−2x)としたときに、xを1.5〜1.8の範囲に設定することが好ましい。 Therefore, the ratio of Y 2 O 3 powder, Al 2 O 3 powder and metal Al powder in the raw material in terms of molar ratio is Y 2 O 3 : Al 2 O 3 : Al = 1.5: x: (5-2x) X is preferably set in the range of 1.5 to 1.8.

YAGにCeをドープする場合には、Y23粉末とCeO2粉末とAl23粉末と金属Al粉末の比をモル比でY23:CeO2:Al23:Al=(1.5−α):2α:x:(5−2x)としたときに、xを1.5〜1.8の範囲に設定することが好ましい。なお、後述するように、2α/[2(1.5−α)+2α]で定義されるαと(1.5−α)の比は、1.0%以上で5.0%以下に設定することが好ましい。 When YAG is doped with Ce, the ratio of Y 2 O 3 powder, CeO 2 powder, Al 2 O 3 powder and metal Al powder in terms of molar ratio is Y 2 O 3 : CeO 2 : Al 2 O 3 : Al = When (1.5−α): 2α: x: (5-2x), x is preferably set in the range of 1.5 to 1.8. As will be described later, the ratio of α defined by 2α / [2 (1.5−α) + 2α] and (1.5−α) is set to 1.0% or more and 5.0% or less. It is preferable to do.

x=1.7〜1.8の試料の表面に見られる灰色の部分は、未反応物もしくは中間生成物のYAP(YAlO3)が残存しているものと考えられる。また、x=1.8のものに比べ、x=1.7〜1.75のものでは、表面の残存物が少ないように見受けられる。 It is considered that the unreacted product or the intermediate product YAP (YAlO 3 ) remains in the gray portion seen on the surface of the sample of x = 1.7 to 1.8. In addition, it can be seen that the surface residue is less when x = 1.7 to 1.75 than when x = 1.8.

図4は、上述の条件で燃焼合成された試料のうちの、x=1.5〜1.8のYAG:Ce(Ce含有量は1at%)のX線回折チャートである。○マークで示したピークはYAGのピークに一致している。何れの試料においても、回折ピークは略YAGのものと一致しており、上述の燃焼合成で得られた試料はYAG構造をとっていることがわかる。   FIG. 4 is an X-ray diffraction chart of YAG: Ce (Ce content is 1 at%) of x = 1.5 to 1.8 among samples synthesized by combustion under the above conditions. The peak indicated by a mark corresponds to the YAG peak. In any sample, the diffraction peak is substantially the same as that of YAG, and it can be seen that the sample obtained by the combustion synthesis described above has a YAG structure.

なお、x=1.750および1.800の試料から得られたチャート中において、2θ=35°近傍に極めて弱いピーク(△マークで示した)が認められるが、これは、YAP(YAlO3)からのものと考えられる。YAPは固相反応法でYAGを合成する際に頻繁に生成する化合物であり、熱処理温度が不十分である場合に生成しやすい。 In the charts obtained from the samples of x = 1.750 and 1.800, a very weak peak (indicated by a Δ mark) is observed in the vicinity of 2θ = 35 °, which is YAP (YAlO 3 ). Considered to be from. YAP is a compound frequently generated when YAG is synthesized by a solid-phase reaction method, and is easily generated when the heat treatment temperature is insufficient.

図5は、上述の条件で燃焼合成された試料のうちの、x=1.5〜1.8のYAG:Ce(Ce含有量は1at%)の発光強度測定結果である。460nmの青色光を試料に照射した際に約530nmの黄色光が得られている。x=1.5のものの発光強度は比較的低いが、x=1.6以上のもの、特にx=1.7以上のものでは高い発光強度が得られている。これらの試料中、最も高い発光強度を示した試料は、x=1.7のものであった。   FIG. 5 shows the emission intensity measurement result of YAG: Ce (Ce content is 1 at%) of x = 1.5 to 1.8 among the samples synthesized by combustion under the above conditions. When the sample is irradiated with blue light of 460 nm, yellow light of about 530 nm is obtained. The emission intensity of x = 1.5 is relatively low, but high emission intensity is obtained when x = 1.6 or more, particularly x = 1.7 or more. Among these samples, the sample that showed the highest emission intensity was x = 1.7.

これらの発光強度測定の結果、および、上述したようにx=1.7〜1.75のものでは表面の残存物が少ないように見受けられた結果を踏まえ、xは1.70〜1.75の範囲に設定するのが好ましいと判断した。   Based on the results of these luminescence intensity measurements and the results of x = 1.7 to 1.75 as described above, it was seen that there were few surface residues, x was 1.70 to 1.75. It was determined that it was preferable to set the value within the range.

[原料となる素粉末純度の検討]
原料となる素粉末の純度が、燃焼合成で得られるYAG系蛍光体の品質(発光特性)に及ぼす影響について検討した。
[Examination of purity of raw powder used as raw material]
The effect of the purity of the raw powder used as a raw material on the quality (luminescence characteristics) of the YAG phosphor obtained by combustion synthesis was examined.

具体的には、上述した素粉末のうち、Y23粉末(関東化学製:純度99.99%)、CeO2粉末(高純度化学製:純度99.99%、平均径0.2μm)、NaClO4粉末(ALDRICH製:純度98.0%)の純度はそのままとし、金属Al粉末として4Nの純度99.99%(高純度化学製:純度99.99%、平均径45μm)のものを用い、Al23粉末も同様に4Nの純度99.99%(高純度化学製:純度99.99%)のものを用いた。そして、xの値が1.70、1.725、1.75となるように各素粉末を秤量し、YAG:Ceを燃焼合成した。 Specifically, among the above-mentioned elementary powders, Y 2 O 3 powder (manufactured by Kanto Chemical: purity 99.99%), CeO 2 powder (manufactured by high purity chemical: purity 99.99%, average diameter 0.2 μm) The purity of NaClO 4 powder (manufactured by ALDRICH: purity 98.0%) remains the same, and the metal Al powder has a purity of 4N of 99.99% (manufactured by high purity chemical: purity 99.99%, average diameter 45 μm). The Al 2 O 3 powder used was also 4N having a purity of 99.99% (manufactured by Koyo Chemical Co., Ltd .: purity 99.99%). And each elementary powder was weighed so that the value of x would be 1.70, 1.725, 1.75, and YAG: Ce was burned and synthesized.

図6〜8はそれぞれ、x=1.70、x=1.725、x=1.75の条件で燃焼合成して得られたYAG:Ce(Ce含有量は1.0at%)のX線回折チャートである。   6 to 8 show X-rays of YAG: Ce (Ce content is 1.0 at%) obtained by combustion synthesis under the conditions of x = 1.70, x = 1.725, and x = 1.75, respectively. It is a diffraction chart.

なお、比較のために、3Nの金属Al粉末(高純度化学製:純度99.9%、平均径3μm)と2NのAl23粉末(キシダ化学製:純度99.0%)を用いて燃焼合成して得られたYAG:Ce(Ce含有量は1.0at%)のX線回折チャートも示した。 For comparison, 3N metal Al powder (manufactured by High-purity Chemical: purity 99.9%, average diameter 3 μm) and 2N Al 2 O 3 powder (manufactured by Kishida Chemical: purity 99.0%) were used. An X-ray diffraction chart of YAG: Ce (Ce content is 1.0 at%) obtained by combustion synthesis is also shown.

これらの図に示されたX線回折チャートを見る限り、低純度原料から燃焼合成された試料と高純度原料から燃焼合成された試料の間に差異は確認できない。   As can be seen from the X-ray diffraction charts shown in these drawings, no difference can be confirmed between the sample combusted and synthesized from the low-purity raw material and the sample combusted and synthesized from the high-purity raw material.

図9〜11はそれぞれ、高純度原料を用い、x=1.70、x=1.725、x=1.75の条件で燃焼合成して得られたYAG:Ce(Ce含有量は1.0at%)の発光強度測定結果で、比較のために、低純度原料から燃焼合成されたYAG:Ce(Ce含有量は1.0at%)の発光強度測定結果も示した。   9 to 11 are respectively YAG: Ce (Ce content is 1.) obtained by combustion synthesis under the conditions of x = 1.70, x = 1.725, and x = 1.75 using high-purity raw materials. For comparison, the results of measuring the emission intensity of YAG: Ce (Ce content is 1.0 at%) synthesized by combustion from a low-purity raw material are also shown.

x=1.70、x=1.725、x=1.75の3条件の何れにおいても、高純度原料から燃焼合成された試料の発光強度は、低純度原料から燃焼合成された試料のそれよりも高い値となっている。   In any of the three conditions of x = 1.70, x = 1.725, and x = 1.75, the emission intensity of the sample synthesized by combustion from the high purity raw material is that of the sample synthesized by combustion from the low purity raw material. The value is higher.

図12は、これら3つのYAG:Ceの発光強度を比較した図で、その強度に有意な差は認められない。   FIG. 12 is a graph comparing the emission intensities of these three YAG: Ce, and no significant difference is observed in the intensities.

つまり、燃焼合成で得られるYAG系蛍光体の品質(発光特性)向上のためには、Al23粉末およびAl粉末として、純度99.99%以上のものを用いることが好ましい。 That is, in order to improve the quality (light emission characteristics) of the YAG phosphor obtained by combustion synthesis, it is preferable to use Al 2 O 3 powder and Al powder having a purity of 99.99% or more.

[Ce濃度の検討]
原料として、Y23粉末(関東化学製:純度99.99%)、CeO2粉末(高純度化学製:純度99.99%、平均径0.2μm)、金属Al粉末(高純度化学製:純度99.99%、平均径45μm)、Al23粉末(高純度化学製:純度99.99%)、NaClO4粉末(ALDRICH製:純度98.0%)を原料とし、Ceを1.0at%、2.0at%、3.0at%、4.0at%、および5.0at%含有するYAG蛍光体(YAG:Ce)を燃焼合成した。この時の条件は、x=1.725とした。それぞれの合成時の反応式は、下式(13)〜(17)のとおりである。
[Examination of Ce concentration]
As raw materials, Y 2 O 3 powder (manufactured by Kanto Chemical: purity 99.99%), CeO 2 powder (manufactured by high purity chemical: purity 99.99%, average diameter 0.2 μm), metal Al powder (manufactured by high purity chemical) : Purity 99.99%, average diameter 45 μm), Al 2 O 3 powder (product of high purity chemical: purity 99.99%), NaClO 4 powder (product of ALDRICH: purity 98.0%), and Ce as 1 A YAG phosphor (YAG: Ce) containing 0.0 at%, 2.0 at%, 3.0 at%, 4.0 at%, and 5.0 at% was synthesized by combustion. The condition at this time was x = 1.725. The reaction formulas at the time of each synthesis are as shown in the following formulas (13) to (17).

図13は、上述の条件で燃焼合成された5つの試料のX線回折チャートである。図4を参照して説明したように、○マークで示したピークはYAGのピークに一致している。何れの試料においても、回折ピークは略YAGのものと一致しており、上述の燃焼合成で得られた試料はYAG構造をとっていることがわかる。   FIG. 13 is an X-ray diffraction chart of five samples combusted and synthesized under the above conditions. As described with reference to FIG. 4, the peak indicated by a circle is coincident with the YAG peak. In any sample, the diffraction peak is substantially the same as that of YAG, and it can be seen that the sample obtained by the combustion synthesis described above has a YAG structure.

Ce含有量の設計値を5%とした試料からは、比較的強いYAP起因のピークが認められる。これは、CeO2の添加量が比較的多いために、反応温度が低下して中間生成物が多く生成したことによるものと推察される。 A relatively strong peak due to YAP is observed from a sample in which the design value of Ce content is 5%. This is presumably due to the fact that since the amount of CeO 2 added is relatively large, the reaction temperature was lowered and a large amount of intermediate product was produced.

図14は、これら5つのYAG:Ceの発光強度を比較した図で、Ce含有量の設計値を1%とした試料の発光強度は相対的に低いが、それ以外のものの発光強度は概ね同じであり、その中ではCe含有量の設計値を4%とした試料の発光強度が最も高い。   FIG. 14 is a diagram comparing the light emission intensities of these five YAG: Ce, and the light emission intensity of the sample with the Ce content design value of 1% is relatively low, but the other light emission intensities are almost the same. Among them, the emission intensity of the sample having the design value of Ce content of 4% is the highest.

Ce含有量の設計値を5%とした試料の発光強度が、4%とした試料のそれよりも低下しているように見て取れるが、これは濃度消光等の原因による可能性がある。   Although it can be seen that the emission intensity of the sample with a design value of Ce content of 5% is lower than that of the sample with 4%, this may be due to causes such as concentration quenching.

一般に、蛍光体中の発光に関与するイオン(ここではCeイオン)の量が多量になると発光量が増大する傾向が認められるが、当該イオンが過多になると逆に発光強度は低下する。この現象は、発光するイオンが過多になってしまったために発光以外のエネルギー授受が発生したり、もしくは、イオンからの発光光を他のイオンが吸収してしまうといった濃度消光や再吸収と呼ばれる現象が知られている(非特許文献6)。   In general, when the amount of ions (here, Ce ions) involved in light emission in the phosphor increases, the amount of light emission tends to increase. However, when the number of ions increases, the light emission intensity decreases. This phenomenon is a phenomenon called concentration quenching or reabsorption, in which energy transfer other than light emission occurs due to excessive emission of ions, or other ions absorb light emitted from ions. Is known (Non-Patent Document 6).

また、発光帯(530nm付近)の波長が、僅かながら長波長側に赤方遷移(red shift)していることが読み取れる。発光帯の赤方遷移は、YAG:Ce蛍光体のCe濃度が上昇するにつれてより大きくなると知られており、この現象はCe3+イオンの5d→4f遷移による発光に関与しているとされている(非特許文献6)。 It can also be seen that the wavelength of the emission band (near 530 nm) is slightly red-shifted to the longer wavelength side. It is known that the red transition of the emission band becomes larger as the Ce concentration of the YAG: Ce phosphor increases, and this phenomenon is considered to be involved in light emission due to the 5d → 4f transition of Ce 3+ ions. (Non-Patent Document 6).

以降の実験では、最も高い発光強度を示した、Ce含有量の設計値を4%とする条件を燃焼合成条件として採用した。   In the subsequent experiments, the condition that showed the highest emission intensity and the design value of Ce content was 4% was adopted as the combustion synthesis condition.

[フラックスとしてのBaF2の添加量の検討]
フラックスは、複合酸化物等を合成する際に、その合成に必要な温度を引き下げ、均質性を高める効果があることが知られており、BaF2、CaF2、NaCl等が用いられる。このうち、BaF2は、比較的安価であり融点が1626Kと比較的高いこと、また、湯で洗浄することでほぼ取り除くことができるという利点がある(特許文献4や非特許文献7を参照)。そこで、本発明者らは、フラックスとしてのBaF2の添加量の検討を行った。
[Examination of the amount of BaF 2 added as flux]
Flux is known to have an effect of lowering the temperature required for the synthesis and improving the homogeneity when synthesizing a complex oxide or the like, and BaF 2 , CaF 2 , NaCl, or the like is used. Among these, BaF 2 is advantageous in that it is relatively inexpensive and has a relatively high melting point of 1626K, and can be almost removed by washing with hot water (see Patent Document 4 and Non-Patent Document 7). . Therefore, the present inventors examined the amount of BaF 2 added as a flux.

フラックスとしてBaF2(和光純薬製、純度99.9%)の粉末を3.0〜6.0wt%加え、上述の式(16)で示した燃焼合成を行ってYAG:Ce試料(Ce含有量4at%)を得た。また、比較のため、BaF2を添加しない以外は同様の条件での燃焼合成も行った。 A powder of BaF 2 (manufactured by Wako Pure Chemicals, purity 99.9%) as a flux was added in an amount of 3.0 to 6.0 wt%, and combustion synthesis represented by the above formula (16) was performed to obtain a YAG: Ce sample (containing Ce). 4at%). For comparison, combustion synthesis was also performed under the same conditions except that BaF 2 was not added.

図15は、これら5つのYAG:Ce試料のX線回折チャートである。BaF2を5.0wt%加えて燃焼合成を行って得られた試料においては、2θ=34°付近のYAP起因のピークが殆ど認められない。 FIG. 15 is an X-ray diffraction chart of these five YAG: Ce samples. In a sample obtained by performing combustion synthesis by adding 5.0 wt% of BaF 2 , a peak due to YAP near 2θ = 34 ° is hardly observed.

図16は、上記5つのうちの、BaF2をフラックスとして燃焼合成を行って得られた4つのYAG:Ceの発光強度を比較した図で、BaF2の添加量を3wt%とした試料の発光強度は相対的に低いが、BaF2添加量4〜6wt%のものの発光強度は概ね同じであり、その中ではBaF2添加量5wt%の試料の発光強度が最も高い。この結果から、BaF2の添加量は、4〜6wt%の範囲に設定するのが好ましいと判断した。 FIG. 16 is a diagram comparing the light emission intensities of four YAG: Ce obtained by performing combustion synthesis using BaF 2 as a flux among the above five, and the light emission of the sample with an addition amount of BaF 2 of 3 wt%. strength is relatively low, but the emission intensity of those BaF 2 amount 4~6Wt% is generally the same, the highest emission intensity of BaF 2 amount 5 wt% of the sample therein. From this result, it was judged that the addition amount of BaF 2 is preferably set in the range of 4 to 6 wt%.

[固相反応法で合成したYAG系蛍光体との比較]
燃焼合成法により得られたYAG系蛍光体の上述発光特性を、固相反応法で合成したYAG系蛍光体の発光特性と比較した。
[Comparison with YAG phosphor synthesized by solid-phase reaction method]
The above-mentioned emission characteristics of the YAG phosphor obtained by the combustion synthesis method were compared with the emission characteristics of the YAG phosphor synthesized by the solid phase reaction method.

そのための試料として、下式(18)の反応式に則り、YAG:Ce(Ce含有量1.0at%)を合成した。   As a sample for that purpose, YAG: Ce (Ce content: 1.0 at%) was synthesized according to the reaction formula of the following formula (18).

混合した素粉末(約1g)をアルミナ製の坩堝に入れ、空気雰囲気で1450℃で4時間熱処理した。   The mixed elementary powder (about 1 g) was put in an alumina crucible and heat-treated at 1450 ° C. for 4 hours in an air atmosphere.

得られたYAG:Ce試料の発光特性(発光強度)を評価したところ、燃焼合成法により得られたYAG系蛍光体の発光強度よりも低いことを確認した。   When the emission characteristics (emission intensity) of the obtained YAG: Ce sample were evaluated, it was confirmed that the emission intensity was lower than that of the YAG phosphor obtained by the combustion synthesis method.

本発明により、燃焼合成法でYAG系蛍光体を製造する際の好適な条件が明らかにされ、その結果、エネルギーコストに優れ且つ短時間にYAG系蛍光体を製造可能とする技術が提供される。   According to the present invention, suitable conditions for producing a YAG phosphor by a combustion synthesis method are clarified, and as a result, a technology that is excellent in energy cost and enables production of a YAG phosphor in a short time is provided. .

10 混合素粉末(試料)
20 坩堝
30 断熱材
40 カーボンホイル
50 ロータリーポンプ
60 ガス導入口
70 ガス排出口
80 コントロールボックス
100 燃焼合成装置
10 Mixed powder (sample)
20 crucible 30 heat insulating material 40 carbon foil 50 rotary pump 60 gas inlet 70 gas outlet 80 control box 100 combustion synthesis apparatus

Claims (11)

酸化イットリウム(Y23)粉末と酸化アルミニウム(Al23)粉末と金属Al粉末を含む素粉末を原料とし、前記金属Al粉末の酸化熱を利用してYAG(Y3Al512)系蛍光体を燃焼合成する、YAG系蛍光体の製造方法。 A raw powder containing yttrium oxide (Y 2 O 3 ) powder, aluminum oxide (Al 2 O 3 ) powder, and metal Al powder is used as a raw material, and YAG (Y 3 Al 5 O 12) is utilized using the heat of oxidation of the metal Al powder. ) A method for producing a YAG-based phosphor, in which a phosphor is synthesized by combustion. 前記原料中のY23粉末と前記Al23粉末と前記金属Al粉末の比をモル比でY23:Al23:Al=1.5:x:(5−2x)としたときに、前記xを1.5〜1.8の範囲に設定する、請求項1に記載のYAG系蛍光体の製造方法。 The molar ratio of Y 2 O 3 powder, Al 2 O 3 powder and metal Al powder in the raw material is Y 2 O 3 : Al 2 O 3 : Al = 1.5: x: (5-2x) The method for producing a YAG phosphor according to claim 1, wherein x is set in a range of 1.5 to 1.8. 前記原料中に、さらにセリウム酸化物(CeO2)粉末を添加し、前記Y23粉末と前記CeO2粉末と前記Al23粉末と前記金属Al粉末の比をモル比でY23:CeO2:Al23:Al=(1.5−α):2α:x:(5−2x)としたときに、前記xを1.5〜1.8の範囲に設定する、請求項1に記載のYAG系蛍光体の製造方法。 A cerium oxide (CeO 2 ) powder is further added to the raw material, and the ratio of the Y 2 O 3 powder, the CeO 2 powder, the Al 2 O 3 powder, and the metal Al powder in terms of molar ratio is Y 2 O. 3 : CeO 2 : Al 2 O 3 : Al = (1.5−α): 2α: x: When (5-2x), the x is set in the range of 1.5 to 1.8. The manufacturing method of the YAG type | system | group fluorescent substance of Claim 1. 2α/[2(1.5−α)+2α]で定義される前記αと(1.5−α)の比を、1.0%以上で5.0%以下に設定する、請求項3に記載のYAG系蛍光体の製造方法。   The ratio of α and (1.5−α) defined by 2α / [2 (1.5−α) + 2α] is set to 1.0% or more and 5.0% or less. The manufacturing method of YAG type fluorescent substance of description. 前記xを1.70〜1.75の範囲に設定する、請求項2〜4の何れか1項に記載のYAG系蛍光体の製造方法。   The method for producing a YAG phosphor according to any one of claims 2 to 4, wherein x is set in a range of 1.70 to 1.75. 前記原料に、さらに酸素供給剤として過塩素酸物を加える、請求項1〜5の何れか1項に記載のYAG系蛍光体の製造方法。   The method for producing a YAG phosphor according to any one of claims 1 to 5, wherein a perchlorate is further added to the raw material as an oxygen supply agent. 前記酸素供給剤はNaClO4である、請求項6に記載のYAG系蛍光体の製造方法。 The method for producing a YAG phosphor according to claim 6, wherein the oxygen supply agent is NaClO 4 . 前記原料に、更にフッ化バリウム(BaF2)粉末を添加する、請求項3〜7の何れか1項に記載のYAG系蛍光体の製造方法。 The method for producing a YAG phosphor according to any one of claims 3 to 7, wherein barium fluoride (BaF 2 ) powder is further added to the raw material. 前記BaF2粉末の添加量を、原料の素粉末の全量に対して4〜6wt%の範囲に設定する、請求項8に記載のYAG系蛍光体の製造方法。 The method for producing a YAG phosphor according to claim 8, wherein the addition amount of the BaF 2 powder is set in a range of 4 to 6 wt% with respect to the total amount of raw material powder. 前記Al23粉末および金属Al粉末として、純度99.99%以上のものを用いる、請求項1〜9の何れか1項に記載のYAG系蛍光体の製造方法。 The method for producing a YAG phosphor according to any one of claims 1 to 9, wherein the Al 2 O 3 powder and the metal Al powder are those having a purity of 99.99% or more. 請求項1〜10の何れか1項に記載の方法で合成されたYAG系蛍光体。   A YAG phosphor synthesized by the method according to any one of claims 1 to 10.
JP2015122976A 2015-06-18 2015-06-18 Method for producing YAG phosphor Active JP6602066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015122976A JP6602066B2 (en) 2015-06-18 2015-06-18 Method for producing YAG phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015122976A JP6602066B2 (en) 2015-06-18 2015-06-18 Method for producing YAG phosphor

Publications (2)

Publication Number Publication Date
JP2017008162A true JP2017008162A (en) 2017-01-12
JP6602066B2 JP6602066B2 (en) 2019-11-06

Family

ID=57760889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015122976A Active JP6602066B2 (en) 2015-06-18 2015-06-18 Method for producing YAG phosphor

Country Status (1)

Country Link
JP (1) JP6602066B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107090290A (en) * 2017-04-25 2017-08-25 江苏师范大学 A kind of method that rapid low consumption efficiently prepares YAG powders
WO2022154148A1 (en) * 2021-01-14 2022-07-21 목포대학교산학협력단 Yttrium aluminum garnet sintered body with high purity and high density and manufacturing method therefor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03504957A (en) * 1989-03-29 1991-10-31 インスチツート、ストルクトルノイ、マクロキネチキ、アカデミー、ナウク、エスエスエスエル Manufacturing method of complex acid compound
JPH059009A (en) * 1991-06-28 1993-01-19 Osamu Yamada Production of intermetallic compound and ceramics
JPH06247775A (en) * 1993-02-19 1994-09-06 Yoshio Miyamoto Gas pressure combustion sintering method
JP2006265542A (en) * 2005-02-28 2006-10-05 Mitsubishi Chemicals Corp Phosphor, its manufacturing method and luminescent device using the same
JP2006347823A (en) * 2005-06-16 2006-12-28 Ntn Corp Combustion synthesis method and dielectric ceramic
JP2007091523A (en) * 2005-09-28 2007-04-12 Ntn Corp Combustion synthesis method and dielectric ceramic
JP2008255200A (en) * 2007-04-03 2008-10-23 National Institute Of Advanced Industrial & Technology Method for producing multicomponent oxynitride fluorescent substance, and product therefrom
WO2011102566A1 (en) * 2010-02-16 2011-08-25 The Industry & Academic Cooperation In Chungnam National University (Iac) Rapid solid-state synthesis of yttrium aluminum garnet yellow-emitting phosphors

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03504957A (en) * 1989-03-29 1991-10-31 インスチツート、ストルクトルノイ、マクロキネチキ、アカデミー、ナウク、エスエスエスエル Manufacturing method of complex acid compound
JPH059009A (en) * 1991-06-28 1993-01-19 Osamu Yamada Production of intermetallic compound and ceramics
JPH06247775A (en) * 1993-02-19 1994-09-06 Yoshio Miyamoto Gas pressure combustion sintering method
JP2006265542A (en) * 2005-02-28 2006-10-05 Mitsubishi Chemicals Corp Phosphor, its manufacturing method and luminescent device using the same
JP2006347823A (en) * 2005-06-16 2006-12-28 Ntn Corp Combustion synthesis method and dielectric ceramic
JP2007091523A (en) * 2005-09-28 2007-04-12 Ntn Corp Combustion synthesis method and dielectric ceramic
JP2008255200A (en) * 2007-04-03 2008-10-23 National Institute Of Advanced Industrial & Technology Method for producing multicomponent oxynitride fluorescent substance, and product therefrom
WO2011102566A1 (en) * 2010-02-16 2011-08-25 The Industry & Academic Cooperation In Chungnam National University (Iac) Rapid solid-state synthesis of yttrium aluminum garnet yellow-emitting phosphors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107090290A (en) * 2017-04-25 2017-08-25 江苏师范大学 A kind of method that rapid low consumption efficiently prepares YAG powders
WO2022154148A1 (en) * 2021-01-14 2022-07-21 목포대학교산학협력단 Yttrium aluminum garnet sintered body with high purity and high density and manufacturing method therefor

Also Published As

Publication number Publication date
JP6602066B2 (en) 2019-11-06

Similar Documents

Publication Publication Date Title
Song et al. Room-temperature synthesis and warm-white LED applications of Mn 4+ ion doped fluoroaluminate red phosphor Na 3 AlF 6: Mn 4+
Kim et al. Luminescence properties of CaAlSiN3: Eu2+ phosphor prepared by direct-nitriding method using fine metal hydride powders
JP5600112B2 (en) Phosphor composition
TWI364449B (en) Aluminum-silicate based orange-red phosphors with mixed divalent and trivalent cations
Katelnikovas et al. Synthesis and optical properties of yellow emitting garnet phosphors for pcLEDs
JP5282132B2 (en) Nitride phosphor, method for manufacturing the same, and light emitting device using the same
JP6610739B2 (en) Oxynitride phosphor powder and light emitting device using the same
WO2005087896A1 (en) Phosphor, process for producing the same, lighting fixture and image display unit
Du et al. Facile preparation of Eu 3+-activated Ca 7 (VO 4) 4 O nanoparticles: a blue light-triggered red-emitting platform for indoor solid-state lighting
CN103842473B (en) The manufacture method of oxonitride phosphor powder, oxonitride phosphor powder manufacture alpha-silicon nitride powders and oxonitride phosphor powder
JP2012046625A (en) Method of manufacturing phosphor
CN102753650B (en) Li-containing alpha-sialon fluorescent particles, method for producing same, illumination device, and image display device
Chi et al. Deep red emitting MgAl 2 O 4: Cr 3+ phosphor for solid state lighting
JP2013512302A (en) Nitride phosphor, method for producing the same, and light emitting device including the phosphor
Hu et al. Preparation of high performance CaAlSiN3: Eu2+ phosphors with the aid of BaF2 flux
Raman et al. Synthesis and spectroscopic investigations on Pr3+-doped LiPbB5O9 phosphor: a blue converting red phosphor for white LEDs
Zhu et al. Optimized photoluminescence properties of a novel red phosphor LiSrAlF6: Mn4+ synthesized at room-temperature
Pradal et al. Spectroscopic study and enhanced thermostability of combustion-derived BaMgAl10O17: Eu2+ blue phosphors for solid-state lighting
Kim et al. Synthesis and luminescence properties of (Sr, Ca) AlSiN3: Eu2+ phosphors under atmospheric-pressure
Abd et al. Rapid synthesis of Ce3+: YAG via CO2 laser irradiation combustion method: Influence of Ce doping and thickness of phosphor ceramic on the performance of a white LED device
JP2011213839A (en) METHOD FOR PRODUCING Li CONTAINING α-SIALON PHOSPHOR
CN101374926B (en) Method for production of blue-light-emitting fluorescent material
JP5388699B2 (en) α-type sialon phosphor and light-emitting device using the same
JP6602066B2 (en) Method for producing YAG phosphor
Wang et al. The effect of Li3N flux on properties of Sr2Si5N8: Eu2+ phosphor

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20150715

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191008

R150 Certificate of patent or registration of utility model

Ref document number: 6602066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250