JP2017007289A - Pipe molding and method for manufacturing the same - Google Patents

Pipe molding and method for manufacturing the same Download PDF

Info

Publication number
JP2017007289A
JP2017007289A JP2015127933A JP2015127933A JP2017007289A JP 2017007289 A JP2017007289 A JP 2017007289A JP 2015127933 A JP2015127933 A JP 2015127933A JP 2015127933 A JP2015127933 A JP 2015127933A JP 2017007289 A JP2017007289 A JP 2017007289A
Authority
JP
Japan
Prior art keywords
cylindrical portion
outer cylindrical
pipe
thermoplastic resin
textile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015127933A
Other languages
Japanese (ja)
Other versions
JP6526495B2 (en
Inventor
朝美 仲井
Asami Nakai
朝美 仲井
章夫 大谷
Akio Otani
章夫 大谷
大石 正樹
Masaki Oishi
正樹 大石
半田 真一
Shinichi Handa
真一 半田
一也 大芝
Kazuya Oshiba
一也 大芝
智和 佐野
Tomokazu Sano
智和 佐野
名合 聡
Satoshi Nago
聡 名合
弘 榎本
Hiroshi Enomoto
弘 榎本
圭祐 坂口
Keisuke Sakaguchi
圭祐 坂口
葭原 法
Nori Yoshihara
法 葭原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suruga Eng Inc
SURUGA ENGINEERING Inc
Satoh Machinery Works Co Ltd
Toyobo Co Ltd
Original Assignee
Suruga Eng Inc
SURUGA ENGINEERING Inc
Satoh Machinery Works Co Ltd
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suruga Eng Inc, SURUGA ENGINEERING Inc, Satoh Machinery Works Co Ltd, Toyobo Co Ltd filed Critical Suruga Eng Inc
Priority to JP2015127933A priority Critical patent/JP6526495B2/en
Publication of JP2017007289A publication Critical patent/JP2017007289A/en
Application granted granted Critical
Publication of JP6526495B2 publication Critical patent/JP6526495B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pile-like molded article which has high productivity, is light-weight and is excellent in specific strength and specific rigidity.SOLUTION: There is provided a piping molding having a two-layer structure of an outer cylindrical portion and an inside cylindrical portion, where the outer cylindrical portion is formed of a thermoplastic resin containing a textile of a continuous fiber for reinforcement, and the inside cylindrical portion is formed of a thermoplastic resin injection-molded to the inside of the outer cylindrical portion. The outer cylindrical portion is preferably formed of a textile formed of a prepreg tape formed by impregnating roving of the continuous fiber for reinforcement with a thermoplastic resin. The textile is a fabric, a knitted fabric or a braid of the prepreg tape, and an intersection portion of the prepreg tapes are preferably fused and bonded to each other.SELECTED DRAWING: Figure 1

Description

本発明は、圧縮変形や曲げ変形に対して剛性や強度が高く、パイプ状構造材や継ぎ手などに好適なパイプ成形品とその製造方法に関する。特に、本発明は、強化用連続繊維のテキスタイルを含有する熱可塑性樹脂によって形成された外側筒状部と、射出成形された前記外側筒状部の内側に射出成形された熱可塑性樹脂によって形成された内側筒状部とからなるパイプ成形品とその製造方法に関する。   The present invention relates to a pipe molded article having high rigidity and strength against compressive deformation and bending deformation, and suitable for a pipe-like structural material, a joint, and the like, and a manufacturing method thereof. In particular, the present invention is formed by an outer cylindrical portion formed of a thermoplastic resin containing a reinforcing continuous fiber textile, and an injection molded thermoplastic resin inside the outer cylindrical portion. The present invention relates to a pipe molded product comprising an inner cylindrical portion and a method for manufacturing the same.

パイプ状樹脂成形品は、工業的には、特許文献1に開示されるように押出成形で製造されるのが一般的である。しかし、非常に高い強度や剛性を有するパイプ成形品を得るには、連続繊維等による補強が必要となるが、押出成形では、連続繊維により補強するための好適な方法は提案されていない。   In general, a pipe-shaped resin molded product is manufactured by extrusion molding as disclosed in Patent Document 1. However, in order to obtain a pipe molded product having very high strength and rigidity, reinforcement with continuous fibers or the like is required. However, in extrusion molding, a suitable method for reinforcing with continuous fibers has not been proposed.

一方、引抜き法によって、連続繊維で補強された熱硬化性樹脂の中空体の製造方法は、特許文献2に開示されている。しかし、熱硬化性樹脂を使用すると、成形時間が長くなり生産性が低いことや耐衝撃性が低いことのために、自動車部品や産業機械への適用には不適当であった。また、熱可塑性樹脂に引抜き法が広く試験されたが、溶融粘度が高く、繊維への含浸が難しく適用が困難であった。   On the other hand, Patent Document 2 discloses a method for producing a hollow body of a thermosetting resin reinforced with continuous fibers by a drawing method. However, when a thermosetting resin is used, the molding time is long, the productivity is low, and the impact resistance is low, so that it is unsuitable for application to automobile parts and industrial machines. In addition, the drawing method has been widely tested for thermoplastic resins, but the melt viscosity is high, impregnation into fibers is difficult, and application is difficult.

さらに、繊維強化樹脂製パイプ成形品は、特許文献3に開示されるように、樹脂を含浸したロービング繊維を、所定の角度で、金型であるマンドレルを回転しながら所定の厚さまで付けた後、含浸した熱硬化性樹脂を加熱硬化して成形するフィラメントワインディング法などにより成形されている。フィラメントワインディング法は、含浸した熱硬化性樹脂を硬化反応させる必要があり、成形に長い時間がかかり、自動車部品のような大量生産が必要な部品への適用は困難であった。フィラメントメントワインディングの他に遠心力成形により成形品を得ることはできるが、やはり大量生産には大きな課題があった。   Further, as disclosed in Patent Document 3, the fiber-reinforced resin pipe molded product is obtained by attaching the roving fiber impregnated with resin to a predetermined thickness while rotating a mandrel as a mold at a predetermined angle. Further, it is molded by a filament winding method in which an impregnated thermosetting resin is cured by heating. The filament winding method requires a curing reaction of the impregnated thermosetting resin, takes a long time for molding, and is difficult to apply to parts that require mass production such as automobile parts. In addition to filament winding, molded products can be obtained by centrifugal force molding, but there is still a big problem in mass production.

近年、特許文献4や特許文献5に開示されているように、ロービングに熱可塑性樹脂を含浸したプリプレグ強化繊維を加熱溶融しながらマンドレルに巻き付けて、冷却固化してパイプを作製する方法が提案されている。硬化処理の時間は、冷却固化に必要な時間まで短縮されたが、まだ大量生産が必要な部品への適用は困難であった。また、含浸したロービングを空気中で高温に曝すため、樹脂の酸化劣化や作業環境の悪化対策が必要という問題があった。   In recent years, as disclosed in Patent Document 4 and Patent Document 5, a method has been proposed in which a prepreg reinforcing fiber impregnated with a thermoplastic resin in a roving is wound around a mandrel while being heated and melted, and then cooled and solidified to produce a pipe. ing. The time for the curing process has been reduced to the time required for cooling and solidification, but it has been difficult to apply to parts that still require mass production. Further, since the impregnated roving is exposed to a high temperature in the air, there is a problem that countermeasures against oxidative degradation of the resin and work environment are necessary.

一方、熱可塑性樹脂を含浸したテープを編みあげてパイプ状の成形品とする方法も提案されている。この方法は、生産性が高いが、曲げや圧縮荷重を受けると座屈しやすく、構造体としての適用範囲は限られていた。また、特許文献6に開示されているように、編み上げたパイプ状成形品を、内圧成形で溶融固定する方法も開示されているが、やはり、トータルの成形時間は長く、大量生産には不適当であった。   On the other hand, a method has also been proposed in which a tape impregnated with a thermoplastic resin is knitted into a pipe-shaped product. This method has high productivity, but is easily buckled when subjected to bending or compressive load, and its application range as a structure is limited. In addition, as disclosed in Patent Document 6, a method of melting and fixing a knitted pipe-shaped molded product by internal pressure molding is also disclosed, but the total molding time is long and is not suitable for mass production. Met.

さらに、二つの半円状開断面の成形品のフランジ部を接合して、円状閉断面のパイプ成形品を製造する方法もあるが、接合面の強度は一般部に比較して弱く、構造材としての曲げ強度や圧縮強度は全く未達であった。   Furthermore, there is a method of manufacturing a pipe product with a circular closed cross section by joining the flange parts of two semicircular open cross section molded products, but the strength of the joint surface is weak compared to the general part, and the structure The bending strength and compressive strength as a material were not achieved at all.

自動車の燃費を高くするため、比強度や比剛性の高い成形品、特に骨格を形成する構造材に比強度や比剛性の高いものの開発の社会要請がある。このために、生産性が高く、曲げ強度や圧縮強度が非常に高く、構造材として使用可能なパイプ状構造材を開発する必要性があった。   In order to increase the fuel efficiency of automobiles, there is a social demand for the development of molded products with high specific strength and specific rigidity, especially structural materials that form a skeleton with high specific strength and specific rigidity. For this reason, there has been a need to develop a pipe-like structural material that has high productivity, extremely high bending strength and compressive strength, and can be used as a structural material.

特開2008−051124号公報JP 2008-051124 A 特開平8−34065号公報JP-A-8-34065 特許第3375375号公報Japanese Patent No. 3375375 特開平06−91769号公報Japanese Patent Laid-Open No. 06-91769 特開平06−143273号公報Japanese Patent Laid-Open No. 06-143273 特開2013−154624号公報JP 2013-154624 A

本発明は、上記の従来技術の現状及び社会要請に鑑み創案されたものであり、その目的は、生産性が高く、軽量で比強度や比剛性に優れるパイプ状成形品、及びその製造方法を提供することにある。   The present invention was devised in view of the current state of the above-described prior art and social demands, and its purpose is to provide a pipe-shaped molded product that is highly productive, lightweight, excellent in specific strength and specific rigidity, and a method for manufacturing the same. It is to provide.

本発明者は、上記の目的を達成するために鋭意検討した結果、パイプ成形品を外側筒状部と内側筒状部の2層構造にし、外側筒状部を強化用連続繊維のテキスタイルを含有する熱可塑性樹脂によって形成し、その外側筒状部の内側に熱可塑性樹脂を射出成形して内側筒状部を形成することにより、軽量でありながら剛性や強度に優れるパイプ状成形品が得られることを見出し、本発明の完成に至った。   As a result of intensive studies to achieve the above object, the present inventors have made a pipe molded product into a two-layer structure of an outer cylindrical portion and an inner cylindrical portion, and the outer cylindrical portion contains a textile of continuous fibers for reinforcement. By forming the inner cylindrical portion by injection molding a thermoplastic resin inside the outer cylindrical portion, a pipe-shaped molded product that is lightweight but has excellent rigidity and strength can be obtained. As a result, the present invention has been completed.

即ち、本発明は、以下の(1)〜(5)の構成を有するものである。
(1)外側筒状部と内側筒状部とからなる2層構造を有するパイプ成形品であって、前記外側筒状部が、強化用連続繊維のテキスタイルを含有する熱可塑性樹脂によって形成され、前記内側筒状部が、前記外側筒状部の内側に射出成形された熱可塑性樹脂によって形成されていることを特徴とするパイプ成形品。
(2)外側筒状部は、熱可塑性樹脂を強化用連続繊維のロービングに含浸したプリプレグテープからなるテキスタイルによって形成されていることを特徴とする(1)に記載のパイプ成形品。
(3)テキスタイルがプリプレグテープの織物、編物又は組物であり、プリプレグテープの交差部が互いに溶融結合されていることを特徴とする(1)又は(2)に記載のパイプ成形品。
(4)以下の(i)〜(vi)の工程を含むことを特徴とするパイプ成形品の製造方法:
(i)強化用連続繊維のテキスタイルを含有する熱可塑性樹脂によって形成される外側筒状部を作製する、
(ii)射出成形機の金型を開き、金型キャビティに前記外側筒状部を配置する、
(iii)前記外側筒状部内に摺動コアを挿入し、金型を閉じる、
(iv)前記外側筒状部と前記摺動コアの間の端末より、内側筒状部となる熱可塑性樹脂を射出成形する、
(v)前記金型を開き、前記摺動コアを引き抜く、
(vi)前記外側筒状部と前記内側筒状部とからなるパイプ成形品を金型から取り出す。
(5)射出成形のゲートとなる形状を施した金属製リングを端部に付けた外側筒状部を金型キャビティに配置することを特徴とする(4)に記載のパイプ成形品の製造方法。
That is, the present invention has the following configurations (1) to (5).
(1) A pipe molded article having a two-layer structure composed of an outer cylindrical portion and an inner cylindrical portion, wherein the outer cylindrical portion is formed of a thermoplastic resin containing a reinforcing continuous fiber textile; A pipe-molded article, wherein the inner cylindrical portion is formed of a thermoplastic resin that is injection-molded inside the outer cylindrical portion.
(2) The pipe-shaped article according to (1), wherein the outer cylindrical portion is formed of a textile made of a prepreg tape in which a roving of a reinforcing continuous fiber is impregnated with a thermoplastic resin.
(3) The pipe molded article according to (1) or (2), wherein the textile is a prepreg tape woven fabric, a knitted fabric or a braid, and the intersections of the prepreg tape are melt-bonded to each other.
(4) A method for producing a pipe-molded product comprising the following steps (i) to (vi):
(I) producing an outer cylindrical portion formed of a thermoplastic resin containing a reinforcing continuous fiber textile;
(Ii) Open the mold of the injection molding machine and place the outer cylindrical part in the mold cavity.
(Iii) Insert a sliding core into the outer cylindrical part and close the mold.
(Iv) From a terminal between the outer cylindrical portion and the sliding core, a thermoplastic resin that becomes the inner cylindrical portion is injection-molded.
(V) Open the mold and pull out the sliding core;
(Vi) A pipe molded product composed of the outer cylindrical portion and the inner cylindrical portion is taken out from the mold.
(5) The method for producing a pipe-molded product according to (4), wherein an outer cylindrical part having a metal ring shaped as a gate for injection molding is attached to the end of the mold cavity. .

本発明のパイプ成形品は、強化用連続繊維のテキスタイルを含有する熱可塑性樹脂によって形成された外側筒状部の内側に熱可塑性樹脂を射出成形して内側筒状部を形成しているので、材料と形状の両面から軽量化を達成しながら、曲げや圧縮変形に対する高い剛性や強度を持つことができる。従って、本発明のパイプ成形品を使用した自動車は、燃費が良く、省資源に効果を発揮することができる。   Since the pipe molded product of the present invention forms the inner cylindrical portion by injection molding a thermoplastic resin inside the outer cylindrical portion formed of the thermoplastic resin containing the reinforcing continuous fiber textile, While achieving weight reduction from both the material and shape, it can have high rigidity and strength against bending and compression deformation. Therefore, the automobile using the pipe molded product of the present invention has good fuel efficiency and can exhibit an effect of resource saving.

図1は、本発明のパイプ成形品の断面図を示し、(a)は縦断面図、(b)は横断面図を示す。FIG. 1 shows a cross-sectional view of a pipe molded product of the present invention, wherein (a) shows a vertical cross-sectional view and (b) shows a cross-sectional view. 図2は、本発明のパイプ成形品の外側筒状部に形成されるテキスタイルの例を示し、(a)は織物、(b)は編物、(c)は組物を示す。FIG. 2 shows an example of a textile formed on the outer cylindrical portion of the pipe molded product of the present invention, wherein (a) shows a woven fabric, (b) shows a knitted fabric, and (c) shows a braid. 図3は、本発明のパイプ成形品の外側筒状部に形成されるプリプレグテープの丸打ち組物の外観を示す。FIG. 3 shows the appearance of a round prepreg tape assembly formed on the outer cylindrical portion of the pipe molded product of the present invention. 図4は、金属製リングを端部に付けた外側筒状部の外観を示す。FIG. 4 shows the appearance of the outer cylindrical part with a metal ring attached to the end. 図5は、本発明のパイプ成形品の製造に使用される射出成形機の外観を概略的に示す。FIG. 5 schematically shows the appearance of an injection molding machine used for manufacturing the pipe molded product of the present invention. 図6は、金型を開き、摺動コアを後退した状態の射出成形機の外観を概略的に示す。FIG. 6 schematically shows the appearance of the injection molding machine with the mold opened and the sliding core retracted. 図7は、金属製リング付きの外側筒状部を金型に配置し、摺動コアを外側筒状部の内部に前進させ、金型を閉じた状態の射出成形機の外観を概略的に示す。FIG. 7 schematically shows the appearance of an injection molding machine in which an outer cylindrical part with a metal ring is arranged in a mold, a sliding core is advanced into the outer cylindrical part, and the mold is closed. Show. 図8は、射出成形用ランナーを配置した状態の射出成形機の外観を概略的に示す。FIG. 8 schematically shows the appearance of an injection molding machine in a state where an injection molding runner is arranged.

以下、本発明のパイプ成形品について詳述する。   Hereinafter, the pipe molded product of the present invention will be described in detail.

本発明のパイプ成形品は、図1の(a)、(b)の各断面図に示すように、外側筒状部1と内側筒状部2とからなる2層構造を有する。外側筒状部は、強化用連続繊維のテキスタイルを含有する熱可塑性樹脂によって形成され、内側筒状部は、外側筒状部の内側に射出成形された熱可塑性樹脂によって形成される。本発明のパイプ成形品は、この2層構造を有する限り、他の層を適宜追加することができる。   The pipe molded product of the present invention has a two-layer structure composed of an outer cylindrical portion 1 and an inner cylindrical portion 2 as shown in the respective cross-sectional views of FIGS. The outer cylindrical portion is formed of a thermoplastic resin containing a reinforcing continuous fiber textile, and the inner cylindrical portion is formed of a thermoplastic resin that is injection-molded inside the outer cylindrical portion. As long as the pipe molded product of the present invention has this two-layer structure, other layers can be appropriately added.

外側筒状部は、予め熱可塑性樹脂を強化用連続繊維のロービングに含浸したプリプレグテープからなるテキスタイルによって形成されることが好ましい。強化用連続繊維としては、ガラス繊維、炭素繊維、アラミド繊維、PBO繊維、ポリエチレンテレフタレート繊維、ポリアミド繊維、ビニールアルコール繊維、スチール繊維などが挙げられる。これらの中で、強度や弾性率が特に高いガラス繊維、炭素繊維、アラミド繊維、PBO繊維が好ましく、特にガラス繊維、炭素繊維が好ましく、比強度や比弾性率の高い炭素繊維が最も好ましい。   The outer cylindrical portion is preferably formed by a textile made of a prepreg tape in which a roving of continuous fibers for reinforcement is impregnated with a thermoplastic resin in advance. Examples of reinforcing continuous fibers include glass fibers, carbon fibers, aramid fibers, PBO fibers, polyethylene terephthalate fibers, polyamide fibers, vinyl alcohol fibers, and steel fibers. Among these, glass fiber, carbon fiber, aramid fiber, and PBO fiber having particularly high strength and elastic modulus are preferable, glass fiber and carbon fiber are particularly preferable, and carbon fiber having high specific strength and specific elastic modulus is most preferable.

炭素繊維としては、製造方法は特に制限されないが、ポリアクリロニトル繊維やセルロース繊維などの繊維を空気中で200〜300℃にて処理した後、不活性ガス中で1000〜3000℃以上で焼成され炭化製造された引っ張り強度20t/cm以上、引っ張り弾性率200GPa以上の炭素繊維が好ましい。炭素繊維の単繊維径は、特に制限されないが、複合化の製造ライン工程の取扱い性から3〜9μmが好ましい。3μm未満では、含浸や脱泡が難しく、9μmを超えると、比表面積が小さくなり、補強効果が小さくなる。炭素繊維は、空気や硝酸による湿式酸化、乾式酸化、ヒートクリーニング、ウイスカライジングなどによる接着性改良のための処理を施されたものが好ましい。また、炭素繊維は、作業工程の取り扱い性から、120℃以下で軟化する収束剤により収束されていることが好ましい。ロービングを形成するフィラメント数は、繊維の種類や繊維径によるが、500〜50000本が好ましく、特に1000〜25000本が好ましい。上記本数未満では、テープの断面積が小さく生産性が低く、上記本数を超えると、プリプレグテープ作製時の含浸が難しくなったり、組物が粗くなる。 The production method of carbon fiber is not particularly limited, but after treatment of fibers such as polyacrylonitrile fiber and cellulose fiber in air at 200 to 300 ° C., it is fired at 1000 to 3000 ° C. or more in an inert gas. Carbon fibers produced by carbonization and having a tensile strength of 20 t / cm 2 or more and a tensile modulus of 200 GPa or more are preferred. The diameter of the single fiber of the carbon fiber is not particularly limited, but is preferably 3 to 9 μm from the handling property of the composite production line process. If it is less than 3 μm, impregnation and defoaming are difficult, and if it exceeds 9 μm, the specific surface area becomes small and the reinforcing effect becomes small. The carbon fiber is preferably subjected to a treatment for improving adhesion by wet oxidation with air or nitric acid, dry oxidation, heat cleaning, whiskerizing, or the like. Moreover, it is preferable that the carbon fiber is converged by a sizing agent that softens at 120 ° C. or less from the viewpoint of handling in the work process. The number of filaments forming the roving depends on the type of fiber and the fiber diameter, but is preferably 500 to 50,000, and particularly preferably 1,000 to 25,000. If the number is less than the above, the cross-sectional area of the tape is small and the productivity is low, and if the number is more than the number, impregnation at the time of producing the prepreg tape becomes difficult or the assembly becomes rough.

外側筒状部に使用される熱可塑性樹脂としては、ポリプロピレン、ポリメチルペンテン、ポリアミド6、ポリアミド66、テレフタルアミド共重合体、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンサルファイド、ポリオキシメチレン、ポリカーボネート、ポリフェニレンエーテル、ポリエチルケトンケトンなどが挙げられる。成形性の面から、ポリプロピレン、ポリアミド6、ポリアミド66、テレフタルアミド共重合体、ポリフェニレンサルファイドなどの結晶性樹脂が好ましい。特に、比強度の高いポリプロピレン、ポリアミド6、ポリアミド66、テレフタルアミド共重合体が好ましい。これらの樹脂は、強化用連続繊維との接着強度を上げるために、酸、エポキシ、イソシアネート変性されていることが好ましい。特に、接着性の低いポレオレフィン系樹脂は変性されたものが特に好ましい。または、接着性を上げる樹脂が配合されているものが好ましい。   Examples of the thermoplastic resin used for the outer cylindrical portion include polypropylene, polymethylpentene, polyamide 6, polyamide 66, terephthalamide copolymer, polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide, polyoxymethylene, polycarbonate, and polyphenylene ether. And polyethyl ketone ketone. From the viewpoint of moldability, crystalline resins such as polypropylene, polyamide 6, polyamide 66, terephthalamide copolymer and polyphenylene sulfide are preferable. In particular, high specific strength polypropylene, polyamide 6, polyamide 66, and terephthalamide copolymer are preferable. These resins are preferably modified with acid, epoxy or isocyanate in order to increase the adhesive strength with the reinforcing continuous fiber. In particular, a modified polyolefin resin having low adhesion is particularly preferred. Or what mixed resin which raises adhesiveness is preferable.

プリプレグテープ中の強化用連続繊維の含有率は、30〜80容量%が好ましく、特に35〜70容量%が特に好ましい。含有率が上記範囲未満であると、補強効率が低く、上記範囲を超えると、ボイドなどの欠陥点が発生しやすい。プリプレグテープの幅は、2〜50mmが好ましく、3〜20mmがより好ましく、3〜15mmが最も好ましい。幅が上記範囲未満であると、多数の旋回数が必要であり、生産条件が厳しくなり、上記範囲を超えると、ガイドでの折れ曲がりが発生しやすい。   The content of the reinforcing continuous fibers in the prepreg tape is preferably 30 to 80% by volume, particularly preferably 35 to 70% by volume. If the content is less than the above range, the reinforcing efficiency is low, and if it exceeds the above range, defect points such as voids are likely to occur. The width of the prepreg tape is preferably 2 to 50 mm, more preferably 3 to 20 mm, and most preferably 3 to 15 mm. If the width is less than the above range, a large number of turns are required, and the production conditions become severe. If the width exceeds the above range, bending at the guide tends to occur.

外側筒状部において、プリプレグテープは、適正な強化形態にテキスタイル加工されるとともに、適正配置に設計されることが好ましい。テキスタイルは、図2の(a)、(b)、(c)のそれぞれに示されるように、織物、編物、組物のいずれかの形態であることが好ましい。織物は、縦糸と横糸を一定の規則で織ったもので、織り方としては、平織り、朱子織り、綾織り、斜文織りがある。また、編物としては、横編みと縦編みがある。組物としては、平打ち組物、丸打ち組物、特殊組物がある。本発明には、パイプ形状にしやすい丸打ち組物が好ましい。また、プリプレグテープを組物に加工した場合、図3に示したように、パイプの長さ方向の軸に対して、テープの繊維軸を±15度〜±60度の角度にすることが好ましい。角度がこの範囲を超えると、パイプの長さ方向の強度や剛性が低くなり、この範囲未満では、円周軸方向の強度や剛性が低くなりやすい。   In the outer cylindrical portion, it is preferable that the prepreg tape is textile processed into an appropriate reinforcing form and designed in an appropriate arrangement. The textile is preferably in the form of a woven fabric, a knitted fabric, or a braid as shown in each of FIGS. 2 (a), (b), and (c). The weaving is made by weaving warps and wefts according to certain rules, and there are plain weaving, satin weaving, twill weaving and oblique weaving. Moreover, there are flat knitting and warp knitting. As the braid, there are a flat braid, a round braid, and a special braid. In the present invention, a round braid which is easy to be formed into a pipe shape is preferable. Further, when the prepreg tape is processed into a braid, as shown in FIG. 3, it is preferable that the fiber axis of the tape is set to an angle of ± 15 degrees to ± 60 degrees with respect to the longitudinal axis of the pipe. . If the angle exceeds this range, the strength and rigidity in the longitudinal direction of the pipe will be low, and if it is below this range, the strength and rigidity in the circumferential axis direction will tend to be low.

テキスタイル加工されたプリプレグテープは、互いに接して交差する箇所が多数存在する。荷重による変形を防止する面から、テープの交差部は、互いに結合されていることが好ましい。特に、30%以上、特に好ましくは50%以上の箇所が結合されていることが好ましい。テープの交差部の結合は、接着剤による接着やテープを構成する熱可塑性樹脂の溶融結合により達成されることが好ましい。熱可塑性樹脂の溶融結合は、テキスタイル加工後、超音波エネルギーやレーザーエネルギーを交差部に適用して加熱した後、冷却することでもなされるが、テキスタイル部分以外の熱可塑性樹脂層を溶融成形するとき、特に内側筒状部を熱可塑性樹脂で射出成形するとき、溶融した熱可塑性樹脂の持つ熱によりプリプレグテープ表面を溶融して接合することが生産性から好ましい。   Textile-processed prepreg tapes have many places where they touch each other and intersect. From the viewpoint of preventing deformation due to load, the intersecting portions of the tape are preferably joined to each other. In particular, it is preferable that portions of 30% or more, particularly preferably 50% or more are bonded. It is preferable that the bonding at the intersecting portion of the tape is achieved by bonding with an adhesive or melt bonding of a thermoplastic resin constituting the tape. Melt bonding of thermoplastic resin can be done by applying ultrasonic energy or laser energy to the intersection after heating and then cooling, but when melt molding a thermoplastic resin layer other than the textile part In particular, when the inner cylindrical portion is injection-molded with a thermoplastic resin, it is preferable from the viewpoint of productivity that the surface of the prepreg tape is melted and joined by the heat of the molten thermoplastic resin.

内側筒状部は、上述のようにして作製された外側筒状部の内側に熱可塑性樹脂を射出成形することによって形成される。射出成形は、生産性が高く、持ち込み熱容量が高く、射出圧による圧力が高いという利点を有するため、外側筒状部の内側と内側筒状部の強い一体化が可能である。このように外側筒状部の内側に直接射出成形することにより、外側筒状部のテキスタイルによる強度や剛性を大幅に向上することができる。内側筒状部を別途射出成形して作製した後、外側筒状部の内側に挿入して一体化を図ったとしても、このような強度や剛性の向上効果は見られない。射出成形は、基本的に従来公知の装置、方法及び条件を適宜採用して行なうことができる。射出成形に使用される熱可塑性樹脂としては、ポリプロピレン、ポリアミド6、ポリアミド66、テレフタルアミド共重合体、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリカーボネートなどが挙げられる。ここで使用される熱可塑性樹脂は、内側筒状部の熱可塑性樹脂との密着性が必要であり、内側筒状部を構成する熱可塑性樹脂と同種の樹脂であることが好ましい。また、外側筒状部の内側に熱可塑性樹脂を射出するので、外側筒状部を構成する熱可塑性樹脂より、内側に射出する熱可塑性樹脂の融点が高い方が好ましい。   The inner cylindrical portion is formed by injection molding a thermoplastic resin inside the outer cylindrical portion manufactured as described above. Injection molding has the advantages of high productivity, high carry-in heat capacity, and high pressure due to injection pressure. Therefore, strong integration between the inner side of the outer cylindrical part and the inner cylindrical part is possible. Thus, by directly injection-molding inside the outer cylindrical portion, the strength and rigidity of the outer cylindrical portion due to the textile can be greatly improved. Even if the inner cylindrical portion is separately produced by injection molding and then inserted into the outer cylindrical portion to achieve integration, such an effect of improving strength and rigidity is not seen. The injection molding can be basically performed by appropriately adopting conventionally known apparatuses, methods and conditions. Examples of the thermoplastic resin used for injection molding include polypropylene, polyamide 6, polyamide 66, terephthalamide copolymer, polybutylene terephthalate, polyethylene terephthalate, polyethylene naphthalate, polyphenylene sulfide, polyether ether ketone, and polycarbonate. . The thermoplastic resin used here requires adhesion to the thermoplastic resin of the inner cylindrical portion, and is preferably the same type of resin as the thermoplastic resin constituting the inner cylindrical portion. Further, since the thermoplastic resin is injected inside the outer cylindrical portion, it is preferable that the thermoplastic resin injected inside has a higher melting point than the thermoplastic resin constituting the outer cylindrical portion.

射出成形に使用される熱可塑性樹脂は、融点より30℃高い温度における21.2N荷重下のメルトフローレートが、10〜500g/10minが好ましく、20〜300g/10minが特に好ましい。メルトフローレートが上記範囲未満では、射出成形時に熱可塑性樹脂の流動性が低下して外側筒状部への含浸性が低く、空隙率が高くなり、また上記範囲を超えると、成形時にバリが発生しやすく、製品強度も低下しやすい。   The thermoplastic resin used for injection molding preferably has a melt flow rate under a 21.2N load at a temperature 30 ° C. higher than the melting point, preferably 10 to 500 g / 10 min, particularly preferably 20 to 300 g / 10 min. If the melt flow rate is less than the above range, the flowability of the thermoplastic resin is reduced during injection molding, the impregnation property to the outer cylindrical portion is low, and the porosity is high. It tends to occur and the product strength tends to decrease.

外側筒状部のテキスタイルの線膨張係数は極めて小さいので、その内側に射出成形される熱可塑性樹脂も同様に線膨張係数が小さいものが好ましい。具体的には、射出成形される熱可塑性樹脂は、炭素繊維・ガラス繊維・アラミド繊維のような繊維強化材やシリカ、マイカ、タルク、ワラストナイト、炭酸カルシウムのような無機充填剤を5〜40容量%、好ましくは10〜35容量%含むことが好ましい。両者の線膨張係数の差は10%未満であることが好ましい。両者の線膨張係数の差が大きいと、外側筒状部のテキスタイルとその内側に射出成形された熱可塑性樹脂の界面に内部応力が発生しやすく、界面剥離やテキスタイルの浮きなどが起こり、十分な剛性や強度を示さない可能性がある。   Since the linear expansion coefficient of the textile of the outer cylindrical portion is extremely small, it is preferable that the thermoplastic resin injection-molded on the inside thereof has a small linear expansion coefficient. Specifically, the thermoplastic resin to be injection-molded is made of a fiber reinforcing material such as carbon fiber, glass fiber, or aramid fiber, or an inorganic filler such as silica, mica, talc, wollastonite, or calcium carbonate. It is preferable to contain 40% by volume, preferably 10 to 35% by volume. The difference in linear expansion coefficient between the two is preferably less than 10%. If the difference in linear expansion coefficient between the two is large, internal stress is likely to occur at the interface between the outer cylindrical textile and the thermoplastic resin injection-molded inside it, causing interfacial delamination and textile floating. May not show stiffness or strength.

本発明のパイプ成形品に使用される熱可塑性樹脂には、上記の成分の他に、物性改良、成形性改良、耐久性改良を目的として、結晶核剤、離型剤、滑剤、酸化防止剤、難燃剤、耐光剤、耐候剤などを配合することができる。   In addition to the above components, the thermoplastic resin used in the pipe molded product of the present invention includes a crystal nucleating agent, a mold release agent, a lubricant, and an antioxidant for the purpose of improving physical properties, moldability, and durability. In addition, flame retardants, light proofing agents, weathering agents, and the like can be blended.

本発明のパイプ成形品の外径は、好ましくは30〜120mm、より好ましくは40〜100mm、特に好ましくは50〜90mmである。また、内径は、好ましくは20〜100mm、より好ましくは30〜90mm、特に好ましくは35〜80mmである。射出成形される内側筒状部の厚さは、好ましくは1〜15mm、より好ましくは1.5〜10mm、特に好ましくは2〜8mmである。本発明のパイプ成形品の長さは、好ましくは50〜1500mm、より好ましくは100〜1000mm、特に好ましくは150〜800mmである。上記範囲外では、射出時の流動性が不足することや、固化時間が長くなるので、工業的に問題を生じうる。   The outer diameter of the pipe molded product of the present invention is preferably 30 to 120 mm, more preferably 40 to 100 mm, and particularly preferably 50 to 90 mm. The inner diameter is preferably 20 to 100 mm, more preferably 30 to 90 mm, and particularly preferably 35 to 80 mm. The thickness of the inner cylindrical portion to be injection-molded is preferably 1 to 15 mm, more preferably 1.5 to 10 mm, and particularly preferably 2 to 8 mm. The length of the pipe molded product of the present invention is preferably 50 to 1500 mm, more preferably 100 to 1000 mm, and particularly preferably 150 to 800 mm. Outside the above range, the fluidity at the time of injection is insufficient and the solidification time becomes long, which may cause problems industrially.

次に、本発明のパイプ成形品の製造方法の一例について説明する。
まず(i)上述したように外側筒状部として強化用連続繊維のテキスタイルを含有する熱可塑性樹脂によって形成されるもの(例えば図3に示すもの)を作製する。
Next, an example of the manufacturing method of the pipe molded product of this invention is demonstrated.
First, (i) as described above, the outer cylindrical portion is made of a thermoplastic resin containing a reinforcing continuous fiber textile (for example, the one shown in FIG. 3).

次に、(ii)図5に示すような射出成形機を用意し、その金型を開き、金型キャビティに前述の外側筒状部を配置する。外側筒状部は、切断等して必要な長さに調整した後、金型キャビティに配置する前に、図4に示すように射出成形のゲートとなる形状を施した金属製リング4を端部に付けることが好ましい。射出成形機は、外側筒状部を金型キャビティに配置するとき、図6に示したように予め金型(上型11及び下型21)を開き、摺動コア31を後退させておく。また、外側筒状部は、摺動コア31と金属製リング4の中心軸が一致するように金型キャビティに配置することが必要である。   Next, (ii) an injection molding machine as shown in FIG. 5 is prepared, the mold is opened, and the aforementioned outer cylindrical portion is placed in the mold cavity. After the outer cylindrical portion is adjusted to a required length by cutting or the like, and before being placed in the mold cavity, a metal ring 4 having a shape that becomes a gate for injection molding as shown in FIG. It is preferable to attach to the part. When the outer cylindrical portion is disposed in the mold cavity, the injection molding machine opens the mold (upper mold 11 and lower mold 21) in advance as shown in FIG. Further, the outer cylindrical portion needs to be arranged in the mold cavity so that the central axes of the sliding core 31 and the metal ring 4 coincide.

次に、(iii)図7に示すように、外側筒状部内に両側から摺動コアを挿入し、金型を閉じる。   Next, (iii) As shown in FIG. 7, the sliding core is inserted into the outer cylindrical portion from both sides, and the mold is closed.

次に、(iv)図8に示すようにランナー5を配置し、外側筒状部と摺動コアの間の端末により、内側筒状部となる熱可塑性樹脂を射出する。射出後、所定時間その状態で保持し、金型内で冷却する。   Next, (iv) the runner 5 is disposed as shown in FIG. 8, and the thermoplastic resin that becomes the inner cylindrical portion is injected by the terminal between the outer cylindrical portion and the sliding core. After injection, it is kept in that state for a predetermined time and cooled in the mold.

次に、(v)金型を開き、摺動コアを内側筒状部から引き抜く。   Next, (v) the mold is opened, and the sliding core is pulled out from the inner cylindrical portion.

最後に、(vi)外側筒状部と内側筒状部とからなるパイプ成形品を金型から引き抜く。具体的には、金型キャビティから、一体化したランナーと金属製リング付きパイプ成形品を取り出す。所定時間放置後、ゲート部でランナーを切り離し、その後、パイプ成形品の両端の金属製リングをはずして、パイプ成形品を得る。   Finally, (vi) a pipe molded product composed of the outer cylindrical portion and the inner cylindrical portion is pulled out from the mold. Specifically, an integrated runner and a pipe-formed product with a metal ring are taken out from the mold cavity. After leaving for a predetermined time, the runner is cut off at the gate, and then the metal rings at both ends of the pipe molded product are removed to obtain a pipe molded product.

本発明の成形品は、上述のように作製されているので、軽量でありながら、曲げや圧縮変形に対する剛性や強度が高い。従って、本発明のパイプ成形品は、自動車のフレーム、2輪車のフレーム、農機具のフレーム、OA機器のフレーム、及びフレームの連結部品などの高い強度と剛性の必要な部品に好適に使用されることができる。   Since the molded article of the present invention is produced as described above, it is lightweight and has high rigidity and strength against bending and compressive deformation. Therefore, the pipe molded product of the present invention is suitably used for parts that require high strength and rigidity, such as automobile frames, two-wheeled vehicle frames, farm equipment frames, OA equipment frames, and frame connecting parts. be able to.

以下に実施例を示して本発明を具体的に説明するが、本発明は、実施例に限定されるものではない。なお、軸圧縮剛性試験は以下のようにして行なった。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the examples. The axial compression stiffness test was performed as follows.

軸圧縮剛性試験
圧縮治具と圧縮用ロードセルをセットした島津製作所製オートグラフAGX−1000を使用して、長さ100mmの円筒型のパイプ成形品の軸方向に、予め50Nを負荷した後、5mm/minの変形速度で、圧縮して、荷重―変位挙動を測定した。得られた荷重―変位曲線の変位0.25mm〜0.5mm間の剛性を求めた。
Axial Compressive Rigidity Test Using a Shimadzu Autograph AGX-1000 with a compression jig and compression load cell set, 50N was previously loaded in the axial direction of a cylindrical pipe molded product having a length of 100 mm. The load-displacement behavior was measured by compressing at a deformation rate of / min. The rigidity between displacements 0.25 mm to 0.5 mm of the obtained load-displacement curve was determined.

実施例1
12000本の炭素繊維からなるロービングCF−R(三菱レイヨン製TR50)を拡張開繊して所定の速度で含浸台のダイヘッドに供給した。一方、変性ポリプロピレン樹脂PP1(東洋紡社製G2H、230℃、21.2N荷重下のメルトフローレート45g/10min)を,260℃に温度調節されたスクリュー式押し出し機のホッパーに投入し、溶融樹脂をギアポンプにより所定量計量して、含浸台のダイヘッドに供給した。含浸台で加圧含浸、脱泡後、幅10mm・高さ0.2mmのダイから含浸被覆されたプリプレグテープを押し出し、圧縮賦形固化した後、枷に巻き取った。(炭素繊維65質量%、樹脂35質量%)
Example 1
A roving CF-R (TR50 manufactured by Mitsubishi Rayon) made of 12,000 carbon fibers was expanded and opened and supplied to the die head of the impregnation table at a predetermined speed. On the other hand, modified polypropylene resin PP1 (G2H, manufactured by Toyobo Co., Ltd., 230 ° C., melt flow rate 45 g / 10 min under 21.2N load) was introduced into the hopper of a screw type extruder controlled at 260 ° C. A predetermined amount was measured by a gear pump and supplied to the die head of the impregnation table. After pressure impregnation and defoaming on an impregnation stand, the prepreg tape coated with impregnation was extruded from a die having a width of 10 mm and a height of 0.2 mm, and after compression-molding and solidification, it was wound around a basket. (65% carbon fiber, 35% resin)

得られたプリプレグテープを5mm幅にスリットし、変性プロピレン樹脂が含浸された連続炭素繊維のプリプレグテープ巻き3本を得た。このプリプレグテープを使用して、図3に示すように交差角45度にてパイプ状に組み上げ、内径48mm、長さ1000mmの円筒状のテキスタイルからなる外側筒状部を得た。得られた外側筒状部を長さ150mmに切断した、切断した外側筒状部の両端に、外径48mm、内径44mm、長さ2mmの金属製リングを配置した。なお、各リングの円周に、幅2mm、高さ1mmの溝を施した。   The obtained prepreg tape was slit to a width of 5 mm to obtain three continuous carbon fiber prepreg tape windings impregnated with a modified propylene resin. Using this prepreg tape, as shown in FIG. 3, it was assembled into a pipe shape at an intersection angle of 45 degrees to obtain an outer cylindrical portion made of a cylindrical textile having an inner diameter of 48 mm and a length of 1000 mm. The obtained outer cylindrical portion was cut to a length of 150 mm, and metal rings having an outer diameter of 48 mm, an inner diameter of 44 mm, and a length of 2 mm were arranged at both ends of the cut outer cylindrical portion. A groove having a width of 2 mm and a height of 1 mm was provided on the circumference of each ring.

縦型圧縮成形機に、シリンダー温度(℃)を230−260−260−260に調節した横型射出成形機を組み合わせたハイブリッド成形用射出成形機(佐藤鉄工所製VIM003型)のホッパーに、変性ポリプロピレン樹脂(東洋紡製、G2H)を投入した。50℃に温度調節した圧縮成形機側の型を開き、キャビティ内に、上記の金属製リング付きの外側筒状部を配置した。金属製リングと外側筒状部内に摺動コアを挿入し、金型を閉じた。   Modified polypropylene for the hopper of an injection molding machine for hybrid molding (VIM003 model manufactured by Sato Iron Works), which is a combination of a vertical compression molding machine and a horizontal injection molding machine with cylinder temperatures (° C) adjusted to 230-260-260-260 Resin (Toyobo, G2H) was added. The mold on the compression molding machine side whose temperature was adjusted to 50 ° C. was opened, and the outer cylindrical part with the metal ring was placed in the cavity. The sliding core was inserted into the metal ring and the outer cylindrical part, and the mold was closed.

ランナーを介して、両端より外側筒状部の内側に変性ポリプロピレンを、射出時間8秒、冷却時間20秒の条件で射出成形した。パイプ成形品の内側2mm厚部分と、外側筒状部の間隙に樹脂が充填し、また外側筒状部を構成する変性ポリプロピレン樹脂が溶着することで外側筒状部のテキスタイルが固定された。   The modified polypropylene was injection-molded through the runner from the both ends to the inside of the outer cylindrical portion under the conditions of an injection time of 8 seconds and a cooling time of 20 seconds. The resin was filled in the gap between the inner 2 mm thick portion of the pipe molded product and the outer cylindrical portion, and the modified polypropylene resin constituting the outer cylindrical portion was welded to fix the textile of the outer cylindrical portion.

冷却後、金型を開き、摺動コアを引き抜き、両端に金属製リングの付いたパイプ成形品を金型より取り出した。脱型後、金属製リングに施した溝部を切断して、外側が変性ポリプロピレン樹脂を含浸した連続炭素繊維テキスタイル、内側が変性ポリプロピレン樹脂からなる2層構造のパイプ成形品を得た。得られたパイプ成形品の詳細と軸圧縮剛性試験の評価結果を表1に示す。   After cooling, the mold was opened, the sliding core was pulled out, and a pipe molded product with metal rings at both ends was taken out from the mold. After demolding, a groove formed on the metal ring was cut to obtain a two-layered pipe molded product having a continuous carbon fiber textile impregnated with a modified polypropylene resin on the outside and a modified polypropylene resin on the inside. Table 1 shows the details of the obtained pipe molded product and the evaluation results of the axial compression stiffness test.

実施例2
実施例1において、射出成形する樹脂を変性ポリプロピレンPP1から、予めチョップド炭素繊維を変性ポリプロピレンにコンパウンディングした炭素繊維強化ポリプロピレン樹脂PP2に変更した以外は、実施例1と全く同様にパイプ成形品を作製し、実施例1と全く同様に軸圧縮剛性試験により評価した。得られたパイプ成形品の詳細と軸圧縮剛性試験の評価結果を表1に示す。
Example 2
In Example 1, a pipe-molded product was produced in the same manner as in Example 1, except that the resin to be injection-molded was changed from the modified polypropylene PP1 to the carbon fiber reinforced polypropylene resin PP2 obtained by compounding the chopped carbon fiber with the modified polypropylene in advance. Then, the axial compression stiffness test was evaluated in the same manner as in Example 1. Table 1 shows the details of the obtained pipe molded product and the evaluation results of the axial compression stiffness test.

なお、コンパウンディングは、シリンダー温度を230℃に温度調節した池貝鉄工社製二軸押出機PCM30を使用し、変性ポリプロピレン樹脂とチョップド炭素繊維を重量比で80:20に予備混合して、スクリュウ回転数毎分100にて溶融混練して、ストランドをペレタイズした。   For compounding, a twin screw extruder PCM30 manufactured by Ikekai Tekko Co., Ltd., whose temperature was adjusted to 230 ° C., was premixed with a modified polypropylene resin and chopped carbon fiber at a weight ratio of 80:20, and the screw was rotated. The strand was pelletized by melt-kneading at several hundreds per minute.

比較例1
実施例1と同じ成形機と金型を使用して、テキスタイルからなる外側筒状部を金型に配置せず、実施例1に使用した同じ変性ポリプロピレンを射出成形して、同形状で外層にテキスタイルを含まないパイプ成形品を作製した。得られたパイプ成形品の詳細と軸圧縮剛性試験の評価結果を表1に示す。
Comparative Example 1
Using the same molding machine and mold as in Example 1, the outer cylindrical portion made of textile is not placed in the mold, and the same modified polypropylene used in Example 1 is injection molded, and the same shape is used as the outer layer. A pipe-molded product without textiles was produced. Table 1 shows the details of the obtained pipe molded product and the evaluation results of the axial compression stiffness test.

比較例2
実施例1と全く同様に、プリプレグテープから作製した円筒状のテキスタイルを作製し、実施例1と同じ長さにカットしてパイプ成形品を得た。得られたパイプ成形品の詳細と軸圧縮剛性試験の評価結果を表1に示す。
Comparative Example 2
A cylindrical textile produced from prepreg tape was produced in exactly the same manner as in Example 1, and cut into the same length as in Example 1 to obtain a pipe molded product. Table 1 shows the details of the obtained pipe molded product and the evaluation results of the axial compression stiffness test.

比較例3
実施例1と全く同様の成形機や金型を使用して、テキスタイルからなる外側筒状部を配置することなく射出成形して得た内側筒状部を、実施例1と全く同様にして得られた円筒状のテキスタイルからなる外側筒状部の内側に挿入し、内側筒状部が樹脂で、外側筒状部がテキスタイルのパイプ成形品を得た。テキスタイルからなる外側筒状部と、それとは別に射出成形されて形成された内側筒状部は、物理的な接触のみで溶融結合されていない。得られたパイプ成形品の詳細と軸圧縮剛性試験の評価結果を表1に示す。
Comparative Example 3
Using the same molding machine and mold as in Example 1, an inner cylindrical part obtained by injection molding without arranging the outer cylindrical part made of textiles was obtained in the same manner as in Example 1. It was inserted inside the outer cylindrical part made of the cylindrical textiles obtained, and a pipe molded product was obtained in which the inner cylindrical part was made of resin and the outer cylindrical part was a textile. The outer cylindrical portion made of textiles and the inner cylindrical portion formed by injection molding separately are not melt-bonded only by physical contact. Table 1 shows the details of the obtained pipe molded product and the evaluation results of the axial compression stiffness test.

比較例4
実施例1と全く同様に、プリプレグテープから円筒状のテキスタイルを作製し、実施例1と同じ長さにカットして筒状テキスタイルを得た。外径44mm、内径42mm、高さ150mmの鋼製パイプが垂直に固定された金属板型に、鋼製パイプの外側に筒状テキスタイルを同心円となるように配置した。筒状パイプと鋼製パイプの間隙に、シリンダー温度を230℃に温度調節した池貝鉄工社製二軸押出機PCM30の1mmφのノズルから、溶融した変性ポリプロピレン樹脂PP1を低速にて注入して、室温にて30分放冷した後、金属板型から積層パイプ成形品を脱型し、両端を切断して、長さ100mmの炭素繊維テキスタイルとPP1樹脂からなる積層パイプを得た。得られたパイプ成形品の詳細と軸圧縮剛性試験の評価結果を表1に示す。
Comparative Example 4
In exactly the same manner as in Example 1, a cylindrical textile was produced from the prepreg tape and cut into the same length as in Example 1 to obtain a cylindrical textile. A cylindrical textile was arranged concentrically outside the steel pipe in a metal plate mold in which a steel pipe having an outer diameter of 44 mm, an inner diameter of 42 mm, and a height of 150 mm was fixed vertically. A molten modified polypropylene resin PP1 is injected at a low speed into a gap between the cylindrical pipe and the steel pipe from a 1 mmφ nozzle of a twin screw extruder PCM30 manufactured by Ikekai Tekko Co., Ltd. whose temperature is adjusted to 230 ° C. After being allowed to cool for 30 minutes, the laminated pipe molded product was removed from the metal plate mold, and both ends were cut to obtain a laminated pipe made of carbon fiber textile and PP1 resin having a length of 100 mm. Table 1 shows the details of the obtained pipe molded product and the evaluation results of the axial compression stiffness test.

表1中の記号は以下の通りである。
PP1:変性ポリプロピレン樹脂G2H(東洋紡製、230℃、21.2N荷重下におけるメルトフローレート 45g/10min,融点165℃)
PP2:PP1の3mmカットチョップド炭素繊維(三菱レイヨン製TR50)の20重量%コンパウンド品、230℃、21.2N荷重下におけるメルトフローレート 20g/10min
CF−R:炭素繊維、三菱レイヨン製TR50(フィラメント数12000本)
The symbols in Table 1 are as follows.
PP1: modified polypropylene resin G2H (manufactured by Toyobo, 230 ° C., melt flow rate 45 g / 10 min under 21.2 N load, melting point 165 ° C.)
PP2: PP1 3mm cut chopped carbon fiber (Mitsubishi Rayon TR50) 20 wt% compound product, 230 ° C, melt flow rate under 21.2N load 20g / 10min
CF-R: Carbon fiber, Mitsubishi Rayon TR50 (12,000 filaments)

表1の結果からわかるように、射出成形により内側筒状部と外側筒状部を一体化した実施例のパイプ成形品は、同じ材料を使用して内側筒状部と外側筒状部を一度に作った比較例1や内側筒状部を形成していない比較例2や内側筒状部と外側筒状部の一体化を挿入で行なった比較例3や内側筒状部と外側筒状部の一体化を注入硬化で行なった比較例4に比べて、剛性が明らかに高くなっている。   As can be seen from the results in Table 1, the pipe molded product of the example in which the inner cylindrical portion and the outer cylindrical portion are integrated by injection molding is used to connect the inner cylindrical portion and the outer cylindrical portion once using the same material. Comparative Example 1 made in the above, Comparative Example 2 in which the inner cylindrical part is not formed, Comparative Example 3 in which the inner cylindrical part and the outer cylindrical part are integrated by insertion, or the inner cylindrical part and the outer cylindrical part The rigidity is clearly higher than that of Comparative Example 4 in which the integration is performed by injection hardening.

本発明のパイプ成形品は、軽量でありながら、高い軸圧縮剛性を有し、使用時の安全性が高い。従って、自動車のフレーム、2輪車のフレーム、農機具のフレーム、OA機器のフレーム、フレームの連結部品、T型フレームや十字型フレームの連結部品に好適に使用されることができる。   The pipe molded product of the present invention has high shaft compression rigidity while being lightweight, and has high safety during use. Accordingly, it can be suitably used for automobile frames, two-wheeled vehicle frames, agricultural machinery frames, OA equipment frames, frame connecting components, T-shaped frames and cross-shaped frame connecting components.

1 外側筒状部
2 内側筒状部
3 プリプレグテープ
4 金属製リング
5 ランナー
11 上型
21 下型
31 摺動コア
41 ホッパー
42 バレル
43 ノズル
44 加圧盤
DESCRIPTION OF SYMBOLS 1 Outer cylindrical part 2 Inner cylindrical part 3 Prepreg tape 4 Metal ring 5 Runner 11 Upper mold | type 21 Lower mold | type 31 Sliding core 41 Hopper 42 Barrel 43 Nozzle 44 Pressure board

Claims (5)

外側筒状部と内側筒状部とからなる2層構造を有するパイプ成形品であって、前記外側筒状部が、強化用連続繊維のテキスタイルを含有する熱可塑性樹脂によって形成され、前記内側筒状部が、前記外側筒状部の内側に射出成形された熱可塑性樹脂によって形成されていることを特徴とするパイプ成形品。   A pipe molded article having a two-layer structure comprising an outer cylindrical portion and an inner cylindrical portion, wherein the outer cylindrical portion is formed of a thermoplastic resin containing a reinforcing continuous fiber textile, A pipe-shaped product, wherein the shaped part is formed of a thermoplastic resin injection-molded inside the outer cylindrical part. 外側筒状部は、熱可塑性樹脂を強化用連続繊維のロービングに含浸したプリプレグテープからなるテキスタイルによって形成されていることを特徴とする請求項1に記載のパイプ成形品。   2. The pipe molded product according to claim 1, wherein the outer cylindrical portion is formed of a textile made of a prepreg tape in which a roving of a reinforcing continuous fiber is impregnated with a thermoplastic resin. テキスタイルがプリプレグテープの織物、編物又は組物であり、プリプレグテープの交差部が互いに溶融結合されていることを特徴とする請求項1又は2に記載のパイプ成形品。   The pipe molded article according to claim 1 or 2, wherein the textile is a prepreg tape woven fabric, a knitted fabric or a braid, and the intersections of the prepreg tape are melt-bonded to each other. 以下の(i)〜(vi)の工程を含むことを特徴とするパイプ成形品の製造方法:
(i)強化用連続繊維のテキスタイルを含有する熱可塑性樹脂によって形成される外側筒状部を作製する、
(ii)射出成形機の金型を開き、金型キャビティに前記外側筒状部を配置する、
(iii)前記外側筒状部内に摺動コアを挿入し、金型を閉じる、
(iv)前記外側筒状部と前記摺動コアの間の端末より、内側筒状部となる熱可塑性樹脂を射出成形する、
(v)前記金型を開き、前記摺動コアを引き抜く、
(vi)前記外側筒状部と前記内側筒状部とからなるパイプ成形品を金型から取り出す。
A method for producing a pipe-molded article comprising the following steps (i) to (vi):
(I) producing an outer cylindrical portion formed of a thermoplastic resin containing a reinforcing continuous fiber textile;
(Ii) Open the mold of the injection molding machine and place the outer cylindrical part in the mold cavity.
(Iii) Insert a sliding core into the outer cylindrical part and close the mold.
(Iv) From a terminal between the outer cylindrical portion and the sliding core, a thermoplastic resin that becomes the inner cylindrical portion is injection-molded.
(V) Open the mold and pull out the sliding core;
(Vi) A pipe molded product composed of the outer cylindrical portion and the inner cylindrical portion is taken out from the mold.
射出成形のゲートとなる形状を施した金属製リングを端部に付けた外側筒状部を金型キャビティに配置することを特徴とする請求項4に記載のパイプ成形品の製造方法。   5. The method for producing a pipe-molded product according to claim 4, wherein an outer cylindrical part having a metal ring shaped as a gate for injection molding is attached to the end of the mold cavity.
JP2015127933A 2015-06-25 2015-06-25 Method of manufacturing pipe molded article Active JP6526495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015127933A JP6526495B2 (en) 2015-06-25 2015-06-25 Method of manufacturing pipe molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015127933A JP6526495B2 (en) 2015-06-25 2015-06-25 Method of manufacturing pipe molded article

Publications (2)

Publication Number Publication Date
JP2017007289A true JP2017007289A (en) 2017-01-12
JP6526495B2 JP6526495B2 (en) 2019-06-05

Family

ID=57760505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015127933A Active JP6526495B2 (en) 2015-06-25 2015-06-25 Method of manufacturing pipe molded article

Country Status (1)

Country Link
JP (1) JP6526495B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020055252A (en) * 2018-10-03 2020-04-09 キヤノン株式会社 Resin component, method for manufacturing resin component, lens barrel component, and optical equipment
EP3805623A1 (en) * 2019-10-07 2021-04-14 Crompton Technology Group Limited Fibre reinforced polymer composite pipes
JP2021070301A (en) * 2019-11-01 2021-05-06 デザインアンドイノベーション株式会社 Fiber-reinforced plastic molded product, low specific gravity members, and wood-based buildings

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0369345A (en) * 1989-08-09 1991-03-25 Nippon Zeon Co Ltd Manufacture of composite member
JPH03112619A (en) * 1989-09-27 1991-05-14 Sekisui Chem Co Ltd Manufacture of multi-layer tube joint
JPH05124117A (en) * 1991-11-06 1993-05-21 Nitto Boseki Co Ltd Method of molding fiber-reinforced thermoplastic resin pipe
JPH07156192A (en) * 1993-12-09 1995-06-20 Sekisui Chem Co Ltd Production of lined pipe
DE10036235A1 (en) * 2000-07-26 2002-03-07 Geiger Technik Gmbh Conduit, in particular, hose for cooling water in a motor vehicle is made of a rubber type material and is provided with a reinforcing hose at least in a hose bend zone
DE102008046602A1 (en) * 2008-09-10 2010-03-11 Daimler Ag Method for manufacturing fiber-reinforced injection molding component, involves inserting fiber-reinforced hose into spraying casting tool, and injecting casting material into spraying casting tool
DE102013215375A1 (en) * 2013-08-05 2015-02-05 Bayerische Motoren Werke Aktiengesellschaft Method for the production of an at least partially hollow structural component of a vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0369345A (en) * 1989-08-09 1991-03-25 Nippon Zeon Co Ltd Manufacture of composite member
JPH03112619A (en) * 1989-09-27 1991-05-14 Sekisui Chem Co Ltd Manufacture of multi-layer tube joint
JPH05124117A (en) * 1991-11-06 1993-05-21 Nitto Boseki Co Ltd Method of molding fiber-reinforced thermoplastic resin pipe
JPH07156192A (en) * 1993-12-09 1995-06-20 Sekisui Chem Co Ltd Production of lined pipe
DE10036235A1 (en) * 2000-07-26 2002-03-07 Geiger Technik Gmbh Conduit, in particular, hose for cooling water in a motor vehicle is made of a rubber type material and is provided with a reinforcing hose at least in a hose bend zone
DE102008046602A1 (en) * 2008-09-10 2010-03-11 Daimler Ag Method for manufacturing fiber-reinforced injection molding component, involves inserting fiber-reinforced hose into spraying casting tool, and injecting casting material into spraying casting tool
DE102013215375A1 (en) * 2013-08-05 2015-02-05 Bayerische Motoren Werke Aktiengesellschaft Method for the production of an at least partially hollow structural component of a vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020055252A (en) * 2018-10-03 2020-04-09 キヤノン株式会社 Resin component, method for manufacturing resin component, lens barrel component, and optical equipment
JP7134820B2 (en) 2018-10-03 2022-09-12 キヤノン株式会社 Resin part, method for manufacturing resin part, equipment, and optical equipment
EP3805623A1 (en) * 2019-10-07 2021-04-14 Crompton Technology Group Limited Fibre reinforced polymer composite pipes
US11761562B2 (en) 2019-10-07 2023-09-19 Crompton Technology Group Limited Fibre reinforced polymer composite pipes
JP2021070301A (en) * 2019-11-01 2021-05-06 デザインアンドイノベーション株式会社 Fiber-reinforced plastic molded product, low specific gravity members, and wood-based buildings

Also Published As

Publication number Publication date
JP6526495B2 (en) 2019-06-05

Similar Documents

Publication Publication Date Title
US11806920B2 (en) Heat curable composite textile
TWI703030B (en) Process for the continuous production of fibre-reinforced profiles comprising a foam core
JP6014878B2 (en) Reinforced fiber / resin fiber composite
US9797500B2 (en) Method for manufacturing rack housing and rack housing
CN107553935B (en) A kind of FRP composite material plate spring ontology manufacturing process
JP5774465B2 (en) Manufacturing method of fiber-reinforced plastic tape and manufacturing apparatus used therefor
JPH057640A (en) Bat and its production
TW201540468A (en) Continuous production of complex profiles having sandwich structure with foam cores in the pul-press process and Pul-shape process
JP6526495B2 (en) Method of manufacturing pipe molded article
JP2008266648A (en) Fiber reinforced thermoplastic resin composite material and formed article using it
TW201412506A (en) Pul-core process with PMI foam core
JP6016428B2 (en) A bundle of roving yarn, a method of producing a bundle of roving yarn, and a method of producing a workpiece
JP2015093479A (en) Fiber reinforced composite molding and method for manufacturing the same
JP2005052987A (en) Fiber reinforced thermoplastic resin composite material, its manufacturing method and molded product using the composite material
JP2020028984A (en) Ud-like closed fiber-reinforced composite molded product by filament winding (fw) method and method for producing the same
CN114072273A (en) Rotating component made of composite material with improved delamination resistance
US20180216695A1 (en) Damping member and damping member fabrication process
KR101689569B1 (en) Method of forming fiber reinforced plastic composite for forming preform
JP7344472B2 (en) Reinforced fiber tape material and its manufacturing method, reinforced fiber laminate and fiber reinforced resin molded product using reinforced fiber tape material
KR102204244B1 (en) Fabric for fiber reinforced plastic and manufacturing method thereof using the same
CN109843564A (en) Composite sheet and its manufacturing method
TW202112917A (en) Fiber-reinforced resin substrate, integrated molded article, and method for manufacturing fiber-reinforced resin substrate
KR102349669B1 (en) Forming method of fiber reinforced plastic material
KR101061914B1 (en) FRP treated synthetic resin tube
KR20150009976A (en) Manufacturing method for molded resin product with metal insert

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190508

R150 Certificate of patent or registration of utility model

Ref document number: 6526495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250