JP2017006837A - Adsorption element and production method thereof - Google Patents

Adsorption element and production method thereof Download PDF

Info

Publication number
JP2017006837A
JP2017006837A JP2015123511A JP2015123511A JP2017006837A JP 2017006837 A JP2017006837 A JP 2017006837A JP 2015123511 A JP2015123511 A JP 2015123511A JP 2015123511 A JP2015123511 A JP 2015123511A JP 2017006837 A JP2017006837 A JP 2017006837A
Authority
JP
Japan
Prior art keywords
adsorption
coarse material
main body
adsorbent
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015123511A
Other languages
Japanese (ja)
Other versions
JP6422029B2 (en
Inventor
文男 前川
Fumio Maekawa
文男 前川
雅代 前川
Masayo Maekawa
雅代 前川
和也 前川
Kazuya Maekawa
和也 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2015123511A priority Critical patent/JP6422029B2/en
Publication of JP2017006837A publication Critical patent/JP2017006837A/en
Application granted granted Critical
Publication of JP6422029B2 publication Critical patent/JP6422029B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an adsorption element excellent in filtration capacity and cleaning ability, in which an adsorbent is not departed from a support medium in use.SOLUTION: In an adsorption element 10 having a support medium 1, and an adsorbent 3 supported by the support medium 1, the adsorbent 3 comprises an adsorption body 3a and a finishing layer, the adsorption body 3a is positioned inside the adsorbent 3 and formed of adsorption fine powder and fine fibrous cellulose, the finishing layer encloses the adsorption body 3a, and the finishing layer is formed of the fine fibrous cellulose.SELECTED DRAWING: Figure 1

Description

本発明は、吸着エレメントと、その製造方法とに関する。   The present invention relates to an adsorption element and a method for producing the same.

特許文献1に従来の吸着エレメントが開示されている。吸着エレメントは、カートリッジに充填される不織布シート等の支持体と、この支持体に支持された吸着材とを有している。吸着材は、イオン交換樹脂等の吸着微粉と、微小繊維状セルロースとを含んでおり、異物等の吸着質を吸着可能である。   Patent Document 1 discloses a conventional adsorption element. The adsorbing element has a support such as a non-woven sheet filled in the cartridge, and an adsorbent supported by the support. The adsorbent contains adsorbed fine powder such as ion exchange resin and fine fibrous cellulose, and can adsorb adsorbate such as foreign matter.

また、特許文献1には、この吸着エレメントの製造方法も開示されている。この製造方法は、調製工程と、粗材形成工程と、完成工程とからなる。調製工程では、分散媒が水であり、分散質が吸着微粉及び微小繊維状セルロースである吸着材用分散系を調製する。粗材形成工程では、支持体に吸着材用分散系を接触させて粗材を得る。完成工程では、粗材を乾燥し、支持体に吸着材を支持した吸着エレメントを得る。   Patent Document 1 also discloses a method for manufacturing this adsorption element. This manufacturing method includes a preparation process, a coarse material forming process, and a completion process. In the preparation step, an adsorbent dispersion system is prepared in which the dispersion medium is water and the dispersoids are adsorbed fine powder and fine fibrous cellulose. In the coarse material forming step, the adsorbent dispersion is brought into contact with the support to obtain the coarse material. In the completion process, the coarse material is dried to obtain an adsorbing element in which the adsorbent is supported on the support.

こうして製造された吸着エレメントは、汚染水等のろ過に用いられることにより、汚染水等が含む吸着質を吸着材に吸着し、汚染水等を浄化することが可能である。例えば、この吸着エレメントが鑑賞魚や食用魚等の水生生物を蓄養するための蓄養水や、水生生物を生きたまま搬送するための搬送水のろ過に用いられれば、それら蓄養水等中に生じる亜硝酸や汚物等の吸着質を吸着材に吸着して蓄養水等を浄化することが可能である。この場合、水生生物の延命を行うことができる。また、汚染水の脱色を行い、水の透明性を確保することも可能である。さらに、この吸着エレメントは、放射性セシウム等の放射性物質によって汚染された汚染水のろ過に用いられることにより、吸着材が吸着質としての放射性物質を吸着し、その汚染水の除染を行うことも可能である。また、この吸着エレメントは、異臭がする空気等の汚染気体中の吸着質としての異臭成分を吸着材に吸着し、汚染気体を脱臭することが可能である。   The adsorbing element manufactured in this way is used for filtering contaminated water and the like, so that the adsorbate contained in the contaminated water and the like can be adsorbed on the adsorbent, and the contaminated water and the like can be purified. For example, if this adsorption element is used for storage water for growing aquatic organisms such as appreciation fish and edible fish, or filtration of conveyance water for conveying aquatic organisms alive, It is possible to purify the storage water by adsorbing adsorbate such as nitric acid and filth on the adsorbent. In this case, the life of aquatic organisms can be extended. It is also possible to ensure the transparency of water by decolorizing contaminated water. Furthermore, this adsorption element is used for filtering contaminated water contaminated with radioactive substances such as radioactive cesium, so that the adsorbent adsorbs radioactive substances as adsorbate and decontaminates the contaminated water. Is possible. Moreover, this adsorption element can adsorb | suck the bad smell component as adsorbate in pollutant gas, such as air which gives off a bad smell, to an adsorbent, and can deodorize pollutant gas.

特許第4232131号公報Japanese Patent No. 4232131

しかし、上記従来の吸着エレメントでは、吸着材の一部が使用中に支持体から離脱することがある。汚染水のろ過中又は汚染気体の浄化中にこのようなことがあれば、ろ過後の浄化水や浄化気体中に吸着材の一部とともに吸着質が含まれることとなり、ろ過能力や浄化能力が損なわれる。   However, in the conventional adsorption element, part of the adsorbent may be detached from the support during use. If this happens during the filtration of contaminated water or the purification of contaminated gas, the adsorbate will be contained in the purified water or purified gas after filtration together with part of the adsorbent, and the filtration capacity and purification capacity will be reduced. Damaged.

本発明は、上記従来の実情に鑑みてなされたものであって、よりろ過能力や浄化能力の優れた吸着エレメントを提供することを解決すべき課題としている。   This invention is made | formed in view of the said conventional situation, Comprising: It is set as the problem which should be solved to provide the adsorption | suction element which was more excellent in filtration capability and purification | cleaning capability.

本発明の吸着エレメントは、支持体と、前記支持体に支持され、吸着微粉及び微小繊維状セルロースを含んで吸着質を吸着可能な吸着材とを有する吸着エレメントであって、
前記吸着材は、内部に位置し、前記吸着微粉及び前記微小繊維状セルロースを有して形成された吸着本体と、
前記吸着本体を包囲し、前記微小繊維状セルロースで形成された仕上層とからなることを特徴とする。
The adsorbing element of the present invention is an adsorbing element having a support and an adsorbent supported by the support and capable of adsorbing adsorbate containing adsorbed fine powder and fine fibrous cellulose,
The adsorbent is located inside, an adsorption main body formed with the adsorbed fine powder and the microfibrous cellulose,
It is characterized by comprising a finishing layer surrounding the adsorption main body and made of the microfibrous cellulose.

本発明の吸着エレメントでは、吸着微粉及び微小繊維状セルロースを有して形成された吸着本体が微小繊維状セルロースで形成された仕上層によって包囲されている。このため、従来の吸着材である吸着本体の一部が使用中に支持体から離脱し難い。また、吸着本体を包囲する仕上層は微小繊維状セルロースで形成されており、それ自身である程度の吸着能力を発揮するとともに、内部の吸着本体の吸着能力をほとんど損なわない。   In the adsorbing element of the present invention, an adsorbing main body formed by having adsorbing fine powder and microfibrous cellulose is surrounded by a finishing layer made of microfibrous cellulose. For this reason, it is difficult for a part of the adsorption main body, which is a conventional adsorbent, to be detached from the support during use. Further, the finishing layer surrounding the adsorption main body is made of microfibrous cellulose, and exhibits a certain degree of adsorption capability by itself and hardly impairs the adsorption capability of the internal adsorption main body.

したがって、本発明の吸着エレメントは、より高いろ過能力や浄化能力を発揮することができる。   Therefore, the adsorption element of the present invention can exhibit higher filtering ability and purification ability.

支持体としては、不織布シート、フィルターカートリッジ、連続気泡を有するスポンジフィルタ、連続気泡を有する多孔質セラミック等を採用することができる。汚染水をろ過したり、汚染気体を浄化したりするために吸着エレメントを使用する場合には、支持体として、繊維が絡み合った不織布シート等や連続気泡を有するスポンジフィルタ等を採用することが好ましい。不織布シート等の繊維間やスポンジフィルタ等の連続気泡によって形成される流路に汚染水が含浸したり、汚染気体が浸透したりし、汚染水や汚染気体が含有する異物等の吸着質をより好適に吸着できるからである。また、支持体は、カートリッジシェル等のろ過システムに脱着可能なカートリッジに充填されるものであることが好ましい。支持体を容易に交換し易いからである。   As the support, a nonwoven fabric sheet, a filter cartridge, a sponge filter having open cells, a porous ceramic having open cells, or the like can be used. When using an adsorbing element to filter contaminated water or purify contaminated gas, it is preferable to employ a nonwoven fabric sheet in which fibers are intertwined or a sponge filter having open cells as a support. . Contaminated water is impregnated in the flow path formed by continuous bubbles such as non-woven fabric sheets and sponge filters, etc., or contaminated gas penetrates, and more adsorbate such as contaminated water and foreign matter contained in the contaminated gas It is because it can adsorb suitably. Moreover, it is preferable that a support body is what is filled into the cartridge which can be attached or detached to filtration systems, such as a cartridge shell. This is because the support can be easily replaced.

吸着微粉としては、ゼオライト、シリコチタネート、不溶性フェロシアン化鉄、結晶質四チタン酸、チタノシリケート、プルシアンブルー、珪藻土、活性炭、陽イオン交換樹脂、陰イオン交換樹脂等の少なくとも1種を採用することができる。これら及びこれらの割合は吸着しようとする吸着質によって適宜選択される。   As the adsorbed fine powder, at least one of zeolite, silicotitanate, insoluble ferrocyanide, crystalline tetratitanic acid, titanosilicate, Prussian blue, diatomaceous earth, activated carbon, cation exchange resin, anion exchange resin, etc. is employed. be able to. These and their ratio are appropriately selected depending on the adsorbate to be adsorbed.

微小繊維状セルロースとしては、ダイセルファインケム株式会社製「セリッシュ」(登録商標)、日本製紙株式会社製「セルロースナノファイバー」等を採用することができる。微小繊維状セルロースは混合しながら粉砕することにより、長期間に亘って安定したエマルジョンを形成することができる。このため、微小繊維状セルロースは、吸着微粉とともに吸着本体を構成する場合には、吸着微粉を支持体に好適に保持する機能を発揮する。また、微小繊維状セルロースは、仕上層を構成する場合には、吸着本体の吸着微粉が支持体から離脱することを防止する機能を発揮する。   As the microfibrous cellulose, “Cerish” (registered trademark) manufactured by Daicel Finechem Co., Ltd., “cellulose nanofiber” manufactured by Nippon Paper Industries Co., Ltd., and the like can be used. The fine fibrous cellulose can be pulverized while mixing to form a stable emulsion over a long period of time. For this reason, when forming the adsorption main body with the adsorbed fine powder, the fine fibrous cellulose exhibits a function of suitably holding the adsorbed fine powder on the support. Further, when the fine fibrous cellulose constitutes a finishing layer, it exhibits a function of preventing the adsorption fine powder of the adsorption main body from being detached from the support.

吸着本体における吸着微粉と微小繊維状セルロースとの割合は、吸着エレメントの使用環境等によって適宜選択される。微小繊維状セルロースの含有量が多い程、吸着微粉が離脱し難い。但し、吸着本体中の微小繊維状セルロースの割合が高くなると、吸着本体中の吸着微粉の割合が相対的に低くなり、吸着微粉による吸着質の吸着能力を十分に発揮し難くなる。また、仕上層の厚みも吸着エレメントの使用環境等によって適宜選択される。仕上層の厚みが厚い程、吸着微粉が離脱し難い。   The ratio between the adsorbed fine powder and the fine fibrous cellulose in the adsorbing body is appropriately selected depending on the use environment of the adsorbing element. The greater the content of microfibrous cellulose, the harder the adsorbed fine powder is detached. However, when the ratio of the microfibrous cellulose in the adsorption main body becomes high, the ratio of the adsorption fine powder in the adsorption main body becomes relatively low, and it becomes difficult to sufficiently exhibit the adsorption capacity of the adsorbate by the adsorption fine powder. The thickness of the finishing layer is also appropriately selected depending on the use environment of the adsorption element. The thicker the finishing layer, the harder the adsorbed fine powder is detached.

本発明の吸着エレメントの製造方法は、支持体と、前記支持体に支持され、吸着微粉及び微小繊維状セルロースを含んで吸着質を吸着可能な吸着材とを有する吸着エレメントの製造方法であって、
分散媒が水であり、分散質が前記吸着微粉及び前記微小繊維状セルロースである吸着本体用分散系を調製する第1調製工程と、
分散媒が水であり、分散質が前記微小繊維状セルロースである仕上層用分散系を調製する第2調製工程と、
前記支持体に前記吸着本体用分散系を接触させて第1粗材を得る第1粗材形成工程と、
前記第1粗材を乾燥し、前記支持体に吸着本体を形成した第2粗材を得る第2粗材形成工程と、
前記吸着本体に前記仕上層用分散系を接触させて第3粗材を得る第3粗材形成工程と、
前記第3粗材を乾燥し、前記吸着本体を仕上層で包囲した前記吸着材を形成した吸着エレメントを得る完成工程とを備えていることを特徴とする。
The method for producing an adsorbing element of the present invention is a method for producing an adsorbing element comprising a support and an adsorbent supported by the support and capable of adsorbing adsorbate including adsorbed fine powder and fine fibrous cellulose. ,
A first preparation step of preparing a dispersion system for an adsorption main body, in which a dispersion medium is water and a dispersoid is the adsorption fine powder and the fine fibrous cellulose;
A second preparation step of preparing a dispersion for a finishing layer, in which the dispersion medium is water and the dispersoid is the fine fibrous cellulose;
A first coarse material forming step of obtaining a first coarse material by bringing the support body dispersion system into contact with the support body;
A second coarse material forming step of drying the first coarse material and obtaining a second coarse material having an adsorption main body formed on the support;
A third coarse material forming step of obtaining a third coarse material by bringing the finishing layer dispersion into contact with the adsorption main body;
And a completion step of obtaining the adsorbing element in which the adsorbent is formed by drying the third coarse material and surrounding the adsorbing body with a finishing layer.

本発明の製造方法によれば、本発明の吸着エレメントを製造できる。   According to the manufacturing method of the present invention, the adsorption element of the present invention can be manufactured.

第1調製工程では、分散媒としての水と、分散質としての吸着微粉及び微小繊維状セルロースとを含む混合物をミル等によって混合しながら粉砕し、エマルジョンとなった吸着本体用分散系を得ることが好ましい。第2調製工程では、分散媒としての水と、分散質としての微小繊維状セルロースとを含む混合物をミル等によって混合しながら粉砕し、エマルジョンとなった仕上層用分散系を得ることが好ましい。いずれの混合物においても、分散質が分散媒中で好適に分散されるよう、種々の分散剤を添加してもよい。   In the first preparation step, a mixture containing water as a dispersion medium, adsorbed fine powder and fine fibrous cellulose as a dispersoid is pulverized while mixing with a mill or the like to obtain a dispersion for an adsorbent body that is an emulsion. Is preferred. In the second preparation step, it is preferable that a mixture containing water as a dispersion medium and fine fibrous cellulose as a dispersoid is pulverized while being mixed by a mill or the like to obtain a dispersion for a finishing layer that has become an emulsion. In any mixture, various dispersants may be added so that the dispersoid is suitably dispersed in the dispersion medium.

吸着微粉は、ゼオライト、シリコチタネート、不溶性フェロシアン化鉄、結晶質四チタン酸、チタノシリケート、プルシアンブルー、珪藻土、活性炭、陽イオン交換樹脂その他の少なくとも1種である正電荷をもつ正電荷吸着微粉と、陰イオン交換樹脂である負電荷をもつ負電荷吸着微粉とからなることが好ましい。第1調製工程は、正電荷吸着微粉を含む正電荷吸着本用分散系を得る第1正電荷調製工程と、負電荷吸着微粉を含む負電荷吸着本体用分散系を得る第1負電荷調製工程とからなることが好ましい。また、第1粗材形成工程は、支持体に正電荷吸着本体用分散系及び負電荷吸着本体用分散系の一方を接触させて第1中間粗材を得る第1中間粗材形成工程と、第1中間粗材に正電荷吸着本体用分散系及び負電荷吸着本体用分散系の他方を接触させて第1粗材を得る第1粗材完成工程とからなることが好ましい。そして、第2粗材形成工程では、第1粗材を乾燥することが好ましい。   Adsorption fine powder is at least one of zeolite, silicotitanate, insoluble ferrocyanide, crystalline tetratitanate, titanosilicate, Prussian blue, diatomaceous earth, activated carbon, cation exchange resin and other positively charged adsorption with positive charge It is preferably composed of fine powder and negative charge adsorbing fine powder having a negative charge which is an anion exchange resin. The first preparation step includes a first positive charge preparation step for obtaining a positive charge adsorption main dispersion containing positive charge adsorption fine powder, and a first negative charge preparation step for obtaining a negative charge adsorption main body dispersion containing negative charge adsorption fine powder. It is preferable to consist of. In addition, the first coarse material forming step is a first intermediate coarse material forming step of obtaining a first intermediate coarse material by bringing one of the positive charge adsorption main body dispersion system and the negative charge adsorption main body dispersion system into contact with the support, Preferably, the first intermediate coarse material comprises a first coarse material completion step of contacting the other of the positive charge adsorption main body dispersion system and the negative charge adsorption main body dispersion system to obtain the first coarse material. In the second coarse material forming step, it is preferable to dry the first coarse material.

吸着本体用分散系が正電荷吸着微粉と負電荷吸着微粉とを含むと、吸着本体用分散系は凝集体を形成し易く、吸着本体用分散系が分散質を沈降させ易い。この場合、吸着エレメントを製造することが困難になる。これを防止するために多量の分散剤を用いると、吸着微粉や微笑繊維状セルロースの機能の低下が懸念される。この点、上記のように吸着エレメントを製造すれば、第1正電荷調製工程で得られた正電荷吸着本用分散系が分散質を沈降させ難く、第1負電荷調製工程で得られた負電荷吸着本用分散系が分散質を沈降させ難い。このため、多量の分散剤を用いなくても、正電荷吸着本用分散系や負電荷吸着本用分散系が分散質を長期に分散させており、吸着エレメントを製造することが比較的容易になる。   When the adsorption main body dispersion system includes the positive charge adsorption fine powder and the negative charge adsorption fine powder, the adsorption main body dispersion system easily forms aggregates, and the adsorption main body dispersion system easily precipitates the dispersoid. In this case, it becomes difficult to manufacture the adsorption element. If a large amount of dispersant is used to prevent this, the function of the adsorbed fine powder or smile fibrous cellulose is likely to deteriorate. In this respect, if the adsorption element is manufactured as described above, the dispersion for positive charge adsorption main obtained in the first positive charge preparation step does not easily settle the dispersoid, and the negative charge obtained in the first negative charge preparation step. It is difficult for the dispersion system for charge adsorption to settle the dispersoid. For this reason, even if a large amount of dispersant is not used, the dispersion for positive charge adsorption and the dispersion for negative charge adsorption disperse the dispersoid over a long period of time, and it is relatively easy to manufacture the adsorption element. Become.

第1粗材形成工程では、吸着材に吸着質を吸着させた使用済吸着エレメントの吸着材に吸着本体用分散系を接触させることもできる。この場合、使用済吸着エレメントの吸着材が離脱し難くなる。こうして、使用済吸着エレメントの再利用が可能になる。   In the first coarse material forming step, the adsorption main body dispersion system may be brought into contact with the adsorbent of the used adsorbent element in which the adsorbate is adsorbed on the adsorbent. In this case, it becomes difficult for the adsorbent of the used adsorbing element to be detached. Thus, the used adsorption element can be reused.

得られた吸着エレメントは、従来の吸着エレメントと同様、汚染水、蓄養水、搬送水等のろ過、汚染水の脱色、放射性物質による汚染水の除染、汚染気体の脱臭等に用いられ得る。また、例えば、吸着エレメントによって汚染水のろ過を行っている間、エマルジョンとなった吸着本体用分散系を吸着エレメントの上流側に所定量注入し、仕上層上に吸着本体を設けることもできる。この場合、仕上層が吸着本体を好適に保持する。これにより、ろ過の継続によって低下したろ過能力や浄化能力を新たな吸着本体によって回復させることができる。   The obtained adsorbing element can be used for filtration of contaminated water, nutrient water, carrier water, etc., decolorization of contaminated water, decontamination of contaminated water with radioactive substances, deodorization of contaminated gas, and the like, as with conventional adsorbing elements. Further, for example, while the contaminated water is being filtered by the adsorption element, a predetermined amount of the dispersion system for the adsorption main body that has become an emulsion can be injected upstream of the adsorption element, and the adsorption main body can be provided on the finishing layer. In this case, the finishing layer suitably holds the adsorption body. Thereby, the filtration capability and purification capability which were reduced by the continuation of filtration can be recovered by the new adsorption main body.

本発明の吸着エレメントによれば、より高いろ過能力や浄化能力を発揮することができる。   According to the adsorption element of the present invention, higher filtering ability and purification ability can be exhibited.

図1は、実施例1、2の吸着エレメントに係り、図(A)は支持体の拡大模式断面図、図(B)は第1中間粗材の拡大模式断面図、図(C)は第1粗材の拡大模式断面図、図(D)は第2粗材の拡大模式断面図、図(E)は第3粗材の拡大模式断面図、図(F)は吸着エレメントの拡大模式断面図である。FIG. 1 relates to the adsorption elements of Examples 1 and 2, FIG. (A) is an enlarged schematic cross-sectional view of a support, FIG. (B) is an enlarged schematic cross-sectional view of a first intermediate coarse material, and FIG. 1 is an enlarged schematic cross-sectional view of a coarse material, FIG. (D) is an enlarged schematic cross-sectional view of a second coarse material, FIG. (E) is an enlarged schematic cross-sectional view of a third coarse material, and FIG. (F) is an enlarged schematic cross-sectional view of an adsorption element. FIG. 図2は、実施例1、2の吸着エレメントの製造方法を示す工程図である。FIG. 2 is a process diagram illustrating a method for manufacturing the adsorption element of Examples 1 and 2. 図3は、実施例1、2の吸着エレメントを用いたろ過システムの模式図である。FIG. 3 is a schematic diagram of a filtration system using the adsorption elements of Examples 1 and 2. 図4は、実施例1、2の吸着エレメントによって汚染水をろ過している状態を示す拡大模式断面図である。FIG. 4 is an enlarged schematic cross-sectional view showing a state in which contaminated water is filtered by the adsorption elements of Examples 1 and 2. 図5は、実施例3の吸着エレメントに係り、図(A)は使用済吸着エレメントの拡大模式断面図、図(B)は第1粗材の拡大模式断面図、図(C)は第2粗材の拡大模式断面図、図(D)は第3粗材の拡大模式断面図、図(E)は再利用する吸着エレメントの拡大模式断面図である。FIG. 5 is related to the adsorption element of Example 3, FIG. (A) is an enlarged schematic cross-sectional view of a used adsorption element, FIG. (B) is an enlarged schematic cross-sectional view of the first coarse material, and FIG. The enlarged schematic cross-sectional view of the coarse material, FIG. (D) is an enlarged schematic cross-sectional view of the third coarse material, and FIG. (E) is the enlarged schematic cross-sectional view of the adsorption element to be reused. 図6は、実施例4の吸着エレメントに係り、図(A)は使用済吸着エレメントの拡大模式断面図、図(B)は第1粗材の拡大模式断面図、図(C)は第2粗材の拡大模式断面図、図(D)は第3粗材の拡大模式断面図、図(E)は再利用する吸着エレメントの拡大模式断面図である。FIG. 6 is related to the adsorption element of Example 4, FIG. (A) is an enlarged schematic sectional view of a used adsorption element, FIG. (B) is an enlarged schematic sectional view of a first coarse material, and FIG. The enlarged schematic cross-sectional view of the coarse material, FIG. (D) is an enlarged schematic cross-sectional view of the third coarse material, and FIG. (E) is the enlarged schematic cross-sectional view of the adsorption element to be reused. 図7は、スミイカの搬送水の紫外線吸収特性を示すグラフである。FIG. 7 is a graph showing the ultraviolet absorption characteristics of water transported by squid.

以下、本発明を実施例1〜9の吸着エレメントに具体化する。また、実施例1〜9の吸着エレメントの効果を比較例1〜11との比較により検証1〜6によって確認した。   Hereinafter, the present invention is embodied in the adsorption elements of Examples 1-9. Moreover, the effect of the adsorption element of Examples 1-9 was confirmed by verification 1-6 by the comparison with Comparative Examples 1-11.

<検証1>
(実施例1)
図1(A)に示すように、支持体1としての不織布シートを用意する。この不織布シートの互いに絡み合った各繊維1aはポリエステルからなる。
<Verification 1>
Example 1
As shown to FIG. 1 (A), the nonwoven fabric sheet as the support body 1 is prepared. The fibers 1a entangled with each other in the nonwoven fabric sheet are made of polyester.

また、正電荷吸着微粉としての陽イオン交換樹脂粉末(三菱化学株式会社製PK316、含水50%)と、負電荷吸着微粉としての陰イオン交換樹脂粉末(三菱化学株式会社製PA316、含水50%)とを用意する。さらに、微小繊維状セルロース(ダイセルファインケミカル株式会社製セリッシュ(登録商標)、含水90%)を用意する。   Also, cation exchange resin powder as positive charge adsorption fine powder (PK316 manufactured by Mitsubishi Chemical Corporation, water content 50%) and anion exchange resin powder as negative charge adsorption fine powder (PA316 manufactured by Mitsubishi Chemical Corporation, water content 50%) And prepare. Furthermore, microfibrous cellulose (Delcel Fine Chemical Co., Ltd. serisch (registered trademark), water content 90%) is prepared.

そして、図2に示すように、第1調製工程S10を行う。第1調製工程S10は、第1正電荷調製工程S11と、第1負電荷調製工程S12とからなる。   And as shown in FIG. 2, 1st preparation process S10 is performed. The first preparation step S10 includes a first positive charge preparation step S11 and a first negative charge preparation step S12.

第1正電荷調製工程S11では、まず、陽イオン交換樹脂粉末100質量%と、微小繊維状セルロース10質量%とを1000質量%の蒸留水に投入し、混合物を得る。この混合物を常温下で株式会社テスコム製「ジュースミキサーTM8100」によって1分間粉砕し、エマルジョンとなった正電荷吸着本体用分散系3を得る。   In the first positive charge preparation step S11, first, 100% by mass of cation exchange resin powder and 10% by mass of microfibrous cellulose are added to 1000% by mass of distilled water to obtain a mixture. This mixture is pulverized for 1 minute at room temperature by a “juice mixer TM8100” manufactured by Tescom Co., Ltd. to obtain a dispersion 3 for a positively charged adsorbing body that is an emulsion.

第1負電荷調製工程S12では、陰イオン交換樹脂粉末100質量%と、微小繊維状セルロース10質量%とを1000質量%の蒸留水に投入し、混合物を得る。この混合物を正電荷吸着本体用分散系3と同様に粉砕し、エマルジョンとなった負電荷吸着本体用分散系5を得る。   In 1st negative charge preparation process S12, 100 mass% of anion exchange resin powder and 10 mass% of micro fibrous cellulose are thrown into 1000 mass% distilled water, and a mixture is obtained. This mixture is pulverized in the same manner as the positive charge adsorption main body dispersion 3 to obtain an emulsion of the negative charge adsorption main body dispersion 5.

また、第2調製工程S20を行う。第2調製工程S20では、微小繊維状セルロース100質量%を1000質量%の蒸留水に投入し、これを正電荷吸着本体用分散系3や負電荷吸着本体用分散系5と同様に粉砕し、エマルジョンとなった仕上層用分散系7を得る。   Moreover, 2nd preparation process S20 is performed. In the second preparation step S20, 100% by mass of microfibrous cellulose is added to 1000% by mass of distilled water, and this is pulverized in the same manner as the dispersion system 3 for the positive charge adsorption body and the dispersion system 5 for the negative charge adsorption body. A dispersion 7 for the finishing layer in the form of an emulsion is obtained.

この後、第1粗材形成工程S30を行う。第1粗材形成工程S30は、第1中間粗材形成工程S31と、第1粗材完成工程S32とからなる。   Then, 1st coarse material formation process S30 is performed. The first coarse material forming step S30 includes a first intermediate coarse material forming step S31 and a first coarse material completion step S32.

第1中間粗材形成工程S31では、まず正電荷吸着本体用分散系3を蒸留水によって10倍に希釈し、希釈液とする。そして、図1(B)に示すように、支持体1をその希釈液に浸漬して第1中間粗材9を得る。この際、正電荷吸着本用分散系3は、分散剤を用いなくても、分散質としての陽イオン交換樹脂粉末及び微小繊維状セルロースを沈降させ難い。このため、比較的容易に第1中間粗材9を得ることができる。   In the first intermediate coarse material forming step S31, the positive charge adsorption main body dispersion system 3 is first diluted 10 times with distilled water to obtain a diluted solution. And as shown in FIG.1 (B), the support body 1 is immersed in the dilution liquid, and the 1st intermediate | middle coarse material 9 is obtained. At this time, the positive charge adsorption main dispersion system 3 is difficult to precipitate the cation exchange resin powder and the fine fibrous cellulose as the dispersoid without using a dispersant. For this reason, the 1st intermediate | middle coarse material 9 can be obtained comparatively easily.

また、第1粗材完成工程S32においても、負電荷吸着本体用分散系5を蒸留水によって10倍に希釈し、希釈液とする。そして、図1(C)に示すように、第1中間粗材9をその希釈液に浸漬して第1粗材11を得る。この際も、負電荷吸着本用分散系5は、分散剤を用いなくても、分散質としての陰イオン交換樹脂粉末及び微小繊維状セルロースを沈降させ難い。このため、比較的容易に第1粗材11を得ることができる。   Moreover, also in 1st rough material completion process S32, the dispersion system 5 for negative charge adsorption main bodies is diluted 10 times with distilled water, and it is set as a dilution liquid. And as shown in FIG.1 (C), the 1st intermediate coarse material 9 is immersed in the dilution liquid, and the 1st coarse material 11 is obtained. Also in this case, the negative charge adsorption main dispersion system 5 is difficult to precipitate the anion exchange resin powder and the fine fibrous cellulose as a dispersoid without using a dispersant. For this reason, the 1st coarse material 11 can be obtained comparatively easily.

なお、実施例1では、第1中間粗材9を乾燥させることなく、負電荷吸着本体用分散系5に浸漬して第1粗材11を得たが、第1中間粗材9を一旦乾燥させた後で負電荷吸着本体用分散系5に浸漬して第1粗材11を得てもよい。   In Example 1, the first intermediate coarse material 9 was dipped in the negative charge adsorption main body dispersion 5 to obtain the first coarse material 11 without drying the first intermediate coarse material 9, but the first intermediate coarse material 9 was once dried. Then, the first coarse material 11 may be obtained by immersing in the negative charge adsorption main body dispersion 5.

次いで、図2に示すように、第2粗材形成工程S40を行う。ここでは、図1(D)に示すように、第1粗材11を80°Cで1時間乾燥し、第2粗材13を得る。第2粗材13は、支持体1と、支持体1上に形成された吸着本体15とからなる。吸着本体15は、支持体1上で正電荷吸着本体用分散系3が乾燥して形成された第1吸着本体3aと、第1吸着本体3a上で負電荷吸着本体用分散系5が乾燥して形成された第2吸着本体5aとからなる。但し、第1吸着本体3a及び第2吸着本体5aはある程度の水を含んでいる。こうして得られた第1吸着本体3aは、陽イオン交換樹脂粉末と微小繊維状セルロースとの質量比が4:1である。また、第2吸着本体5aは、陰イオン交換樹脂粉末と微小繊維状セルロースとの質量比が4:1である。   Next, as shown in FIG. 2, a second coarse material forming step S40 is performed. Here, as shown in FIG. 1D, the first coarse material 11 is dried at 80 ° C. for 1 hour to obtain the second coarse material 13. The second coarse material 13 includes a support 1 and an adsorption main body 15 formed on the support 1. The adsorption main body 15 includes a first adsorption main body 3a formed by drying the positive charge adsorption main body dispersion 3 on the support 1, and a negative charge adsorption main body dispersion 5 dried on the first adsorption main body 3a. The second adsorption main body 5a is formed. However, the first adsorption main body 3a and the second adsorption main body 5a contain a certain amount of water. The first adsorption main body 3a thus obtained has a mass ratio of 4: 1 between the cation exchange resin powder and the microfibrous cellulose. The second adsorption main body 5a has a mass ratio of 4: 1 between the anion exchange resin powder and the microfibrous cellulose.

また、図2に示すように、第3粗材形成工程S50を行う。ここでは、図1(E)に示すように、第2粗材13を仕上層用分散系7に浸漬して第3粗材17を得る。   Moreover, as shown in FIG. 2, 3rd coarse material formation process S50 is performed. Here, as shown in FIG. 1 (E), the second coarse material 13 is immersed in the finishing layer dispersion 7 to obtain the third coarse material 17.

次いで、図2に示すように、完成工程S60を行う。ここでは、図1(F)に示すように、第3粗材17を80°Cで1時間乾燥し、吸着エレメント19を得る。   Next, as shown in FIG. 2, a completion step S60 is performed. Here, as shown in FIG. 1 (F), the third coarse material 17 is dried at 80 ° C. for 1 hour to obtain the adsorption element 19.

こうして得られた実施例1の吸着エレメント19は、表1に示すように、支持体1と、支持体1に支持された吸着材21とからなる。吸着材21は、吸着本体15と、吸着本体15上に形成された仕上層7aとからなる。吸着本体15は、内部に位置し、吸着微粉及び微小繊維状セルロースを有して形成されている。実施例1の吸着エレメント19は、吸着微粉として、陽イオン交換樹脂と、陰イオン交換樹脂とを採用している。仕上層7aは、吸着本体15上で仕上層用分散系7が乾燥して形成されている。但し、仕上層7aもある程度の水を含んでいる。仕上層7aは、吸着本体15を包囲し、微小繊維状セルロースで形成されている。   As shown in Table 1, the adsorption element 19 of Example 1 obtained in this way is composed of a support 1 and an adsorbent 21 supported by the support 1. The adsorbent 21 includes an adsorption main body 15 and a finishing layer 7 a formed on the adsorption main body 15. The adsorption main body 15 is located inside and formed with adsorption fine powder and fine fibrous cellulose. The adsorption element 19 of Example 1 employs a cation exchange resin and an anion exchange resin as adsorption fine powder. The finishing layer 7 a is formed by drying the finishing layer dispersion 7 on the adsorption body 15. However, the finishing layer 7a also contains a certain amount of water. The finishing layer 7a surrounds the adsorption main body 15 and is made of fine fibrous cellulose.

Figure 2017006837
Figure 2017006837

実施例1の吸着エレメント19は例えば図3に示すろ過システムに用いられる。このろ過システムでは、タンク31の底部から延びる配管33がカートリッジシェル(タキエンジニアリング株式会社扱いによる輸入品)35の底部に接続されており、カートリッジシェル35の上部から延びる配管37がポンプ39を介してタンク31の上方まで設けられている。カートリッジシェル35は脱着可能なカートリッジ35aを有しており、吸着エレメント19はそのカートリッジ35aに充填される。タンク31内には汚染水が貯留されている。   The adsorption element 19 of Example 1 is used in the filtration system shown in FIG. 3, for example. In this filtration system, a pipe 33 extending from the bottom of the tank 31 is connected to the bottom of a cartridge shell (imported by Taki Engineering Co., Ltd.) 35, and a pipe 37 extending from the top of the cartridge shell 35 is connected via a pump 39. It is provided up to the upper side of the tank 31. The cartridge shell 35 has a detachable cartridge 35a, and the adsorption element 19 is filled in the cartridge 35a. Contaminated water is stored in the tank 31.

ポンプ39を稼働すると、タンク31内の汚染水が配管33を経て一定の流量でカートリッジシェル35に供給される。カートリッジシェル35に供給された汚染水は、カートリッジ35a内の吸着エレメント19によって一定の流量によってろ過される。この際、図4に示すように、汚染水は、各繊維1aの表面に形成された吸着材21と接触し、異物が吸着材21によって吸着される。こうして吸着エレメント19による汚染水のろ過が繰り返され、タンク31内の汚染水が次第に浄化される。   When the pump 39 is operated, the contaminated water in the tank 31 is supplied to the cartridge shell 35 through the pipe 33 at a constant flow rate. The contaminated water supplied to the cartridge shell 35 is filtered at a constant flow rate by the adsorption element 19 in the cartridge 35a. At this time, as shown in FIG. 4, the contaminated water comes into contact with the adsorbent 21 formed on the surface of each fiber 1 a, and foreign matter is adsorbed by the adsorbent 21. Thus, the filtration of the contaminated water by the adsorption element 19 is repeated, and the contaminated water in the tank 31 is gradually purified.

(実施例2)
実施例2の吸着エレメント19は、正電荷吸着微粉として、陽イオン交換樹脂粉末及びプルシアンブルーを採用している。図1(D)〜(F)で示される第1吸着本体3aは、表1に示すように、陽イオン交換樹脂粉末とプルシアンブルーと微小繊維状セルロースとの質量比が4:1.6:1である。他の構成及び製造方法は実施例1と同様であるため、詳細な説明の繰り返しは省略する。
(Example 2)
The adsorption element 19 of Example 2 employs cation exchange resin powder and Prussian blue as positive charge adsorption fine powder. As shown in Table 1, the first adsorption main body 3a shown in FIGS. 1D to 1F has a mass ratio of cation exchange resin powder, Prussian blue, and fine fibrous cellulose of 4: 1.6: 1. Since other configurations and manufacturing methods are the same as those in the first embodiment, the detailed description will not be repeated.

(比較例1、2)
比較例1、2の吸着エレメントは、上記の第2調製工程S20、第3粗形材形成工程S50及び完成工程S60を経ることなく製造されている。つまり、比較例1、2の吸着エレメントは、図1(D)に示す第2粗材13に相当し、吸着本体15が仕上層7aによって包囲されていない。比較例1の吸着本体(吸着材)では、第1吸着本体は陽イオン交換樹脂粉末と微小繊維状セルロースとの質量比が4:1であり、第2吸着本体は陰イオン交換樹脂粉末と微小繊維状セルロースとの質量比が4:1である。これに対し、比較例2の吸着本体(吸着材)では、第1吸着本体は陽イオン交換樹脂粉末とプルシアンブルーと微小繊維状セルロースとの質量比が4:1.6:1であり、第2吸着本体は陰イオン交換樹脂粉末と微小繊維状セルロースとの質量比が4:1である。
(Comparative Examples 1 and 2)
The adsorption elements of Comparative Examples 1 and 2 are manufactured without going through the second preparation step S20, the third rough shape forming step S50, and the completion step S60. That is, the adsorption elements of Comparative Examples 1 and 2 correspond to the second coarse material 13 shown in FIG. 1D, and the adsorption main body 15 is not surrounded by the finishing layer 7a. In the adsorption main body (adsorbent) of Comparative Example 1, the first adsorption main body has a mass ratio of cation exchange resin powder and microfibrous cellulose of 4: 1, and the second adsorption main body has anion exchange resin powder and microfiber. The mass ratio with fibrous cellulose is 4: 1. On the other hand, in the adsorption body (adsorbent) of Comparative Example 2, the first adsorption body has a mass ratio of cation exchange resin powder, Prussian blue, and microfibrous cellulose of 4: 1.6: 1, 2 The adsorption body has a mass ratio of 4: 1 between the anion exchange resin powder and the microfibrous cellulose.

(試験1)
実施例1、2の吸着エレメントのろ過能力を確認するため、比較例1、2の吸着エレメントとともに、以下の試験1を行った。試験1では、放射性セシウムによって汚染された汚染水のろ過能力を比較した。
(Test 1)
In order to confirm the filtration capacity of the adsorption elements of Examples 1 and 2, the following Test 1 was performed together with the adsorption elements of Comparative Examples 1 and 2. In Test 1, the filtration capacity of contaminated water contaminated with radioactive cesium was compared.

試験1に際しては、上記のろ過システムを用い、汚染水を約5L/分の流量で循環させた。タンク31の汚染水中には、セシウム134が140Bq/Kg含まれているとともに、セシウム137が500Bq/Kg含まれている。汚染水中の放射線濃度の測定は、測ゲルマニウム半導体検出器によるスペクトロメトリー分析法によって行った。濁度の測定機器としては、セイコー・イージーアンドジー社製のSEC−EMS型を採用した。ろ過前の汚染水のpH、各吸着エレメントを用いてろ過した後の汚染水のpHも測定した。結果を表2に示す。   In Test 1, the above filtration system was used to circulate contaminated water at a flow rate of about 5 L / min. The contaminated water in the tank 31 contains 140 Bq / Kg of cesium 134 and 500 Bq / Kg of cesium 137. The radiation concentration in the contaminated water was measured by a spectrometric analysis method using a germanium semiconductor detector. As a turbidity measuring instrument, a SEC-EMS type manufactured by Seiko EG & G Co. was used. The pH of the contaminated water before filtration and the pH of the contaminated water after filtration using each adsorption element were also measured. The results are shown in Table 2.

Figure 2017006837
Figure 2017006837

表2に示されるように、比較例1の吸着エレメントでは、濁度ではある程度の効果を発揮しているものの、汚染水中のセシウム134及びセシウム137をあまり低下させることができていない。また、比較例2の吸着エレメントでは、比較例1の吸着エレメントよりも高い効果を発揮している。   As shown in Table 2, although the adsorbing element of Comparative Example 1 exhibits a certain effect in turbidity, cesium 134 and cesium 137 in the contaminated water cannot be reduced so much. Further, the adsorption element of Comparative Example 2 exhibits a higher effect than the adsorption element of Comparative Example 1.

一方、実施例1、2の吸着エレメントでは、汚染水中のセシウム134及びセシウム137を共に測定限界以下(ND)まで低下させることができている。また、これらは汚染水の濁度も0.1まで低下させている。   On the other hand, in the adsorption elements of Examples 1 and 2, both cesium 134 and cesium 137 in the contaminated water can be lowered to the measurement limit or less (ND). They also reduce the turbidity of the contaminated water to 0.1.

実施例1、2の吸着エレメントと比較例1、2の吸着エレメントとにおけるろ過能力の違いについて、発明者らは以下のように考察した。すなわち、比較例1、2の吸着エレメントでは、吸着材が吸着本体のみで構成されている。このため、吸着材の一部の吸着微粉が使用中に支持体から離脱したと考えられる。これにより、ろ過後の汚染水中に吸着材の一部とともにセシウム134やセシウム137が含まれることになり、上記のような結果となったと考えられる。また、これにより、汚染水の濁度も十分に低下させることができなかったと考えられる。   The inventors considered the difference in filtration capacity between the adsorption elements of Examples 1 and 2 and the adsorption elements of Comparative Examples 1 and 2 as follows. That is, in the adsorption elements of Comparative Examples 1 and 2, the adsorbent is composed only of the adsorption main body. For this reason, it is considered that a part of the adsorbent fine powder separated from the support during use. Thereby, cesium 134 and cesium 137 are included in the contaminated water after filtration together with a part of the adsorbent, and it is considered that the above results were obtained. In addition, it is considered that the turbidity of the contaminated water could not be sufficiently reduced.

これに対し、実施例1、2の吸着エレメントでは、吸着材21が吸着本体15及び仕上層7aによって構成されており、吸着本体15が仕上層7aによって包囲されている。このため、吸着本体15の一部の吸着微粉が使用中に支持体1から離脱し難くなっている。また、吸着本体21を包囲する仕上層7aが微小繊維状セルロースで形成されており、それ自身である程度の吸着能力を発揮するとともに、内部の吸着本体21の吸着能力を損なわない。このため、汚染水中のセシウム134及びセシウム137が共に測定限界以下まで低下する結果となったと考えられる。また、汚染水の濁度も0.1まで低下する結果となったと考えられる。   On the other hand, in the adsorption elements of Examples 1 and 2, the adsorbent 21 is composed of the adsorption main body 15 and the finishing layer 7a, and the adsorption main body 15 is surrounded by the finishing layer 7a. For this reason, some adsorption | suction fine powder of the adsorption | suction main body 15 becomes difficult to detach | leave from the support body 1 in use. Further, the finishing layer 7a surrounding the adsorption main body 21 is formed of microfibrous cellulose, and exhibits a certain degree of adsorption capability by itself, and does not impair the adsorption capability of the internal adsorption main body 21. For this reason, it is considered that both cesium 134 and cesium 137 in the contaminated water were reduced to below the measurement limit. Moreover, it is thought that the turbidity of the contaminated water also decreased to 0.1.

なお、上記実施例1、2の吸着エレメント19では、吸着本体15を第1吸着本体3aと第2吸着本体5aとで構成したが、吸着本体15を第1吸着本体3a又は第2吸着本体5aだけで構成してもよい。また、吸着本体15を第1吸着本体3a、第2吸着本体5a及び第1吸着本体3aで構成したり、第1吸着本体3a、第2吸着本体5a、第1吸着本体3a及び第2吸着本体5aで構成したりする等、多層にしてもよい。   In the adsorption element 19 of the first and second embodiments, the adsorption main body 15 is composed of the first adsorption main body 3a and the second adsorption main body 5a, but the adsorption main body 15 is composed of the first adsorption main body 3a or the second adsorption main body 5a. You may comprise only. Further, the adsorption main body 15 is composed of the first adsorption main body 3a, the second adsorption main body 5a and the first adsorption main body 3a, or the first adsorption main body 3a, the second adsorption main body 5a, the first adsorption main body 3a and the second adsorption main body. It may be multi-layered such as 5a.

(実施例3)
実施例3の吸着エレメントでは、図5(A)に示すように、実施例1の吸着エレメント19における支持体1に代えて、使用済吸着エレメント41を採用している。使用済吸着エレメント41は、支持体の各繊維41aと、各繊維41aの表面に形成された吸着材41bとからなる。吸着材41bには、異物等の吸着質が既に吸着されている。
(Example 3)
In the adsorption element of the third embodiment, as shown in FIG. 5A, a used adsorption element 41 is employed instead of the support 1 in the adsorption element 19 of the first embodiment. The used adsorption element 41 includes each fiber 41a of the support and an adsorbent 41b formed on the surface of each fiber 41a. Adsorbate such as foreign matter is already adsorbed on the adsorbent 41b.

また、実施例1、2と同様、吸着微粉と、微小繊維状セルロースとを用意する。そして、図2に示すように、第1調製工程S10を行い、吸着本体用分散系43を得る。また、第2調製工程S20を行い、仕上層用分散系7を得る。   In addition, as in Examples 1 and 2, adsorbed fine powder and fine fibrous cellulose are prepared. And as shown in FIG. 2, 1st preparation process S10 is performed and the dispersion | distribution system 43 for adsorption bodies is obtained. Moreover, 2nd preparation process S20 is performed and the dispersion system 7 for finishing layers is obtained.

この後、第1粗材形成工程S30を行い、図5(B)に示すように、使用済吸着エレメント41を吸着本体用分散系43の希釈液に浸漬して第1粗材45を得る。   Thereafter, the first coarse material forming step S30 is performed, and as shown in FIG. 5B, the used adsorption element 41 is immersed in the diluted liquid of the adsorption main body dispersion system 43 to obtain the first coarse material 45.

次いで、図2に示すように、第2粗材形成工程S40を行い、図5(C)に示すように、第1粗材45を乾燥し、第2粗材47を得る。第2粗材47は、使用済吸着エレメント41と、使用済吸着エレメント41上に形成された吸着本体43aとからなる。吸着本体43aは、使用済吸着エレメント41上で吸着本体用分散系43が乾燥して形成されている。   Next, as shown in FIG. 2, the second coarse material forming step S <b> 40 is performed, and as shown in FIG. 5C, the first coarse material 45 is dried to obtain the second coarse material 47. The second coarse material 47 includes a used adsorption element 41 and an adsorption main body 43 a formed on the used adsorption element 41. The adsorption main body 43 a is formed by drying the adsorption main body dispersion system 43 on the used adsorption element 41.

また、図2に示すように、第3粗材形成工程S50を行い、図5(D)に示すように、第2粗材47を仕上層用分散系7に浸漬して第3粗材49を得る。   Further, as shown in FIG. 2, a third coarse material forming step S50 is performed, and as shown in FIG. 5D, the second coarse material 47 is immersed in the finishing layer dispersion system 7 to immerse the third coarse material 49. Get.

次いで、図2に示すように、完成工程S60を行い、図5(E)に示すように、第3粗材49を乾燥し、吸着エレメント51を得る。   Next, as shown in FIG. 2, a completion step S <b> 60 is performed, and as shown in FIG. 5E, the third coarse material 49 is dried to obtain the adsorption element 51.

こうして再利用する実施例3の吸着エレメント51は、使用済吸着エレメント41と、使用済吸着エレメント41上に形成された吸着材53とからなる。吸着材53は、吸着本体43aと、吸着本体43a上に形成された仕上層7aとからなる。この吸着エレメント51では、使用済吸着エレメント41の吸着材41bが離脱し難くなる。こうして、使用済吸着エレメント41の再利用が可能になる。   The suction element 51 according to the third embodiment that is reused in this manner includes a used suction element 41 and an adsorbent 53 formed on the used suction element 41. The adsorbent 53 includes an adsorption main body 43a and a finishing layer 7a formed on the adsorption main body 43a. In this adsorption element 51, the adsorbent 41b of the used adsorption element 41 is difficult to separate. Thus, the used adsorption element 41 can be reused.

(実施例4)
実施例4の吸着エレメントでは、図6(A)に示すように、実施例3の使用済吸着エレメント41に代えて、使用済吸着エレメント61を採用している。使用済吸着エレメント61は、支持体1の各繊維1aと、各繊維1a上に形成された吸着材63とからなる。吸着材63は、吸着本体63aと、吸着本体63a上に形成された仕上層63bとからなる。吸着材63には、異物等の吸着質が既に吸着されている。つまり、使用済吸着エレメント61は、実施例1、2の吸着エレメント19を一旦使用したものである。
Example 4
In the adsorption element of the fourth embodiment, as shown in FIG. 6A, a used adsorption element 61 is employed instead of the used adsorption element 41 of the third embodiment. The used adsorption | suction element 61 consists of each fiber 1a of the support body 1, and the adsorbent 63 formed on each fiber 1a. The adsorbent 63 includes an adsorption main body 63a and a finishing layer 63b formed on the adsorption main body 63a. Adsorbate such as foreign matter is already adsorbed on the adsorbent 63. In other words, the used suction element 61 is a temporary use of the suction element 19 of the first and second embodiments.

また、実施例1〜3と同様、吸着微粉と、微小繊維状セルロースとを用意する。そして、図2に示すように、第1調製工程S10を行い、吸着本体用分散系65を得る。また、第2調製工程S20を行い、仕上層用分散系7を得る。   Moreover, adsorption fine powder and micro fibrous cellulose are prepared similarly to Examples 1-3. And as shown in FIG. 2, 1st preparation process S10 is performed and the dispersion | distribution system 65 for adsorption bodies is obtained. Moreover, 2nd preparation process S20 is performed and the dispersion system 7 for finishing layers is obtained.

この後、第1粗材形成工程S30を行い、図6(B)に示すように、使用済吸着エレメント61を吸着本体用分散系65の希釈液に浸漬して第1粗材67を得る。   Thereafter, the first coarse material forming step S30 is performed, and as shown in FIG. 6B, the used adsorption element 61 is immersed in the dilution liquid of the adsorption main body dispersion system 65 to obtain the first coarse material 67.

次いで、図2に示すように、第2粗材形成工程S40を行い、図6(C)に示すように、第1粗材67を乾燥し、第2粗材69を得る。第2粗材69は、使用済吸着エレメント61と、使用済吸着エレメント61上に形成された吸着本体65aとからなる。吸着本体65aは、使用済吸着エレメント61上で吸着本体用分散系65が乾燥して形成されている。   Next, as shown in FIG. 2, a second coarse material forming step S <b> 40 is performed, and as shown in FIG. 6C, the first coarse material 67 is dried to obtain a second coarse material 69. The second coarse material 69 includes a used suction element 61 and a suction main body 65 a formed on the used suction element 61. The adsorption main body 65 a is formed by drying the adsorption main body dispersion system 65 on the used adsorption element 61.

また、図2に示すように、第3粗材形成工程S50を行い、図6(D)に示すように、第2粗材69を仕上層用分散系7に浸漬して第3粗材71を得る。   Further, as shown in FIG. 2, the third coarse material forming step S50 is performed, and as shown in FIG. 6D, the second coarse material 69 is dipped in the finishing layer dispersion system 7 and the third coarse material 71 is immersed. Get.

次いで、図2に示すように、完成工程S60を行い、図6(E)に示すように、第3粗材71を乾燥し、吸着エレメント73を得る。   Next, as shown in FIG. 2, a completion step S <b> 60 is performed, and as shown in FIG. 6E, the third coarse material 71 is dried to obtain the adsorption element 73.

こうして再利用する実施例4の吸着エレメント73は、使用済吸着エレメント61と、使用済吸着エレメント61上に形成された吸着材75とからなる。吸着材75は、吸着本体65aと、吸着本体43a上に形成された仕上層7aとからなる。この吸着エレメント73では、使用済吸着エレメント61の吸着材63が離脱し難くなる。こうして、使用済吸着エレメント61の再利用が可能になる。   The suction element 73 according to the fourth embodiment that is reused in this manner includes a used suction element 61 and a suction material 75 formed on the used suction element 61. The adsorbent 75 includes an adsorption main body 65a and a finishing layer 7a formed on the adsorption main body 43a. In this adsorption element 73, it becomes difficult for the adsorbent 63 of the used adsorption element 61 to be detached. In this way, the used adsorption element 61 can be reused.

<検証2>
(比較例3)
支持体1としての不織布シートと、吸着微粉としてのゼオライトとを用意した。比較例3は、表3に示すように、不織布シートをそのまま吸着エレメントとしており、吸着材(吸着本体)を有していない。
<Verification 2>
(Comparative Example 3)
A nonwoven fabric sheet as a support 1 and zeolite as an adsorbed fine powder were prepared. In Comparative Example 3, as shown in Table 3, the nonwoven fabric sheet is used as an adsorption element as it is, and does not have an adsorbent (adsorption body).

Figure 2017006837
Figure 2017006837

(比較例4)
比較例4の吸着エレメントは、図1(D)に示す第2粗材13に相当し、支持体1上にゼオライトと微小繊維状セルロースからなる吸着材を形成したものである。ゼオライトと微小繊維状セルロースとの質量比は4:1である。
(Comparative Example 4)
The adsorption element of Comparative Example 4 corresponds to the second coarse material 13 shown in FIG. 1 (D), and an adsorbent made of zeolite and fine fibrous cellulose is formed on the support 1. The mass ratio of zeolite to microfibrous cellulose is 4: 1.

(比較例5)
比較例5の吸着エレメントは、図1(D)に示す第2粗材13に相当し、支持体1上にゼオライトと陽イオン交換樹脂粉末と微小繊維状セルロースとからなる吸着材を形成したものである。吸着材のゼオライトと陽イオン交換樹脂粉末と微小繊維状セルロースとの質量比は2:2:1である。
(Comparative Example 5)
The adsorption element of Comparative Example 5 corresponds to the second coarse material 13 shown in FIG. 1 (D), and an adsorbent made of zeolite, cation exchange resin powder, and microfibrous cellulose is formed on the support 1. It is. The mass ratio of the adsorbent zeolite, cation exchange resin powder and microfibrous cellulose is 2: 2: 1.

(比較例6)
比較例6の吸着エレメントは、図1(D)に示す第2粗材13に相当し、支持体1上にゼオライトと陽イオン交換樹脂粉末と微小繊維状セルロースとからなる第1吸着本体3aを形成した後、第1吸着本体3a上にゼオライトと微小繊維状セルロースとからなる第2吸着本体5aを形成したものである。第1吸着本体3aのゼオライトと陽イオン交換樹脂粉末と微小繊維状セルロースとの質量比は2:2:1であり、第2吸着本体5aのゼオライトと微小繊維状セルロースとの質量比は4:1である。
(Comparative Example 6)
The adsorbing element of Comparative Example 6 corresponds to the second coarse material 13 shown in FIG. 1 (D), and the first adsorbing body 3a made of zeolite, cation exchange resin powder, and fine fibrous cellulose is provided on the support 1. After the formation, the second adsorption main body 5a made of zeolite and fine fibrous cellulose is formed on the first adsorption main body 3a. The mass ratio of the zeolite of the first adsorption body 3a, the cation exchange resin powder and the microfibrous cellulose is 2: 2: 1, and the mass ratio of the zeolite of the second adsorption body 5a and the microfibrous cellulose is 4: 2. 1.

(比較例7)
リン酸一水素ナトリウム(Na2HPO4)を濃度1%で含む20°Cのリン酸水溶液を用意した。比較例7の吸着エレメントは、比較例1の吸着エレメントをこのリン酸水溶液に浸漬し、乾燥させたものである。
(Comparative Example 7)
A 20 ° C. phosphoric acid aqueous solution containing sodium monohydrogen phosphate (Na 2 HPO 4 ) at a concentration of 1% was prepared. The adsorption element of Comparative Example 7 is obtained by immersing the adsorption element of Comparative Example 1 in this phosphoric acid aqueous solution and drying it.

(比較例8)
比較例8の吸着エレメントは、図1(D)に示す第2粗材13に相当し、支持体1上にゼオライトと微小繊維状セルロースとからなる第1吸着本体3aを形成した後、第1吸着本体3a上に再度ゼオライトと微小繊維状セルロースとからなる第2吸着本体5aを形成したものである。第1吸着本体3aのゼオライトと微小繊維状セルロースとの質量比は4:1であり、第2吸着本体5aのゼオライトと微小繊維状セルロースとの質量比は4:1である。
(Comparative Example 8)
The adsorbing element of Comparative Example 8 corresponds to the second coarse material 13 shown in FIG. 1D, and after the first adsorbing body 3a made of zeolite and fine fibrous cellulose is formed on the support 1, the first adsorbing element 3a is formed. The second adsorption main body 5a made of zeolite and fine fibrous cellulose is again formed on the adsorption main body 3a. The mass ratio of zeolite and microfibrous cellulose in the first adsorption main body 3a is 4: 1, and the mass ratio of zeolite and microfibrous cellulose in the second adsorption main body 5a is 4: 1.

(実施例5)
実施例5の吸着エレメントは、比較例8の吸着エレメントに第3粗材形成工程S50及び完成工程S60を施したものである。この吸着エレメントは、図1(F)に示すように、支持体1と、支持体1上に形成された吸着材21とからなる。吸着材21は、第1吸着本体3aと、第1吸着本体3a上に形成された第2吸着本体5aと、第2吸着本体5a上に形成された仕上層7aとからなる。他の構成及び製造方法は実施例1と同様であるため、詳細な説明の繰り返しは省略する。
(Example 5)
The adsorption element of Example 5 is obtained by applying the third coarse material forming step S50 and the completion step S60 to the adsorption element of Comparative Example 8. As shown in FIG. 1 (F), the adsorption element includes a support 1 and an adsorbent 21 formed on the support 1. The adsorbent 21 includes a first adsorption main body 3a, a second adsorption main body 5a formed on the first adsorption main body 3a, and a finishing layer 7a formed on the second adsorption main body 5a. Since other configurations and manufacturing methods are the same as those in the first embodiment, the detailed description will not be repeated.

(試験2)
以下のモデル試験を行った。まず、非放射性セシウムを100ppm溶解させた試験用淡水100gを用意した。また、非放射性セシウムを100ppm溶解させ、20倍に希釈した試験用模擬海水(Na、Mg、K含有)100gを用意した。
(Test 2)
The following model tests were conducted. First, 100 g of test fresh water in which 100 ppm of non-radioactive cesium was dissolved was prepared. Moreover, 100 g of simulated seawater for test (containing Na, Mg, and K) in which 100 ppm of non-radioactive cesium was dissolved and diluted 20 times was prepared.

上記実施例5の吸着エレメントと比較例3〜8の吸着エレメントとを試験用淡水に浸透して放置し、24時間放置した。これを10回繰り返し、その後の試験用淡水中の非放射性セシウム濃度をICP発光分光分析法(Inductively Coupled Plasma Atomic Emission Spectroscopy:ICP-AES)にて測定した。また、各吸着エレメントを試験用模擬海水に同様に浸漬し、試験用模擬海水中の非放射性セシウム濃度を同様に測定した。各濃度から除染割合(%)を求めた。   The adsorbing element of Example 5 and the adsorbing elements of Comparative Examples 3 to 8 were permeated into fresh water for testing and allowed to stand for 24 hours. This was repeated 10 times, and then the non-radioactive cesium concentration in the fresh water for test was measured by ICP emission spectroscopy (ICP-AES). Moreover, each adsorption element was similarly immersed in the simulated seawater for testing, and the non-radioactive cesium concentration in the simulated seawater for testing was measured in the same manner. The decontamination rate (%) was determined from each concentration.

また、各吸着エレメントから50mm×30mmの試験片を切り出し、これらをトールビーカに投入し、超音波処理(40Hz,10分間)を行った。こうして、吸着微粉の離脱割合(%)を求めた。結果を表4に示す。   In addition, a 50 mm × 30 mm test piece was cut out from each adsorption element, and these were put into a tall beaker and subjected to ultrasonic treatment (40 Hz, 10 minutes). Thus, the separation rate (%) of the adsorbed fine powder was determined. The results are shown in Table 4.

Figure 2017006837
Figure 2017006837

表4に示されるように、実施例5の吸着エレメント及び比較例4〜8の吸着エレメントは非放射性セシウムを高い割合で除染できることがわかる。しかしながら、比較例4〜8の吸着エレメントは吸着微粉が離脱することがわかる。これに対し、実施例5の吸着エレメントは吸着微粉が離脱し難いことがわかる。   As shown in Table 4, it can be seen that the adsorption element of Example 5 and the adsorption elements of Comparative Examples 4 to 8 can decontaminate non-radioactive cesium at a high rate. However, it can be seen that the adsorbing elements of Comparative Examples 4 to 8 are separated from the adsorbed fine powder. On the other hand, it can be seen that the adsorbing element of Example 5 is difficult to remove the adsorbed fine powder.

したがって、発明者らの上記考察は正しく、実施例5の吸着エレメントはより高いろ過能力を発揮できることがわかる。   Therefore, the above-mentioned consideration of the inventors is correct, and it can be seen that the adsorption element of Example 5 can exhibit higher filtering ability.

<検証3>
(再生処理)
試験2に供した各吸着エレメントから50mm×30mmの試験片を切り出し、これらをトールビーカに入れ、0.1N濃度、70°Cの希塩酸水溶液100mlに投入し、5分間マグネチックスタラーで撹拌した。この後、各試験片を取り出し、水洗、脱水した試験片を0.1N濃度、70°CのNaH2PO4水溶液100mlに投入し、上記と同様に撹拌した。
<Verification 3>
(Reproduction processing)
A test piece of 50 mm × 30 mm was cut out from each adsorbing element subjected to test 2, put into a tall beaker, put into 100 ml of a 0.1N concentration, 70 ° C. diluted hydrochloric acid aqueous solution, and stirred for 5 minutes with a magnetic stirrer. Thereafter, each test piece was taken out, washed with water, and dehydrated. The test piece was put into 100 ml of a 0.1N concentration, 70 ° C. aqueous NaH 2 PO 4 solution and stirred in the same manner as described above.

この後、各試験片を取り出し、水洗、脱水し、再生処理を行った。再生処理後の試験片について、放射性セシウムの残留量を測定したが、その残留は認められなかった。   Thereafter, each test piece was taken out, washed with water, dehydrated, and regenerated. About the test piece after a reproduction | regeneration process, the residual amount of radioactive cesium was measured, but the residue was not recognized.

また、これを繰り返し使用した場合、放射性セシウムの吸着量が初期の値に対して90%以上と遜色がなかったことを確認した。このため、実施例5の吸着エレメントは、繰り返して使用できることがわかる。   Moreover, when this was used repeatedly, it was confirmed that the amount of radioactive cesium adsorbed was not inferior to 90% or more of the initial value. For this reason, it turns out that the adsorption element of Example 5 can be used repeatedly.

<検証4>
(比較例9)
支持体1としての不織布シート(25cm×25cm)と、吸着微粉としての活性炭(150メッシュ、太閤)とを用意した。比較例9の吸着エレメントは、図1(D)に示す第2粗材13に相当し、支持体1上に活性炭と微小繊維状セルロースとからなる吸着本体15を形成したものである。表5に示すように、吸着本体15の活性炭と微小繊維状セルロースとの質量比は4:1である。
<Verification 4>
(Comparative Example 9)
A nonwoven fabric sheet (25 cm × 25 cm) as the support 1 and activated carbon (150 mesh, Taiho) as the adsorbed fine powder were prepared. The adsorbing element of Comparative Example 9 corresponds to the second coarse material 13 shown in FIG. 1 (D), and an adsorbing body 15 made of activated carbon and fine fibrous cellulose is formed on the support 1. As shown in Table 5, the mass ratio of the activated carbon of the adsorption main body 15 to the microfibrous cellulose is 4: 1.

Figure 2017006837
Figure 2017006837

(比較例10)
比較例10の吸着エレメントは、図1(D)に示す第2粗材13に相当し、支持体1上に活性炭と微小繊維状セルロースとからなる第1吸着本体3aを形成した後、第1吸着本体3a上に活性炭と陰イオン交換樹脂粉末と微小繊維状セルロースとからなる第2吸着本体5aを形成したものである。第1吸着本体3aの活性炭と微小繊維状セルロースとの質量比は4:1であり、第2吸着本体5aの活性炭と陰イオン交換樹脂粉末と微小繊維状セルロースとの質量比は1:10:4である。
(Comparative Example 10)
The adsorbing element of Comparative Example 10 corresponds to the second coarse material 13 shown in FIG. 1D, and after the first adsorbing body 3a made of activated carbon and fine fibrous cellulose is formed on the support 1, the first adsorbing element 3a is formed. A second adsorption main body 5a made of activated carbon, anion exchange resin powder, and fine fibrous cellulose is formed on the adsorption main body 3a. The mass ratio of activated carbon and microfibrous cellulose in the first adsorption body 3a is 4: 1, and the mass ratio of activated carbon, anion exchange resin powder and microfibrous cellulose in the second adsorption body 5a is 1:10: 4.

(比較例11)
比較例11の吸着エレメントは、図1(D)に示す第2粗材13に相当し、支持体1上に活性炭と陰イオン交換樹脂粉末と微小繊維状セルロースとからなる第1吸着本体3aを形成した後、第1吸着本体3a上に活性炭と微小繊維状セルロースとからなる第2吸着本体5aを形成したものである。第1吸着本体3aの活性炭と陰イオン交換樹脂粉末と微小繊維状セルロースとの質量比は1:10:4であり、第2吸着本体5aの活性炭と微小繊維状セルロースとの質量比は4:1である。
(Comparative Example 11)
The adsorbing element of Comparative Example 11 corresponds to the second coarse material 13 shown in FIG. 1D, and the first adsorbing body 3a made of activated carbon, anion exchange resin powder, and fine fibrous cellulose is formed on the support 1. After the formation, the second adsorption main body 5a made of activated carbon and fine fibrous cellulose is formed on the first adsorption main body 3a. The mass ratio of the activated carbon of the first adsorption body 3a, the anion exchange resin powder, and the fine fibrous cellulose is 1: 10: 4, and the mass ratio of the activated carbon of the second adsorption body 5a and the fine fibrous cellulose is 4: 1.

(実施例6)
実施例6の吸着エレメントは、比較例9の吸着エレメントを図1(D)に示す第2粗材13とし、第3粗材形成工程S50及び完成工程S60を実施したものである。他の構成及び製造方法は実施例1と同様であるため、詳細な説明の繰り返しは省略する。
(Example 6)
The adsorption element of Example 6 is obtained by performing the third coarse material forming step S50 and the completion step S60 using the adsorption element of Comparative Example 9 as the second coarse material 13 shown in FIG. Since other configurations and manufacturing methods are the same as those in the first embodiment, the detailed description will not be repeated.

(試験3)
内容量200Lのポリプロピレン製の密閉容器の底部に各吸着エレメントを封入し、脱臭能力を測定した。初期濃度は、密閉容器内に臭気成分を所定量注入し、1時間放置して臭気成分を拡散させ、一定の60ppmとした。所定時間毎にサンプリング孔に検知管をセットし、各吸着エレメントによる脱臭能力を測定した。有機酸を臭気成分と想定し、活性炭と陰イオン交換樹脂粉末との相乗作用を確認した。結果を表6に示す。
(Test 3)
Each adsorbing element was sealed at the bottom of a sealed container made of polypropylene having an internal volume of 200 L, and the deodorizing ability was measured. The initial concentration was set at a constant 60 ppm by injecting a predetermined amount of the odor component into the sealed container and allowing it to stand for 1 hour to diffuse the odor component. A detector tube was set in the sampling hole every predetermined time, and the deodorizing ability of each adsorption element was measured. Assuming that the organic acid is an odor component, the synergistic action between the activated carbon and the anion exchange resin powder was confirmed. The results are shown in Table 6.

Figure 2017006837
Figure 2017006837

表6からわかるように、比較例9〜11の吸着エレメントも高い脱臭能力を発揮するが、実施例6の吸着エレメントはより高い脱臭能力を発揮した。   As can be seen from Table 6, the adsorption elements of Comparative Examples 9 to 11 also exhibited high deodorizing ability, but the adsorption element of Example 6 exhibited higher deodorizing ability.

<検証5>
上記実施例6の吸着エレメントと、上記比較例9〜11の吸着エレメントとを用意した。また、実施例7〜9の吸着エレメントを用意した。実施例7の吸着エレメントは、比較例10の吸着エレメントを図1(D)に示す第2粗材13とし、第3粗材形成工程S50及び完成工程S60を実施したものである。実施例8の吸着エレメントは、比較例11の吸着エレメントを図1(D)に示す第2粗材13とし、第3粗材形成工程S50及び完成工程S60を実施したものである。実施例9の吸着エレメントは、実施例8の吸着エレメントに上記再生処理を実施したものである。実施例6〜9及び比較例9〜11の吸着エレメントの吸着材の構成を表7に示す。
<Verification 5>
The adsorption element of Example 6 and the adsorption elements of Comparative Examples 9 to 11 were prepared. Moreover, the adsorption element of Examples 7-9 was prepared. The adsorption element of Example 7 is obtained by performing the third coarse material forming step S50 and the completion step S60 using the adsorption element of Comparative Example 10 as the second coarse material 13 shown in FIG. The adsorption element of Example 8 is obtained by performing the third coarse material forming step S50 and the completion step S60 with the adsorption element of Comparative Example 11 as the second coarse material 13 shown in FIG. The adsorption element of Example 9 is obtained by performing the regeneration process on the adsorption element of Example 8. Table 7 shows the configurations of the adsorbents of the adsorbing elements of Examples 6 to 9 and Comparative Examples 9 to 11.

Figure 2017006837
Figure 2017006837

(試験4)
原糖(ナタール産蔗糖)100gを水道水1Lに溶解した糖液(光吸度420nm、1cm:0.150、720nm、1cm:0.005)をビーカに入れ、各吸着エレメントの裁断物(1cm×1cm)1gを投入した。この後、60°C恒温槽中でマグネックスタラーで1時間撹拌し、処理液とした。この後、420nm、10mm(黄褐色)及びT720nm、10mm(濁度)における処理液の吸光度を分光光度計を用いて測定した。こうして、脱色試験を実施した。
(Test 4)
A sugar solution (light absorbance 420 nm, 1 cm: 0.150, 720 nm, 1 cm: 0.005) in which 100 g of raw sugar (Natal sucrose) is dissolved in 1 L of tap water is put in a beaker, and each adsorbing element is cut (1 cm). 1 g) was introduced. Then, it stirred with the Magneck stirrer in the 60 degreeC thermostat for 1 hour, and was set as the process liquid. Thereafter, the absorbance of the treatment liquid at 420 nm, 10 mm (yellow brown) and T720 nm, 10 mm (turbidity) was measured using a spectrophotometer. In this way, the decoloring test was implemented.

各処理液から裁断物を回収し、水道水で洗浄後、脱水した。得られた裁断物をビーカに移し、0.1Nの塩酸1Lを加えて70°Cに加温し、マグネチックスタラーを用いて10分間撹拌した。この後、塩酸溶液を炭酸ソーダで中和し、各々の溶液について吸光度を調べた。こうして脱着色素量を測定した。結果を表8に示す。   Cut materials were collected from each treatment solution, washed with tap water, and dehydrated. The obtained cut material was transferred to a beaker, 1 L of 0.1 N hydrochloric acid was added, the mixture was heated to 70 ° C., and stirred for 10 minutes using a magnetic stirrer. Thereafter, the hydrochloric acid solution was neutralized with sodium carbonate, and the absorbance of each solution was examined. Thus, the amount of desorbed dye was measured. The results are shown in Table 8.

Figure 2017006837
Figure 2017006837

表8からわかるように、比較例9〜11の吸着エレメントでは、外乱(撹拌)により少量の吸着微粉の離脱が認められたが、実施例6〜9の吸着エレメントでは、吸着微粉の離脱が極端に減少している。特に、実施例7〜9の吸着エレメントでは吸着微粉の離脱がなかった。   As can be seen from Table 8, in the adsorption elements of Comparative Examples 9 to 11, a small amount of adsorbed fine powder was removed due to disturbance (stirring), but in the adsorbing elements of Examples 6 to 9, the adsorbed fine powder was extremely separated. Has decreased. In particular, in the adsorbing elements of Examples 7 to 9, there was no separation of adsorbed fine powder.

<検証6>
従来、生きたスミイカを運搬する方策として、30L前後の容量の発泡スチロール製の容器内にスミイカを海水からなる搬送水とともに入れ、トラック輸送することが行われていた。しかし、輸送中のスミイカは、翌日まで生存していることはあり得ず、墨も吐いていた。このため、スミイカを生存させたまま長距離輸送することはできず、その対策が望まれていた。
<Verification 6>
Conventionally, as a measure for transporting live squid, it has been carried out by placing the squid together with transport water made of seawater into a container made of styrene foam having a capacity of about 30 L and transporting it by truck. However, the squid in transit could not be alive until the next day, and had smudged ink. For this reason, long-distance transportation cannot be carried out while surviving the squid, and countermeasures have been desired.

このため、スミイカを入れた容器内の搬送水に上記実施例1の吸着エレメントを浮遊させ、トラック輸送した。その結果、10杯中、1杯のスミイカしか死なず、墨も吐いていなかった。   For this reason, the adsorption element of Example 1 was suspended in the transport water in the container containing the squid and transported by truck. As a result, out of 10 cups, only 1 cup of squid died and ink was not spit out.

また、搬送水中に何も入れずにスミイカを搬送した場合の搬送水と、実施例1の吸着エレメントを浮遊させてスミイカを搬送した場合の搬送水とについて、紫外線吸収特性を求めた。結果を図7に示す。図7の縦軸は波長域(nm)を示し、横軸は吸光度を示す。   Moreover, the ultraviolet absorption characteristic was calculated | required about the conveyance water at the time of carrying a squid with the adsorption | suction element of Example 1 suspended, and the conveyance water at the time of carrying a squid with nothing put in conveyance water. The results are shown in FIG. The vertical axis in FIG. 7 indicates the wavelength range (nm), and the horizontal axis indicates the absorbance.

図7を見ても、実施例1の吸着エレメントは、優れたろ過能力や浄化能力を発揮することがわかる。このろ過能力や浄化能力は水生生物にすれば、薬理作用として発揮される。捲きエビについても同様の効果を確認した。   It can be seen from FIG. 7 that the adsorbing element of Example 1 exhibits excellent filtering ability and purification ability. This filtering ability and purification ability are exerted as a pharmacological action if an aquatic organism is used. The same effect was confirmed for the shrimp.

以上において、本発明を実施例1〜9に即して説明したが、本発明は上記実施例1〜9に制限されるものではなく、その趣旨を逸脱しない範囲で適宜変更して適用できることはいうまでもない。   In the above, the present invention has been described with reference to the first to ninth embodiments. However, the present invention is not limited to the first to ninth embodiments, and can be appropriately modified and applied without departing from the spirit of the present invention. Needless to say.

例えば、支持体として、連続気泡を有するスポンジフィルタ等を採用することも可能である。また、吸着微粉としては、陽イオン交換樹脂、陰イオン交換樹脂、プルシアンブルーの他、ゼオライト、シリコチタネート、不溶性フェロシアン化鉄、結晶質四チタン酸、チタノシリケート、珪藻土等を採用することも可能である。   For example, a sponge filter having open cells can be used as the support. In addition to cation exchange resin, anion exchange resin, Prussian blue, zeolite, silicotitanate, insoluble ferrocyanide, crystalline tetratitanate, titanosilicate, diatomaceous earth, etc. may be adopted as the adsorbed fine powder. Is possible.

本発明の吸着エレメントは、汚染水の浄化、汚染気体の浄化等に利用可能である。   The adsorption element of the present invention can be used for purification of contaminated water, purification of contaminated gas, and the like.

1…支持体
21、53、75…吸着材
15、43a、65a…吸着本体
7a…仕上層
19、51、73…吸着エレメント
3、5…吸着本体用分散系(3…正電荷吸着本用分散系、5…負電荷吸着本体用分散系)
S10…第1調製工程(S11…第1正電荷調製工程、S12…第1負電荷調製工程)
7…仕上層用分散系
S20…第2調製工程
11…第1粗材
S30…第1粗材形成工程(S31…第1中間粗材形成工程、S32…第1粗材完成工程)
9…第1中間粗材
13…第2粗材
S40…第2粗材形成工程
17…第3粗材
S50…第3粗材形成工程
S60…完成工程
41、61…使用済吸着エレメント
DESCRIPTION OF SYMBOLS 1 ... Support body 21, 53, 75 ... Adsorbent 15, 43a, 65a ... Adsorption body 7a ... Finishing layer 19, 51, 73 ... Adsorption element 3, 5 ... Dispersion system for adsorption bodies (3 ... Dispersion for positive charge adsorption books System, 5 ... dispersion system for negative charge adsorption body)
S10: First preparation step (S11: First positive charge preparation step, S12: First negative charge preparation step)
7 ... Dispersion system for finishing layer S20 ... Second preparation step 11 ... First coarse material S30 ... First coarse material formation step (S31 ... First intermediate coarse material formation step, S32 ... First coarse material completion step)
DESCRIPTION OF SYMBOLS 9 ... 1st intermediate | middle coarse material 13 ... 2nd coarse material S40 ... 2nd coarse material formation process 17 ... 3rd coarse material S50 ... 3rd coarse material formation process S60 ... Completion process 41, 61 ... Used adsorption element

Claims (4)

支持体と、前記支持体に支持され、吸着微粉及び微小繊維状セルロースを含んで吸着質を吸着可能な吸着材とを有する吸着エレメントであって、
前記吸着材は、内部に位置し、前記吸着微粉及び前記微小繊維状セルロースを有して形成された吸着本体と、
前記吸着本体を包囲し、前記微小繊維状セルロースで形成された仕上層とからなることを特徴とする吸着エレメント。
An adsorbing element having a support and an adsorbent supported by the support and capable of adsorbing adsorbate containing adsorbed fine powder and fine fibrous cellulose,
The adsorbent is located inside, an adsorption main body formed with the adsorbed fine powder and the microfibrous cellulose,
An adsorbing element characterized by comprising a finishing layer surrounding the adsorbing body and formed of the microfibrous cellulose.
支持体と、前記支持体に支持され、吸着微粉及び微小繊維状セルロースを含んで吸着質を吸着可能な吸着材とを有する吸着エレメントの製造方法であって、
分散媒が水であり、分散質が前記吸着微粉及び前記微小繊維状セルロースである吸着本体用分散系を調製する第1調製工程と、
分散媒が水であり、分散質が前記微小繊維状セルロースである仕上層用分散系を調製する第2調製工程と、
前記支持体に前記吸着本体用分散系を接触させて第1粗材を得る第1粗材形成工程と、
前記第1粗材を乾燥し、前記支持体に吸着本体を形成した第2粗材を得る第2粗材形成工程と、
前記吸着本体に前記仕上層用分散系を接触させて第3粗材を得る第3粗材形成工程と、
前記第3粗材を乾燥し、前記吸着本体を仕上層で包囲した前記吸着材を形成した吸着エレメントを得る完成工程とを備えていることを特徴とする吸着エレメントの製造方法。
A method for producing an adsorbing element comprising a support and an adsorbent supported by the support and capable of adsorbing adsorbate containing adsorbed fine powder and fine fibrous cellulose,
A first preparation step of preparing a dispersion system for an adsorption main body, in which a dispersion medium is water and a dispersoid is the adsorption fine powder and the fine fibrous cellulose;
A second preparation step of preparing a dispersion for a finishing layer, in which the dispersion medium is water and the dispersoid is the fine fibrous cellulose;
A first coarse material forming step of obtaining a first coarse material by bringing the support body dispersion system into contact with the support body;
A second coarse material forming step of drying the first coarse material and obtaining a second coarse material having an adsorption main body formed on the support;
A third coarse material forming step of obtaining a third coarse material by bringing the finishing layer dispersion into contact with the adsorption main body;
A method for producing an adsorption element, comprising: drying the third coarse material to obtain an adsorption element formed with the adsorbent in which the adsorption main body is surrounded by a finishing layer.
前記吸着微粉は、ゼオライト、シリコチタネート、不溶性フェロシアン化鉄、結晶質四チタン酸、チタノシリケート、プルシアンブルー、珪藻土、活性炭、陽イオン交換樹脂その他の少なくとも1種である正電荷をもつ正電荷吸着微粉と、
陰イオン交換樹脂である負電荷をもつ負電荷吸着微粉とからなり、
前記第1調製工程は、前記正電荷吸着微粉を含む正電荷吸着本用分散系を得る第1正電荷調製工程と、
前記負電荷吸着微粉を含む負電荷吸着本体用分散系を得る第1負電荷調製工程とからなり、
前記第1粗材形成工程は、前記支持体に前記正電荷吸着本体用分散系及び前記負電荷吸着本体用分散系の一方を接触させて第1中間粗材を得る第1中間粗材形成工程と、
前記第1中間粗材に前記正電荷吸着本体用分散系及び前記負電荷吸着本体用分散系の他方を接触させて前記第1粗材を得る第1粗材完成工程とからなり、
前記第2粗材形成工程では、前記第1粗材を乾燥する請求項2記載の吸着エレメントの製造方法。
The adsorbed fine powder is a positive charge having a positive charge which is at least one of zeolite, silicotitanate, insoluble ferrocyanide, crystalline tetratitanate, titanosilicate, Prussian blue, diatomaceous earth, activated carbon, cation exchange resin and the like. Adsorbed fines,
It consists of negative charge adsorption fine powder with negative charge which is an anion exchange resin,
The first preparation step includes a first positive charge preparation step for obtaining a positive charge adsorption main dispersion containing the positive charge adsorption fine powder;
A first negative charge preparation step of obtaining a negative charge adsorption main body dispersion containing the negative charge adsorption fine powder,
In the first coarse material forming step, one of the positive charge adsorption main body dispersion system and the negative charge adsorption main body dispersion system is brought into contact with the support to obtain a first intermediate coarse material formation step. When,
A first coarse material completion step of obtaining the first coarse material by bringing the first intermediate coarse material into contact with the other of the positive charge adsorption main body dispersion and the negative charge adsorption main body dispersion;
The method for manufacturing an adsorption element according to claim 2, wherein in the second coarse material forming step, the first coarse material is dried.
前記第1粗材形成工程では、前記吸着材に前記吸着質を吸着させた使用済吸着エレメントの前記吸着材に前記吸着本体用分散系を接触させる請求項2又は3記載の吸着エレメントの製造方法。   The method of manufacturing an adsorption element according to claim 2 or 3, wherein, in the first coarse material forming step, the adsorption main body dispersion system is brought into contact with the adsorbent of the used adsorbent element in which the adsorbate is adsorbed on the adsorbent. .
JP2015123511A 2015-06-19 2015-06-19 Adsorption element and manufacturing method thereof Active JP6422029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015123511A JP6422029B2 (en) 2015-06-19 2015-06-19 Adsorption element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015123511A JP6422029B2 (en) 2015-06-19 2015-06-19 Adsorption element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2017006837A true JP2017006837A (en) 2017-01-12
JP6422029B2 JP6422029B2 (en) 2018-11-14

Family

ID=57760969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015123511A Active JP6422029B2 (en) 2015-06-19 2015-06-19 Adsorption element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6422029B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019132651A (en) * 2018-01-30 2019-08-08 日本製紙株式会社 Method of treating liquid containing cesium

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000312881A (en) * 1999-04-27 2000-11-14 Fumio Maekawa Filter adsorption body containing particulate ion exchange resin, production of filter and its use
JP2010207177A (en) * 2009-03-12 2010-09-24 Clion Co Ltd Filtration molding for aquarium fish and production method thereof
JP2012011348A (en) * 2010-07-02 2012-01-19 Fumio Maekawa Liquid composition mainly composed of powder ion exchange resin, and powder ion exchange resin-including support
JP2014131791A (en) * 2012-12-07 2014-07-17 Fumio Maekawa Method for efficiently removing hazardous component in contaminated water
JP2014176777A (en) * 2013-03-13 2014-09-25 Maruzen Chemicals Co Ltd Radioactive cesium adsorbing material, and method for cleaning radioactively contaminated water by using the same
JP2014228502A (en) * 2013-05-27 2014-12-08 太平洋セメント株式会社 Radioactive cesium-contaminated object treatment method
JP2015085240A (en) * 2013-10-29 2015-05-07 フタムラ化学株式会社 Molded cesium adsorbent and manufacturing method thereof
JP2015104722A (en) * 2013-12-02 2015-06-08 フタムラ化学株式会社 Cesium-adsorbing composite material, and method for manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000312881A (en) * 1999-04-27 2000-11-14 Fumio Maekawa Filter adsorption body containing particulate ion exchange resin, production of filter and its use
JP2010207177A (en) * 2009-03-12 2010-09-24 Clion Co Ltd Filtration molding for aquarium fish and production method thereof
JP2012011348A (en) * 2010-07-02 2012-01-19 Fumio Maekawa Liquid composition mainly composed of powder ion exchange resin, and powder ion exchange resin-including support
JP2014131791A (en) * 2012-12-07 2014-07-17 Fumio Maekawa Method for efficiently removing hazardous component in contaminated water
JP2014176777A (en) * 2013-03-13 2014-09-25 Maruzen Chemicals Co Ltd Radioactive cesium adsorbing material, and method for cleaning radioactively contaminated water by using the same
JP2014228502A (en) * 2013-05-27 2014-12-08 太平洋セメント株式会社 Radioactive cesium-contaminated object treatment method
JP2015085240A (en) * 2013-10-29 2015-05-07 フタムラ化学株式会社 Molded cesium adsorbent and manufacturing method thereof
JP2015104722A (en) * 2013-12-02 2015-06-08 フタムラ化学株式会社 Cesium-adsorbing composite material, and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019132651A (en) * 2018-01-30 2019-08-08 日本製紙株式会社 Method of treating liquid containing cesium

Also Published As

Publication number Publication date
JP6422029B2 (en) 2018-11-14

Similar Documents

Publication Publication Date Title
US20200261836A1 (en) Granular filtration media mixture and uses in water purification
US9455054B2 (en) Radioactive cesium adsorbent, method for producing the same, and method for removing radioactive cesium in environment with said adsorbent
Al-Jubouri et al. Antibiotics adsorption from contaminated water by composites of ZSM-5 zeolite nanocrystals coated carbon
Hussain et al. Carbon-based nanomaterials with multipurpose attributes for water treatment: Greening the 21st-century nanostructure materials deployment
El-Safty et al. Mesosponge optical sinks for multifunctional mercury ion assessment and recovery from water sources
CN104649456B (en) A kind of drinking water terminal sterilizing water purifier
Grabka et al. Modified halloysite as an adsorbent for prometryn from aqueous solutions
US20170173562A1 (en) Functionalized porous carbon, methods for making same, and methods for using same to remove contaminants from a fluid
US20170121186A1 (en) Adsorptive filter unit having extended useful cycle times and/or an extended service life
JP2013033019A (en) Method and apparatus for removing radioactive matter in radiation-contaminated water
JP6422029B2 (en) Adsorption element and manufacturing method thereof
Ahmad et al. Adsorptive removal of atrazine from contaminated water using low-cost carbonaceous materials: A review
Selvanathan et al. Dye adsorbent by activated carbon
Bhakta et al. Development of activated carbon from cotton fibre waste as potential mercury adsorbent: kinetic and equilibrium studies
JP2015515443A (en) Reduction of arsenic and antimony leaching from activated carbon
KR101744707B1 (en) Dual Structure Membrane Module Combined with Carbon Nano Tube, and Water treatment system using the same
TWI701338B (en) Filter media for the removal of particles, ions, and biological materials, and decolorization in a sugar purification process, and use thereof
Adekunle et al. Fabrication of Plastic Water Filter and Testing with Slow Sand Filtration Method
Alam et al. Kinetic and equilibrium studies of adsorption of Pb (II) on low cost agri-waste adsorbent Jute Stick Powder
CN107233762B (en) Iron, cadmium and arsenic ion filter column and preparation method thereof
KR20100089556A (en) Multi-step water purification system including filtering step using dna on solid support catalyst
JPH11183691A (en) Method for treating liquid radioactive waste
CN107522249A (en) Using the method for tobacco powder biological matter sorbent treatment low concentration nitrate ion waste water
JP2018166466A (en) Filter for suppressing growth of alga, and device including the same
US20240124324A1 (en) Water purification device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161012

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180301

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180301

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181004

R150 Certificate of patent or registration of utility model

Ref document number: 6422029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250