JP2017004914A - All-sold battery - Google Patents

All-sold battery Download PDF

Info

Publication number
JP2017004914A
JP2017004914A JP2015121114A JP2015121114A JP2017004914A JP 2017004914 A JP2017004914 A JP 2017004914A JP 2015121114 A JP2015121114 A JP 2015121114A JP 2015121114 A JP2015121114 A JP 2015121114A JP 2017004914 A JP2017004914 A JP 2017004914A
Authority
JP
Japan
Prior art keywords
positive electrode
current collector
collector foil
electrode layer
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015121114A
Other languages
Japanese (ja)
Inventor
佑介 奥畑
Yusuke Okuhata
佑介 奥畑
怜 吉田
Rei Yoshida
怜 吉田
藤巻 寿隆
Hisataka Fujimaki
寿隆 藤巻
杉浦 功一
Koichi Sugiura
功一 杉浦
祐貴 松下
Yuki Matsushita
祐貴 松下
英晃 西村
Hideaki Nishimura
英晃 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015121114A priority Critical patent/JP2017004914A/en
Publication of JP2017004914A publication Critical patent/JP2017004914A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a sulfide-based all-solid battery capable of suppressing local heat generation due to charging, short-circuit, etc.SOLUTION: Disclosed is an all-solid battery includes; a positive electrode layer and a negative electrode layer obtained by coating a mixture on one surface of each current collector foil of a positive electrode current collector foil and a negative electrode current collector foil; and a sulfide solid electrolyte layer between the positive electrode layer and the negative electrode layer. A copper foil is provided on the positive electrode current collector foil of the positive electrode layer. A positive electrode mixture, the positive electrode current collector foil and the copper foil are laminated on the positive electrode layer side in this order. The sulfide solid electrolyte layer is provided in the positive electrode mixture. The positive electrode current collector foil has a through-hole. The through-hole is filled with resin melted at a predetermined temperature.SELECTED DRAWING: None

Description

本発明は、全固体電池に関し、さらに詳しくは特定の構造にすることによって充電や短絡等による局所発熱を抑制し得る硫化物系全固体電池に関する。   The present invention relates to an all-solid-state battery, and more particularly to a sulfide-based all-solid battery that can suppress local heat generation due to charging, short-circuiting, or the like by using a specific structure.

近年、高電圧および高エネルギー密度を有する電池としてリチウム電池が実用化されている。リチウム電池の用途が広い分野に拡大していることおよび高性能の要求から、リチウム電池の更なる性能向上のために様々な研究が行われている。
その中で、従来用いられてきた非水電解液系のリチウム電池に比べて電解液を用いないため、非水電解液を用いる場合の安全性向上のために必要なシステムを簡略化し得て構造の自由度が増し補器の数を減らすことができる等の多くの利点を有し得ることから、全固体電池の実用化が期待されている。
In recent years, lithium batteries have been put into practical use as batteries having high voltage and high energy density. Due to the expansion of the use of lithium batteries in a wide range of fields and the demand for high performance, various studies have been conducted to further improve the performance of lithium batteries.
Among them, since the electrolyte is not used compared to the conventional non-aqueous electrolyte lithium battery, the system required for improving the safety when using the non-aqueous electrolyte can be simplified. Therefore, it is expected that the all-solid-state battery will be put to practical use because it can have many advantages such as an increased degree of freedom and a reduced number of auxiliary devices.

しかし、全固体電池の実用化が実現するためには様々な改良が必要である。
その1つとして、全固体電池の過充電や短絡等による電池の局所発熱を抑制し得る技術開発が挙げられる。
一方、前記の全固体電池の技術に適用し得ると推測される技術が提案されている。
However, various improvements are necessary in order to realize practical use of all solid state batteries.
One of them is technical development that can suppress local heat generation of the battery due to overcharge or short circuit of the all-solid-state battery.
On the other hand, a technique that is estimated to be applicable to the technique of the all-solid battery has been proposed.

例えば、特許文献1には、複数に分割された集電体と集電体上に形成された活物質層とを含む複数の電極要素と、前記集電体を連結する導電要素とを有する二次電池用電極が記載されており、具体例としてLiPFなどのリチウム塩を含浸させたセパレータで構成される電解質層を有する二次電池用電極が示されている。 For example, Patent Document 1 includes a plurality of electrode elements including a current collector divided into a plurality of parts and an active material layer formed on the current collector, and a conductive element that connects the current collectors. A secondary battery electrode is described, and as a specific example, a secondary battery electrode having an electrolyte layer composed of a separator impregnated with a lithium salt such as LiPF 6 is shown.

また、特許文献2には、正極活物質層と負極活物質層と両層の間に電解質層とを有するリチウム電池であって、前記各層の少なくとも一つが硫化物固体電解質材料と水素よりもイオン化傾向の小さい金属元素を含有する硫化水素発生抑制材とを有するLiイオン伝導性材料を含有するリチウム電池が記載されており、具体例として硫化水素発生抑制材である酸化銅を30重量%含むLiイオン伝導性材料が示されている。   Patent Document 2 discloses a lithium battery having a positive electrode active material layer, a negative electrode active material layer, and an electrolyte layer between both layers, wherein at least one of the layers is ionized more than a sulfide solid electrolyte material and hydrogen. A lithium battery containing a Li ion conductive material having a hydrogen sulfide generation suppressing material containing a metal element having a small tendency is described. As a specific example, a lithium battery containing 30% by weight of copper oxide as a hydrogen sulfide generation suppressing material is described. An ion conductive material is shown.

さらに、特許文献3には、正極体、負極体および正極体と負極体との間に硫化物固体電解質層とを有する全固体電池であって、正極体および負極体のうち少なくとも一方の電極体の電極活物質層の空隙率が、電極活物質層の厚み方向の硫化物固体電解質層界面側から集電体界面側に近いほど大きい全固体電池が記載されている。   Furthermore, Patent Document 3 discloses an all-solid battery having a positive electrode body, a negative electrode body, and a sulfide solid electrolyte layer between the positive electrode body and the negative electrode body, and at least one of the positive electrode body and the negative electrode body. An all-solid battery is described in which the porosity of the electrode active material layer increases as it approaches the current collector interface side from the sulfide solid electrolyte layer interface side in the thickness direction of the electrode active material layer.

しかし、これら公知の技術を適用して得られる硫化物系全固体電池は、電池が過充電状態になり、リチウム析出による微小な短絡パスが生じると、微小短絡部への電流集中により発熱に至る恐れがある。   However, the sulfide-based all-solid battery obtained by applying these known techniques, when the battery is overcharged and a minute short-circuit path due to lithium deposition occurs, heat is generated due to current concentration in the minute short-circuit portion. There is a fear.

特開2010−097729号公報JP 2010-097729 A 特開2011−113720号公報JP 2011-113720 A 特開2012−104270号公報JP 2012-104270 A

従って、本発明の目的は、充電や短絡等による局所発熱を抑制し得る硫化物系全固体電池を提供することである。   Accordingly, an object of the present invention is to provide a sulfide-based all-solid-state battery that can suppress local heat generation due to charging or short-circuiting.

本発明は、正極集電箔および負極集電箔各々の集電箔の一方の面に合材を塗布した正極層および負極層と、正極層と負極層との間に硫化物固体電解質層を備える全固体電池であって、
前記正極層の正極集電箔上に銅箔を有し、
正極層側において正極合材、正極集電箔および銅箔の順に積層されていて、
前記正極合材中には硫化物固体電解質を有し、
前記正極集電箔は貫通孔を有し、
前記貫通孔には、所定の温度で溶融する樹脂が充填されていることを特徴とする、前記電池に関する。
The present invention provides a positive electrode layer and a negative electrode layer in which a mixture is applied to one surface of each of the positive electrode current collector foil and the negative electrode current collector foil, and a sulfide solid electrolyte layer between the positive electrode layer and the negative electrode layer. An all solid state battery comprising:
Having a copper foil on the positive electrode current collector foil of the positive electrode layer,
It is laminated in the order of the positive electrode mixture, the positive electrode current collector foil and the copper foil on the positive electrode layer side,
The positive electrode mixture has a sulfide solid electrolyte,
The positive electrode current collector foil has a through hole,
The battery is characterized in that the through hole is filled with a resin that melts at a predetermined temperature.

本発明によれば、充電や短絡等による局所発熱を抑制し得る硫化物系全固体電池を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the sulfide type all-solid-state battery which can suppress the local heat_generation | fever by charge, a short circuit, etc. can be obtained.

図1Aは、本発明の実施態様の全固体電池を模式的に示す断面図である。FIG. 1A is a cross-sectional view schematically showing an all solid state battery according to an embodiment of the present invention. 図1Bは、図1Aに示す本発明の実施態様の全固体電池にリチウム析出が発生した状態を示す模式的な断面図である。FIG. 1B is a schematic cross-sectional view showing a state in which lithium deposition has occurred in the all solid state battery of the embodiment of the present invention shown in FIG. 1A. 図1Cは、図1Bに示す本発明の実施態様の全固体電池にリチウム析出が発生した後にCuと硫化物固体電解質との反応が生じている状態を示す断面図である。FIG. 1C is a cross-sectional view showing a state in which the reaction between Cu and the sulfide solid electrolyte occurs after lithium deposition occurs in the all solid state battery of the embodiment of the present invention shown in FIG. 1B. 図1Dは、図1Cに示す本発明の実施態様の全固体電池にリチウム析出が発生した後にCuSの成長により電子伝導パスが形成されている状態を示す断面図である。FIG. 1D is a cross-sectional view showing a state in which an electron conduction path is formed by growth of CuS after lithium deposition occurs in the all solid state battery of the embodiment of the present invention shown in FIG. 1C. 図1Eは、図1Aに示す本発明の実施態様の全固体電池における正極集電箔の平面図である。FIG. 1E is a plan view of the positive electrode current collector foil in the all solid state battery of the embodiment of the present invention shown in FIG. 1A. 図1Fは、図1Bに示す本発明の実施態様の全固体電池にリチウム析出が発生し樹脂溶融により孔が生成した状態を示す正極集電箔の平面図である。FIG. 1F is a plan view of the positive electrode current collector foil showing a state in which lithium deposition occurs in the all-solid battery of the embodiment of the present invention shown in FIG. 1B and holes are generated by resin melting. 図2Aは、従来技術による全固体電池を模式的に示す断面図である。FIG. 2A is a cross-sectional view schematically showing a conventional all-solid battery. 図2Bは、従来技術による全固体電池にリチウム析出が発生した状態を示す模式的な断面図である。FIG. 2B is a schematic cross-sectional view illustrating a state in which lithium deposition occurs in the all-solid battery according to the related art. 図2Cは、従来技術による全固体電池に局所発熱が発生している状態を示す模式的な断面図である。FIG. 2C is a schematic cross-sectional view illustrating a state in which local heat generation occurs in the all-solid battery according to the related art. 図3は、全固体電池における発熱速度と短絡部直径との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the heat generation rate and the short-circuit diameter in the all-solid-state battery. 図4は、実施例において本発明に係る全固体電池によって局所発熱が抑制されることを検証するために作製した全固体電池の模式的な断面図である。FIG. 4 is a schematic cross-sectional view of an all solid state battery manufactured in order to verify that local heat generation is suppressed by the all solid state battery according to the present invention. 図5は、図4に示す電池の充電挙動と従来の全固体電池の充電挙動とを比較して示すグラフである。FIG. 5 is a graph comparing the charging behavior of the battery shown in FIG. 4 with the charging behavior of a conventional all solid state battery. 図6は、図4に示す電池の充電前の状態をSEMおよびEDXにより観察した断面写真の写しである。FIG. 6 is a copy of a cross-sectional photograph in which the state of the battery shown in FIG. 4 before charging is observed by SEM and EDX. 図7は、図4に示す電池の充電後の状態をSEMおよびEDXにより観察した断面写真の写しである。FIG. 7 is a copy of a cross-sectional photograph obtained by observing the state of the battery shown in FIG. 4 after charging with SEM and EDX.

以下、図面を参照して本発明の実施の形態を詳説する。
本発明の実施態様の全固体電池1は、図1Aおよび図1Eに示すように、正極集電箔2および負極集電箔3各々の集電箔の一方の面に合材を塗布した正極層4および負極層5と、正極層4と負極層5との間に硫化物固体電解質層6を備える全固体電池であって、
前記正極層4の正極集電箔2上に銅箔7を有し、
正極層側において正極合材、正極集電箔および銅箔の順に積層されており、
前記正極合材中には硫化物固体電解質を有し、
前記正極集電箔2は複数の貫通孔8を有し、
前記貫通孔8には、所定の温度で溶融する樹脂が充填されていることにより、充電や短絡等による局所発熱を防止乃至は抑制し得る。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
As shown in FIGS. 1A and 1E, an all-solid battery 1 according to an embodiment of the present invention has a positive electrode layer in which a mixture is applied to one surface of each of the positive electrode current collector foil 2 and the negative electrode current collector foil 3. 4 and a negative electrode layer 5, and an all-solid-state battery including a sulfide solid electrolyte layer 6 between the positive electrode layer 4 and the negative electrode layer 5,
Having a copper foil 7 on the positive electrode current collector foil 2 of the positive electrode layer 4;
It is laminated in the order of the positive electrode mixture, the positive electrode current collector foil and the copper foil on the positive electrode layer side,
The positive electrode mixture has a sulfide solid electrolyte,
The positive electrode current collector foil 2 has a plurality of through holes 8;
By filling the through-hole 8 with a resin that melts at a predetermined temperature, local heat generation due to charging, short-circuiting, or the like can be prevented or suppressed.

本発明の実施態様の全固体電池により充電や短絡等、例えば過充電による局所発熱を防止乃至は抑制し得る理論的な解明は十分にはなされていないが、本発明の実施態様の全固体電池による局所発熱防止乃至は抑制メカニズムを示す図1A〜図1Fを用いて、以下のように考え得る。
本発明の実施態様の図1Aに示す全固体電池は、図1Bに示すように、過充電、短絡等が発生しリチウム析出の状態になると電池温度が上昇し、樹脂の溶融温度、例えば80〜140℃に到達すると、図1Eに示すように正極集電箔中の貫通孔に充填した樹脂は加熱されて溶融する。この樹脂溶融により固形の樹脂に比べて体積が減少するため、図1Fに示すように、孔が生成される。その結果、図1Cに示すように、生成された孔を介して正極集電箔上の銅(Cu)と正極合材中の硫化物固体電解質(SE)とが接触して、電気化学反応により電子伝導性が大きいCuSが生成する。そして、図1Dに示すように、CuSの成長により固体電解質層と正極集電箔との間に電子伝導パスが形成され、局所発熱が防止乃至は抑制されると考えられる。
The all-solid-state battery of the embodiment of the present invention has not been sufficiently theoretically elucidated to prevent or suppress local heat generation due to overcharge, for example, charging or short-circuiting by the all-solid-state battery of the embodiment of the present invention. It can be considered as follows using FIGS. 1A to 1F showing a mechanism of preventing or suppressing local heat generation due to.
In the all solid state battery shown in FIG. 1A of the embodiment of the present invention, as shown in FIG. 1B, when overcharge, short circuit, etc. occur and lithium precipitation occurs, the battery temperature rises and the melting temperature of the resin, for example, 80 to When the temperature reaches 140 ° C., the resin filled in the through holes in the positive electrode current collector foil is heated and melted as shown in FIG. 1E. Since the volume of the resin is reduced by melting the resin as compared with the solid resin, holes are generated as shown in FIG. 1F. As a result, as shown in FIG. 1C, the copper (Cu) on the positive electrode current collector foil and the sulfide solid electrolyte (SE) in the positive electrode mixture come into contact with each other through the generated holes, and an electrochemical reaction occurs. CuS with high electron conductivity is generated. Then, as shown in FIG. 1D, it is considered that the growth of CuS forms an electron conduction path between the solid electrolyte layer and the positive electrode current collector foil, thereby preventing or suppressing local heat generation.

これに対して、従来の全固体電池により過充電による局所発熱を防止乃至は抑制できない理由は、従来の全固体電池の過充電による局所発熱メカニズムを示す図2A〜図2Cを用いて、以下のように考え得る。
従来の図2Aに示す全固体電池10は、図2Bに示すように、過充電、短絡等が発生しリチウム析出の状態になると、図2Cに示すように、リチウムによる微小短絡で局所発熱が発生する。このため、不安定モードとなる。
On the other hand, the reason why local heat generation due to overcharging cannot be prevented or suppressed by the conventional all solid state battery is described below with reference to FIGS. 2A to 2C showing the mechanism of local heat generation due to overcharging of the conventional all solid state battery. You can think so.
In the conventional all-solid-state battery 10 shown in FIG. 2A, when overcharge, short-circuit, etc. occur and lithium is deposited as shown in FIG. 2B, local heat is generated due to a minute short-circuit caused by lithium as shown in FIG. 2C. To do. For this reason, it becomes an unstable mode.

また、本発明の全固体電池による局所発熱の発生の防止乃至は抑制については、以下のように発熱速度と短絡部直径との関係からも説明し得る。
全固体電池における局所発熱は微小短絡部の電流集中による発熱により引き起こされ、発熱速度ΔTは、短絡部抵抗Rs=kl/πY/4、短絡電流I=E/(Rs+Ri)、短絡抵抗による発熱Ws=IRs=ERs/(Ri+Rs)、短絡部熱容量C=cρπId/4とすると、次式で表される。
ΔT=Ws/4.186/C
[但し、k:短絡部比抵抗、E:起電力、Ri:内部抵抗、l:極板間距離、d:短絡部直径、c:比熱、ρ:比重]
そして、縦軸に発熱速度ΔT、横軸に短絡部直径dをとると図3のグラフが得られる。
図3から、短絡部の直径が小さい方が発熱速度は大きくなるため、電池性能を考慮しない局所発熱防止の観点からは短絡部の直径を大きくするほど好ましいことが理解される。
本発明は、この考察を発展させたもので、敢えて大きな短絡を電池に引き起こす機能を全固体電池に付与することによって、全く意外にも従来の全固体電池と比較して電池性能を低下させることなく局所発熱を防止乃至は抑制し得る硫化物系全固体電池を可能とするものである。
Further, the prevention or suppression of the occurrence of local heat generation by the all solid state battery of the present invention can be explained from the relationship between the heat generation rate and the short-circuited portion diameter as follows.
Localized heating in all-solid-state cell is caused by the heat generation due to the current concentration of a micro short circuit portion, the heat generation rate ΔT is short section resistance Rs = kl / πY 2/4 , the short-circuit current I = E / (Rs + Ri ), the heat generated by short circuit resistance ws = I 2 Rs = E 2 Rs / (Ri + Rs) 2, when a short-circuit unit heat capacity C = cρπId 2/4, is expressed by the following equation.
ΔT = Ws / 4.186 / C
[Where, k: specific resistance of short circuit, E: electromotive force, Ri: internal resistance, l: distance between electrode plates, d: short circuit diameter, c: specific heat, ρ: specific gravity]
Then, when the heat generation rate ΔT is taken on the vertical axis and the short-circuited part diameter d is taken on the horizontal axis, the graph of FIG. 3 is obtained.
From FIG. 3, it is understood that the smaller the diameter of the short-circuited portion, the higher the heat generation rate. Therefore, it is preferable that the diameter of the short-circuited portion is larger from the viewpoint of preventing local heat generation without considering the battery performance.
The present invention is an extension of this consideration. By giving the all-solid battery a function that causes a large short circuit in the battery, the battery performance is unexpectedly lowered as compared with the conventional all-solid battery. Thus, a sulfide-based all solid state battery capable of preventing or suppressing local heat generation can be realized.

本発明の実施態様における全固体電池は、正極集電箔および負極集電箔各々の集電箔の一方の面に合材を塗布した正極層および負極層と、正極層と負極層との間に硫化物固体電解質層を備え、前記正極層の正極集電箔上に銅箔を有し、正極層側において正極合材、正極集電箔および銅箔の順に積層されていて、前記正極合材中には硫化物固体電解質を有し、前記正極集電箔は貫通孔を有し、前記貫通孔に所定の温度で溶融する樹脂が充填されている。   The all solid state battery according to the embodiment of the present invention includes a positive electrode layer and a negative electrode layer in which a mixture is applied to one surface of each of the positive electrode current collector foil and the negative electrode current collector foil, and a positive electrode layer and a negative electrode layer. A positive electrode current collector foil, a copper foil on the positive electrode current collector foil of the positive electrode layer, and a positive electrode mixture, a positive electrode current collector foil, and a copper foil are laminated in that order on the positive electrode layer side. The material has a sulfide solid electrolyte, the positive electrode current collector foil has a through hole, and the through hole is filled with a resin that melts at a predetermined temperature.

前記正極層に含有される正極活物質としては、Liを挿入することができる材料、例えばLi(NiCoAl1−a−b)O[a、bは1未満の任意の数字である。但し、a+b≦1]、Li(NiCoMn2−a−b)O[a、bは2未満の任意の数字である。但し、a+b≦2]など、例えばLiNi1/2Mn1/2、LiNi1/3Co1/3Mn1/3、LiNi3/5Co1/5Mn1/5、LiMn、LiNi1/2Mn3/2や、LiNiPO、LiMnPO、LiFe(PO、Li(PO等、好適にはLiCoOやLiNi1/3Co1/3Mn1/3を挙げることができる。 As the positive electrode active material contained in the positive electrode layer, a material capable of inserting Li, for example, Li (Ni a Co b Al 1 -a-b) O 2 [a, b is any number less than 1 is there. However, a + b ≦ 1], Li (Ni a Co b Mn 2-a-b) O 4 [a, b is any number less than 2. However, for example, LiNi 1/2 Mn 1/2 O 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 3/5 Co 1/5 Mn 1/5 O 2 , etc. LiMn 2 O 4 , LiNi 1/2 Mn 3/2 O 4 , LiNiPO 4 , LiMnPO 4 , Li 3 Fe 2 (PO 4 ) 3 , Li 3 V 2 (PO 4 ) 3, etc., preferably LiCoO 2 or LiNi 1/3 Co 1/3 Mn 1/3 O 2 can be mentioned.

本発明の実施態様の正極層における合材には、固体電解質として硫化物固体電解質が含有されることが必要である。前記硫化物固体電解質として、例えばLiS:P=50:50〜100:0(質量比)となるようにLiSおよびPをメカニカルミリングして得られる硫化物固体電解質を用い得る。
また、正極層には結着用バインダー、例えばポリフッ化ビニリデン(PVDF)などのフッ素含有樹脂やブタジエン系ゴム(例えば、BR、SBR)や導電助剤、例えばアセチレンブラック、ケッチェンブラック等の炭素などを含有し得る。
前記の正極層の厚さは、特に限定されないが、例えば0.1〜1000μmであり得る。
The composite material in the positive electrode layer of the embodiment of the present invention needs to contain a sulfide solid electrolyte as a solid electrolyte. As the sulfide solid electrolyte, for example, Li 2 S: P 2 S 5 = 50: 50~100: 0 ( mass ratio) and a way sulfide solid obtained by mechanical milling of Li 2 S and P 2 S 5 An electrolyte can be used.
In addition, a binder for binding, for example, a fluorine-containing resin such as polyvinylidene fluoride (PVDF), a butadiene-based rubber (for example, BR, SBR), or a conductive additive such as carbon such as acetylene black or ketjen black is used for the positive electrode layer. May be contained.
The thickness of the positive electrode layer is not particularly limited, but may be, for example, 0.1 to 1000 μm.

前記負極層には、負極活物質としてLiを挿入することができる材料、例えばグラファイトなどの公知のカーボン、好適にはアモルファスカーボン、例えばハードカーボンを用い得る。また、負極層には、固体電解質として正極層に適用され得る前記硫化物固体電解質を用い得る。
また、負極層には結着用バインダー、例えばポリフッ化ビニリデン(PVDF)などのフッ素含有樹脂、ブタジエン系ゴム(例えば、BR、SBR)に加え、他の公知のバインダーや、導電助剤、例えばアセチレンブラック、ケッチェンブラック等の炭素などを含有し得る。
前記の負極層の厚さは、特に限定されないが、例えば0.1〜1000μmであり得る。
For the negative electrode layer, a material capable of inserting Li as a negative electrode active material, for example, known carbon such as graphite, preferably amorphous carbon, for example hard carbon, can be used. Moreover, the said sulfide solid electrolyte which can be applied to a positive electrode layer as a solid electrolyte can be used for a negative electrode layer.
In addition to the binder used for the negative electrode layer, for example, a fluorine-containing resin such as polyvinylidene fluoride (PVDF), butadiene rubber (for example, BR, SBR), other known binders and conductive auxiliary agents such as acetylene black And carbon such as ketjen black.
The thickness of the negative electrode layer is not particularly limited, but may be, for example, 0.1 to 1000 μm.

前記硫化物固体電解質層は、硫化物固体電解質を含む。前記硫化物固体電解質としては、正極層および/又は負極層に適用され得る前記硫化物固体電解質を用い得る。
また、硫化物固体電解質層には結着用バインダー、例えばポリフッ化ビニリデン(PVDF)などのフッ素含有樹脂、ブタジエン系ゴム(例えば、BR、SBR)を含有し得る。
前記硫化物固体電解質層の厚さは、特に限定されないが、好適には0.1〜1000μm、特に0.1〜300μmであり得る。
The sulfide solid electrolyte layer includes a sulfide solid electrolyte. As the sulfide solid electrolyte, the sulfide solid electrolyte that can be applied to the positive electrode layer and / or the negative electrode layer can be used.
The sulfide solid electrolyte layer may contain a binder, for example, a fluorine-containing resin such as polyvinylidene fluoride (PVDF), or a butadiene rubber (for example, BR or SBR).
The thickness of the sulfide solid electrolyte layer is not particularly limited, but may preferably be 0.1 to 1000 μm, particularly 0.1 to 300 μm.

前記の正極集電箔としては、金属箔、例えばアルミニウム(Al)箔を、前記の負極集電箔として金属箔、例えば銅(Cu)箔を用い得る。前記正極集電箔および負極集電箔は、各々厚さが好適には0.1〜10μm、より好ましくは0.5〜5μmであり得る。
前記正極層の正極集電箔上に銅箔を有し、正極層側において正極合材、正極集電箔および銅箔の順に積層されている。前記銅箔として、正極集電箔との積層時の密着性を考慮して表面粗度の比較的大きい銅箔を用い得る。
前記正極集電箔は貫通孔を有していることが必要である。前記正極集電箔は前記貫通孔を、例えば正極集電箔の平面図での貫通孔の面積の合計が正極集電箔全体(貫通孔を含む)の面積に対する割合が0.1〜5%となる割合で複数個有し得る。
As the positive electrode current collector foil, a metal foil such as an aluminum (Al) foil can be used, and as the negative electrode current collector foil, a metal foil such as a copper (Cu) foil can be used. Each of the positive electrode current collector foil and the negative electrode current collector foil may have a thickness of preferably 0.1 to 10 μm, more preferably 0.5 to 5 μm.
A copper foil is provided on the positive electrode current collector foil of the positive electrode layer, and the positive electrode mixture, the positive electrode current collector foil, and the copper foil are laminated in this order on the positive electrode layer side. As the copper foil, a copper foil having a relatively large surface roughness can be used in consideration of adhesion at the time of lamination with the positive electrode current collector foil.
The positive electrode current collector foil needs to have a through hole. The positive electrode current collector foil has a through hole, for example, the total area of the through holes in the plan view of the positive electrode current collector foil is 0.1 to 5% of the total area of the positive electrode current collector foil (including the through holes). There may be a plurality of such ratios.

前記貫通孔には所定の温度で溶融する樹脂が充填されていることが必要である。前記の所定温度としては、全固体電池に求められる電池性能によって異なるが好適には200℃以下で80℃より高い温度であり得る。
前記の樹脂としては、例えばポリオレフィン、ポリスチレン(PS)、アクリロニトリル−スチレン樹脂(AS)、ABS樹脂、ポリ塩化ビニル(PVC)、アクリル樹脂(PMMA)などのポリマーやオリゴマー、好適には融点が80〜140℃程度の範囲にあるもの、例えばエチレン、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、4−メチル−1−ペンテン等α−オレフィン単独重合体、上記α−オレフィン2種以上のランダムまたはブロック共重合体、エチレンと酢酸ビニル、アクリル酸、メタクリル酸、アクリル酸メチル、メタクリル酸メチルとの1種または2種以上のランダムまたはブロック共重合体、アイオノマー樹脂、さらにこれら重合体の混合物等が挙げられる。
前記正極集電箔への前記樹脂の充填は、薄膜に設けた貫通孔に微細粉末を充填するそれ自体公知の方法、例えば樹脂の微細粉末を含有する溶媒スラリーを貫通孔を設けた薄膜にコーティングして充填した後、溶媒を蒸発除去する方法などによって行い得る。
The through hole must be filled with a resin that melts at a predetermined temperature. The predetermined temperature varies depending on the battery performance required for the all-solid-state battery, but may be preferably 200 ° C. or lower and higher than 80 ° C.
Examples of the resin include polymers and oligomers such as polyolefin, polystyrene (PS), acrylonitrile-styrene resin (AS), ABS resin, polyvinyl chloride (PVC), acrylic resin (PMMA), and preferably have a melting point of 80 to What is in the range of about 140 ° C., for example, α-olefin homopolymer such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, and two or more kinds of the above α-olefins are random Or block copolymer, ethylene and vinyl acetate, acrylic acid, methacrylic acid, methyl acrylate, one or more random or block copolymers of methyl methacrylate, ionomer resin, and mixtures of these polymers Is mentioned.
The positive electrode current collector foil is filled with the resin by a method known per se, such as filling a through-hole provided in a thin film with a fine powder, for example, coating a thin film provided with a through-hole with a solvent slurry containing a fine resin powder. Then, after filling, the solvent can be removed by evaporation.

前記の全固体電池は以下のようにして得ることができる。例えば、正極活物質、硫化物固体電解質、バインダーおよび溶媒を含む正極合材スラリーを、貫通孔に所定の温度で溶融する樹脂が充填されている正極集電箔の一方の面に塗布して正極層を得る。一方、負極活物質、固体電解質、例えば硫化物固体電解質、バインダーおよび溶媒を含む負極合材スラリーを負極集電箔の一方の面に塗布して負極層を得る。銅箔と、上記の正極層と負極層とを硫化物固体電解質を介して積層し、全固体電池を得ることができる。前記の積層は、最終プレス圧にて、例えば冷間静水等方圧プレス(CIP)によりプレスを行って実施し得る。   The all solid state battery can be obtained as follows. For example, a positive electrode mixture slurry containing a positive electrode active material, a sulfide solid electrolyte, a binder, and a solvent is applied to one surface of a positive electrode current collector foil in which a through hole is filled with a resin that melts at a predetermined temperature. Get a layer. On the other hand, a negative electrode mixture slurry containing a negative electrode active material, a solid electrolyte such as a sulfide solid electrolyte, a binder and a solvent is applied to one surface of the negative electrode current collector foil to obtain a negative electrode layer. A copper foil, said positive electrode layer, and negative electrode layer are laminated | stacked through sulfide solid electrolyte, and an all-solid-state battery can be obtained. The lamination can be performed by pressing at the final pressing pressure, for example, by cold isostatic pressing (CIP).

本発明の全固体電池は、前記正極合材中には硫化物固体電解質を有し、前記正極集電箔は貫通孔を有し、前記貫通孔には、所定の温度で溶融する樹脂が充填されているため、従来技術の全固体電池に比べて電池性能を低下させることなく局所発熱を防止乃至は抑制し得る。   The all solid state battery of the present invention has a sulfide solid electrolyte in the positive electrode mixture, the positive electrode current collector foil has a through hole, and the through hole is filled with a resin that melts at a predetermined temperature. Therefore, local heat generation can be prevented or suppressed without degrading the battery performance as compared with the all-solid battery of the prior art.

以下、本発明の実施例を示す。
以下の実施例は単に説明するためのものであり、本発明を限定するものではない。
Examples of the present invention will be described below.
The following examples are for illustrative purposes only and are not intended to limit the invention.

実施例1
以下の材料を用いて、図4に示す構造を有する検証用の全固体電池を作製し、Cuと硫化物固体電解質(SEと略記する)との反応による短絡の検証を行った。
銅箔(1mmφ)
正極層(12.5mmφ)
1.正極集電箔:Al箔
2.正極核物質:LiNi1/3Co1/3Mn1/3
3.固体電解質:硫化物固体電解質
4.バインダー:PVDF
5.導電助剤:VGCF
硫化物固体電解質層(13.0mmφ)
1.固体電解質:硫化物固体電解質
2.バインダー:ABR
負極層(13.0mmφ)
1.負極集電箔:Cu箔
2.負極活物質:カーボン
3.固体電解質:硫化物固体電解質
4.バインダー:PVDF
Example 1
An all-solid battery for verification having the structure shown in FIG. 4 was prepared using the following materials, and a short circuit due to a reaction between Cu and a sulfide solid electrolyte (abbreviated as SE) was verified.
Copper foil (1mmφ)
Positive electrode layer (12.5mmφ)
1. 1. Positive electrode current collector foil: Al foil Positive core material: LiNi 1/3 Co 1/3 Mn 1/3 O 2
3. 3. Solid electrolyte: sulfide solid electrolyte Binder: PVDF
5). Conductive aid: VGCF
Sulfide solid electrolyte layer (13.0mmφ)
1. 1. Solid electrolyte: sulfide solid electrolyte Binder: ABR
Negative electrode layer (13.0mmφ)
1. 1. Negative electrode current collector foil: Cu foil 2. negative electrode active material: carbon 3. Solid electrolyte: sulfide solid electrolyte Binder: PVDF

得られた検証用の全固体電池を用いて、充電挙動を約10時間に亘って測定した。
得られた結果を比較例1の結果とまとめて図5に示す。
また、前記検証用の全固体電池において、正極層/SE界面の挿入されたCu箔に着目して、充電前後の電池断面写真を走査型電子顕微鏡(SEM)およびエネルギー分散型X線(EDX)により測定した。
得られた写真の写しを図6A(充電前)および図6B(充電後)に示す。
Using the obtained all-solid battery for verification, charging behavior was measured over about 10 hours.
The obtained results are shown together with the results of Comparative Example 1 in FIG.
Further, in the all-solid battery for verification, focusing on the Cu foil inserted with the positive electrode layer / SE interface, the cross-sectional photographs of the battery before and after charging are taken with a scanning electron microscope (SEM) and energy dispersive X-ray (EDX). It was measured by.
A copy of the resulting photograph is shown in FIGS. 6A (before charging) and 6B (after charging).

比較例1
実施例1の検証用の全固体電池から銅箔を除いて作製した図4に示す従来の全固体電池について、充電挙動を測定した。
得られた結果を実施例1の結果とまとめて図5に示す。
Comparative Example 1
The charging behavior of the conventional all solid state battery shown in FIG. 4 prepared by removing the copper foil from the all solid state battery for verification of Example 1 was measured.
The obtained results are shown together with the results of Example 1 in FIG.

図5から、実施例1の銅箔を挿入した検証用の全固体電池には、充電により短絡が発生していることが確認される。
図6Aおよび図6Bから、実施例1の銅箔を挿入した検証用の全固体電池において、充電前にはSE層へのCuの溶解は観察されないが、充電後にはSE層へのCuの溶解が確認された。
以上の検証結果は、本発明の実施態様の全固体電池によれば、過充電、短絡等が発生しリチウム析出の状態になると電池温度が上昇し、樹脂の溶融温度に到達し、正極集電箔中の貫通孔に充填した樹脂が溶融し、この樹脂溶融により、孔が生成され、その結果、生成された孔を介して正極集電箔上の銅(Cu)と正極合材中の硫化物固体電解質(SE)とが接触して、電気化学反応により電子伝導性が大きいCuSが生成する。そして、CuSの成長により固体電解質層と正極集電箔との間に電子伝導パスが形成され、局所発熱が防止乃至は抑制され得ることを示唆している。
From FIG. 5, it is confirmed that a short circuit occurs due to charging in the all-solid-state battery for verification in which the copper foil of Example 1 is inserted.
From FIG. 6A and FIG. 6B, in the all-solid battery for verification in which the copper foil of Example 1 was inserted, dissolution of Cu into the SE layer was not observed before charging, but dissolution of Cu into the SE layer after charging Was confirmed.
The above verification results show that according to the all solid state battery of the embodiment of the present invention, when overcharge, short circuit, etc. occur and the lithium deposition state occurs, the battery temperature rises and reaches the melting temperature of the resin. The resin filled in the through-holes in the foil is melted, and the resin is melted to generate holes. As a result, the copper (Cu) on the positive electrode current collector foil and the sulfide in the positive electrode mixture are generated through the generated holes. The solid solid electrolyte (SE) comes into contact and CuS having high electron conductivity is generated by an electrochemical reaction. And it is suggested that an electron conduction path is formed between the solid electrolyte layer and the positive electrode current collector foil by the growth of CuS, and local heat generation can be prevented or suppressed.

本発明によって、充電や短絡等による局所発熱を抑制し得る硫化物系全固体電池を提供することができる。   According to the present invention, it is possible to provide a sulfide-based all-solid-state battery that can suppress local heat generation due to charging, short-circuiting, or the like.

1 本発明の実施態様の全固体電池
2 正極集電箔
3 負極集電箔
4 正極層
5 負極層
6 硫化物固体電解質層
7 銅箔
8 貫通孔
10 従来公知の全固体電池
DESCRIPTION OF SYMBOLS 1 All-solid-state battery of embodiment of this invention 2 Positive electrode current collection foil 3 Negative electrode current collection foil 4 Positive electrode layer 5 Negative electrode layer 6 Sulfide solid electrolyte layer 7 Copper foil 8 Through-hole 10 Conventionally known all solid state battery

Claims (1)

正極集電箔および負極集電箔各々の集電箔の一方の面に合材を塗布した正極層および負極層と、正極層と負極層との間に硫化物固体電解質層を備える全固体電池であって、
前記正極層の正極集電箔上に銅箔を有し、
正極層側において正極合材、正極集電箔および銅箔の順に積層されていて、
前記正極合材中には硫化物固体電解質を有し、
前記正極集電箔は貫通孔を有し、
前記貫通孔には、所定の温度で溶融する樹脂が充填されていることを特徴とする、前記電池。
All-solid-state battery comprising a positive electrode layer and a negative electrode layer coated with a mixture on one surface of each of the positive electrode current collector foil and the negative electrode current collector foil, and a sulfide solid electrolyte layer between the positive electrode layer and the negative electrode layer Because
Having a copper foil on the positive electrode current collector foil of the positive electrode layer,
It is laminated in the order of the positive electrode mixture, the positive electrode current collector foil and the copper foil on the positive electrode layer side,
The positive electrode mixture has a sulfide solid electrolyte,
The positive electrode current collector foil has a through hole,
The battery, wherein the through-hole is filled with a resin that melts at a predetermined temperature.
JP2015121114A 2015-06-16 2015-06-16 All-sold battery Pending JP2017004914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015121114A JP2017004914A (en) 2015-06-16 2015-06-16 All-sold battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015121114A JP2017004914A (en) 2015-06-16 2015-06-16 All-sold battery

Publications (1)

Publication Number Publication Date
JP2017004914A true JP2017004914A (en) 2017-01-05

Family

ID=57753044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015121114A Pending JP2017004914A (en) 2015-06-16 2015-06-16 All-sold battery

Country Status (1)

Country Link
JP (1) JP2017004914A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020521286A (en) * 2017-05-31 2020-07-16 ティーディーケイ・エレクトロニクス・アクチェンゲゼルシャフトTdk Electronics Ag Energy storage
WO2022149336A1 (en) * 2021-01-08 2022-07-14 パナソニックIpマネジメント株式会社 Battery and method for producing battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020521286A (en) * 2017-05-31 2020-07-16 ティーディーケイ・エレクトロニクス・アクチェンゲゼルシャフトTdk Electronics Ag Energy storage
WO2022149336A1 (en) * 2021-01-08 2022-07-14 パナソニックIpマネジメント株式会社 Battery and method for producing battery

Similar Documents

Publication Publication Date Title
US10637045B2 (en) Composite electrode and lithium-ion battery comprising same and method for producing the composite electrode
US9252411B2 (en) Multifunction battery separator
JP6885309B2 (en) Series stacked all-solid-state battery
JP4920423B2 (en) Lithium ion secondary battery
KR20160002988A (en) Electrochemical cell with solid and liquid electrolytes
JP6660380B2 (en) Method of making prelithiated silicon anode containing PVDF binder
JP6856042B2 (en) All solid state battery
JP6863299B2 (en) All solid state battery
KR20130105362A (en) Positive electrode for electrical device and electrical device using the same
JP5945401B2 (en) Method for producing positive electrode current collector foil of lithium ion secondary battery
JP2014127333A (en) Positive electrode collector foil of lithium ion secondary battery, and lithium ion secondary battery
JP2014120404A (en) Secondary battery
JP2015002170A (en) Positive electrode active material, and secondary battery
JP2017004914A (en) All-sold battery
JP2017216149A (en) Nonaqueous electrolyte secondary battery
JP2017045594A (en) All-solid-state battery
JP2019169349A (en) Nonaqueous electrolyte secondary battery
CN110612630B (en) Bipolar secondary battery
CN110476288B (en) Nonaqueous electrolyte storage element and method for manufacturing same
JP7331873B2 (en) All-solid battery
JP2015002171A (en) Secondary battery and electrode for secondary battery
US11916218B2 (en) Method and system for use of nitrogen as a stabilization gas of polyacrylonitrile (PAN)
WO2024038739A1 (en) Power storage element and method for producing power storage element
JP2017212111A (en) Nonaqueous electrolyte secondary battery
JP4806053B2 (en) Non-aqueous electrolyte secondary battery