JP2017004695A - Induction heating coil and heating method - Google Patents

Induction heating coil and heating method Download PDF

Info

Publication number
JP2017004695A
JP2017004695A JP2015115864A JP2015115864A JP2017004695A JP 2017004695 A JP2017004695 A JP 2017004695A JP 2015115864 A JP2015115864 A JP 2015115864A JP 2015115864 A JP2015115864 A JP 2015115864A JP 2017004695 A JP2017004695 A JP 2017004695A
Authority
JP
Japan
Prior art keywords
induction heating
heating coil
metal tube
brazing material
brazing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015115864A
Other languages
Japanese (ja)
Other versions
JP6268653B2 (en
Inventor
正三 越智
Shozo Ochi
正三 越智
学 五閑
Manabu Gokan
学 五閑
小島 俊之
Toshiyuki Kojima
俊之 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015115864A priority Critical patent/JP6268653B2/en
Priority to CN201610268474.3A priority patent/CN106255249B/en
Publication of JP2017004695A publication Critical patent/JP2017004695A/en
Application granted granted Critical
Publication of JP6268653B2 publication Critical patent/JP6268653B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/002Soldering by means of induction heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/04Heating appliances
    • B23K3/047Heating appliances electric
    • B23K3/0475Heating appliances electric using induction effects, e.g. Kelvin or skin effects

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Dermatology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Induction Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an induction heating coil and a heating method that can perform both of heating efficiency and uniform heating and secure soldering quality with a short tact.SOLUTION: In an induction heating coil 100 for generating high frequency by electromagnetic induction, arranging soldering material 103 at a connection portion between an end portion of a first metal pipe 102 having a large outer diameter and an end portion 101 of a second metal pipe 102 having a smaller outer diameter than the first metal pipe in a heating target portion 100a, and performing soldering by high frequency heating, two or more turns 105a, 105b are formed in the opposite directions on both the sides of the first and second metal tubes in mutually opposite directions, and a transfer portion 106 for connecting the respective turns can be arranged to be nearer to the second metal pipe than the first metal pipe.SELECTED DRAWING: Figure 1A

Description

本発明は、エアコンなどの空調機に使用される熱交換器において、金属管を高周波ロウ付けするための誘導加熱コイル及び加熱方法に関する。   The present invention relates to an induction heating coil and a heating method for brazing a metal pipe at high frequency in a heat exchanger used in an air conditioner such as an air conditioner.

近年、地球環境保護の観点からCO削減が強く求められる中、一般家庭のエネルギー消費量の約25%を占める空調機においても、省エネルギー化が大きな課題となっている。特にその中で、熱交換器は空調機の重要な構成要素の一つであり、高性能化の要求は非常に高い。 In recent years, CO 2 reduction is strongly demanded from the viewpoint of global environmental protection, and energy saving is a major issue even in air conditioners that account for about 25% of the energy consumption of ordinary households. In particular, the heat exchanger is one of the important components of the air conditioner, and the demand for high performance is very high.

一般に、空調機用熱交換器は、互いに平行状態に配置されたアルミニウム又は鉄等からなる多数枚のプレートフィンと、これらのプレートフィンを厚さ方向に貫通させ、その貫通孔に複数の伝熱管を備えたものが知られている。このような熱交換器を製造するためには、まず、プレートフィンと伝熱管とを所定配置に組み付けて熱交換器コア部を形成する。その後、熱交換器コア部の端部に突出した伝熱管の開口端部に、これらの伝熱管を連通するU字状及びその他の複数個の継手管を接合して、各伝熱管を巡る冷媒経路を形成する必要がある。   Generally, a heat exchanger for an air conditioner includes a large number of plate fins made of aluminum or iron and the like arranged in parallel to each other, and these plate fins are penetrated in the thickness direction, and a plurality of heat transfer tubes are passed through the through holes. The one with is known. In order to manufacture such a heat exchanger, first, plate fins and heat transfer tubes are assembled in a predetermined arrangement to form a heat exchanger core. Thereafter, a U-shaped and a plurality of other joint pipes communicating with the heat transfer tubes are joined to the opening end portions of the heat transfer tubes protruding from the end portions of the heat exchanger core, and the refrigerant circulating around each heat transfer tube It is necessary to form a route.

従来、前記のような金属管の接合方法として、火炎バーナーを用いたガスロウ付け法が用いられていた。このようなガスロウ付けの場合、火炎雰囲気での輻射熱によって金属管を加熱している。このため、加熱領域が広く、かつ数百度の温度分布を生じ、金属管の接合部を局所的かつ一定の温度制御が困難になる。よって、例えば、加熱し過ぎによる金属管の損傷、或いは、加熱不足によるロウ材の回り込み不足、等の不良が発生する。   Conventionally, a gas brazing method using a flame burner has been used as a method for joining metal pipes as described above. In the case of such gas brazing, the metal tube is heated by radiant heat in a flame atmosphere. For this reason, the heating region is wide and a temperature distribution of several hundred degrees is generated, and local and constant temperature control of the joint portion of the metal tube becomes difficult. Therefore, for example, defects such as damage to the metal tube due to excessive heating or insufficient wrapping of the brazing material due to insufficient heating occur.

この問題を解決するために、誘導加熱技術によって金属管の接合部を均等な温度に加熱してロウ付け品質を向上させる高周波ロウ付けの技術開発が行われている(例えば、特許文献1参照。)。   In order to solve this problem, high-frequency brazing technology has been developed to improve the brazing quality by heating the joint portion of the metal tube to an equal temperature by induction heating technology (see, for example, Patent Document 1). ).

具体的なロウ付け工程を以下に示す。   A specific brazing process is shown below.

図7A〜図7Eはそれぞれ従来の誘導加熱による金属管の接合方法の各工程を示す説明図である。   7A to 7E are explanatory views showing respective steps of a conventional method for joining metal tubes by induction heating.

まず、図7Aに示すように、伝熱管302の開口端部に拡管部301を形成する。   First, as shown in FIG. 7A, a tube expansion portion 301 is formed at the opening end of the heat transfer tube 302.

次いで、図7Bに示すように、伝熱管302の開口端部に形成された拡管部301に、リング状のロウ材303と継手管304とを配置する。   Next, as shown in FIG. 7B, a ring-shaped brazing material 303 and a joint pipe 304 are arranged in the expanded pipe portion 301 formed at the open end of the heat transfer tube 302.

次いで、図7Cに示すように、銅管を同一方向に巻き付けた誘導加熱コイル305(ソレノイド型)を、ワーク保持空間305a内に伝熱管302と継手管304との接続部が位置するように近接配置する。   Next, as shown in FIG. 7C, an induction heating coil 305 (solenoid type) in which a copper pipe is wound in the same direction is placed close to the work holding space 305a so that the connection portion between the heat transfer pipe 302 and the joint pipe 304 is located. Deploy.

次いで、図7DDに示すように、誘導加熱コイル305に電流を印加することによって、伝熱管302と継手管304とが加熱されて、リング状のロウ材303が溶融してフィレットが形成され、伝熱管302と継手管304との隙間にロウ材303が回り込む。   Next, as shown in FIG. 7DD, by applying an electric current to the induction heating coil 305, the heat transfer tube 302 and the joint tube 304 are heated, and the ring-shaped brazing material 303 is melted to form a fillet. The brazing material 303 wraps around the gap between the heat pipe 302 and the joint pipe 304.

次いで、図7Eに示すように、電流の印加を停止して誘導加熱コイル305を除去することによって、ロウ材303が冷却されて、伝熱管302と継手管304とを接合することができる。   Next, as shown in FIG. 7E, by stopping the application of current and removing the induction heating coil 305, the brazing material 303 is cooled, and the heat transfer tube 302 and the joint tube 304 can be joined.

しかしながら、昨今の熱交換器に対する低コスト化の要請に伴い、金属管の使用部材は銅からアルミニウムへの変更が進んでいる。銅に比べてアルミニウムのロウ付けの場合、母材とロウ材との融点差が約1/5と非常に小さくなり、ロウ付け品質を確保するためには、母材とロウ材との融点差に収まる温度プロファイルを設定し、放射温度計などの非接触温度計を用いてロウ付け温度を感知して、設定した温度プロファイルに追従させる必要がある(温度フィードバック制御)。特許文献1のような同一方向に巻き付けたソレノイド型のコイルで温度フィードバック制御を行う場合、温度プロファイルに追従させるために出力電源への電流指令値が脈動することで、ロウ材に不均一な上下方向の電磁力が発生し、ロウ材が所定の位置から動いてしまい(ホッピング現象)、ロウ材が溶融不足となる。   However, with recent demands for cost reduction of heat exchangers, the members used for metal tubes are being changed from copper to aluminum. In the case of brazing aluminum compared to copper, the difference in melting point between the base material and the brazing material is as small as about 1/5. In order to ensure the brazing quality, the difference in melting point between the base material and the brazing material. It is necessary to set a temperature profile that falls within the range, sense the brazing temperature using a non-contact thermometer such as a radiation thermometer, and follow the set temperature profile (temperature feedback control). When temperature feedback control is performed with a solenoid type coil wound in the same direction as in Patent Document 1, the current command value to the output power source pulsates in order to follow the temperature profile. Directional electromagnetic force is generated, the brazing material moves from a predetermined position (hopping phenomenon), and the brazing material becomes insufficiently melted.

このホッピング現象の発生メカニズムについて、図8と図9とを参照しながら説明する。図8Bに示すように、温度フィードバック制御を行わず、交流電流のピーク値Cが常に一定値、かつ周期Dが常に一定の場合は、図8Aに示すように、誘導加熱コイルの周回部305a、305bはそれぞれ常に同一方向の磁束Aが発生し、ロウ材303には常に逆向きの等しい電磁力Bが発生して相殺される。このため、ロウ材303は、誘導加熱コイルに対して所定の位置に留まることが可能となる。これに対し、図9Bに示すように、温度フィードバック制御を行った場合、交流電流のピーク値Cが変化し、かつ周期Dが不定となる場合には、図9Aに示すように、誘導加熱コイルの周回部305a、305bに同一方向の磁束Aが発生すると、ロウ材303にかかる電磁力Bが時間的に変化して不均一になる。このため、上向きの力が大きくなったときにロウ材303が誘導加熱コイルに対して所定の位置から持ち上げられてしまう。   The generation mechanism of this hopping phenomenon will be described with reference to FIGS. As shown in FIG. 8B, when the temperature feedback control is not performed and the peak value C of the alternating current is always a constant value and the period D is always constant, as shown in FIG. 8A, the circulating portion 305a of the induction heating coil, 305b always generates a magnetic flux A in the same direction, and the brazing material 303 always generates an equal electromagnetic force B in the opposite direction and cancels it. For this reason, it becomes possible for the brazing material 303 to remain in a predetermined position with respect to the induction heating coil. On the other hand, as shown in FIG. 9B, when the temperature feedback control is performed, when the peak value C of the alternating current changes and the period D becomes indefinite, as shown in FIG. When the magnetic flux A in the same direction is generated in the surrounding portions 305a and 305b, the electromagnetic force B applied to the brazing material 303 changes with time and becomes non-uniform. For this reason, when the upward force becomes large, the brazing material 303 is lifted from a predetermined position with respect to the induction heating coil.

温度フィードバック制御を行う際の誘導加熱コイルとして、図10A及び図10Bに示すように、銅管を平面視U状もしくはC状、側面視逆U状もしくは逆C状に曲げ加工された誘導加熱コイル405(馬蹄型コイル)を、その平面視U状もしくはC状のワーク保持空間の加熱対象部405a内に伝熱管402と継手管404との接続部が位置するように近接配置することで、不均一な電磁力の発生を防ぐことができる。コイルの構造は、1往復曲成したのみの1ターンを図示しているが、2往復、あるいは3往復以上にわたって曲成した複数ターンであっても良い(例えば、特許文献2参照。)。この場合、図10Dに示すように、温度フィードバック制御を行った場合、交流電流のピーク値Cが変化し、かつ周期Dが不定となるが、図10Cに示すように、誘導加熱コイル405の加熱対象部405aを中心にして両側に互いに逆向きの等しい磁束Aが発生し、ロウ材403には常に逆向きの等しい電磁力Bが発生して相殺されるため、ロウ材403は所定の位置に留まり、ホッピング現象を防ぐことができる。   As an induction heating coil when performing temperature feedback control, as shown in FIGS. 10A and 10B, an induction heating coil in which a copper tube is bent into a U shape or C shape in a plan view or an inverted U shape or an inverted C shape in a side view. 405 (horse-shoe coil) is placed in close proximity so that the connection portion between the heat transfer tube 402 and the joint tube 404 is positioned in the heating target portion 405a of the U-shaped or C-shaped work holding space in plan view. Generation of uniform electromagnetic force can be prevented. Although the structure of the coil shows one turn that is bent once and again, it may be two or more turns that are bent over three or more times (see, for example, Patent Document 2). In this case, as shown in FIG. 10D, when the temperature feedback control is performed, the peak value C of the alternating current changes and the period D becomes indefinite, but as shown in FIG. 10C, the heating of the induction heating coil 405 is performed. Since the same magnetic flux A in the opposite direction is generated on both sides around the target portion 405a and the equal electromagnetic force B in the opposite direction is always generated and offset in the brazing material 403, the brazing material 403 is in a predetermined position. Residual and hopping phenomenon can be prevented.

特許第2923916号公報Japanese Patent No. 2923916 特開平10−216930号公報JP-A-10-216930

しかしながら、前記従来の馬蹄型コイル構造では、U状もしくはC状に曲げ加工されているため、完全に巻き付けたソレノイド型のコイル構造と比べて、発生する磁束密度が小さくなる。磁束密度を上げるために2ターン以上にした場合でも、金属管に対して水平方向で互いに逆向きに電流が流れる渡し部分が上下で存在するため、それぞれの渡し部分で発生する磁束が相殺されて、加熱効率が悪くなる。さらに磁束の分布も不均一になり、母材とロウ材の融点差が非常に小さいアルミニウムのロウ付けの場合、均一加熱によるロウ付けの品質確保が難しくなる。   However, since the conventional horseshoe coil structure is bent into a U shape or a C shape, the generated magnetic flux density is smaller than that of a completely wound solenoid type coil structure. Even when two or more turns are used to increase the magnetic flux density, there are upper and lower transfer portions where current flows in opposite directions in the horizontal direction with respect to the metal tube, so that the magnetic flux generated at each transfer portion is offset. , Heating efficiency deteriorates. Further, the distribution of magnetic flux becomes non-uniform, and in the case of aluminum brazing where the difference in melting point between the base material and the brazing material is very small, it is difficult to ensure the quality of brazing by uniform heating.

本発明は、前記従来の課題を解決するものであり、アルミニウムのロウ付けのように母材とロウ材との融点差が非常に小さく、温度フィードバック制御を行う場合でも、加熱効率と均一加熱との両立が可能な誘導加熱コイル及び加熱方法を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and the melting point difference between the base material and the brazing material is very small like brazing of aluminum, and even when temperature feedback control is performed, heating efficiency and uniform heating are achieved. It is an object to provide an induction heating coil and a heating method capable of satisfying both of the above.

前記の目的を達成するために、本発明の1つの態様にかかる誘導加熱コイルによれば、電磁誘導により高周波を発生させ、加熱対象部に、外径寸法の大きい第1金属管の端部と前記第1金属管よりも外径寸法の小さい第2金属管の端部との接続部分にロウ材を配置して、高周波加熱してロウ付けを行う誘導加熱コイルにおいて、
前記第1及び第2金属管のそれぞれの両側に、互いに逆方向に2巻き以上の周回部を形成し、かつ、それぞれの周回部をつなぐ渡し部が、前記第1金属管よりも第2金属管側に配置可能である。
In order to achieve the above object, according to the induction heating coil according to one aspect of the present invention, a high frequency is generated by electromagnetic induction, and the end of the first metal tube having a large outer diameter is formed on the heating target portion. In the induction heating coil that brazes by placing a brazing material at the connection portion with the end of the second metal tube having a smaller outer diameter than the first metal tube, and heating at high frequency,
On both sides of each of the first and second metal tubes, two or more turns are formed in opposite directions, and a connecting portion that connects the turns is a second metal rather than the first metal tube. Can be placed on the tube side.

また、前記の目的を達成するために、本発明の別の態様にかかる加熱方法によれば、電磁誘導により高周波を発生させ、加熱対象部に、外径寸法の大きい第1金属管の端部と前記第1金属管よりも外径寸法の小さい第2金属管の端部との接続部分にロウ材を配置して、高周波加熱してロウ付けを行う誘導加熱コイルを使用して行う加熱方法において、
前記第1及び第2金属管のそれぞれの両側に、前記誘導加熱コイルの互いに逆方向に2巻き以上の周回部が配置され、それぞれの周回部をつなぐ渡し部が、前記第1金属管よりも第2金属管側に配置され、
その後、前記誘導加熱コイルに電流が供給されて、前記第1金属管の端部と前記第2金属管の端部との前記接続部分を高周波加熱して前記ロウ材でロウ付けを行う。
Moreover, in order to achieve the said objective, according to the heating method concerning another aspect of this invention, a high frequency is generated by electromagnetic induction and the edge part of the 1st metal tube with a large outer diameter dimension is made into a heating object part. And a heating method using an induction heating coil in which brazing material is disposed at a connection portion between the first metal tube and the end of the second metal tube having a smaller outer diameter than the first metal tube, and brazing by high frequency heating In
Two or more turns of the induction heating coil are arranged in opposite directions on both sides of the first and second metal tubes, and a connecting portion connecting the respective turns is more than the first metal tube. Arranged on the second metal tube side,
Thereafter, an electric current is supplied to the induction heating coil, and the connecting portion between the end of the first metal tube and the end of the second metal tube is heated at a high frequency to braze with the brazing material.

以上のように、本発明の前記態様にかかる誘導加熱コイル及び加熱方法は、アルミニウムのロウ付けのように母材とロウ材との融点差が非常に小さく、温度フィードバック制御を行う場合でも、加熱効率と均一加熱との両立が可能となり、短タクトでロウ付け品質の確保が可能な小型コイルを提供することができるという大きな効果を奏する。   As described above, the induction heating coil and the heating method according to the above aspect of the present invention have a very small melting point difference between the base material and the brazing material, such as brazing of aluminum, and even when temperature feedback control is performed. It is possible to achieve both efficiency and uniform heating, and it is possible to provide a small coil capable of ensuring brazing quality with a short tact time.

本発明の第1実施形態にかかる誘導加熱コイルを加熱対象物に配置した状態での構成図The block diagram in the state which has arrange | positioned the induction heating coil concerning 1st Embodiment of this invention in the heating target object. 誘導加熱コイルを側面から見た構成図Configuration view of induction heating coil viewed from the side 誘導加熱コイルを上から見た構成図Configuration view of induction heating coil from above 誘導加熱コイルを正面から見た構成図Configuration view of induction heating coil from the front 本発明の第1実施形態にかかる誘導加熱コイルによる金属管の接合方法の工程を示す説明図Explanatory drawing which shows the process of the joining method of the metal tube by the induction heating coil concerning 1st Embodiment of this invention. 本発明の第1実施形態にかかる誘導加熱コイルによる金属管の接合方法の工程を示す説明図Explanatory drawing which shows the process of the joining method of the metal tube by the induction heating coil concerning 1st Embodiment of this invention. 本発明の第1実施形態にかかる誘導加熱コイルによる金属管の接合方法の各工程を示す説明図Explanatory drawing which shows each process of the joining method of the metal pipe by the induction heating coil concerning 1st Embodiment of this invention. 本発明の第1実施形態にかかる誘導加熱コイルによる金属管の接合方法の各工程を示す説明図Explanatory drawing which shows each process of the joining method of the metal pipe by the induction heating coil concerning 1st Embodiment of this invention. 本発明の第1実施形態にかかる誘導加熱コイルによる金属管の接合方法の各工程を示す説明図Explanatory drawing which shows each process of the joining method of the metal pipe by the induction heating coil concerning 1st Embodiment of this invention. 本発明の第1実施形態にかかる誘導加熱コイルで温度フィードバック制御を行うときの模式図The schematic diagram when performing temperature feedback control with the induction heating coil concerning 1st Embodiment of this invention 本発明の第1実施形態にかかる誘導加熱コイルで温度フィードバック制御を行うときの電流波形図Current waveform diagram when temperature feedback control is performed by the induction heating coil according to the first embodiment of the present invention. 本発明の第1実施形態にかかる誘導加熱コイルの設定パラメータを示す図The figure which shows the setting parameter of the induction heating coil concerning 1st Embodiment of this invention. 本発明の第1実施形態にかかる誘導加熱コイルの設定パラメータを示す図The figure which shows the setting parameter of the induction heating coil concerning 1st Embodiment of this invention. 本発明の第1実施形態にかかる誘導加熱コイルの設定パラメータを示す図The figure which shows the setting parameter of the induction heating coil concerning 1st Embodiment of this invention. 本発明の第1実施形態にかかる誘導加熱コイルの設定パラメータによるシミュレーション結果のグラフThe graph of the simulation result by the setting parameter of the induction heating coil concerning 1st Embodiment of this invention 本発明の第1実施形態にかかる誘導加熱コイルの設定パラメータによるシミュレーション結果のグラフThe graph of the simulation result by the setting parameter of the induction heating coil concerning 1st Embodiment of this invention 本発明の第2実施形態にかかる誘導加熱コイルの構成図The block diagram of the induction heating coil concerning 2nd Embodiment of this invention. 本発明の第2実施形態にかかる誘導加熱コイルの構成図The block diagram of the induction heating coil concerning 2nd Embodiment of this invention. 本発明の第2実施形態にかかる誘導加熱コイルの構成図The block diagram of the induction heating coil concerning 2nd Embodiment of this invention. 本発明の第2実施形態にかかる誘導加熱コイルの構成図The block diagram of the induction heating coil concerning 2nd Embodiment of this invention. 従来の誘導加熱による金属管の接合方法の工程を示す説明図Explanatory drawing which shows the process of the joining method of the metal pipe by the conventional induction heating 従来の誘導加熱による金属管の接合方法の工程を示す説明図Explanatory drawing which shows the process of the joining method of the metal pipe by the conventional induction heating 従来の誘導加熱による金属管の接合方法の工程を示す説明図Explanatory drawing which shows the process of the joining method of the metal pipe by the conventional induction heating 従来の誘導加熱による金属管の接合方法の工程を示す説明図Explanatory drawing which shows the process of the joining method of the metal pipe by the conventional induction heating 従来の誘導加熱による金属管の接合方法の工程を示す説明図Explanatory drawing which shows the process of the joining method of the metal pipe by the conventional induction heating 従来の誘導加熱コイルで温度フィードバック制御を行わないときの模式図Schematic diagram when temperature feedback control is not performed with a conventional induction heating coil 従来の誘導加熱コイルで温度フィードバック制御を行わないときの電流波形図Current waveform diagram when temperature feedback control is not performed with a conventional induction heating coil 従来の誘導加熱コイルで温度フィードバック制御を行うときの模式図Schematic diagram when performing temperature feedback control with a conventional induction heating coil 従来の誘導加熱コイルで温度フィードバック制御を行うときの電流波形図Current waveform diagram when performing temperature feedback control with a conventional induction heating coil 従来の誘導加熱コイル(馬蹄型コイル)で温度フィードバック制御を行うときの模式図Schematic diagram when performing temperature feedback control with a conventional induction heating coil (horse-shoe coil) 従来の誘導加熱コイル(馬蹄型コイル)で温度フィードバック制御を行うときの模式図Schematic diagram when performing temperature feedback control with a conventional induction heating coil (horse-shoe coil) 従来の誘導加熱コイル(馬蹄型コイル)で温度フィードバック制御を行うときの模式図Schematic diagram when performing temperature feedback control with a conventional induction heating coil (horse-shoe coil) 従来の誘導加熱コイル(馬蹄型コイル)で温度フィードバック制御を行うときの電流波形図Current waveform diagram when performing temperature feedback control with a conventional induction heating coil (horse-shoe coil)

以下、本発明実施形態について、図面を参照しながら説明する。なお、同じ要素については、同じ符号を付しており説明を省略する場合がある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, about the same element, the same code | symbol is attached | subjected and description may be abbreviate | omitted.

(第1実施形態)
図1Aは、本発明の第1実施形態にかかる加熱方法で使用する誘導加熱装置、すなわち、2本の金属管102,104をロウ付けするための誘導加熱コイル100の構成を示す図である。また、図1Bは誘導加熱コイル100を側面から見た構成図である。図1Cは誘導加熱コイル100を上から見た構成図である。図1Dは誘導加熱コイル100を正面から見た構成図である。図2A〜図2Eは、本発明の第1実施形態にかかる2本の金属管102,104の接合方法の各工程を示す説明図である。
(First embodiment)
FIG. 1A is a diagram showing a configuration of an induction heating apparatus used in the heating method according to the first embodiment of the present invention, that is, an induction heating coil 100 for brazing two metal tubes 102 and 104. Moreover, FIG. 1B is the block diagram which looked at the induction heating coil 100 from the side surface. FIG. 1C is a configuration diagram of the induction heating coil 100 as viewed from above. FIG. 1D is a configuration diagram of the induction heating coil 100 as viewed from the front. 2A to 2E are explanatory views showing each step of the method for joining two metal tubes 102 and 104 according to the first embodiment of the present invention.

誘導加熱コイル100は、加熱対象部(加熱対象空間又は加熱対象領域)100aに加熱対象物90のロウ付け部90aを配置して、電磁誘導により高周波を発生させて、高周波加熱しロウ付けを行うものである。   The induction heating coil 100 arranges a brazing part 90a of the heating object 90 in a heating target part (heating target space or heating target area) 100a, generates high frequency by electromagnetic induction, performs high frequency heating and brazing. Is.

この加熱コイル100は、加熱対象物90の両側に配置可能でかつ同じ開口面積で互いに逆方向に2巻き以上形成された周回部105a、105bと、それぞれの周回部105a、105bを電気的に導通させるようにつなぐ渡し部106とで構成されている。誘導加熱コイル100は、例えば銅管で形成され、銅管の内部には冷却水107が流れている。   The heating coil 100 can be disposed on both sides of the heating object 90 and is electrically connected to the surrounding portions 105a and 105b formed in two or more opposite directions with the same opening area, and the surrounding portions 105a and 105b. It is comprised with the transfer part 106 connected so that it may make. The induction heating coil 100 is formed of, for example, a copper pipe, and cooling water 107 flows inside the copper pipe.

加熱対象物90の一例としては、外径寸法の大きい第1金属管の一例としての伝熱管102の端部と、第1金属管よりも外径寸法の小さい第2金属管の一例としての継手管104の端部と、伝熱管102の端部に配置されたリング状のロウ材103とで構成されている。伝熱管102の端部である開口端部には、拡管部101を形成している。接合時には、この拡管部101に、ロウ付け部90aとして、リング状のロウ材103と継手管104の接続側の端部とを配置する。   As an example of the heating object 90, an end portion of the heat transfer tube 102 as an example of a first metal tube having a large outer diameter and a joint as an example of a second metal tube having a smaller outer diameter than the first metal tube It is comprised by the edge part of the pipe | tube 104, and the ring-shaped brazing material 103 arrange | positioned at the edge part of the heat exchanger tube 102. FIG. A tube expansion portion 101 is formed at an opening end portion that is an end portion of the heat transfer tube 102. At the time of joining, a ring-shaped brazing material 103 and an end portion on the connection side of the joint pipe 104 are disposed as a brazing portion 90 a in the pipe expanding portion 101.

よって、第1実施形態の誘導加熱コイル100の加熱対象部100aに、2本の金属管102,104とロウ材103との加熱対象物90のロウ付け部90aを配置して接合するときは、以下のような配置とする。すなわち、図1Aに示すように、加熱コイル100の加熱対象部100aに、開口端部に拡管部101を形成した伝熱管102と、その拡管部101にリング状のロウ材103と継手管104とを配置する。このとき、リング状のロウ材103が配置された加熱対象部100aを中心にして、加熱コイル100の周回部105a、105bが加熱対象部100aの両側に配置され、かつ、それぞれの周回部105a、105bをつなぐ渡し部106が、伝熱管102よりも外径の小さい継手管104側に配置可能に構成している。このような配置状態で、加熱コイル100に電流を流せば、電磁誘導により加熱コイル100に高周波を発生させさせることができて、伝熱管102と継手管104とをリング状のロウ材103を介して、高周波ロウ付けを行うことができる。   Therefore, when arranging and joining the brazing part 90a of the heating object 90 of the two metal tubes 102 and 104 and the brazing material 103 to the heating object part 100a of the induction heating coil 100 of the first embodiment, The arrangement is as follows. That is, as shown in FIG. 1A, a heat transfer tube 102 in which a tube expansion portion 101 is formed at an opening end portion in a heating target portion 100 a of the heating coil 100, and a ring-shaped brazing material 103 and a joint tube 104 on the tube expansion portion 101. Place. At this time, around the heating target portion 100a where the ring-shaped brazing material 103 is arranged, the surrounding portions 105a and 105b of the heating coil 100 are arranged on both sides of the heating target portion 100a, and the respective surrounding portions 105a, The transfer part 106 which connects 105b is comprised so that arrangement | positioning is possible at the coupling pipe 104 side whose outer diameter is smaller than the heat exchanger tube 102. FIG. In this arrangement state, if a current is passed through the heating coil 100, a high frequency can be generated in the heating coil 100 by electromagnetic induction, and the heat transfer tube 102 and the joint tube 104 are connected via the ring-shaped brazing material 103. Thus, high-frequency brazing can be performed.

このような誘導加熱コイル100用いた加熱対象物90の例としての金属管102,104の接合は、具体的には、以下のような図2A〜図2Eの工程により行われる。   Specifically, the joining of the metal tubes 102 and 104 as an example of the heating object 90 using the induction heating coil 100 is performed by the following processes of FIGS. 2A to 2E.

始めに、図2Aに示すように、伝熱管102の開口端部に、拡管部101を形成する。   First, as shown in FIG. 2A, a tube expansion portion 101 is formed at the opening end portion of the heat transfer tube 102.

次いで、図2Bに示すように、伝熱管102の開口端部に形成された拡管部101に、リング状のロウ材103と継手管104とを配置する。   Next, as shown in FIG. 2B, a ring-shaped brazing material 103 and a joint pipe 104 are arranged in the expanded pipe portion 101 formed at the open end of the heat transfer tube 102.

次いで、図2Cに示すように、伝熱管102と継手管104とをリング状のロウ材103を介して、誘導加熱コイル100による高周波ロウ付けを行う準備を行う。すなわち、伝熱管102と継手管104との間のリング状のロウ材103が配置されたロウ付け部90aを中心にして、誘導加熱コイル100の同じ開口面積で互いに逆方向に2巻きの周回部105a、105bを配置し、かつ、それぞれの周回部105a、105bをつなぐ渡し部106が、伝熱管102よりも外径の小さい継手管104側に配置可能(近接配置可能)としている。このため、渡し部106の間隔は、継手管104よりも少し大きい程度の寸法としている。渡し部106の間隔は、継手管104が挿入されればよいため、伝熱管102の直径より小さくしてもよい。   Next, as shown in FIG. 2C, preparation is performed for high-frequency brazing using the induction heating coil 100 between the heat transfer tube 102 and the joint tube 104 via the ring-shaped brazing material 103. That is, with the same opening area of the induction heating coil 100 as the center, the winding portion 90a in which the ring-shaped brazing material 103 between the heat transfer tube 102 and the joint tube 104 is arranged is wound around two turns. 105a and 105b are arranged, and the transfer part 106 which connects each circumference part 105a and 105b can be arrange | positioned to the joint pipe 104 side whose outer diameter is smaller than the heat exchanger tube 102 (proximity arrangement | positioning is possible). For this reason, the space | interval of the transfer part 106 is taken as the dimension of the extent a little larger than the coupling pipe 104. The interval between the transfer portions 106 may be smaller than the diameter of the heat transfer tube 102 because the joint tube 104 may be inserted.

次いで、図2Dに示すように、このような配置状態で誘導加熱コイル100に電流を印加することによって、伝熱管102と継手管104とが加熱されて、リング状のロウ材103が溶融してフィレットが形成され、拡管部101から伝熱管102と継手管104との隙間にロウ材103が回り込む。このとき、非接触放射温度計を用いて、温度測定スポット108が所定の温度プロファイルに追従するように、PID制御による温度フィードバック制御を行う。   Next, as shown in FIG. 2D, by applying an electric current to the induction heating coil 100 in such an arrangement state, the heat transfer tube 102 and the joint tube 104 are heated, and the ring-shaped brazing material 103 is melted. A fillet is formed, and the brazing material 103 wraps around the gap between the heat transfer tube 102 and the joint tube 104 from the expanded portion 101. At this time, temperature feedback control by PID control is performed using a non-contact radiation thermometer so that the temperature measurement spot 108 follows a predetermined temperature profile.

次いで、図2Eに示すように、電流の印加を停止して誘導加熱コイル100を加熱対象物90から除去することによって、ロウ材103が冷却されて、伝熱管102と継手管104とを接合することができる。   Next, as shown in FIG. 2E, by stopping the application of current and removing the induction heating coil 100 from the heating object 90, the brazing material 103 is cooled, and the heat transfer tube 102 and the joint tube 104 are joined. be able to.

このとき、伝熱管102は、一例として、直径Φ8mm、肉厚0.8mmのアルミニウム管(融点660℃)である。継手管104は、一例として、直径Φ7mm、肉厚0.8mmのアルミニウム管である。リング状のロウ材103は、一例として、直径Φ1mmのアルミニウムロウ(融点580℃)である。誘導加熱コイル100は、直径Φ3mmの銅パイプで形成されており、周回部105a、105bそれぞれの直径は20mmである。   At this time, the heat transfer tube 102 is, for example, an aluminum tube (melting point: 660 ° C.) having a diameter of 8 mm and a thickness of 0.8 mm. For example, the joint pipe 104 is an aluminum pipe having a diameter of 7 mm and a thickness of 0.8 mm. As an example, the ring-shaped brazing material 103 is aluminum brazing (melting point 580 ° C.) having a diameter of Φ1 mm. The induction heating coil 100 is formed of a copper pipe having a diameter of 3 mm, and the diameter of each of the circulating portions 105a and 105b is 20 mm.

この場合、図3Bに示すように、温度フィードバック制御を行った場合、交流電流のピーク値Cが変化し、かつ周期Dが不定となる。しかしながら、図3Aに示すように、誘導加熱コイル100の周回部105a、105bにそれぞれ常に逆方向の磁束Aが発生し、ロウ材103には常に逆向きの等しい電磁力Bが発生して相殺される。このため、ホッピング現象が抑制されて、ロウ材103は、誘導加熱コイル100に対して所定の位置(加熱対象部100a)に留まることが可能となる。   In this case, as shown in FIG. 3B, when temperature feedback control is performed, the peak value C of the alternating current changes and the period D becomes indefinite. However, as shown in FIG. 3A, the magnetic flux A in the reverse direction is always generated in each of the circulating portions 105a and 105b of the induction heating coil 100, and the equal electromagnetic force B in the reverse direction is always generated in the brazing material 103 to be offset. The For this reason, the hopping phenomenon is suppressed, and the brazing material 103 can remain at a predetermined position (heating target portion 100a) with respect to the induction heating coil 100.

このとき、一例として、誘導加熱コイル100に電流を供給する誘導加熱電源80(図1C参照)の出力は5kW、周波数は300kHzであるとする。ここでは、パワー印加後、7秒でロウ付け部90aが600℃に加熱されるように非接触温度計の温度測定スポット108での温度プロファイルを設定し、PID制御による温度フィードバック制御を行って、リング状のロウ材を溶融、浸透させて高周波ロウ付けが行われる。   At this time, as an example, it is assumed that the output of the induction heating power supply 80 (see FIG. 1C) that supplies current to the induction heating coil 100 is 5 kW and the frequency is 300 kHz. Here, after applying power, set the temperature profile at the temperature measurement spot 108 of the non-contact thermometer so that the brazing part 90a is heated to 600 ° C. in 7 seconds, and perform temperature feedback control by PID control, High-frequency brazing is performed by melting and infiltrating a ring-shaped brazing material.

前記のような誘導加熱コイル100により、ホッピング現象を抑制することが可能となるが、金属管102,104の材料にアルミニウムを使用した場合は、ロウ付け時に制御すべき温度範囲が、他の金属材料を用いたときに比べて非常に狭くなるため、金属管102,104の破断なくロウ付けを行うには、ロウ付け部90aを非常に狭い温度範囲(約80℃)で制御することが求められる。このため、金属管102,104の構造を考慮して、誘導加熱コイル100の形状及び配置を工夫する必要がある。そこで、誘導加熱コイル100が満たすべき形状及び配置の条件を、シミュレーションを用いて導出する。以下では、コイル構造のパラメータについて説明したのち、シミュレーションによってホッピング現象が発生せずにロウ付けを実現する誘導加熱コイル100の形状及び配置の条件を説明する。   Although the hopping phenomenon can be suppressed by the induction heating coil 100 as described above, when aluminum is used as the material of the metal tubes 102 and 104, the temperature range to be controlled during brazing is different from that of other metals. Since it becomes very narrow compared with the case where the material is used, in order to perform brazing without breaking the metal tubes 102 and 104, it is required to control the brazing portion 90a in a very narrow temperature range (about 80 ° C.). It is done. For this reason, it is necessary to devise the shape and arrangement of the induction heating coil 100 in consideration of the structure of the metal tubes 102 and 104. Therefore, the shape and arrangement conditions to be satisfied by the induction heating coil 100 are derived using simulation. Hereinafter, after describing the parameters of the coil structure, the shape and arrangement conditions of the induction heating coil 100 that realizes brazing without causing a hopping phenomenon by simulation will be described.

まず、誘導加熱コイルのパラメータについて、図4A、図4Bを用いて説明する。図4Aにおいて、誘導加熱コイル100の周回部105a、105bの金属管長手方向の外径をX、リング状のロウ材103の伝熱管102側の端面と誘導加熱コイル100の周回部105a、105bの中心軸との距離をZと定義する。また、図4Bにおいて、誘導加熱コイル100の周回部105a、105bの渡し部106の傾き角度をθと定義する。   First, parameters of the induction heating coil will be described with reference to FIGS. 4A and 4B. 4A, the outer diameters of the circumferential portions 105a and 105b of the induction heating coil 100 in the longitudinal direction of the metal tube are X, the end surface of the ring-shaped brazing material 103 on the heat transfer tube 102 side, and the circumferential portions 105a and 105b of the induction heating coil 100. The distance from the central axis is defined as Z. Moreover, in FIG. 4B, the inclination angle of the transfer part 106 of the surrounding parts 105a and 105b of the induction heating coil 100 is defined as θ.

これらのパラメータがホッピング現象及び加熱特性に及ぼす影響を、シミュレーションにより評価した。シミュレーションツールとして、JMAG−Designer Ver13.1.02g(JSOL株式会社)の電磁場・熱連成解析機能を使用した。解析モデルは、図1Aに示す誘導加熱コイルと同等のものを作成し、金属管及びリング状のロウ材については形状を固定した。また、誘導加熱コイルについて、ホッピング現象の抑制に効果を持たないパラメータは、値を固定して解析を行った。   The effects of these parameters on the hopping phenomenon and heating characteristics were evaluated by simulation. As a simulation tool, the electromagnetic field / thermal coupled analysis function of JMAG-Designer Ver 13.1.02 g (JSOL Corporation) was used. An analysis model equivalent to the induction heating coil shown in FIG. 1A was created, and the shape of the metal tube and the ring-shaped brazing material was fixed. In addition, for the induction heating coil, parameters having no effect on suppressing the hopping phenomenon were analyzed with fixed values.

ここでは、一例として、継手管104の長さを63mm、直径Φ7mm、肉厚1mmとし、伝熱管102の長さを56mm、直径Φ7mm、肉厚1mmとした。また、一例として、拡管部101は、直径Φ12mmと拡管し、リング状のロウ材103はワイヤ径Φ1.6mm、リング内径Φ6.9mmとしている。これらの加熱対象物90に対する加熱対象領域は、伝熱管102と継手管104の接合部(ロウ付け部90a)の前後15mmの範囲と設定した。   Here, as an example, the length of the joint tube 104 is 63 mm, the diameter is 7 mm, and the wall thickness is 1 mm, and the length of the heat transfer tube 102 is 56 mm, the diameter is 7 mm, and the wall thickness is 1 mm. Further, as an example, the pipe expanding portion 101 has a diameter Φ12 mm and the ring-shaped brazing material 103 has a wire diameter Φ1.6 mm and a ring inner diameter Φ6.9 mm. The area to be heated with respect to the object to be heated 90 was set to a range of 15 mm before and after the joined portion (the brazed portion 90a) of the heat transfer tube 102 and the joint tube 104.

また、誘導加熱コイルのパラメータについては、以下のように固定した。誘導加熱コイルと金属管との距離は2.85mm、誘導加熱コイルの周回部の外径は20mm、ピッチは0.5mm、ターン数は2とした。   The induction heating coil parameters were fixed as follows. The distance between the induction heating coil and the metal tube was 2.85 mm, the outer diameter of the circumference of the induction heating coil was 20 mm, the pitch was 0.5 mm, and the number of turns was 2.

解析では、ホッピング現象を抑制し、ロウ付けができる条件を求めるため、誘導加熱コイルのロウ材への相対位置のパラメータを振った。なお、実験で実施したロウ付けでは、金属管のロウ付け部の最低温度がロウ材の融点600℃に到達した時間が2.5秒未満の場合、加熱対象部の昇温速度が速すぎるために金属管の破断が発生し、3.5秒より時間がかかると、逆に昇温速度が遅すぎてロウ材の未溶融又は浸透不足が発生した。このため、本解析においては、到達時間2.5秒以上3.5秒以下を満たし、図4Aのロウ材と誘導加熱コイルの周回部の中心軸との距離Zが0mmの位置にあるときの電磁力を1として、相対位置を変化させたときにロウ材が受ける電磁力との比率が1以下となったときのパラメータの範囲が、今回導出する条件とした。   In the analysis, the parameter of the relative position of the induction heating coil to the brazing material was varied to suppress the hopping phenomenon and obtain conditions for brazing. In the brazing performed in the experiment, when the time when the minimum temperature of the brazing part of the metal tube reaches the melting point 600 ° C. of the brazing material is less than 2.5 seconds, the heating rate of the heating target part is too high. When the metal tube broke and took more than 3.5 seconds, the rate of temperature increase was too slow and the brazing material was not melted or insufficiently penetrated. For this reason, in this analysis, when the arrival time is 2.5 seconds or more and 3.5 seconds or less and the distance Z between the brazing material in FIG. 4A and the central axis of the circulating portion of the induction heating coil is 0 mm, Assuming that the electromagnetic force is 1, the parameter range when the ratio of the electromagnetic force received by the brazing material when the relative position is changed to 1 or less is the condition derived this time.

図5Aは、誘導加熱コイル100の周回部105a,105bの渡し部106の傾き角度θのパラメータを振り、それぞれの値を同一グラフにプロットしている。ロウ付け部90aの最低温度がロウ材103の融点600℃へ到達する時間が2.5秒以上3.5秒以下になるのは、傾き角度θが−30°以上+25°以下であれば、ホッピング現象を抑制し、ロウ付け可能となる。なお、このとき、ロウ材103が受ける電磁力との比率は、常に1以下であった。   FIG. 5A plots the parameter of the inclination angle θ of the transfer section 106 of the circulating sections 105a and 105b of the induction heating coil 100, and plots each value in the same graph. The time for the lowest temperature of the brazing portion 90a to reach the melting point 600 ° C. of the brazing material 103 is 2.5 seconds or more and 3.5 seconds or less if the inclination angle θ is −30 ° or more and + 25 ° or less. The hopping phenomenon can be suppressed and brazing can be performed. At this time, the ratio of the electromagnetic force received by the brazing material 103 was always 1 or less.

さらに、図5Bは、誘導加熱コイル100の周回部105a,105bの金属管長手方向の外径をX、リング状のロウ材103と誘導加熱コイル100の周回部105a,105bの中心軸との距離をZとしたときの比率Z/Xのパラメータを振り、それぞれの値を同一グラフにプロットしている。ロウ材103が受ける電磁力との比率が1以下となるのは、比率Z/Xが5%以下であればホッピング現象を抑制し、ロウ付け可能となる。比率Z/Xが5%以下とは、言い換えれば、加熱対象部100aに配置したロウ材103と、周回部105a,105bの中心軸との距離Zが、周回部105a,105bの外径Xに対して±5%以内であることを意味する。なおこのとき、ロウ付け部90aの最低温度がロウ材103の融点600℃へ到達する時間は、常に2.5秒以上3.5秒以下であった。   Further, FIG. 5B shows that the outer diameter in the metal tube longitudinal direction of the surrounding portions 105a and 105b of the induction heating coil 100 is X, and the distance between the ring-shaped brazing material 103 and the central axis of the surrounding portions 105a and 105b of the induction heating coil 100. The parameter of the ratio Z / X where Z is Z is assigned, and each value is plotted on the same graph. The ratio of the electromagnetic force received by the brazing material 103 to 1 or less is that if the ratio Z / X is 5% or less, the hopping phenomenon is suppressed and brazing is possible. The ratio Z / X is 5% or less, in other words, the distance Z between the brazing material 103 arranged in the heating target portion 100a and the central axis of the surrounding portions 105a and 105b is equal to the outer diameter X of the surrounding portions 105a and 105b. In contrast, it means within ± 5%. At this time, the time for the lowest temperature of the brazing portion 90a to reach the melting point 600 ° C. of the brazing material 103 was always 2.5 seconds or more and 3.5 seconds or less.

また、図4Cにおいて、誘導加熱コイルの周回部105a、105bをつなぐ渡し部106と継手管104との距離は常に一定、すなわち、渡し部106のいずれの位置でも継手管104との最短距離は一定であり、これによって継手管104を均等に加熱することができる。このとき、渡し部106は、半円もしくは半楕円の形状となる。一般に、楕円の長軸の長さをA、短軸の長さをBとすると、楕円の長さLDは、   In FIG. 4C, the distance between the connecting portion 106 connecting the circulating portions 105a and 105b of the induction heating coil and the joint pipe 104 is always constant, that is, the shortest distance to the joint pipe 104 is constant at any position of the connecting portion 106. Thus, the joint pipe 104 can be heated evenly. At this time, the transfer unit 106 has a semicircular or semi-elliptical shape. In general, when the length of the major axis of the ellipse is A and the length of the minor axis is B, the length LD of the ellipse is

Figure 2017004695
で表される。よって、渡し部106と継手管104の中心との距離をα、渡し部106の水平方向(例えば、ロウ材の加熱対象面、又は、周回部105a、105bの中心軸方向と継手管104の中心軸方向との両方に直交する方向)に対する傾き角度をθとすると、渡し部106の長さLWは、
Figure 2017004695
It is represented by Therefore, the distance between the transfer part 106 and the center of the joint pipe 104 is α, and the horizontal direction of the transfer part 106 (for example, the surface to be heated of the brazing material or the center axis direction of the circulating parts 105a and 105b and the center of the joint pipe 104) When the inclination angle with respect to the direction perpendicular to both the axial direction is θ, the length LW of the transfer portion 106 is

Figure 2017004695
で表される。例えば、継手管104の直径Φを7mm、周回部105a、105bと継手管104との距離を2.85mmとしたとき、α=6.35mmとなり、
α=6.35mm、θ=0°のとき、LW≒19.9mm
α=6.35mm、θ=−30°のとき、LW≒21.5mm
となる。
Figure 2017004695
It is represented by For example, when the diameter Φ of the joint pipe 104 is 7 mm and the distance between the circulating portions 105a and 105b and the joint pipe 104 is 2.85 mm, α = 6.35 mm.
When α = 6.35 mm and θ = 0 °, LW≈19.9 mm
When α = 6.35 mm and θ = −30 °, LW≈21.5 mm
It becomes.

かかる構成によれば、ロウ付け部90aのリング状のロウ材103へ発生する軸方向の電磁力を打ち消すように誘導加熱コイル100が作用し、ホッピング現象が発生することがなくなり、ロウ材103の未溶融、充填不足、及び、浸透不足といった品質不具合を防止する効果が得られる。従って、アルミニウムのロウ付けのように母材とロウ材103との融点差が非常に小さく、温度フィードバック制御を行う場合でも、加熱効率と均一加熱との両立が可能となり、短タクトでロウ付け品質の確保が可能な小型コイルを提供することができる。   According to such a configuration, the induction heating coil 100 acts so as to cancel the axial electromagnetic force generated on the ring-shaped brazing material 103 of the brazing portion 90 a, and the hopping phenomenon does not occur. The effect of preventing quality defects such as unmelted, insufficient filling and insufficient penetration can be obtained. Therefore, the melting point difference between the base material and the brazing material 103 is very small like brazing of aluminum, and even when temperature feedback control is performed, it is possible to achieve both heating efficiency and uniform heating, with a short tact and brazing quality. Can be provided.

(第2実施形態)
図6Aは、本発明の第2実施形態にかかる金属管202,204をロウ付けするための誘導加熱コイル100Bの構成図である。図6Bは誘導加熱コイル100Bの側面から見た構成図である。図6Cは誘導加熱コイル100Bの裏面から見た構成図である。図6Dは誘導加熱コイル100Bの上から見た構成図である。誘導加熱コイル100Bは、一例として銅管で形成され、銅管の内部には冷却水207が流れている。
(Second Embodiment)
FIG. 6A is a configuration diagram of an induction heating coil 100B for brazing the metal tubes 202 and 204 according to the second embodiment of the present invention. FIG. 6B is a configuration diagram viewed from the side of the induction heating coil 100B. FIG. 6C is a configuration diagram viewed from the back surface of the induction heating coil 100B. FIG. 6D is a configuration diagram viewed from above the induction heating coil 100B. The induction heating coil 100B is formed of a copper pipe as an example, and cooling water 207 flows inside the copper pipe.

誘導加熱コイル100Bが、第1実施形態と大きく異なるのは、渡し部206が、加熱対象部100Baに配置した第1及び第2金属管202,204の端部とロウ材203とに対して、2巻き以上で並列接続されていることである。具体的には、渡し部206は、それぞれの周回部205a、205bとつながるところで第1分岐部206aと第2分岐部206bとに分岐しており、加熱対象部100Baに配置した金属管端部とロウ材203に対して、2巻きで並列接続されている。ここでは、2巻きの並列接続を図示しているが、3巻き以上にわたって並列接続した複数ターンであっても良い。   The induction heating coil 100B is greatly different from the first embodiment in that the transfer portion 206 is compared to the end portions of the first and second metal tubes 202 and 204 arranged in the heating target portion 100Ba and the brazing material 203. That is, two or more turns are connected in parallel. Specifically, the transfer unit 206 is branched into a first branch unit 206a and a second branch unit 206b where the transfer unit 206 is connected to each of the circulation units 205a and 205b, and a metal tube end disposed in the heating target unit 100Ba. Two turns of the brazing material 203 are connected in parallel. Here, two turns of parallel connection are illustrated, but a plurality of turns connected in parallel over three turns or more may be used.

この加熱コイル100Bは、加熱対象物90の両側に配置可能でかつ同じ開口面積で互いに逆方向に2巻き以上形成された周回部205a、205bと、それぞれの周回部205a、205bを電気的に導通させるようにつなぎかつ第1分岐部206aと第2分岐部206bとに分岐した渡し部206とで構成されている。   The heating coil 100B can be disposed on both sides of the object to be heated 90, and is electrically connected to the surrounding portions 205a and 205b formed in two or more turns in the opposite direction with the same opening area, and the surrounding portions 205a and 205b. The transfer section 206 is connected to the first branch section 206a and branched to the second branch section 206b.

よって、第2実施形態の誘導加熱コイル100Bの加熱対象部100Baに、2本の金属管202,204とロウ材203との加熱対象物90のロウ付け部90aを配置して接合するときは、以下のような配置とする。すなわち、図6Aに示すように、加熱コイル100Bの加熱対象部100Baに、開口端部に拡管部201を形成した伝熱管202と、その拡管部201にリング状のロウ材203と継手管204とを配置する。このとき、リング状のロウ材203が配置された加熱対象部100Baを中心にして、加熱コイル100Bの周回部205a、205bが加熱対象部100Baの両側に配置され、かつ、それぞれの周回部205a、205bをつなぐ渡し部206が、伝熱管202よりも外径の小さい継手管204側に配置している。このような配置状態で、加熱コイル100Bに電流を流せば、電磁誘導により加熱コイル100Bに高周波を発生させさせることができて、伝熱管202と継手管204とをリング状のロウ材203を介して、高周波ロウ付けを行うことができる。   Therefore, when the brazing portion 90a of the heating object 90 of the two metal tubes 202 and 204 and the brazing material 203 is arranged and joined to the heating target portion 100Ba of the induction heating coil 100B of the second embodiment, The arrangement is as follows. That is, as shown in FIG. 6A, a heat transfer tube 202 in which a tube expansion portion 201 is formed at the opening end portion in the heating target portion 100Ba of the heating coil 100B, and a ring-shaped brazing material 203 and a joint tube 204 in the tube expansion portion 201. Place. At this time, around the heating target part 100Ba on which the ring-shaped brazing material 203 is arranged, the surrounding parts 205a and 205b of the heating coil 100B are arranged on both sides of the heating target part 100Ba, and the surrounding parts 205a, The transfer part 206 which connects 205b is arrange | positioned at the joint pipe 204 side whose outer diameter is smaller than the heat exchanger tube 202. FIG. In this arrangement state, if a current is passed through the heating coil 100B, a high frequency can be generated in the heating coil 100B by electromagnetic induction, and the heat transfer tube 202 and the joint tube 204 are connected via the ring-shaped brazing material 203. Thus, high-frequency brazing can be performed.

このような誘導加熱コイル100Bを用いた加熱対象物90の例としての金属管202,204の接合は、加熱対象部100に外径寸法の異なる金属管202,204の端部とロウ材203をそれぞれ配置して、高周波加熱しロウ付けを行うための誘導加熱コイル100Bを用いて、第1実施形態と同様にして行われる。   The joining of the metal tubes 202 and 204 as an example of the heating object 90 using the induction heating coil 100B is performed by connecting the end portions of the metal tubes 202 and 204 having different outer diameters and the brazing material 203 to the heating target portion 100. This is performed in the same manner as in the first embodiment, using the induction heating coil 100B that is arranged and heated at high frequency for brazing.

このとき、それぞれの渡し部206に流れる電流が第1分岐部206aと第2分岐部206bとに分岐して、発生する磁界が分散するので、継手管204に対する加熱も分散して、温度分布を調整することが可能となる。   At this time, since the current flowing through each transfer portion 206 is branched into the first branch portion 206a and the second branch portion 206b and the generated magnetic field is dispersed, the heating of the joint pipe 204 is also dispersed, and the temperature distribution is reduced. It becomes possible to adjust.

かかる構成によれば、ロウ付け部90aのリング状のロウ材203へ発生する軸方向の電磁力を打ち消すように誘導加熱コイル100Bが作用し、ホッピング現象が発生することがなくなる。よって、金属管材料としてアルミニウムを使用し、アルミニウムのロウ付けのように母材とロウ材203の融点差が非常に小さく、温度フィードバック制御による加熱を行う場合でも、加熱効率と均一加熱との両立が可能となり、ロウ材203の未溶融、充填不足、及び、浸透不足といった品質不具合を防止する効果が得られる。   According to such a configuration, the induction heating coil 100B acts so as to cancel the axial electromagnetic force generated on the ring-shaped brazing material 203 of the brazing portion 90a, and the hopping phenomenon does not occur. Therefore, aluminum is used as the metal tube material, and the melting point difference between the base material and the brazing material 203 is very small as in the case of brazing aluminum, so that both heating efficiency and uniform heating can be achieved even when heating by temperature feedback control is performed. Thus, an effect of preventing quality defects such as unmelting, insufficient filling, and insufficient penetration of the brazing material 203 can be obtained.

なお、前記様々な実施形態又は変形例のうちの任意の実施形態又は変形例を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。また、実施形態同士の組み合わせ又は実施例同士の組み合わせ又は実施形態と実施例との組み合わせが可能であると共に、異なる実施形態又は実施例の中の特徴同士の組み合わせも可能である。   In addition, it can be made to show the effect which each has by combining arbitrary embodiment or modification of the said various embodiment or modification suitably. In addition, combinations of the embodiments, combinations of the examples, or combinations of the embodiments and examples are possible, and combinations of features in different embodiments or examples are also possible.

本発明の誘導加熱コイル及び加熱方法は、アルミニウムロウ付けのように母材とロウ材との融点差が非常に小さく、温度フィードバック制御を行う場合でも、加熱効率と均一加熱との両立が可能となり、エアコンなどの空調機に使用される熱交換器のロウ付け、あるいは焼き入れ等のように金属管の加熱用途にも適用が可能となる。   The induction heating coil and heating method of the present invention have a very small melting point difference between the base material and the brazing material as in the case of aluminum brazing, and it is possible to achieve both heating efficiency and uniform heating even when performing temperature feedback control. It can also be applied to metal tube heating applications such as brazing or quenching of heat exchangers used in air conditioners such as air conditioners.

80 誘導加熱電源
90 加熱対象物
90a ロウ付け部
100 誘導加熱コイルは
100a 加熱対象部
101,201 拡管部
102,202 伝熱管
103,203 ロウ材
104,204 継手管
105a、105b,205a、205b 周回部
106,206 渡し部
206a 第1分岐部
206b 第2分岐部
107,207 冷却水
108 温度測定スポット
DESCRIPTION OF SYMBOLS 80 Induction heating power supply 90 Heating object 90a Brazing part 100 Induction heating coil is 100a Heating object part 101,201 Expanded pipe part 102,202 Heat-transfer pipe 103,203 Brazing material 104,204 Joint pipe 105a, 105b, 205a, 205b Circulation part 106, 206 Transfer section 206a First branch section 206b Second branch section 107, 207 Cooling water 108 Temperature measurement spot

Claims (6)

電磁誘導により高周波を発生させ、加熱対象部に、外径寸法の大きい第1金属管の端部と前記第1金属管よりも外径寸法の小さい第2金属管の端部との接続部分にロウ材を配置して、高周波加熱してロウ付けを行う誘導加熱コイルにおいて、
前記第1及び第2金属管のそれぞれの両側に、互いに逆方向に2巻き以上の周回部を形成し、かつ、それぞれの周回部をつなぐ渡し部が、前記第1金属管よりも第2金属管側に配置可能な、誘導加熱コイル。
A high frequency is generated by electromagnetic induction, and a heating target portion is connected to a connection portion between an end portion of the first metal tube having a large outer diameter and an end portion of the second metal tube having a smaller outer diameter than the first metal tube. In an induction heating coil in which brazing material is arranged and brazed by high frequency heating,
On both sides of each of the first and second metal tubes, two or more turns are formed in opposite directions, and a connecting portion that connects the turns is a second metal rather than the first metal tube. An induction heating coil that can be placed on the tube side.
前記渡し部は、前記加熱対象部に配置した前記第1及び前記第2金属管の前記端部と前記ロウ材とに対して、2巻き以上で並列接続されている、請求項1に記載の誘導加熱コイル。   The said transfer part is connected in parallel by two or more turns with respect to the said edge part and the said brazing | wax material of the said 1st and 2nd metal tube which are arrange | positioned at the said heating object part. Induction heating coil. 前記ロウ材の加熱対象面に対する前記渡し部の傾き角度が−30°以上+25°以内である、請求項2に記載の誘導加熱コイル。   The induction heating coil according to claim 2, wherein an inclination angle of the transfer portion with respect to a heating target surface of the brazing material is -30 ° or more and + 25 ° or less. 前記加熱対象部に配置した前記ロウ材と、前記周回部の中心軸との距離が、前記周回部の外径に対して、±5%以内である、請求項2又は3に記載の誘導加熱コイル。   The induction heating according to claim 2 or 3, wherein a distance between the brazing material arranged in the heating target portion and a central axis of the circulating portion is within ± 5% with respect to an outer diameter of the circulating portion. coil. 前記渡し部と、前記第2金属管との最短距離は一定であり、前記渡し部と前記第2金属管の中心との距離をαとし、前記ロウ材の加熱対象面に対する前記渡し部の傾き角度をθとすると、前記渡し部の長さLWは、
Figure 2017004695
で表される、請求項1〜4のいずれか1つに記載の誘導加熱コイル。
The shortest distance between the transfer portion and the second metal tube is constant, the distance between the transfer portion and the center of the second metal tube is α, and the inclination of the transfer portion with respect to the surface to be heated of the brazing material When the angle is θ, the length LW of the passing portion is
Figure 2017004695
The induction heating coil as described in any one of Claims 1-4 represented by these.
電磁誘導により高周波を発生させ、加熱対象部に、外径寸法の大きい第1金属管の端部と前記第1金属管よりも外径寸法の小さい第2金属管の端部との接続部分にロウ材を配置して、高周波加熱してロウ付けを行う誘導加熱コイルを使用して行う加熱方法において、
前記第1及び第2金属管のそれぞれの両側に、前記誘導加熱コイルの互いに逆方向に2巻き以上の周回部が配置され、それぞれの周回部をつなぐ渡し部が、前記第1金属管よりも第2金属管側に配置され、
その後、前記誘導加熱コイルに電流が供給されて、前記第1金属管の端部と前記第2金属管の端部との前記接続部分を高周波加熱して前記ロウ材でロウ付けを行う、加熱方法。
A high frequency is generated by electromagnetic induction, and a heating target portion is connected to a connection portion between an end portion of the first metal tube having a large outer diameter and an end portion of the second metal tube having a smaller outer diameter than the first metal tube. In a heating method in which a brazing material is placed and an induction heating coil that brazes by high-frequency heating is used,
Two or more turns of the induction heating coil are arranged in opposite directions on both sides of the first and second metal tubes, and a connecting portion connecting the respective turns is more than the first metal tube. Arranged on the second metal tube side,
Thereafter, an electric current is supplied to the induction heating coil, and the connection portion between the end of the first metal tube and the end of the second metal tube is heated at a high frequency to braze with the brazing material. Method.
JP2015115864A 2015-06-08 2015-06-08 Induction heating coil and heating method Expired - Fee Related JP6268653B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015115864A JP6268653B2 (en) 2015-06-08 2015-06-08 Induction heating coil and heating method
CN201610268474.3A CN106255249B (en) 2015-06-08 2016-04-27 Load coil and heating means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015115864A JP6268653B2 (en) 2015-06-08 2015-06-08 Induction heating coil and heating method

Publications (2)

Publication Number Publication Date
JP2017004695A true JP2017004695A (en) 2017-01-05
JP6268653B2 JP6268653B2 (en) 2018-01-31

Family

ID=57626766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015115864A Expired - Fee Related JP6268653B2 (en) 2015-06-08 2015-06-08 Induction heating coil and heating method

Country Status (2)

Country Link
JP (1) JP6268653B2 (en)
CN (1) CN106255249B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102502606B1 (en) * 2021-11-05 2023-02-23 천복기계(주) Brazing Device Using Induction Heating Coil
KR102698303B1 (en) * 2022-12-13 2024-08-26 천복기계(주) Brazing Device Using Induction Heating Coil

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10912156B2 (en) * 2017-05-26 2021-02-02 Illinois Tool Works Inc. Induction heating methods and apparatus
CN107538095B (en) * 2017-08-28 2020-10-23 中国电器科学研究院股份有限公司 Induction brazing equipment and copper pipe rapid induction brazing process method
JP7238637B2 (en) * 2019-06-27 2023-03-14 株式会社デンソーエアクール induction heating device
CN112025018B (en) * 2020-08-28 2022-04-08 郑州郑飞机电技术有限责任公司 Capillary tube joint brazing method
CN113597037B (en) * 2021-07-30 2023-05-23 重庆长安新能源汽车科技有限公司 High homogeneity heating device of motor hot jacket
CN117020380B (en) * 2023-10-08 2023-12-29 湖北欧鑫科技有限公司 Rail guard welding equipment for highway construction

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06297137A (en) * 1993-04-13 1994-10-25 Tomishiyou:Kk High frequency induction coil for brazing and brazing method by using this coil
JP2014229395A (en) * 2013-05-20 2014-12-08 パナソニック株式会社 Induction heating apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011025249A (en) * 2009-07-21 2011-02-10 Seidensha Electronics Co Ltd Method and apparatus for high-frequency induction heating brazing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06297137A (en) * 1993-04-13 1994-10-25 Tomishiyou:Kk High frequency induction coil for brazing and brazing method by using this coil
JP2014229395A (en) * 2013-05-20 2014-12-08 パナソニック株式会社 Induction heating apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102502606B1 (en) * 2021-11-05 2023-02-23 천복기계(주) Brazing Device Using Induction Heating Coil
WO2023080446A1 (en) * 2021-11-05 2023-05-11 천복기계(주) Brazing device using induction heating coil
KR102698303B1 (en) * 2022-12-13 2024-08-26 천복기계(주) Brazing Device Using Induction Heating Coil

Also Published As

Publication number Publication date
CN106255249A (en) 2016-12-21
JP6268653B2 (en) 2018-01-31
CN106255249B (en) 2019-08-09

Similar Documents

Publication Publication Date Title
JP6268653B2 (en) Induction heating coil and heating method
WO2012090461A1 (en) Joint structure for metallic pipes
JP5704735B1 (en) Water-cooled plate cooling unit
BR102013021663A2 (en) PROCESS FOR PRODUCTION OF EXPANSION COATED PIPE AND COATED PIPE PRODUCED BY THIS PROCESS
RU2522261C2 (en) Method for formation, introduction and fixation of ribs in boiler tubes
JP2010071624A (en) Fluid heating device
JP2016081913A (en) High frequency induction heating coil, and pipe brazing device and method
WO2017018438A1 (en) Heat exchanger and method for producing same
JP5626497B2 (en) ERW pipe welding equipment
JP2017004694A (en) Induction heating coil for soldering
JP5842183B2 (en) Induction heating device
JPH10216930A (en) Joining method for tube with joint in heat exchanger
JP6097784B2 (en) ERW pipe welding equipment
JP2014229486A (en) Induction heating apparatus
JP2008190783A (en) Heating furnace
JP2016138731A (en) Heat exchanger
JP2014238995A (en) Induction heating apparatus
JP2012139708A (en) Joint structure for metallic pipes
JP2016110759A (en) Induction heating device
JP2008180460A (en) Method for producing heat exchanger, and heat exchange produced by the method
JP2020013635A (en) Induction heating apparatus
JP2004351503A (en) Method and device for brazing aluminum member
JP7323820B2 (en) HEAT EXCHANGER, AIR CONDITIONER, AND METHOD FOR MANUFACTURING HEAT EXCHANGER
JP2010071529A (en) Refrigerant heater
RU105016U1 (en) HEATING RADIATOR SECTION

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171215

R151 Written notification of patent or utility model registration

Ref document number: 6268653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees