JP2017003965A - Liquid crystal aligning agent for forming liquid crystal alignment film for photo-alignment, liquid crystal alignment film and liquid crystal display element using the same - Google Patents

Liquid crystal aligning agent for forming liquid crystal alignment film for photo-alignment, liquid crystal alignment film and liquid crystal display element using the same Download PDF

Info

Publication number
JP2017003965A
JP2017003965A JP2016055016A JP2016055016A JP2017003965A JP 2017003965 A JP2017003965 A JP 2017003965A JP 2016055016 A JP2016055016 A JP 2016055016A JP 2016055016 A JP2016055016 A JP 2016055016A JP 2017003965 A JP2017003965 A JP 2017003965A
Authority
JP
Japan
Prior art keywords
liquid crystal
compound
aligning agent
crystal aligning
alignment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016055016A
Other languages
Japanese (ja)
Other versions
JP6627595B2 (en
Inventor
啓介 伊澤
Keisuke Izawa
啓介 伊澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
JNC Petrochemical Corp
Original Assignee
JNC Corp
JNC Petrochemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JNC Corp, JNC Petrochemical Corp filed Critical JNC Corp
Publication of JP2017003965A publication Critical patent/JP2017003965A/en
Application granted granted Critical
Publication of JP6627595B2 publication Critical patent/JP6627595B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/1053Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the tetracarboxylic moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1082Partially aromatic polyimides wholly aromatic in the tetracarboxylic moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1085Polyimides with diamino moieties or tetracarboxylic segments containing heterocyclic moieties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1096Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors containing azo linkage in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • C08G73/126Unsaturated polyimide precursors the unsaturated precursors being wholly aromatic
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a liquid crystal display element that prevents degradation in display quality even when the element is exposed to intense light for a long time, and to provide a liquid crystal aligning agent capable of giving the above display element, and a liquid crystal alignment film.SOLUTION: A liquid crystal aligning agent for photo-alignment is provided, comprising at least one polymer selected from a group consisting of a polyamic acid, a polyamic acid ester and a polyimide obtained by imidizing the polyamic acid or the polyamic acid ester, where the polyamic acid is obtained by reacting at least one compound selected from a tetracarboxylic acid dianhydride and its derivative with diamine. At least one raw material monomer of the polymer has a photoisomerization structure; and the diamine comprises at least one compound represented by formula (1) below. In formula (1), n independently represents an alkylene having 1 to 6 carbon atoms.SELECTED DRAWING: None

Description

本発明は、光配向法に用いる光配向用液晶配向剤、およびそれを用いた光配向膜、液晶表示素子に関する。 The present invention relates to a liquid crystal aligning agent for photo-alignment used in a photo-alignment method, a photo-alignment film using the same, and a liquid crystal display element.

パソコンのモニター、液晶テレビ、ビデオカメラのビューファインダー、投写型ディスプレイ等の様々な表示装置、さらには、光プリンターヘッド、光フーリエ変換素子、ライトバルブ等のオプトエレクトロニクス関連素子等、今日製品化されて一般に流通している液晶表示素子は、ネマティック液晶を用いた表示素子が主流である。ネマティック液晶表示素子の表示方式は、TN(Twisted Nematic)モード、STN(Super Twisted Nematic)モードがよく知られている。近年、これらのモードの問題点の1つである視野角の狭さを改善するために、光学補償フィルムを用いたTN型液晶表示素子、垂直配向と突起構造物の技術を併用したMVA(Multi-domain Vertical Alignment)モード、あるいは横電界方式のIPS(In-Plane Switching)モード、FFS(Fringe Field Switching)モード等が提案され、実用化されている。 Various display devices such as personal computer monitors, LCD TVs, video camera viewfinders, and projection displays, as well as optoelectronic devices such as optical printer heads, optical Fourier transform elements, and light valves, have been commercialized today. Generally used liquid crystal display elements are display elements using nematic liquid crystals. As a display system of the nematic liquid crystal display element, a TN (Twisted Nematic) mode and an STN (Super Twisted Nematic) mode are well known. In recent years, in order to improve the narrow viewing angle, which is one of the problems of these modes, a TN liquid crystal display device using an optical compensation film, MVA (Multi -domain Vertical Alignment) mode, IPS (In-Plane Switching) mode of horizontal electric field method, FFS (Fringe Field Switching) mode, etc. have been proposed and put to practical use.

液晶表示素子の技術の発展は、単にこれらの駆動方式や素子構造の改良のみならず、素子に使用される構成部材の改良によっても達成されている。液晶表示素子に使用される構成部材のなかでも、特に液晶配向膜は表示品位に係わる重要な材料の1つであり、液晶表示素子の高品質化に伴い、配向膜の性能を向上させる事が重要になってきている。 The development of the technology of the liquid crystal display element is achieved not only by simply improving these driving methods and element structures but also by improving the components used in the elements. Among the components used in liquid crystal display elements, the liquid crystal alignment film is one of important materials related to display quality, and the performance of the alignment film can be improved with the improvement in quality of the liquid crystal display element. It is becoming important.

液晶配向膜は、液晶配向剤より形成される。現在、主として用いられている液晶配向剤は、ポリアミック酸または可溶性のポリイミドを有機溶剤に溶解させた溶液(ワニス)である。この溶液を基板に塗布した後、加熱等の手段により成膜してポリイミド系液晶配向膜を形成する。製膜後、必要に応じ前述の表示モードに適する配向処理が施される。 The liquid crystal alignment film is formed from a liquid crystal aligning agent. The liquid crystal aligning agent mainly used at present is a solution (varnish) obtained by dissolving polyamic acid or soluble polyimide in an organic solvent. After this solution is applied to the substrate, it is formed by means such as heating to form a polyimide-based liquid crystal alignment film. After film formation, an orientation treatment suitable for the above-described display mode is performed as necessary.

工業的には、簡便で大面積の高速処理が可能なラビング法が、配向処理法として広く用いられている。ラビング法は、ナイロン、レイヨン、ポリエステル等の繊維を植毛した布を用いて液晶配向膜の表面を一方向に擦る処理であり、これによって液晶分子の一様な配向を得ることが可能になる。しかし、ラビング法による発塵、静電気の発生等の問題点が指摘されており、近年ラビング法に代わる配向処理法の開発が盛んに行われている。 Industrially, a rubbing method that is simple and capable of high-speed processing of a large area is widely used as an alignment processing method. The rubbing method is a process of rubbing the surface of the liquid crystal alignment film in one direction using a cloth in which fibers of nylon, rayon, polyester, or the like are planted, and this makes it possible to obtain uniform alignment of liquid crystal molecules. However, problems such as dust generation due to the rubbing method and generation of static electricity have been pointed out, and in recent years, an alignment treatment method that replaces the rubbing method has been actively developed.

ラビング法に代わる配向処理法として注目されているのが、光を照射して配向処理を施す光配向処理法である。光配向処理法には光分解法、光異性化法、光二量化法、光架橋法等多くの配向機構が提案されている(例えば、非特許文献1、特許文献1および2を参照。)。光配向法はラビング法に比べて配向の均一性が高く、また非接触の配向処理法であるため膜に傷が付かず、発塵や静電気等の液晶表示素子の表示不良を発生させる原因を低減できる等の利点がある。
これまで、ポリアミック酸構造中に光異性化や光二量化などを起こす光反応性基を有する光配向膜の検討を行われてきた(例えば、特許文献1〜7を参照。)。中でも、特許文献3〜5に記載されている光異性化の技術を応用した光配向膜はアンカリングエネルギーが大きく、配向性が良好であった。
A photo alignment treatment method in which alignment treatment is performed by irradiating light is attracting attention as an alignment treatment method replacing the rubbing method. Many alignment mechanisms such as a photodecomposition method, a photoisomerization method, a photodimerization method, and a photocrosslinking method have been proposed for the photoalignment treatment method (see, for example, Non-Patent Document 1, Patent Documents 1 and 2). The photo-alignment method has higher uniformity of alignment than the rubbing method, and it is a non-contact alignment method, so the film is not damaged and causes the display defects of liquid crystal display elements such as dust generation and static electricity. There are advantages such as reduction.
So far, studies have been made on photo-alignment films having photoreactive groups that cause photoisomerization or photodimerization in the polyamic acid structure (see, for example, Patent Documents 1 to 7). Especially, the photo-alignment film | membrane which applied the technique of the photoisomerization described in patent documents 3-5 had large anchoring energy, and its orientation was favorable.

一方、液晶表示素子の表示品位を向上させるために液晶配向膜に要求される重要な特性として、イオン密度の低さが挙げられる。イオン密度が高いと、フレーム期間中に液晶にかかる電圧が低下し、結果として輝度が低下して正常な階調表示に支障をきたすことがある。また、初期のイオン密度が低くても、高温試験後のイオン密度が増加してしまうことは好ましくない。
この問題を解決する試みとして、例えばピペラジンのような環状2級アミンの構造を有するジアミンを原料に含有させて、ポリイミド鎖の中に同構造を導入する方法(特許文献7、8を参照。)が知られている。
On the other hand, a low ion density is an important characteristic required for the liquid crystal alignment film in order to improve the display quality of the liquid crystal display element. When the ion density is high, the voltage applied to the liquid crystal during the frame period is lowered, and as a result, the luminance is lowered, which may hinder normal gradation display. Even if the initial ion density is low, it is not preferable that the ion density after the high-temperature test increases.
As an attempt to solve this problem, a method of introducing a diamine having a cyclic secondary amine structure such as piperazine into a raw material and introducing the structure into a polyimide chain (see Patent Documents 7 and 8). It has been known.

近年、液晶表示素子の用途は、パーソナルコンピュータ用のモニター、液晶テレビ、携帯電話、スマートフォンの表示部、液晶プロジェクターと多岐にわたる。これらに向けた液晶表示素子は、表示品位の向上や屋外での使用を考慮して、光源となるバックライトの輝度を従来の製品よりも高くする仕様が現れた。そのため、熱だけでなく、長時間強い光に晒されてもイオン密度が増加しない液晶配向膜が求められている。 In recent years, the use of liquid crystal display elements has been wide-ranging, such as monitors for personal computers, liquid crystal televisions, mobile phones, smartphone displays, and liquid crystal projectors. The liquid crystal display elements for these applications have specifications that increase the brightness of the backlight as a light source compared to conventional products in consideration of improvement of display quality and outdoor use. Therefore, there is a demand for a liquid crystal alignment film in which the ion density does not increase even when exposed to intense light for a long time as well as heat.

特開平9−297313JP-A-9-297313 特開平10−251646JP-A-10-251646 特開2005−275364JP-A-2005-275364 特開2007−248637JP2007-248637 特開2009−069493JP2009-069493 特開2008−233713JP2008-233713 特開2009−175684JP2009-175684A 特開2011−028223JP2011-028223

液晶、第3巻、第4号、262ページ、1999年Liquid Crystal, Vol. 3, No. 4, 262 pages, 1999

本発明の課題は、長時間強い光に晒されてもイオン密度が増加しない光配向用液晶配向膜を提供することであり、そのような光配向用液晶配向膜を形成することができる光配向用液晶配向剤を提供することである。さらには、前記の光配向用液晶配向膜によって長時間強い光に晒されても表示品位が低下しない液晶表示素子を提供することである。 An object of the present invention is to provide a liquid crystal alignment film for photoalignment in which the ion density does not increase even when exposed to intense light for a long time, and photoalignment capable of forming such a liquid crystal alignment film for photoalignment A liquid crystal aligning agent for use is provided. A further object of the present invention is to provide a liquid crystal display element that does not deteriorate the display quality even when exposed to strong light for a long time by the liquid crystal alignment film for photo-alignment.

本発明者らは鋭意検討の結果、式(1)で表されるジアミンを光配向用液晶配向剤の原料として使用することで、それによって得られた光配向用液晶配向膜が熱に対してだけでなく、長時間強い光に晒されてもイオン密度が増加しないことを見出し、本発明を完成させた。 As a result of intensive studies, the present inventors have used the diamine represented by the formula (1) as a raw material for the liquid crystal aligning agent for photo-alignment, so that the liquid crystal aligning film for photo-alignment obtained thereby is resistant to heat. In addition, the present inventors have found that the ion density does not increase even when exposed to intense light for a long time, and completed the present invention.

本発明は以下からなる。
[1] テトラカルボン酸二無水物およびその誘導体からなる群から選ばれる少なくとも1つと、ジアミンを反応させて得られる、ポリアミック酸、ポリアミック酸エステルおよびこれらをイミド化して得られるポリイミドからなる群から選ばれる少なくとも1つの重合体を含む、光配向用液晶配向剤であって;
前記重合体の原料モノマーの少なくとも1つが光反応性構造を有し、かつ、前記ジアミンが下記式(1)で表される化合物の少なくとも1つを含む、光配向用液晶配向剤。

Figure 2017003965
式(1)において、nは独立して炭素数1〜6のアルキレンであり;そして、
前記テトラカルボン酸二無水物の誘導体とは、テトラカルボン酸ジエステルまたはテトラカルボン酸ジエステルジクロリドである。 The present invention comprises the following.
[1] Selected from the group consisting of polyamic acid, polyamic acid ester obtained by reacting diamine with at least one selected from the group consisting of tetracarboxylic dianhydride and derivatives thereof, and polyimide obtained by imidizing these. A liquid crystal aligning agent for photoalignment comprising at least one polymer selected from the group consisting of:
The liquid crystal aligning agent for photo-alignment in which at least 1 of the raw material monomer of the said polymer has a photoreactive structure, and the said diamine contains at least 1 of the compound represented by following formula (1).
Figure 2017003965
In formula (1), n is independently alkylene having 1 to 6 carbons; and
The derivative of tetracarboxylic dianhydride is tetracarboxylic acid diester or tetracarboxylic acid diester dichloride.

[2] テトラカルボン酸二無水物およびその誘導体、およびジアミンからなる群から選ばれる少なくとも1つの光反応性構造を有する化合物を含み、かつ、ジアミンが式(1)で表される化合物の少なくとも1つを含む原料モノマーを反応させて得られる重合体の少なくとも1つを含むか;または、
テトラカルボン酸二無水物およびその誘導体、およびジアミンからなる群から選ばれる少なくとも1つの光反応性構造を有する化合物を含む原料モノマーを反応させて得られる重合体の少なくとも1つと、
テトラカルボン酸二無水物およびその誘導体、およびジアミンのいずれもが光反応性構造を有さず、かつ、ジアミンが式(1)で表される化合物の少なくとも1つを含む原料モノマーを反応させて得られる重合体の少なくとも1つとを同時に含む、[1]項に記載の光配向用液晶配向剤。
[2] A compound having at least one photoreactive structure selected from the group consisting of tetracarboxylic dianhydrides and derivatives thereof, and diamines, and at least one of the compounds represented by formula (1) Containing at least one polymer obtained by reacting a raw material monomer containing one; or
At least one polymer obtained by reacting a raw material monomer containing a compound having at least one photoreactive structure selected from the group consisting of tetracarboxylic dianhydride and derivatives thereof, and diamine;
None of tetracarboxylic dianhydride and derivatives thereof, and diamines have a photoreactive structure, and a raw material monomer containing at least one compound represented by formula (1) is reacted with diamine. The liquid crystal aligning agent for photo-alignment according to item [1], comprising at least one of the obtained polymers.

[3] テトラカルボン酸二無水物およびその誘導体、およびジアミンからなる群から選ばれる少なくとも1つの光反応性構造を有する化合物を含み、かつ、ジアミンが式(1)で表される化合物の少なくとも1つを含む原料モノマーを反応させて得られる重合体の少なくとも1つと、当該重合体と混合して用いるその他の重合体を含み、その他の重合体が、
テトラカルボン酸二無水物およびその誘導体、およびジアミンのいずれもが光反応性構造を有さない原料モノマーを反応させて得られる重合体である、[2]項に記載の光配向用液晶配向剤。
[3] A compound having at least one photoreactive structure selected from the group consisting of tetracarboxylic dianhydrides and derivatives thereof, and diamines, and at least one of the compounds represented by formula (1) Including at least one polymer obtained by reacting raw material monomers including one and another polymer used by mixing with the polymer,
The liquid crystal aligning agent for photo-alignment according to item [2], wherein all of tetracarboxylic dianhydride and derivatives thereof, and diamine are polymers obtained by reacting raw material monomers having no photoreactive structure. .

[4] テトラカルボン酸二無水物およびその誘導体、およびジアミンからなる群から選ばれる少なくとも1つの光反応性構造を有する化合物を含み、かつ、ジアミンが式(1)で表される化合物の少なくとも1つを含む原料モノマーを反応させて得られる重合体の少なくとも1つと、当該重合体と混合して用いるその他の重合体を含み、その他の重合体が、
テトラカルボン酸二無水物およびその誘導体、およびジアミンのいずれもが光反応性構造を有さず、かつジアミンが式(1)で表される化合物の少なくとも1つを含む原料モノマーを反応させて得られる重合体である、[2]項に記載の光配向用液晶配向剤。
[4] A compound having at least one photoreactive structure selected from the group consisting of tetracarboxylic dianhydride and derivatives thereof and diamine, and at least one of the compounds represented by formula (1) Including at least one polymer obtained by reacting raw material monomers including one and another polymer used by mixing with the polymer,
None of tetracarboxylic dianhydride and its derivatives, and diamines have a photoreactive structure, and are obtained by reacting raw material monomers containing at least one compound represented by formula (1). The liquid crystal aligning agent for photo-alignment according to item [2], which is a polymer obtained.

[5] テトラカルボン酸二無水物およびその誘導体、およびジアミンからなる群から選ばれる少なくとも1つの光反応性構造を有する化合物を含む原料モノマーを反応させて得られる重合体の少なくとも1つと、
テトラカルボン酸二無水物およびその誘導体、およびジアミンのいずれもが光反応性構造を有さず、かつ、ジアミンが式(1)で表される化合物の少なくとも1つを含む原料モノマーを反応させて得た重合体の少なくとも1つとを同時に含む、[1]項に記載の光配向用液晶配向剤。
[5] At least one polymer obtained by reacting a raw material monomer containing a compound having at least one photoreactive structure selected from the group consisting of tetracarboxylic dianhydride and derivatives thereof, and diamine;
None of tetracarboxylic dianhydride and derivatives thereof, and diamines have a photoreactive structure, and a raw material monomer containing at least one compound represented by formula (1) is reacted with diamine. The liquid crystal aligning agent for photo-alignment according to item [1], comprising at least one of the obtained polymers.

[6] 原料モノマーの光反応性構造が光異性化構造である、[1]〜[5]のいずれか1項に記載の光配向用液晶配向剤。 [6] The liquid crystal aligning agent for photoalignment according to any one of [1] to [5], wherein the photoreactive structure of the raw material monomer is a photoisomerized structure.

[7] 原料モノマーの光反応性構造が紫外線によって結合が開裂する構造である、[1]〜[5]のいずれか1項に記載の光配向用液晶配向剤。 [7] The liquid crystal aligning agent for photoalignment according to any one of [1] to [5], wherein the photoreactive structure of the raw material monomer is a structure in which a bond is cleaved by ultraviolet rays.

[8] 原料モノマーの光反応性構造が光二量化構造である、[1]〜[5]のいずれか1項に記載の光配向用液晶配向剤。 [8] The liquid crystal aligning agent for photo alignment according to any one of [1] to [5], wherein the photoreactive structure of the raw material monomer is a photodimerization structure.

[9] 光異性化構造を有するテトラカルボン酸二無水物またはジアミンが式(II)〜(VI)で表される化合物の少なくとも1つである、[6]項に記載の光配向用液晶配向剤;

Figure 2017003965
式(II)〜(V)において、RおよびRは独立して−NHを有する1価の有機基または−CO−O−CO−を有する1価の有機基であり、式(IV)においてRは2価の有機基であり、式(VI)においてRは独立して−NHまたは−CO−O−CO−を有する芳香環である。 [9] The liquid crystal alignment for photoalignment according to the item [6], wherein the tetracarboxylic dianhydride or diamine having a photoisomerization structure is at least one of the compounds represented by formulas (II) to (VI). Agent;
Figure 2017003965
In formulas (II) to (V), R 2 and R 3 are each independently a monovalent organic group having —NH 2 or a monovalent organic group having —CO—O—CO—, in) R 4 is a divalent organic group, and R 5 in formula (VI) is an aromatic ring having a -NH 2 or -CO-O-CO- independently.

[10] 光異性化構造を有するテトラカルボン酸二無水物またはジアミンが式(II−1)、(II−2)、(III−1)、(III−2)、(IV−1)、(IV−2)、(V−1)〜(V−3)、(VI−1)、および(VI−2)で表される化合物の群から選ばれる少なくとも1つである、[9]項に記載の光配向用液晶配向剤;

Figure 2017003965

Figure 2017003965
上記各式において、環を構成するいずれかの炭素原子に結合位置が固定されていない基は、その環における結合位置が任意であることを示し;
式(V−2)において、Rは独立して−CH、−OCH、−CF、または−COOCHであり、aは0〜2の整数であり;
式(V−3)において、環Aおよび環Bはそれぞれ独立して、単環式炭化水素、縮合多環式炭化水素および複素環から選ばれる少なくとも1つであり、
11は、炭素数1〜20の直鎖アルキレン、−COO−、−OCO−、−NHCO−、−CONH−、−N(CH)CO−、または−CON(CH)−であり、
12は、炭素数1〜20の直鎖アルキレン、−COO−、−OCO−、−NHCO−、−CONH−、−N(CH)CO−、または−CON(CH)−であり、
11およびR12において、直鎖アルキレンの−CH−の1つまたは2つは−O−で置換されてもよく、
〜R10は、それぞれ独立して、−F、−CH、−OCH、−CF、または−OHであり、そして、
b〜eは、それぞれ独立して、0〜4の整数である。 [10] A tetracarboxylic dianhydride or diamine having a photoisomerization structure is represented by the formula (II-1), (II-2), (III-1), (III-2), (IV-1), ( In item [9], which is at least one selected from the group of compounds represented by IV-2), (V-1) to (V-3), (VI-1), and (VI-2): The liquid crystal aligning agent for optical alignment as described;
Figure 2017003965

Figure 2017003965
In the above formulas, a group whose bonding position is not fixed to any carbon atom constituting the ring indicates that the bonding position in the ring is arbitrary;
In formula (V-2), R 6 is independently —CH 3 , —OCH 3 , —CF 3 , or —COOCH 3 , and a is an integer of 0 to 2;
In formula (V-3), ring A and ring B are each independently at least one selected from monocyclic hydrocarbons, condensed polycyclic hydrocarbons and heterocyclic rings,
R 11 is a linear alkylene having 1 to 20 carbon atoms, —COO—, —OCO—, —NHCO—, —CONH—, —N (CH 3 ) CO—, or —CON (CH 3 ) —,
R 12 is a linear alkylene having 1 to 20 carbon atoms, —COO—, —OCO—, —NHCO—, —CONH—, —N (CH 3 ) CO—, or —CON (CH 3 ) —,
In R 11 and R 12 , one or two of the linear alkylene —CH 2 — may be substituted with —O—,
R 7 to R 10 are each independently —F, —CH 3 , —OCH 3 , —CF 3 , or —OH; and
b to e are each independently an integer of 0 to 4.

[11] アルケニル置換ナジイミド化合物、ラジカル重合性不飽和二重結合を有する化合物、オキサジン化合物、オキサゾリン化合物、およびエポキシ化合物からなる化合物の群から選ばれる少なくとも1つをさらに含有する、[1]〜[10]のいずれか1項に記載の光配向用液晶配向剤。 [11] It further contains at least one selected from the group consisting of an alkenyl-substituted nadiimide compound, a compound having a radical polymerizable unsaturated double bond, an oxazine compound, an oxazoline compound, and an epoxy compound. 10] The liquid crystal aligning agent for photo-alignment of any one of [10].

[12] 横電界型液晶表示素子の製造に用いられる、[1]〜[11]のいずれか1項に記載の光配向用液晶配向剤。 [12] The liquid crystal aligning agent for photo-alignment according to any one of [1] to [11], which is used for producing a horizontal electric field type liquid crystal display element.

[13] [1]〜[12]のいずれか1項に記載の液晶配向剤によって形成される液晶配向膜。 [13] A liquid crystal alignment film formed by the liquid crystal aligning agent according to any one of [1] to [12].

[14] [13]項に記載の液晶配向膜を有する液晶表示素子。 [14] A liquid crystal display device having the liquid crystal alignment film according to the item [13].

[15] [13]項に記載の液晶配向膜を有する横電界型液晶表示素子。 [15] A horizontal electric field type liquid crystal display device having the liquid crystal alignment film according to the item [13].

本発明の光配向用液晶配向剤によって形成された光配向用液晶配向膜を有する液晶表示素子は、長時間の使用においてもイオン密度が増加せず、強い光に晒されても高い表示品位を維持することができる。 The liquid crystal display element having the liquid crystal alignment film for photo-alignment formed by the liquid crystal aligning agent for photo-alignment of the present invention does not increase in ion density even when used for a long time, and exhibits high display quality even when exposed to strong light. Can be maintained.

<光配向用液晶配向剤>
本発明の光配向用液晶配向剤は、テトラカルボン酸二無水物およびその誘導体から選ばれる少なくとも1つとジアミンとの反応生成物である、ポリアミック酸、ポリアミック酸エステルおよびこれらをイミド化して得られるポリイミドからなる群より選ばれる少なくとも1つの重合体を含有し、前記重合体の原料モノマーの少なくとも1つが光反応性構造を有し、かつ、ジアミンが式(1)で表される化合物の少なくとも1つを含むことを特徴とする。前記ポリアミック酸、ポリアミック酸エステルおよびこれらをイミド化して得られるポリイミドとは、溶剤を含有する後述する液晶配向剤としたときに溶剤に溶解する成分であり、その液晶配向剤を後述する液晶配向膜としたときに、ポリイミドを主成分とする液晶配向膜を形成することができる成分である。ポリアミック酸エステルは、前述のポリアミック酸と水酸基含有化合物、ハロゲン化物、エポキシ基含有化合物等とを反応させることにより合成する方法や、酸二無水物から誘導されるテトラカルボン酸ジエステルもしくはテトラカルボン酸ジエステルジクロライドとジアミンとを反応させることにより合成する方法により、合成することができる。酸二無水物から誘導されるテトラカルボン酸ジエステルは例えば、酸二無水物を2当量のアルコールと反応させ開環させて得ることができ、テトラカルボン酸ジエステルジクロライドは、テトラカルボン酸ジエステルを2当量の塩素化剤(例えば塩化チオニルなど)と反応させることで得ることができる。なお、ポリアミック酸エステルは、アミック酸エステル構造のみを有していてもよく、アミック酸構造とアミック酸エステル構造とが併存する部分エステル化物であってもよい。本発明の光配向用液晶配向剤はこれらのポリアミック酸、ポリアミック酸エステルおよびこれらをイミド化して得られるポリイミドを1つ含んでいてもよいし、2つ以上含んでいてもよい。
<Liquid crystal aligning agent for photo-alignment>
The liquid crystal aligning agent for photo-alignment of the present invention is a reaction product of at least one selected from tetracarboxylic dianhydride and derivatives thereof and diamine, polyamic acid, polyamic acid ester, and polyimide obtained by imidizing them At least one polymer selected from the group consisting of: at least one of the raw material monomers of the polymer having a photoreactive structure, and at least one of the compounds represented by formula (1), It is characterized by including. The polyamic acid, polyamic acid ester, and polyimide obtained by imidizing them are components that dissolve in a solvent when the liquid crystal aligning agent containing a solvent is described later, and the liquid crystal aligning film that describes the liquid crystal aligning agent described later Is a component capable of forming a liquid crystal alignment film containing polyimide as a main component. The polyamic acid ester can be synthesized by reacting the above-mentioned polyamic acid with a hydroxyl group-containing compound, halide, epoxy group-containing compound or the like, or a tetracarboxylic acid diester or tetracarboxylic acid diester derived from an acid dianhydride. It can be synthesized by a method of synthesizing by reacting dichloride and diamine. A tetracarboxylic acid diester derived from an acid dianhydride can be obtained, for example, by reacting an acid dianhydride with 2 equivalents of an alcohol to cause ring opening, and a tetracarboxylic acid diester dichloride is obtained by 2 equivalents of a tetracarboxylic acid diester. It can be obtained by reacting with a chlorinating agent such as thionyl chloride. The polyamic acid ester may have only an amic acid ester structure, or may be a partially esterified product in which an amic acid structure and an amic acid ester structure coexist. The liquid crystal aligning agent for photo-alignment of the present invention may contain one or more of these polyamic acids, polyamic acid esters, and polyimides obtained by imidizing them.

本発明の光配向用液晶配向剤は、テトラカルボン酸二無水物およびその誘導体、およびジアミンからなる群から選ばれる少なくとも1つが光反応性構造を有し、かつ、ジアミンが上記式(1)で表される化合物の少なくとも1つを含む原料モノマーを反応させて得た重合体の少なくとも1つを含むか、または、テトラカルボン酸およびその誘導体、およびジアミンからなる群から選ばれる少なくとも1つが光反応性構造を有する原料モノマーを反応させて得られる重合体の少なくとも1つと、テトラカルボン酸二無水物およびその誘導体、およびジアミンのいずれもが光反応性構造を有さず、かつ、ジアミンが下記式(1)で表される化合物の少なくとも1つを含む原料モノマーを反応させて得た重合体の少なくとも1つとを同時に含む、光配向用液晶配向剤である。 In the liquid crystal aligning agent for photo-alignment of the present invention, at least one selected from the group consisting of tetracarboxylic dianhydride and derivatives thereof, and diamine has a photoreactive structure, and the diamine is represented by the above formula (1). At least one selected from the group consisting of tetracarboxylic acid and derivatives thereof, and diamine, which contains at least one polymer obtained by reacting a raw material monomer containing at least one of the represented compounds None of the polymer obtained by reacting the raw material monomer having a reactive structure, tetracarboxylic dianhydride and its derivative, and diamine have a photoreactive structure, and the diamine has the following formula: Light comprising at least one polymer obtained by reacting a raw material monomer containing at least one of the compounds represented by (1) It is a direction for the liquid crystal alignment agent.

<光反応性構造>
本発明において、光反応性構造とは、例えば、紫外線照射で異性化を起こす光異性化構造、結合が開裂する光分解構造、二量化を起こす光二量化構造のことを意味する。紫外線照射で光反応を起こす構造を有する原料モノマーを適宜使用することができる。
<Photoreactive structure>
In the present invention, the photoreactive structure means, for example, a photoisomerization structure that undergoes isomerization by ultraviolet irradiation, a photolytic structure that cleaves a bond, or a photodimerization structure that undergoes dimerization. A raw material monomer having a structure that causes a photoreaction upon irradiation with ultraviolet rays can be appropriately used.

前記光異性化構造を有するモノマーとしては、光異性化構造を有するテトラカルボン酸二無水物または光異性化構造を有するジアミンが挙げられ、感光性が良好な下記式(II)〜式(VI)で表される化合物の群から選ばれる少なくとも1つであることが好ましく、式(V)で表される化合物がより好ましい。

Figure 2017003965
式(II)〜(V)において、RおよびRは独立して−NHを有する1価の有機基または−CO−O−CO−を有する1価の有機基であり、式(IV)においてRは2価の有機基であり、式(VI)においてRは独立して−NHもしくは−CO−O−CO−を有する芳香環である。 Examples of the monomer having a photoisomerization structure include a tetracarboxylic dianhydride having a photoisomerization structure or a diamine having a photoisomerization structure, and the following formulas (II) to (VI) having good photosensitivity. It is preferably at least one selected from the group of compounds represented by formula (V), more preferably a compound represented by formula (V).
Figure 2017003965
In formulas (II) to (V), R 2 and R 3 are each independently a monovalent organic group having —NH 2 or a monovalent organic group having —CO—O—CO—, R 4 is a divalent organic group, and in formula (VI), R 5 is independently an aromatic ring having —NH 2 or —CO—O—CO—.

光異性化構造は、本発明におけるポリアミック酸またはその誘導体の主鎖もしくは側鎖のどちらに組み込んでもよいが、主鎖に組み込むことにより、横電界方式の液晶表示素子に好適に用いることができる。 The photoisomerization structure may be incorporated in either the main chain or the side chain of the polyamic acid or derivative thereof in the present invention, but can be suitably used for a horizontal electric field type liquid crystal display element by incorporating it in the main chain.

前記光異性化構造を有する材料としては、下記式(II−1)、(II−2)、(III−1)、(III−2)、(IV−1)、(IV−2)、(V−1)〜(V−3)、(VI−1)、および(VI−2)で表される化合物の群から選ばれる少なくとも1つを好適に用いることができる。

Figure 2017003965

Figure 2017003965
上記各式において、環を構成するいずれかの炭素原子に結合位置が固定されていない基は、その環における結合位置が任意であることを示し、式(V−2)において、Rは独立して−CH、−OCH、−CF、または−COOCHであり、aは0〜2の整数であり、式(V−3)において、環Aおよび環Bはそれぞれ独立して、単環式炭化水素、縮合多環式炭化水素および複素環から選ばれる少なくとも1つであり、R11は、炭素数1〜20の直鎖アルキレン、−COO−、−OCO−、−NHCO−、−CONH−、−N(CH)CO−、または−CON(CH)−であり、R12は、炭素数1〜20の直鎖アルキレン、−COO−、−OCO−、−NHCO−、−CONH−、−N(CH)CO−、または−CON(CH)−であり、R11およびR12において、直鎖アルキレンの−CH−の1つまたは2つは−O−で置換されてもよく、R〜R10は、それぞれ独立して、−F、−CH、−OCH、−CF、または−OHであり、そして、b〜eは、それぞれ独立して、0〜4の整数である。 Examples of the material having the photoisomerized structure include the following formulas (II-1), (II-2), (III-1), (III-2), (IV-1), (IV-2), ( V-1) to (V-3), (VI-1), and at least one selected from the group of compounds represented by (VI-2) can be preferably used.
Figure 2017003965

Figure 2017003965
In each of the above formulas, a group whose bonding position is not fixed to any carbon atom constituting the ring indicates that the bonding position in the ring is arbitrary, and in formula (V-2), R 6 is independently -CH 3 and, -OCH 3, a -CF 3 or -COOCH 3,, a is an integer of 0 to 2, in the formula (V-3), ring a and ring B are each independently, It is at least one selected from monocyclic hydrocarbons, condensed polycyclic hydrocarbons, and heterocyclic rings, and R 11 is linear alkylene having 1 to 20 carbon atoms, —COO—, —OCO—, —NHCO—, —CONH—, —N (CH 3 ) CO—, or —CON (CH 3 ) —, wherein R 12 is a linear alkylene having 1 to 20 carbon atoms, —COO—, —OCO—, —NHCO—, -CONH -, - N (CH 3 ) CO-, or —CON (CH 3 ) —, and in R 11 and R 12 , one or two of —CH 2 — of the linear alkylene may be substituted with —O—, and each of R 7 to R 10 is independently, -F, -CH 3, -OCH 3, a -CF 3 or -OH,, and, b to e are each independently an integer of 0 to 4.

上記式(V−1)、(V−2)および(VI−2)で表される化合物はその感光性の点から特に好適に用いることができる。式(V−2)および(VI−2)においては、アミノ基の結合位置がパラ位の化合物を、さらに式(V−2)においては、a=0の化合物を、その配向性の点からより好適に用いることができる。 The compounds represented by the above formulas (V-1), (V-2) and (VI-2) can be particularly preferably used from the viewpoint of their photosensitivity. In the formulas (V-2) and (VI-2), the compound in which the amino group is bonded to the para-position, and in the formula (V-2), the compound in which a = 0 is selected from the viewpoint of the orientation. It can be used more suitably.

式(II−1)〜(VI−2)に示す紫外線照射で異性化を起こし得る構造を持つ酸二無水物もしくはジアミンは下記式(II−1−1)〜(VI−2−3)で具体的に表すことができる。

Figure 2017003965

Figure 2017003965

Figure 2017003965

Figure 2017003965

Figure 2017003965

Figure 2017003965

Figure 2017003965
Acid dianhydrides or diamines having a structure capable of causing isomerization by ultraviolet irradiation shown in the formulas (II-1) to (VI-2) are represented by the following formulas (II-1-1) to (VI-2-3). It can be expressed specifically.
Figure 2017003965

Figure 2017003965

Figure 2017003965

Figure 2017003965

Figure 2017003965

Figure 2017003965

Figure 2017003965

これらの中でも式(V−1−1)〜式(V−3−8)で表される化合物を使用することで、紫外線照射に対してより感度の高い光配向用液晶配向剤を得ることができる。式(V−1−1)、式(V−2−1)、式(V−2−4)〜式(V−2−11)および式(V−3−1)〜式(V−3−8)で表される化合物を使用することで、液晶分子をより一様に配向させることができる光配向用液晶配向剤を得ることができる。式(V−2−4)〜式(V−3−8)で表される化合物を使用することで、形成される配向膜がより着色の少なくできる光配向用液晶配向剤を得ることができる。 Among these, by using the compounds represented by the formulas (V-1-1) to (V-3-8), it is possible to obtain a liquid crystal aligning agent for photo-alignment with higher sensitivity to ultraviolet irradiation. it can. Formula (V-1-1), Formula (V-2-1), Formula (V-2-4) to Formula (V-2-11), and Formula (V-3-1) to Formula (V-3) By using the compound represented by -8), it is possible to obtain a liquid crystal aligning agent for photoalignment capable of aligning liquid crystal molecules more uniformly. By using the compounds represented by the formulas (V-2-4) to (V-3-8), it is possible to obtain a liquid crystal aligning agent for photo-alignment in which the formed alignment film can be less colored. .

前記光分解構造を有するモノマーとしては、下記式(PA−1)〜式(PA−6)で表される化合物が挙げられる。

Figure 2017003965
式(PA−3)〜式(PA−6)において、R11は独立して、炭素数1〜5のアルキル基である。 Examples of the monomer having a photolytic structure include compounds represented by the following formulas (PA-1) to (PA-6).
Figure 2017003965
In formula (PA-3) to formula (PA-6), R 11 is independently an alkyl group having 1 to 5 carbon atoms.

これらの中でも、式(PA−1)、式(PA−2)および式(PA−5)が好適に用いられる。 Among these, formula (PA-1), formula (PA-2), and formula (PA-5) are preferably used.

式(PA−1)〜(PA−6)で表される化合物は、光異性化反応に基づく液晶配向能を利用した液晶配向剤、光二量化に基づく液晶配向能を利用した液晶配向剤の材料として用いる場合は、上記の光反応性構造を有さないテトラカルボン酸二無水物として用いられる。 The compounds represented by the formulas (PA-1) to (PA-6) are materials for liquid crystal aligning agents using liquid crystal aligning ability based on photoisomerization reaction and liquid crystal aligning agents using liquid crystal aligning ability based on photodimerization. When used as a tetracarboxylic dianhydride having no photoreactive structure as described above.

前記光二量化構造を有するモノマーとしては、下記式(PDI−9)〜式(PDI−13)で表されるジアミン化合物が挙げられる。

Figure 2017003965
式(PDI−12)において、R12は炭素数1〜10のアルキルまたはアルコキシであり、アルキルまたはアルコキシの少なくとも1つの水素はフッ素に置き換えられていてもよい。 Examples of the monomer having a photodimerization structure include diamine compounds represented by the following formulas (PDI-9) to (PDI-13).
Figure 2017003965
In Formula (PDI-12), R 12 is alkyl or alkoxy having 1 to 10 carbons, and at least one hydrogen of alkyl or alkoxy may be replaced by fluorine.

これらの中でも、式(PDI−9)および式(PDI−11)で表されるジアミンを好適に用いることができる。 Among these, the diamine represented by Formula (PDI-9) and Formula (PDI-11) can be used suitably.

光反応性構造を有さない(非感光性)テトラカルボン酸二無水物および光反応性構造を有する(感光性)テトラカルボン酸二無水物を併用する態様においては、配向膜の光に対する感度の低下を防ぐために、本発明のポリアミック酸またはその誘導体を製造する際の原料として使用するテトラカルボン酸二無水物の全量に対して、感光性テトラカルボン酸二無水物は30〜100モル%が好ましく、50〜100モル%が特に好ましい。また、光に対する感度、電気特性、残像特性等、前述した諸般の特性を改善するために感光性テトラカルボン酸二無水物を2つ以上併用してもよい。 In an embodiment in which a tetracarboxylic dianhydride having no photoreactive structure (non-photosensitive) and a (photosensitive) tetracarboxylic dianhydride having a photoreactive structure are used in combination, the alignment film is sensitive to light. In order to prevent the decrease, the photosensitive tetracarboxylic dianhydride is preferably 30 to 100 mol% based on the total amount of the tetracarboxylic dianhydride used as a raw material when producing the polyamic acid or derivative thereof of the present invention. 50 to 100 mol% is particularly preferable. Further, two or more photosensitive tetracarboxylic dianhydrides may be used in combination in order to improve the above-described various characteristics such as sensitivity to light, electrical characteristics, and afterimage characteristics.

光反応性構造を有さない(非感光性)のジアミンおよび光反応性構造を有する(感光性)ジアミンを併用する態様においては、配向膜の光に対する感度の低下を防ぐために、本発明のポリアミック酸またはその誘導体を製造する際の原料として使用するジアミンの全量に対して、感光性ジアミンは20〜100モル%が好ましく、50〜100モル%が特に好ましい。また、光に対する感度、残像特性等、前述した諸般の特性を改善するために感光性ジアミンを2つ以上併用してもよい。前記のごとく、本発明の態様にはテトラカルボン酸二無水物の全量が非感光性テトラカルボン酸二無水物で占められる場合が含まれるが、その場合でもジアミンの全量の最低20モル%が感光性ジアミンであることが求められる。 In an embodiment in which a diamine having no photoreactive structure (non-photosensitive) and a (photosensitive) diamine having a photoreactive structure are used in combination, the polyamic of the present invention is used to prevent a decrease in sensitivity of the alignment film to light. The photosensitive diamine is preferably from 20 to 100 mol%, particularly preferably from 50 to 100 mol%, based on the total amount of diamine used as a raw material for producing the acid or derivative thereof. Two or more photosensitive diamines may be used in combination in order to improve the above-described various characteristics such as sensitivity to light and afterimage characteristics. As described above, the embodiment of the present invention includes the case where the total amount of the tetracarboxylic dianhydride is occupied by the non-photosensitive tetracarboxylic dianhydride. Even in this case, at least 20 mol% of the total amount of the diamine is photosensitive. It is required to be a functional diamine.

光に対する感度、残像特性等、前述した諸般の特性を改善するために、感光性テトラカルボン酸二無水物および感光性ジアミンを併用してもよく、それぞれを2つ以上併用してもよい。 In order to improve the above-described various characteristics such as sensitivity to light and afterimage characteristics, a photosensitive tetracarboxylic dianhydride and a photosensitive diamine may be used in combination, or two or more of each may be used in combination.

本発明の式(1)で表されるジアミンについて説明する。

Figure 2017003965
式(1)において、nは独立して炭素数1〜6のアルキレンである。 The diamine represented by Formula (1) of this invention is demonstrated.
Figure 2017003965
In formula (1), n is independently a C1-C6 alkylene.

式(1)の中でも、n=3で表されるジアミンが、原料入手の容易さや、ポリマー重合時の容易さ、得られる配向膜の信頼性の点から好ましく用いることができる。 Among the formulas (1), a diamine represented by n = 3 can be preferably used from the viewpoint of easy availability of raw materials, ease of polymer polymerization, and reliability of the obtained alignment film.

本発明のポリアミック酸、ポリアミック酸エステルおよびポリイミドから選択される少なくとも1つを含有する光配向用液晶配向剤を製造する為に使用する非感光性テトラカルボン酸二無水物は、公知の非感光性テトラカルボン酸二無水物から制限されることなく選択することができる。このような非感光性テトラカルボン酸二無水物は、芳香環に直接ジカルボン酸無水物が結合した芳香族系(複素芳香環系を含む)、および芳香環に直接ジカルボン酸無水物が結合していない脂肪族系(複素環系を含む)の何れの群に属するものであってもよい。 The non-photosensitive tetracarboxylic dianhydride used for producing the liquid crystal aligning agent for photo-alignment containing at least one selected from the polyamic acid, polyamic acid ester and polyimide of the present invention is a known non-photosensitive The tetracarboxylic dianhydride can be selected without limitation. Such a non-photosensitive tetracarboxylic dianhydride has an aromatic system (including a heteroaromatic ring system) in which a dicarboxylic acid anhydride is directly bonded to an aromatic ring, and a dicarboxylic acid anhydride directly bonded to an aromatic ring. It may belong to any group of non-aliphatic (including heterocyclic) systems.

本発明のポリアミック酸、ポリアミック酸エステルおよびポリイミドから選択される少なくとも1つを含有する光配向用液晶配向剤を製造する為に使用する、式(1)で表されるジアミン以外の非感光性ジアミンは、公知の非感光性ジアミンから制限されることなく選択することができる。 A non-photosensitive diamine other than the diamine represented by formula (1) used for producing a liquid crystal aligning agent for photo-alignment containing at least one selected from the polyamic acid, polyamic acid ester and polyimide of the present invention Can be selected without limitation from known non-photosensitive diamines.

各ジアミンにおいて、ジアミンに対するモノアミンの比率が40モル%以下の範囲で、ジアミンの一部がモノアミンに置き換えられていてもよい。このような置き換えは、ポリアミック酸を生成する際の重合反応のターミネーションを起こすことができ、それ以上の重合反応の進行を抑えることができる。このため、このような置き換えによって、得られる重合体(ポリアミック酸、ポリアミック酸エステルもしくはポリイミド)の分子量を容易に制御することができ、例えば本発明の効果が損われることなく液晶配向剤の塗布特性を改善することができる。モノアミンに置き換えられるジアミンは、本発明の効果が損なわれなければ、1種でも2種以上でもよい。前記モノアミンとしては、例えばアニリン、4−ヒドロキシアニリン、シクロヘキシルアミン、n−ブチルアミン、n−ペンチルアミン、n−ヘキシルアミン、n−ヘプチルアミン、n−オクチルアミン、n−ノニルアミン、n−デシルアミン、n−ウンデシルアミン、n−ドデシルアミン、n−トリデシルアミン、n−テトラデシルアミン、n−ペンタデシルアミン、n−ヘキサデシルアミン、n−ヘプタデシルアミン、n−オクタデシルアミン、およびn−エイコシルアミンが挙げられる。 In each diamine, the ratio of the monoamine to the diamine may be 40 mol% or less, and a part of the diamine may be replaced with the monoamine. Such replacement can cause termination of the polymerization reaction when the polyamic acid is produced, and further progress of the polymerization reaction can be suppressed. For this reason, the molecular weight of the resulting polymer (polyamic acid, polyamic acid ester or polyimide) can be easily controlled by such replacement, for example, the coating characteristics of the liquid crystal aligning agent without impairing the effects of the present invention. Can be improved. As long as the effect of the present invention is not impaired, one or more diamines may be substituted for the monoamine. Examples of the monoamine include aniline, 4-hydroxyaniline, cyclohexylamine, n-butylamine, n-pentylamine, n-hexylamine, n-heptylamine, n-octylamine, n-nonylamine, n-decylamine, n- Undecylamine, n-dodecylamine, n-tridecylamine, n-tetradecylamine, n-pentadecylamine, n-hexadecylamine, n-heptadecylamine, n-octadecylamine, and n-eicosylamine Is mentioned.

本発明のポリアミック酸、ポリアミック酸エステルおよびポリイミドは、そのモノマーにモノイソシアネート化合物をさらに含んでいてもよい。モノイソシアネート化合物をモノマーに含むことによって、得られるポリアミック酸またはその誘導体の末端が修飾され、分子量が調節される。この末端修飾型のポリアミック酸またはその誘導体を用いることにより、例えば本発明の効果が損われることなく液晶配向剤の塗布特性を改善することができる。モノマー中のモノイソシアネート化合物の含有量は、モノマー中のジアミンおよびテトラカルボン酸二無水物の総量に対して1〜10モル%であることが、前記の観点から好ましい。前記モノイソシアネート化合物としては、例えばフェニルイソシアネート、およびナフチルイソシアネートが挙げられる。 The polyamic acid, polyamic acid ester and polyimide of the present invention may further contain a monoisocyanate compound in the monomer. By including the monoisocyanate compound in the monomer, the terminal of the resulting polyamic acid or derivative thereof is modified, and the molecular weight is adjusted. By using this terminal-modified polyamic acid or a derivative thereof, for example, the coating properties of the liquid crystal aligning agent can be improved without impairing the effects of the present invention. It is preferable from said viewpoint that content of the monoisocyanate compound in a monomer is 1-10 mol% with respect to the total amount of the diamine and tetracarboxylic dianhydride in a monomer. Examples of the monoisocyanate compound include phenyl isocyanate and naphthyl isocyanate.

本発明のポリアミック酸、ポリアミック酸エステルおよびポリイミドは、上記の酸無水物の混合物とジアミンを溶剤中で反応させることによって得られる。この合成反応においては、原料の選択以外に特別な条件は必要でなく、通常のポリアミック酸合成における条件をそのまま適用することができる。使用する溶剤については後述する。 The polyamic acid, polyamic acid ester and polyimide of the present invention can be obtained by reacting a mixture of the above acid anhydrides with a diamine in a solvent. In this synthesis reaction, no special conditions other than the selection of the raw materials are required, and the conditions for normal polyamic acid synthesis can be applied as they are. The solvent to be used will be described later.

本発明の光配向用液晶配向剤は、本発明のポリアミック酸、ポリアミック酸エステルおよびポリイミド以外の他の成分をさらに含有していてもよい。他の成分は、1種であっても2種以上であってもよい。他の成分として、例えば後述するその他のポリマーや化合物などが挙げられる。 The liquid crystal aligning agent for photo-alignment of the present invention may further contain components other than the polyamic acid, the polyamic acid ester and the polyimide of the present invention. The other component may be one type or two or more types. Examples of other components include other polymers and compounds described below.

その他のポリマーとしては、光異性化構造を有さず、式(1)のジアミンを含まない原料モノマーを反応させて得たポリアミック酸、ポリアミック酸エステル、またはポリイミド(以下、“その他のポリアミック酸またはその誘導体”という。)、ポリエステル、ポリアミド、ポリシロキサン、セルロース誘導体、ポリアセタール、ポリスチレン誘導体、ポリ(スチレン−フェニルマレイミド)誘導体、ポリ(メタ)アクリレートなどを挙げる事ができる。1種であっても2種以上であってもよい。これらのうち、その他のポリアミック酸またはその誘導体およびポリシロキサンが好ましく、その他のポリアミック酸またはその誘導体がより好ましい。 Examples of other polymers include polyamic acid, polyamic acid ester, or polyimide (hereinafter referred to as “other polyamic acid or a polyamic acid” obtained by reacting a raw material monomer having no photoisomerization structure and not containing the diamine of formula (1). Derivatives thereof ”), polyesters, polyamides, polysiloxanes, cellulose derivatives, polyacetals, polystyrene derivatives, poly (styrene-phenylmaleimide) derivatives, poly (meth) acrylates, and the like. 1 type or 2 types or more may be sufficient. Of these, other polyamic acids or derivatives thereof and polysiloxanes are preferred, and other polyamic acids or derivatives thereof are more preferred.

その他のポリアミック酸またはその誘導体を合成するために用いられるジアミンは、芳香族ジアミンを、全ジアミンに対して、30モル%以上含むものである事が好ましく、50%以上含むものであることがより好ましい。 The diamine used for synthesizing other polyamic acid or a derivative thereof preferably contains 30% by mole or more, and more preferably 50% or more of the aromatic diamine with respect to the total diamine.

その他のポリアミック酸またはその誘導体は、それぞれ、本発明の液晶配向剤の必須成分であるポリアミック酸またはその誘導体の合成方法として下記に記載したところに準じて合成することができる。 Other polyamic acids or derivatives thereof can be synthesized according to the method described below as a method for synthesizing polyamic acid or derivatives thereof, which are essential components of the liquid crystal aligning agent of the present invention.

本発明の光配向用液晶配向剤は、前述の通り、テトラカルボン酸二無水物およびその誘導体、およびジアミンからなる群から選ばれる少なくとも1つが光反応性化構造を有し、かつ、ジアミンが下記式(1)で表される化合物の少なくとも1つを含む原料モノマーを反応させて得た重合体の少なくとも1つを含むか、または、テトラカルボン酸およびその誘導体、およびジアミンからなる群から選ばれる少なくとも1つが光反応性化構造を有する原料モノマーを反応させて得られる重合体の少なくとも1つと、テトラカルボン酸二無水物およびその誘導体、およびジアミンのいずれもが光反応性化構造を有さず、かつ、ジアミンが下記式(1)で表される化合物の少なくとも1つを含む原料モノマーを反応させて得た重合体の少なくとも1つとを同時に含む、光配向用液晶配向剤である。 As described above, in the liquid crystal aligning agent for photo-alignment of the present invention, at least one selected from the group consisting of tetracarboxylic dianhydride and derivatives thereof and diamine has a photoreactive structure, and diamine is It contains at least one polymer obtained by reacting a raw material monomer containing at least one compound represented by the formula (1), or is selected from the group consisting of tetracarboxylic acid and derivatives thereof, and diamine None of the polymer obtained by reacting at least one raw material monomer having a photoreactive structure, tetracarboxylic dianhydride and its derivative, and diamine have a photoreactive structure. And at least one polymer obtained by reacting a raw material monomer containing at least one compound represented by the following formula (1) with diamine. Including simultaneously, it is for photo-alignment liquid crystal aligning agent.

本発明の光配向用液晶配向剤は、少なくとも2つのポリマーを含有していてもよい。2つのポリマーのうち光反応性化構造を有するポリマーを〔A〕、光反応性化構造を有さないポリマーを〔B〕とすると、〔A〕の重量平均分子量を〔B〕の重量平均分子量よりも小さく制御することによって、両ポリマーの混合物を含有する液晶配向剤を基板に塗布し、予備乾燥を行う過程で、形成されたポリマー膜の上層に光反応性化構造を有する〔A〕を、下層に光反応性化構造を有さない〔B〕を偏析させることができると考えられる。このため、配向膜表面は光反応性化構造を有するポリマー〔A〕の存在が支配的となり、配向膜を形成するポリマーの総量を基準として光反応性化構造を有するポリマー〔A〕の含有量が少なくても、本発明の光配向用液晶配向剤によって形成された配向膜は高い液晶配向性を示す。 The liquid crystal aligning agent for photo-alignment of the present invention may contain at least two polymers. Of the two polymers, [A] is a polymer having a photoreactive structure, and [B] is a polymer having no photoreactive structure, and the weight average molecular weight of [B] is the weight average molecular weight of [B]. In the process of applying a liquid crystal aligning agent containing a mixture of both polymers to the substrate and performing preliminary drying, the photopolymerization structure [A] is formed on the upper layer of the formed polymer film. It is considered that [B] having no photoreactive structure in the lower layer can be segregated. Therefore, the presence of the polymer [A] having the photoreactive structure is dominant on the surface of the alignment film, and the content of the polymer [A] having the photoreactive structure based on the total amount of the polymer forming the alignment film. Even if there is little, the alignment film formed with the liquid crystal aligning agent for photo-alignment of this invention shows high liquid crystal aligning property.

上記のように2つのポリマーを含む液晶配向剤を用いて薄膜を形成する過程で、表面エネルギーが小さいポリマーは上層に、表面エネルギーの大きいポリマーは下層に分離する現象が知られている。上記の配向膜が層分離しているかの確認は、例えば、形成した膜の表面エネルギーを測定し、ポリマー〔A〕のみを含有する液晶配向剤によって形成された膜の表面エネルギーの値と同じか、それに近い値であることによって確認することができる。 In the process of forming a thin film using a liquid crystal aligning agent containing two polymers as described above, it is known that a polymer having a small surface energy is separated into an upper layer and a polymer having a large surface energy is separated into a lower layer. Whether the alignment film is layer-separated is, for example, the surface energy of the formed film is measured and is the same as the value of the surface energy of the film formed by the liquid crystal aligning agent containing only the polymer [A]. It can be confirmed by being close to it.

上記のように良好な光配向性を示すために、本発明の光配向用液晶配向剤中の〔A〕の含有量は、含まれるポリマー全量を100としたとき20重量%以上であることが必要であり、30重量%以上であることが好ましく、50重量%以上であることがより好ましい。また、液晶配向膜の透過率を良好に保つために、〔A〕の含有量は90重量%以下であることが必要であり、70重量%以下であることが好ましく、50重量%以下であることがより好ましい。ただし、ここで述べる〔A〕の好ましい含有量は1つの指針であり、原料に用いるテトラカルボン酸二無水物またはジアミンの組み合わせによって変動することがある。特にアゾベンゼンの構造を有する原料化合物を使用する場合、透過性を良好に保つためには、〔A〕の含有量は上記の割合よりもおよそ10〜20重量%少なく設定される。 In order to exhibit good photoalignment as described above, the content of [A] in the liquid crystal aligning agent for photoalignment of the present invention is 20% by weight or more when the total amount of the polymer contained is 100. It is necessary and is preferably 30% by weight or more, more preferably 50% by weight or more. Further, in order to keep the transmittance of the liquid crystal alignment film good, the content of [A] needs to be 90% by weight or less, preferably 70% by weight or less, and preferably 50% by weight or less. It is more preferable. However, the preferable content of [A] described here is one guideline and may vary depending on the combination of tetracarboxylic dianhydride or diamine used as a raw material. In particular, when a raw material compound having an azobenzene structure is used, the content of [A] is set to be approximately 10 to 20% by weight less than the above ratio in order to maintain good permeability.

ポリマーの重量平均分子量は、〔A〕を8,000〜40,000に、〔B〕を50,000〜200,000に調整することにより、好ましくは〔A〕の分子量(MW)を10,000〜30,000に、〔B〕の分子量(MW)を80,000〜160,000に調整することにより、前記のような層分離を引き起こすことができる。ポリマーの重量平均分子量は、例えば、テトラカルボン酸二無水物とジアミンを反応させる時間によって調整することができる。重合反応中の反応液を少量採取して、これに含まれるポリマーの重量平均分子量をゲルパーミエーションクロマトグラフィー(GPC)法による測定によって求め、その測定値によって反応の終点を決定することができる。また、反応開始時にテトラカルボン酸二無水物およびジアミンの相当量を、モノカルボン酸またはモノアミンに置き換えることにより、重合反応のターミネーションを起こさせて、重量平均分子量を制御する方法もよく知られている。 The weight average molecular weight of the polymer is preferably adjusted so that the molecular weight (MW) of [A] is 10, by adjusting [A] to 8,000 to 40,000 and [B] to 50,000 to 200,000. The layer separation as described above can be caused by adjusting the molecular weight (MW) of [B] to 80,000 to 160,000 to 000 to 30,000. The weight average molecular weight of the polymer can be adjusted by, for example, the time for reacting tetracarboxylic dianhydride and diamine. A small amount of the reaction solution during the polymerization reaction is collected, the weight average molecular weight of the polymer contained therein is determined by measurement by gel permeation chromatography (GPC) method, and the end point of the reaction can be determined by the measured value. In addition, a method of controlling the weight average molecular weight by causing the termination of the polymerization reaction by replacing the corresponding amount of tetracarboxylic dianhydride and diamine with monocarboxylic acid or monoamine at the start of the reaction is well known. .

前記ポリシロキサンとしては、特開2009−036966、特開2010−185001、特開2011−102963、特開2011−253175、特開2012−159825、国際公開2008/044644、国際公開2009/148099、国際公開2010/074261、国際公開2010/074264、国際公開2010/126108、国際公開2011/068123、国際公開2011/068127、国際公開2011/068128、国際公開2012/115157、国際公開2012/165354等に開示されているポリシロキサンをさらに含有することができる。 Examples of the polysiloxane include JP2009-036966, JP2010-185001, JP2011-109633, JP2011-253175, JP2012-159825, International Publication 2008/044644, International Publication 2009/148099, International Publication. 2010/074261, International Publication 2010/074264, International Publication 2010/126108, International Publication 2011/068123, International Publication 2011/068127, International Publication 2011/068128, International Publication 2012/115157, International Publication 2012/165354, etc. The polysiloxane may be further contained.

<アルケニル置換ナジイミド化合物>
例えば、本発明の液晶配向剤は、液晶表示素子の電気特性を長期に安定させる目的から、アルケニル置換ナジイミド化合物をさらに含有していてもよい。アルケニル置換ナジイミド化合物は1種で用いてもよいし、2種以上を併用してもよい。アルケニル置換ナジイミド化合物の含有量は、上記の目的から、ポリアミック酸またはその誘導体に対して1〜100重量%であることが好ましく、1〜70重量%であることがより好ましく、1〜50重量%であることがさらに好ましい。
<Alkenyl-substituted nadiimide compound>
For example, the liquid crystal aligning agent of the present invention may further contain an alkenyl-substituted nadiimide compound for the purpose of stabilizing the electrical characteristics of the liquid crystal display element over a long period of time. An alkenyl substituted nadiimide compound may be used by 1 type, and may use 2 or more types together. For the above purpose, the content of the alkenyl-substituted nadiimide compound is preferably 1 to 100% by weight, more preferably 1 to 70% by weight, and more preferably 1 to 50% by weight with respect to the polyamic acid or derivative thereof. More preferably.

以下にナジイミド化合物について具体的に説明する。
アルケニル置換ナジイミド化合物は、本発明で用いられるポリアミック酸またはその誘導体を溶解する溶剤に溶解させることができる化合物であることが好ましい。このようなアルケニル置換ナジイミド化合物の例は、下記の式(NA)で表される化合物が挙げられる。

Figure 2017003965
式(NA)において、LおよびLは独立して水素、炭素数1〜12のアルキル、炭素数3〜6のアルケニル、炭素数5〜8のシクロアルキル、炭素数6〜12のアリールまたはベンジルであり、nは1または2である。 The nadiimide compound will be specifically described below.
The alkenyl-substituted nadiimide compound is preferably a compound that can be dissolved in a solvent that dissolves the polyamic acid or derivative thereof used in the present invention. Examples of such alkenyl-substituted nadiimide compounds include compounds represented by the following formula (NA).
Figure 2017003965
In the formula (NA), L 1 and L 2 are independently hydrogen, alkyl having 1 to 12 carbons, alkenyl having 3 to 6 carbons, cycloalkyl having 5 to 8 carbons, aryl having 6 to 12 carbons, or Benzyl and n is 1 or 2.

式(NA)において、n=1のとき、Wは炭素数1〜12のアルキル、炭素数2〜6のアルケニル、炭素数5〜8のシクロアルキル、炭素数6〜12のアリール、ベンジル、−Z−(O)−(ZO)−Z−H(ここで、Z、ZおよびZは独立して炭素数2〜6のアルキレンであり、rは0または1であり、そして、kは1〜30の整数である。)で表される基、−(Z−B−Z−H(ここで、ZおよびZは独立して炭素数1〜4のアルキレンまたは炭素数5〜8のシクロアルキレンであり、Bはフェニレンであり、そして、rは0または1である。)で表される基、−B−T−B−H(ここで、Bはフェニレンであり、そして、Tは−CH−、−C(CH−、−O−、−CO−、−S−、または−SO−である。)で表される基、またはこれらの基の1〜3個の水素が−OHで置換された基である。 In the formula (NA), when n = 1, W is alkyl having 1 to 12 carbons, alkenyl having 2 to 6 carbons, cycloalkyl having 5 to 8 carbons, aryl having 6 to 12 carbons, benzyl,- Z 1- (O) r- (Z 2 O) k -Z 3 -H (wherein Z 1 , Z 2 and Z 3 are independently alkylene having 2 to 6 carbon atoms, and r is 0 or 1 And k is an integer of 1 to 30.), a group represented by — (Z 4 ) r —BZ 5 —H, wherein Z 4 and Z 5 are independently A group represented by the formula: -B-T-B-H (which is an alkylene having 1 to 4 carbon atoms or a cycloalkylene having 5 to 8 carbon atoms, B is phenylene, and r is 0 or 1) B is phenylene, and T is —CH 2 —, —C (CH 3 ) 2 —, —O—, —CO—, — S— or —SO 2 —), or a group in which 1 to 3 hydrogens of these groups are substituted with —OH.

このとき、好ましいWは、炭素数1〜8のアルキル、炭素数3〜4のアルケニル、シクロヘキシル、フェニル、ベンジル、炭素数4〜10のポリ(エチレンオキシ)エチル、フェニルオキシフェニル、フェニルメチルフェニル、フェニルイソプロピリデンフェニル、およびこれらの基の1個または2個の水素が−OHで置き換えられた基である。 At this time, preferable W is alkyl having 1 to 8 carbons, alkenyl having 3 to 4 carbons, cyclohexyl, phenyl, benzyl, poly (ethyleneoxy) ethyl having 4 to 10 carbons, phenyloxyphenyl, phenylmethylphenyl, Phenylisopropylidenephenyl and groups in which one or two hydrogens of these groups are replaced by —OH.

式(NA)において、n=2のとき、Wは炭素数2〜20のアルキレン、炭素数5〜8のシクロアルキレン、炭素数6〜12のアリーレン、−Z−O−(ZO)−Z−(ここで、Z〜Z、およびkの定義は前記の通りである。)で表される基、−Z−B−Z−(ここで、Z、ZおよびBの定義は前記の通りである。)で表される基、−B−(O−B)−T−(B−O)−B−(ここで、Bはフェニレンであり、Tは炭素数1〜3のアルキレン、−O−または−SO−であり、rの定義は前記の通りである。)で表される基、またはこれらの基の1〜3個の水素が−OHで置き換えられた基である。 Wherein in (NA), when n = 2, W is alkylene of 2 to 20 carbon atoms, cycloalkylene of 5 to 8 carbon atoms, arylene having 6 to 12 carbon atoms, -Z 1 -O- (Z 2 O ) a group represented by k— Z 3 — (wherein Z 1 to Z 3 and k are as defined above), —Z 4 —BZ 5 — (where Z 4 , Z defining 5 and B are as defined above. groups represented by), -B- (O-B) r -T- (B-O) r -B- ( wherein, B is phenylene, T is alkylene having 1 to 3 carbon atoms, —O— or —SO 2 —, and the definition of r is as described above), or 1 to 3 hydrogens of these groups are It is a group replaced by —OH.

このとき、好ましいWは炭素数2〜12のアルキレン、シクロヘキシレン、フェニレン、トリレン、キシリレン、−C−O−(Z−O)−O−C−(ここで、Zは炭素数2〜6のアルキレンであり、nは1または2である。)で表される基、−B−T−B−(ここで、Bはフェニレンであり、そして、Tは−CH−、−O−または−SO−である。)で表される基、−B−O−B−C−B−O−B−(ここで、Bはフェニレンである。)で表される基、およびこれらの基の1個または2個の水素が−OHで置き換えられた基である。 In this case, preferable W is alkylene having 2 to 12 carbon atoms, cyclohexylene, phenylene, tolylene, xylylene, —C 3 H 6 —O— (Z 2 —O) n —O—C 3 H 6 — (where, Z 2 is alkylene having 2 to 6 carbon atoms, and n is 1 or 2.) —B—T—B— (where B is phenylene, and T is — A group represented by CH 2 —, —O— or —SO 2 —), —B—O—B—C 3 H 6 —B—O—B—, wherein B is phenylene. And a group in which one or two hydrogens of these groups are replaced by —OH.

このようなアルケニル置換ナジイミド化合物は、例えば特許2729565に記載されているように、アルケニル置換ナジック酸無水物誘導体とジアミンとを80〜220℃の温度で0.5〜20時間保持することにより合成して得られる化合物や市販されている化合物を用いることができる。アルケニル置換ナジイミド化合物の具体例として、以下に示す化合物が挙げられる。 Such an alkenyl-substituted nadiimide compound is synthesized, for example, by maintaining an alkenyl-substituted nadic acid anhydride derivative and a diamine at a temperature of 80 to 220 ° C. for 0.5 to 20 hours as described in Japanese Patent No. 2729565. Or a commercially available compound can be used. Specific examples of the alkenyl-substituted nadiimide compound include the following compounds.

N−メチル−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−メチル−アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−メチル−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−メチル−メタリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2−エチルヘキシル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、 N-methyl-allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N-methyl-allylmethylbicyclo [2.2.1] hept-5-ene-2,3 -Dicarboximide, N-methyl-methallylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N-methyl-methallylmethylbicyclo [2.2.1] hept- 5-ene-2,3-dicarboximide, N- (2-ethylhexyl) -allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide,

N−(2−エチルヘキシル)−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−アリル−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−アリル−アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−アリル−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−イソプロペニル−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−イソプロペニル−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−イソプロペニル−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−シクロヘキシル−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−シクロヘキシル−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−シクロヘキシル−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−フェニル−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、 N- (2-ethylhexyl) -allyl (methyl) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N-allyl-allylbicyclo [2.2.1] hept-5 -Ene-2,3-dicarboximide, N-allyl-allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N-allyl-methallylbicyclo [2.2 .1] Hept-5-ene-2,3-dicarboximide, N-isopropenyl-allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N-isopropenyl- Allyl (methyl) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N-isopropenyl-methallylbicyclo [2.2.1] hept-5-ene-2,3 -Dicarboxyl N-cyclohexyl-allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N-cyclohexyl-allyl (methyl) bicyclo [2.2.1] hept-5-ene -2,3-dicarboximide, N-cyclohexyl-methallylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N-phenyl-allylbicyclo [2.2.1] Hept-5-ene-2,3-dicarboximide,

N−フェニル−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−ベンジル−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−ベンジル−アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−ベンジル−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2−ヒドロキシエチル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2−ヒドロキシエチル)−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2−ヒドロキシエチル)−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、 N-phenyl-allyl (methyl) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N-benzyl-allylbicyclo [2.2.1] hept-5-ene-2 , 3-dicarboximide, N-benzyl-allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N-benzyl-methallylbicyclo [2.2.1] hept -5-ene-2,3-dicarboximide, N- (2-hydroxyethyl) -allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (2- Hydroxyethyl) -allyl (methyl) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (2-hydroxyethyl) -methallylbicyclo [2.2.1] hept -5-ene- , 3-dicarboximide,

N−(2,2−ジメチル−3−ヒドロキシプロピル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2,2−ジメチル−3−ヒドロキシプロピル)−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2,3−ジヒドロキシプロピル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2,3−ジヒドロキシプロピル)−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(3−ヒドロキシ−1−プロペニル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(4−ヒドロキシシクロヘキシル)−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、 N- (2,2-dimethyl-3-hydroxypropyl) -allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (2,2-dimethyl-3-hydroxy Propyl) -allyl (methyl) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (2,3-dihydroxypropyl) -allylbicyclo [2.2.1] hept -5-ene-2,3-dicarboximide, N- (2,3-dihydroxypropyl) -allyl (methyl) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (3-hydroxy-1-propenyl) -allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (4-hydroxycyclohexyl) -allyl (methyl) bicycle [2.2.1] hept-5-ene-2,3-dicarboximide,

N−(4−ヒドロキシフェニル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(4−ヒドロキシフェニル)−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(4−ヒドロキシフェニル)−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(4−ヒドロキシフェニル)−メタリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(3−ヒドロキシフェニル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(3−ヒドロキシフェニル)−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(p−ヒドロキシベンジル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−{2−(2−ヒドロキシエトキシ)エチル}−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、 N- (4-hydroxyphenyl) -allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (4-hydroxyphenyl) -allyl (methyl) bicyclo [2.2 .1] hept-5-ene-2,3-dicarboximide, N- (4-hydroxyphenyl) -methallylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (4-hydroxyphenyl) -methallylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (3-hydroxyphenyl) -allylbicyclo [2.2. 1] Hept-5-ene-2,3-dicarboximide, N- (3-hydroxyphenyl) -allyl (methyl) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide , -(P-hydroxybenzyl) -allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- {2- (2-hydroxyethoxy) ethyl} -allylbicyclo [2. 2.1] hept-5-ene-2,3-dicarboximide,

N−{2−(2−ヒドロキシエトキシ)エチル}−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−{2−(2−ヒドロキシエトキシ)エチル}−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−{2−(2−ヒドロキシエトキシ)エチル}−メタリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−〔2−{2−(2−ヒドロキシエトキシ)エトキシ}エチル〕−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−〔2−{2−(2−ヒドロキシエトキシ)エトキシ}エチル〕−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−〔2−{2−(2−ヒドロキシエトキシ)エトキシ}エチル〕−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−{4−(4−ヒドロキシフェニルイソプロピリデン)フェニル}−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−{4−(4−ヒドロキシフェニルイソプロピリデン)フェニル}−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−{4−(4−ヒドロキシフェニルイソプロピリデン)フェニル}−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、およびこれらのオリゴマー、 N- {2- (2-hydroxyethoxy) ethyl} -allyl (methyl) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- {2- (2-hydroxyethoxy) ) Ethyl} -methallylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- {2- (2-hydroxyethoxy) ethyl} -methallylmethylbicyclo [2.2 .1] Hept-5-ene-2,3-dicarboximide, N- [2- {2- (2-hydroxyethoxy) ethoxy} ethyl] -allylbicyclo [2.2.1] hept-5-ene -2,3-dicarboximide, N- [2- {2- (2-hydroxyethoxy) ethoxy} ethyl] -allyl (methyl) bicyclo [2.2.1] hept-5-ene-2,3- Dicarboximide, N- 2- {2- (2-hydroxyethoxy) ethoxy} ethyl] -methallylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- {4- (4-hydroxyphenyl) Isopropylidene) phenyl} -allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- {4- (4-hydroxyphenylisopropylidene) phenyl} -allyl (methyl) bicyclo [2.2.1] Hept-5-ene-2,3-dicarboximide, N- {4- (4-hydroxyphenylisopropylidene) phenyl} -methallylbicyclo [2.2.1] hept-5 -Ene-2,3-dicarboximide, and oligomers thereof,

N,N’−エチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−エチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−エチレン−ビス(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−トリメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ヘキサメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ヘキサメチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ドデカメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ドデカメチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−シクロヘキシレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−シクロヘキシレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、 N, N′-ethylene-bis (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide), N, N′-ethylene-bis (allylmethylbicyclo [2.2. 1] Hept-5-ene-2,3-dicarboximide), N, N′-ethylene-bis (methallylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide) N, N′-trimethylene-bis (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide), N, N′-hexamethylene-bis (allylbicyclo [2.2 .1] hept-5-ene-2,3-dicarboximide), N, N′-hexamethylene-bis (allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboxy Imide), N, N′-dodecamethylene Bis (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide), N, N'-dodecamethylene-bis (allylmethylbicyclo [2.2.1] hept-5- Ene-2,3-dicarboximide), N, N′-cyclohexylene-bis (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide), N, N′— Cyclohexylene-bis (allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide),

1,2−ビス{3’−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}エタン、1,2−ビス{3’−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}エタン、1,2−ビス{3’−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}エタン、ビス〔2’−{3’−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}エチル〕エーテル、ビス〔2’−{3’−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}エチル〕エーテル、1,4−ビス{3’−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}ブタン、1,4−ビス{3’−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}ブタン、 1,2-bis {3 ′-(allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximido) propoxy} ethane, 1,2-bis {3 ′-(allylmethylbicyclo) [2.2.1] Hept-5-ene-2,3-dicarboximido) propoxy} ethane, 1,2-bis {3 ′-(methallylbicyclo [2.2.1] hept-5-ene -2,3-dicarboximido) propoxy} ethane, bis [2 '-{3'-(allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximido) propoxy} ethyl] Ether, bis [2 ′-{3 ′-(allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximido) propoxy} ethyl] ether, 1,4-bis {3 ′ -(Allylbicyclo [2.2.1] he To-5-ene-2,3-dicarboximido) propoxy} butane, 1,4-bis {3 ′-(allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboxy Imido) propoxy} butane,

N,N’−p−フェニレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−フェニレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−フェニレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−フェニレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−{(1−メチル)−2,4−フェニレン}−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−キシリレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−キシリレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、 N, N′-p-phenylene-bis (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide), N, N′-p-phenylene-bis (allylmethylbicyclo [ 2.2.1] hept-5-ene-2,3-dicarboximide), N, N′-m-phenylene-bis (allylbicyclo [2.2.1] hept-5-ene-2,3 -Dicarboximide), N, N′-m-phenylene-bis (allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide), N, N ′-{(1 -Methyl) -2,4-phenylene} -bis (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide), N, N'-p-xylylene-bis (allylbicyclo) [2.2.1] Hept-5-ene-2,3-dica Boxoxyimide), N, N′-p-xylylene-bis (allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide), N, N′-m-xylylene-bis ( Allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide), N, N′-m-xylylene-bis (allylmethylbicyclo [2.2.1] hept-5-ene -2,3-dicarboximide),

2,2−ビス〔4−{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、2,2−ビス〔4−{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、2,2−ビス〔4−{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、ビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、 2,2-bis [4- {4- (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximido) phenoxy} phenyl] propane, 2,2-bis [4- { 4- (allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximido) phenoxy} phenyl] propane, 2,2-bis [4- {4- (methallylbicyclo [2] 2.1] hept-5-ene-2,3-dicarboximido) phenoxy} phenyl] propane, bis {4- (allylbicyclo [2.2.1] hept-5-ene-2,3-di Carboximido) phenyl} methane, bis {4- (allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximido) phenyl} methane,

ビス{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(メタリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}エーテル、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}エーテル、ビス{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}エーテル、ビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}スルホン、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}スルホン、 Bis {4- (methallylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximido) phenyl} methane, bis {4- (methallylmethylbicyclo [2.2.1] hept -5-ene-2,3-dicarboximido) phenyl} methane, bis {4- (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximido) phenyl} ether, bis {4- (allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximido) phenyl} ether, bis {4- (methallylbicyclo [2.2.1] hept-5 -Ene-2,3-dicarboximido) phenyl} ether, bis {4- (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximido) phenyl} sulfone, bis {4 -(Ant Methylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide) phenyl} sulfone,

ビス{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}スルホン、1,6−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−3−ヒドロキシ−ヘキサン、1,12−ビス(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−3,6−ジヒドロキシ−ドデカン、1,3−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−5−ヒドロキシ−シクロヘキサン、1,5−ビス{3’−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}−3−ヒドロキシ−ペンタン、1,4−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−2−ヒドロキシ−ベンゼン、 Bis {4- (methallylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximido) phenyl} sulfone, 1,6-bis (allylbicyclo [2.2.1] hept- 5-ene-2,3-dicarboximide) -3-hydroxy-hexane, 1,12-bis (methallylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide)- 3,6-dihydroxy-dodecane, 1,3-bis (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide) -5-hydroxy-cyclohexane, 1,5-bis { 3 ′-(allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide) propoxy} -3-hydroxy-pentane, 1,4-bis (allylbicyclo [2.2.1 ] Hept-5-ene 2,3-dicarboximide) -2-hydroxy - benzene,

1,4−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−2,5−ジヒドロキシ−ベンゼン、N,N’−p−(2−ヒドロキシ)キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−(2−ヒドロキシ)キシリレン−ビス(アリルメチルシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−(2−ヒドロキシ)キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−(2−ヒドロキシ)キシリレン−ビス(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−(2,3−ジヒドロキシ)キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、 1,4-bis (allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide) -2,5-dihydroxy-benzene, N, N′-p- (2-hydroxy ) Xylylene-bis (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide), N, N′-p- (2-hydroxy) xylylene-bis (allylmethylcyclo [2] 2.1] hept-5-ene-2,3-dicarboximide), N, N′-m- (2-hydroxy) xylylene-bis (allylbicyclo [2.2.1] hept-5-ene -2,3-dicarboximide), N, N'-m- (2-hydroxy) xylylene-bis (methallylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide) , N, N′-p- (2,3-dihi Proxy) xylylene - bis (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide),

2,2−ビス〔4−{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−2−ヒドロキシ−フェノキシ}フェニル〕プロパン、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−2−ヒドロキシ−フェニル}メタン、ビス{3−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−4−ヒドロキシ−フェニル}エーテル、ビス{3−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−5−ヒドロキシ−フェニル}スルホン、1,1,1−トリ{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)}フェノキシメチルプロパン、N,N’,N”−トリ(エチレンメタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)イソシアヌレート、およびこれらのオリゴマー等。 2,2-bis [4- {4- (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximido) -2-hydroxy-phenoxy} phenyl] propane, bis {4- (Allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide) -2-hydroxy-phenyl} methane, bis {3- (allylbicyclo [2.2.1] hept- 5-ene-2,3-dicarboximide) -4-hydroxy-phenyl} ether, bis {3- (methallylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide) -5-hydroxy-phenyl} sulfone, 1,1,1-tri {4- (allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide)} phenoxymethylpropane, N , N , N "- tri (ethylene methallyl ruby [2.2.1] hept-5-ene-2,3-dicarboximide) isocyanurate, and the like of these oligomers.

さらに、本発明に用いられるアルケニル置換ナジイミド化合物は、非対称なアルキレン・フェニレン基を含む下記の式で表される化合物でもよい。

Figure 2017003965
Furthermore, the alkenyl-substituted nadiimide compound used in the present invention may be a compound represented by the following formula containing an asymmetric alkylene / phenylene group.
Figure 2017003965

アルケニル置換ナジイミド化合物のうち、好ましい化合物を以下に示す。
N,N’−エチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−エチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−エチレン−ビス(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−トリメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ヘキサメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ヘキサメチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ドデカメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ドデカメチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−シクロヘキシレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−シクロヘキシレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、
Of the alkenyl-substituted nadiimide compounds, preferred compounds are shown below.
N, N′-ethylene-bis (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide), N, N′-ethylene-bis (allylmethylbicyclo [2.2. 1] Hept-5-ene-2,3-dicarboximide), N, N′-ethylene-bis (methallylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide) N, N′-trimethylene-bis (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide), N, N′-hexamethylene-bis (allylbicyclo [2.2 .1] hept-5-ene-2,3-dicarboximide), N, N′-hexamethylene-bis (allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboxy Imide), N, N′-dodecamethylene-bis (a) Rilbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide), N, N′-dodecamethylene-bis (allylmethylbicyclo [2.2.1] hept-5-ene-2 , 3-dicarboximide), N, N′-cyclohexylene-bis (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide), N, N′-cyclohexylene- Bis (allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide),

N,N’−p−フェニレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−フェニレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−フェニレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−フェニレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−{(1−メチル)−2,4−フェニレン}−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−キシリレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−キシリレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、2,2−ビス〔4−{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、2,2−ビス〔4−{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、2,2−ビス〔4−{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、ビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、 N, N′-p-phenylene-bis (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide), N, N′-p-phenylene-bis (allylmethylbicyclo [ 2.2.1] hept-5-ene-2,3-dicarboximide), N, N′-m-phenylene-bis (allylbicyclo [2.2.1] hept-5-ene-2,3 -Dicarboximide), N, N′-m-phenylene-bis (allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide), N, N ′-{(1 -Methyl) -2,4-phenylene} -bis (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide), N, N'-p-xylylene-bis (allylbicyclo) [2.2.1] Hept-5-ene-2,3-dica Boxoxyimide), N, N′-p-xylylene-bis (allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide), N, N′-m-xylylene-bis ( Allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide), N, N′-m-xylylene-bis (allylmethylbicyclo [2.2.1] hept-5-ene -2,3-dicarboximide), 2,2-bis [4- {4- (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximido) phenoxy} phenyl] propane 2,2-bis [4- {4- (allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximido) phenoxy} phenyl] propane, 2,2-bis [4 -{4- (methallylbicyclo 2.2.1] Hept-5-ene-2,3-dicarboximido) phenoxy} phenyl] propane, bis {4- (allylbicyclo [2.2.1] hept-5-ene-2,3- Dicarboximido) phenyl} methane, bis {4- (allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximido) phenyl} methane,

ビス{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(メタリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}エーテル、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}エーテル、ビス{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}エーテル、ビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}スルホン、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}スルホン、ビス{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}スルホン。 Bis {4- (methallylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximido) phenyl} methane, bis {4- (methallylmethylbicyclo [2.2.1] hept -5-ene-2,3-dicarboximido) phenyl} methane, bis {4- (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximido) phenyl} ether, bis {4- (allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximido) phenyl} ether, bis {4- (methallylbicyclo [2.2.1] hept-5 -Ene-2,3-dicarboximido) phenyl} ether, bis {4- (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximido) phenyl} sulfone, bis {4 -(Ant Methylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximido) phenyl} sulfone, bis {4- (methallylbicyclo [2.2.1] hept-5-ene-2, 3-Dicarboximido) phenyl} sulfone.

更に好ましいアルケニル置換ナジイミド化合物を以下に示す。
N,N’−エチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−エチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−エチレン−ビス(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−トリメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ヘキサメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ヘキサメチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ドデカメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ドデカメチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−シクロヘキシレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−シクロヘキシレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、
Further preferred alkenyl-substituted nadiimide compounds are shown below.
N, N′-ethylene-bis (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide), N, N′-ethylene-bis (allylmethylbicyclo [2.2. 1] Hept-5-ene-2,3-dicarboximide), N, N′-ethylene-bis (methallylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide) N, N′-trimethylene-bis (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide), N, N′-hexamethylene-bis (allylbicyclo [2.2 .1] hept-5-ene-2,3-dicarboximide), N, N′-hexamethylene-bis (allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboxy Imide), N, N′-dodecamethylene-bis (a) Rilbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide), N, N′-dodecamethylene-bis (allylmethylbicyclo [2.2.1] hept-5-ene-2 , 3-dicarboximide), N, N′-cyclohexylene-bis (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide), N, N′-cyclohexylene- Bis (allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide),

N,N’−p−フェニレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−フェニレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−フェニレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−フェニレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−{(1−メチル)−2,4−フェニレン}−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−キシリレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−キシリレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、 N, N′-p-phenylene-bis (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide), N, N′-p-phenylene-bis (allylmethylbicyclo [ 2.2.1] hept-5-ene-2,3-dicarboximide), N, N′-m-phenylene-bis (allylbicyclo [2.2.1] hept-5-ene-2,3 -Dicarboximide), N, N′-m-phenylene-bis (allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide), N, N ′-{(1 -Methyl) -2,4-phenylene} -bis (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide), N, N'-p-xylylene-bis (allylbicyclo) [2.2.1] Hept-5-ene-2,3-dica Boxoxyimide), N, N′-p-xylylene-bis (allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide), N, N′-m-xylylene-bis ( Allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide), N, N′-m-xylylene-bis (allylmethylbicyclo [2.2.1] hept-5-ene -2,3-dicarboximide),

2,2−ビス〔4−{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、2,2−ビス〔4−{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、2,2−ビス〔4−{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、ビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(メタリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン。 2,2-bis [4- {4- (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximido) phenoxy} phenyl] propane, 2,2-bis [4- { 4- (allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximido) phenoxy} phenyl] propane, 2,2-bis [4- {4- (methallylbicyclo [2] 2.1] hept-5-ene-2,3-dicarboximido) phenoxy} phenyl] propane, bis {4- (allylbicyclo [2.2.1] hept-5-ene-2,3-di Carboximido) phenyl} methane, bis {4- (allylmethylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximido) phenyl} methane, bis {4- (methallylbicyclo [2] 2.1] Hept 5-ene-2,3-dicarboximide) phenyl} methane, bis {4- (methallyl methyl bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide) phenyl} methane.

そして、特に好ましいアルケニル置換ナジイミド化合物としては、下記式(NA−1)で表されるビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、式(NA−2)で表されるN,N’−m−キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、および式(NA−3)で表されるN,N’−ヘキサメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)が挙げられる。

Figure 2017003965
And as a particularly preferable alkenyl substituted nadiimide compound, bis {4- (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide) represented by the following formula (NA-1): Phenyl} methane, N, N′-m-xylylene-bis (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide) represented by the formula (NA-2), and N, N′-hexamethylene-bis (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide) represented by the formula (NA-3) may be mentioned.
Figure 2017003965

<ラジカル重合性不飽和二重結合を有する化合物>
例えば、本発明の液晶配向剤は、液晶表示素子の電気特性を長期に安定させる目的から、ラジカル重合性不飽和二重結合を有する化合物をさらに含有していてもよい。ラジカル重合性不飽和二重結合を有する化合物は1種の化合物であってもよいし、2種以上の化合物であってもよい。なお、ラジカル重合性不飽和二重結合を有する化合物にはアルケニル置換ナジイミド化合物は含まれない。ラジカル重合性不飽和二重結合を有する化合物の含有量は、上記の目的から、ポリアミック酸またはその誘導体に対して1〜100重量%であることが好ましく、1〜70重量%であることがより好ましく、1〜50重量%であることがさらに好ましい。
<Compound having radically polymerizable unsaturated double bond>
For example, the liquid crystal aligning agent of the present invention may further contain a compound having a radical polymerizable unsaturated double bond for the purpose of stabilizing the electrical characteristics of the liquid crystal display element for a long period of time. The compound having a radically polymerizable unsaturated double bond may be one type of compound or two or more types of compounds. The compound having a radical polymerizable unsaturated double bond does not include an alkenyl-substituted nadiimide compound. The content of the compound having a radically polymerizable unsaturated double bond is preferably 1 to 100% by weight, more preferably 1 to 70% by weight with respect to the polyamic acid or derivative thereof for the above purpose. Preferably, it is 1 to 50% by weight.

なお、アルケニル置換ナジイミド化合物に対するラジカル重合性不飽和二重結合を有する化合物の比率は、液晶表示素子のイオン密度を低減し、イオン密度の経時的な増加を抑制し、さらに残像の発生を抑制するために、ラジカル重合性不飽和二重結合を有する化合物/アルケニル置換ナジイミド化合物が重量比で0.1〜10であることが好ましく、0.5〜5であることがより好ましい。 The ratio of the compound having a radical polymerizable unsaturated double bond to the alkenyl-substituted nadiimide compound reduces the ion density of the liquid crystal display element, suppresses the increase in ion density over time, and further suppresses the occurrence of afterimages. Therefore, the compound / alkenyl-substituted nadiimide compound having a radically polymerizable unsaturated double bond is preferably 0.1 to 10 and more preferably 0.5 to 5 in weight ratio.

以下にラジカル重合性不飽和二重結合を有する化合物について具体的に説明する。
ラジカル重合性不飽和二重結合を有する化合物としては、(メタ)アクリル酸エステル、(メタ)アクリル酸アミド等の(メタ)アクリル酸誘導体、およびビスマレイミドが挙げられる。ラジカル重合性不飽和二重結合を有する化合物は、ラジカル重合性不飽和二重結合を2つ以上有する(メタ)アクリル酸誘導体であることがより好ましい。
The compound having a radical polymerizable unsaturated double bond will be specifically described below.
Examples of the compound having a radical polymerizable unsaturated double bond include (meth) acrylic acid esters, (meth) acrylic acid derivatives such as (meth) acrylic acid amide, and bismaleimide. The compound having a radically polymerizable unsaturated double bond is more preferably a (meth) acrylic acid derivative having two or more radically polymerizable unsaturated double bonds.

(メタ)アクリル酸エステルの具体例としては、例えば(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸−2−メチルシクロヘキシル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸ジシクロペンタニルオキシエチル、(メタ)アクリル酸イソボロニル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸−2−ヒドロキシエチル、および(メタ)アクリル酸−2−ヒドロキシプロピルが挙げられる。 Specific examples of the (meth) acrylic acid ester include, for example, cyclohexyl (meth) acrylate, 2-methylcyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, and dicyclopentanyl (meth) acrylate. Examples include oxyethyl, isobornyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, and 2-hydroxypropyl (meth) acrylate.

2官能(メタ)アクリル酸エステルの具体例としては、例えばエチレンビスアクリレート、東亜合成化学工業(株)の製品であるアロニックスM−210、アロニックスM−240およびアロニックスM−6200、日本化薬(株)の製品であるKAYARADHDDA、KAYARADHX−220、KAYARADR−604およびKAYARADR−684、大阪有機化学工業(株)の製品であるV260、V312およびV335HP、並びに共栄社油脂化学工業(株)の製品であるライトアクリレートBA−4EA、ライトアクリレートBP−4PAおよびライトアクリレートBP−2PAが挙げられる。 Specific examples of the bifunctional (meth) acrylic acid ester include, for example, ethylene bisacrylate, Aronix M-210, Aronix M-240 and Aronix M-6200, which are products of Toa Gosei Chemical Co., Ltd., Nippon Kayaku Co., Ltd. ) Products KAYARADHDDA, KAYAARADHX-220, KAYARADR-604 and KAYARADR-684, Osaka Organic Chemicals Co., Ltd. products V260, V312 and V335HP, and Kyoeisha Oil & Chemicals Co., Ltd. light acrylates BA-4EA, light acrylate BP-4PA and light acrylate BP-2PA.

3官能以上の多官能(メタ)アクリル酸エステルの具体例としては、例えば4,4’−メチレンビス(N,N−ジヒドロキシエチレンアクリレートアニリン)、東亜合成化学工業(株)の製品であるアロニックスM−400、アロニックスM−405、アロニックスM−450、アロニックスM−7100、アロニックスM−8030、アロニックスM−8060、日本化薬(株)の製品であるKAYARADTMPTA、KAYARADDPCA−20、KAYARADDPCA−30、KAYARADDPCA−60、KAYARADDPCA−120、および大阪有機化学工業(株)の製品であるVGPTが挙げられる。 Specific examples of the trifunctional or higher polyfunctional (meth) acrylic acid ester include, for example, 4,4'-methylenebis (N, N-dihydroxyethylene acrylate aniline), Aronix M-, a product of Toa Gosei Chemical Co., Ltd. 400, Aronix M-405, Aronix M-450, Aronix M-7100, Aronix M-8030, Aronix M-8060, Nippon Kayaku Co., Ltd. products KAYARADTMPTA, KAYARADDPCA-20, KAYARADDPCA-30, KAYARADDPCA-60 , KAYARADDPCA-120, and VGPT which is a product of Osaka Organic Chemical Industry Co., Ltd.

(メタ)アクリル酸アミド誘導体の具体例としては、例えばN−イソプロピルアクリルアミド、N−イソプロピルメタクリルアミド、N−n−プロピルアクリルアミド、N−n−プロピルメタクリルアミド、N−シクロプロピルアクリルアミド、N−シクロプロピルメタクリルアミド、N−エトキシエチルアクリルアミド、N−エトキシエチルメタクリルアミド、N−テトラヒドロフルフリルアクリルアミド、N−テトラヒドロフルフリルメタクリルアミド、N−エチルアクリルアミド、N−エチル−N−メチルアクリルアミド、N,N−ジエチルアクリルアミド、N−メチル−N−n−プロピルアクリルアミド、N−メチル−N−イソプロピルアクリルアミド、N−アクリロイルピペリジン、N−アクリロイルピロリジン、N,N’−メチレンビスアクリルアミド、N,N’−エチレンビスアクリルアミド、N,N’−ジヒドロキシエチレンビスアクリルアミド、N−(4−ヒドロキシフェニル)メタクリルアミド、N−フェニルメタクリルアミド、N−ブチルメタクリルアミド、N−(iso−ブトキシメチル)メタクリルアミド、N−[2−(N,N−ジメチルアミノ)エチル]メタクリルアミド、N,N−ジメチルメタクリルアミド、N−[3−(ジメチルアミノ)プロピル]メタクリルアミド、N−(メトキシメチル)メタクリルアミド、N−(ヒドロキシメチル)−2−メタクリルアミド、N−ベンジル−2−メタクリルアミド、およびN,N’−メチレンビスメタクリルアミドが挙げられる。 Specific examples of the (meth) acrylic acid amide derivative include, for example, N-isopropylacrylamide, N-isopropylmethacrylamide, Nn-propylacrylamide, Nn-propylmethacrylamide, N-cyclopropylacrylamide, N-cyclopropyl. Methacrylamide, N-ethoxyethylacrylamide, N-ethoxyethylmethacrylamide, N-tetrahydrofurfurylacrylamide, N-tetrahydrofurfurylmethacrylamide, N-ethylacrylamide, N-ethyl-N-methylacrylamide, N, N-diethyl Acrylamide, N-methyl-Nn-propylacrylamide, N-methyl-N-isopropylacrylamide, N-acryloylpiperidine, N-acryloylpyrrolidine, N, N′-methyl Nbisacrylamide, N, N′-ethylenebisacrylamide, N, N′-dihydroxyethylenebisacrylamide, N- (4-hydroxyphenyl) methacrylamide, N-phenylmethacrylamide, N-butylmethacrylamide, N- (iso -Butoxymethyl) methacrylamide, N- [2- (N, N-dimethylamino) ethyl] methacrylamide, N, N-dimethylmethacrylamide, N- [3- (dimethylamino) propyl] methacrylamide, N- ( Methoxymethyl) methacrylamide, N- (hydroxymethyl) -2-methacrylamide, N-benzyl-2-methacrylamide, and N, N′-methylenebismethacrylamide.

上記の(メタ)アクリル酸誘導体のうち、N,N’−メチレンビスアクリルアミド、N,N’−ジヒドロキシエチレン−ビスアクリルアミド、エチレンビスアクリレート、および4,4’−メチレンビス(N,N−ジヒドロキシエチレンアクリレートアニリン)が特に好ましい。 Among the above (meth) acrylic acid derivatives, N, N′-methylenebisacrylamide, N, N′-dihydroxyethylene-bisacrylamide, ethylenebisacrylate, and 4,4′-methylenebis (N, N-dihydroxyethyleneacrylate) Aniline) is particularly preferred.

ビスマレイミドとしては、例えばケイ・アイ化成(株)製のBMI−70およびBMI−80、並びに大和化成工業(株)製のBMI−1000、BMI−3000、BMI−4000、BMI−5000およびBMI−7000が挙げられる。 Examples of the bismaleimide include BMI-70 and BMI-80 manufactured by Kay Kasei Co., Ltd., and BMI-1000, BMI-3000, BMI-4000, BMI-5000 and BMI- manufactured by Daiwa Kasei Kogyo Co., Ltd. 7000.

<オキサジン化合物>
例えば、本発明の液晶配向剤は、液晶表示素子における電気特性を長期に安定させる目的から、オキサジン化合物をさらに含有していてもよい。オキサジン化合物は1種の化合物であってもよいし、2種以上の化合物であってもよい。オキサジン化合物の含有量は、上記の目的から、ポリアミック酸またはその誘導体に対して0.1〜50重量%であることが好ましく、1〜40重量%であることがより好ましく、1〜20重量%であることがさらに好ましい。
<Oxazine compound>
For example, the liquid crystal aligning agent of this invention may further contain the oxazine compound from the objective of stabilizing the electrical property in a liquid crystal display element for a long period of time. The oxazine compound may be one type of compound or two or more types of compounds. The content of the oxazine compound is preferably 0.1 to 50% by weight, more preferably 1 to 40% by weight, and more preferably 1 to 20% by weight with respect to the polyamic acid or derivative thereof for the above purpose. More preferably.

以下にオキサジン化合物について具体的に説明する。
オキサジン化合物は、ポリアミック酸またはその誘導体を溶解させる溶媒に可溶であり、加えて、開環重合性を有するオキサジン化合物が好ましい。
The oxazine compound will be specifically described below.
The oxazine compound is soluble in a solvent that dissolves the polyamic acid or a derivative thereof, and in addition, an oxazine compound having ring-opening polymerizability is preferable.

またオキサジン化合物におけるオキサジン構造の数は、特に限定されない。 Further, the number of oxazine structures in the oxazine compound is not particularly limited.

オキサジンの構造には種々の構造が知られている。本発明では、オキサジンの構造は特に限定されないが、オキサジン化合物におけるオキサジン構造には、ベンゾオキサジンやナフトオキサジン等の、縮合多環芳香族基を含む芳香族基を有するオキサジンの構造が挙げられる。 Various structures are known for the structure of oxazine. In the present invention, the structure of oxazine is not particularly limited, but examples of the oxazine structure in the oxazine compound include an oxazine structure having an aromatic group containing a condensed polycyclic aromatic group such as benzoxazine and naphthoxazine.

オキサジン化合物としては、例えば下記式(OX−1)〜式(OX−6)に示す化合物が挙げられる。なお下記式において、環の中心に向けて表示されている結合は、環を構成しかつ置換基の結合が可能ないずれかの炭素に結合していることを示す。

Figure 2017003965
式(OX−1)〜式(OX−3)において、LおよびLは炭素数1〜30の有機基であり、式(OX−1)〜式(OX−6)において、L〜Lは水素または炭素数1〜6の炭化水素基であり、式(OX−3)、式(OX−4)および式(OX−6)において、Qは単結合、−O−、−S−、−S−S−、−SO−、−CO−、−CONH−、−NHCO−、−C(CH−、−C(CF−、−(CH−、−O−(CH−O−、−S−(CH−S−であり、ここでvは1〜6の整数であり、式(OX−5)および式(OX−6)において、Qは独立して単結合、−O−、−S−、−CO−、−C(CH−、−C(CF−または炭素数1〜3のアルキレンであり、Qにおけるベンゼン環、ナフタレン環に結合している水素は独立して−F、−CH、−OH、−COOH、−SOH、−POと置き換えられていてもよい。 Examples of the oxazine compound include compounds represented by the following formulas (OX-1) to (OX-6). In the following formula, the bond displayed toward the center of the ring indicates that it is bonded to any carbon that forms the ring and can be bonded to a substituent.
Figure 2017003965
In Formula (OX-1) to Formula (OX-3), L 3 and L 4 are organic groups having 1 to 30 carbon atoms, and in Formula (OX-1) to Formula (OX-6), L 5 to L 8 represents hydrogen or a hydrocarbon group having 1 to 6 carbon atoms. In the formula (OX-3), the formula (OX-4), and the formula (OX-6), Q 1 is a single bond, —O—, — S -, - S-S - , - SO 2 -, - CO -, - CONH -, - NHCO -, - C (CH 3) 2 -, - C (CF 3) 2 -, - (CH 2) v -, - O- (CH 2) v -O -, - S- (CH 2) v is -S-, where v is an integer from 1 to 6, formula (OX-5) and formula (OX −6), Q 2 is independently a single bond, —O—, —S—, —CO—, —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, or C 1-3. Is alkylene And hydrogen bonded to the benzene ring and naphthalene ring in Q 2 may be independently replaced with —F, —CH 3 , —OH, —COOH, —SO 3 H, —PO 3 H 2. .

また、オキサジン化合物には、オキサジン構造を側鎖に有するオリゴマーやポリマー、オキサジン構造を主鎖中に有するオリゴマーやポリマーが含まれる。 The oxazine compound includes an oligomer or polymer having an oxazine structure in the side chain, and an oligomer or polymer having an oxazine structure in the main chain.

式(OX−1)で表されるオキサジン化合物としては、例えば以下のオキサジン化合物が挙げられる。

Figure 2017003965
Examples of the oxazine compound represented by the formula (OX-1) include the following oxazine compounds.
Figure 2017003965

式(OX−1−2)において、Lは炭素数1〜30のアルキルが好ましく、炭素数1〜20のアルキルがさらに好ましい。 In Formula (OX-1-2), L 3 is preferably alkyl having 1 to 30 carbons, and more preferably alkyl having 1 to 20 carbons.

式(OX−2)で表されるオキサジン化合物としては、例えば以下のオキサジン化合物が挙げられる。

Figure 2017003965

Figure 2017003965
Examples of the oxazine compound represented by the formula (OX-2) include the following oxazine compounds.
Figure 2017003965

Figure 2017003965

式中、Lは炭素数1〜30のアルキルが好ましく、炭素数1〜20のアルキルがさらに好ましい。 In the formula, L 3 is preferably alkyl having 1 to 30 carbons, and more preferably alkyl having 1 to 20 carbons.

式(OX−3)で表されるオキサジン化合物としては、下記式(OX−3−I)で表されるオキサジン化合物が挙げられる。

Figure 2017003965
式(OX−3−I)において、LおよびLは炭素数1〜30の有機基であり、LからLは水素または炭素数1〜6の炭化水素基であり、Qは単結合、−CH−、−C(CH−、−CO−、−O−、−SO−、−C(CH−、または−C(CF−である。式(OX−3−I)で表されるオキサジン化合物としては、例えば以下のオキサジン化合物が挙げられる。 As the oxazine compound represented by the formula (OX-3), an oxazine compound represented by the following formula (OX-3-I) can be given.
Figure 2017003965
In Formula (OX-3-I), L 3 and L 4 are each an organic group having 1 to 30 carbon atoms, L 5 to L 8 are hydrogen or a hydrocarbon group having 1 to 6 carbon atoms, and Q 1 is A single bond, —CH 2 —, —C (CH 3 ) 2 —, —CO—, —O—, —SO 2 —, —C (CH 3 ) 2 —, or —C (CF 3 ) 2 —. . Examples of the oxazine compound represented by the formula (OX-3-I) include the following oxazine compounds.

Figure 2017003965

Figure 2017003965

Figure 2017003965

Figure 2017003965
式中、LおよびLは炭素数1〜30のアルキルが好ましく、炭素数1〜20のアルキルがさらに好ましい。
Figure 2017003965

Figure 2017003965

Figure 2017003965

Figure 2017003965
In the formula, L 3 and L 4 are preferably alkyl having 1 to 30 carbon atoms, more preferably alkyl having 1 to 20 carbon atoms.

式(OX−4)で表されるオキサジン化合物としては、例えば以下のオキサジン化合物が挙げられる。

Figure 2017003965

Figure 2017003965
Examples of the oxazine compound represented by the formula (OX-4) include the following oxazine compounds.
Figure 2017003965

Figure 2017003965

式(OX−5)で表されるオキサジン化合物としては、例えば以下のオキサジン化合物が挙げられる。

Figure 2017003965
Examples of the oxazine compound represented by the formula (OX-5) include the following oxazine compounds.
Figure 2017003965

式(OX−6)で表されるオキサジン化合物としては、例えば以下のオキサジン化合物が挙げられる。

Figure 2017003965

Figure 2017003965

Figure 2017003965
Examples of the oxazine compound represented by the formula (OX-6) include the following oxazine compounds.
Figure 2017003965

Figure 2017003965

Figure 2017003965

これらのうち、より好ましくは、式(OX−2−1)、式(OX−3−1)、式(OX−3−3)、式(OX−3−5)、式(OX−3−7)、式(OX−3−9)、式(OX−4−1)〜式(OX−4−6)、式(OX−5−3)、式(OX−5−4)、および式(OX−6−2)〜式(OX−6−4)で表されるオキサジン化合物が挙げられる。 Of these, more preferably, the formula (OX-2-1), the formula (OX-3-1), the formula (OX-3-3), the formula (OX-3-5), and the formula (OX-3- 7), formula (OX-3-9), formula (OX-4-1) to formula (OX-4-6), formula (OX-5-3), formula (OX-5-4), and formula Oxazine compounds represented by (OX-6-6-2) to formula (OX-6-4) can be given.

オキサジン化合物は、国際公開2004/009708、特開平11−12258、特開2004−352670に記載の方法と同様の方法で製造することができる。 The oxazine compound can be produced by the same method as described in International Publication No. 2004/009708, JP-A-11-12258, and JP-A-2004-352670.

式(OX−1)で表されるオキサジン化合物は、フェノール化合物と1級アミンとアルデヒドとを反応させることによって得られる(国際公開2004/009708参照。)。 The oxazine compound represented by the formula (OX-1) is obtained by reacting a phenol compound, a primary amine, and an aldehyde (see International Publication 2004/009708).

式(OX−2)で表されるオキサジン化合物は、1級アミンをホルムアルデヒドへ徐々に加える方法により反応させたのち、ナフトール系水酸基を有する化合物を加えて反応させることによって得られる(国際公開2004/009708参照。)。 The oxazine compound represented by the formula (OX-2) is obtained by reacting by a method of gradually adding a primary amine to formaldehyde, and then adding and reacting a compound having a naphthol-based hydroxyl group (International Publication 2004 / (See 009708.)

式(OX−3)で表されるオキサジン化合物は、有機溶媒中でフェノール化合物1モル、そのフェノール性水酸基1個に対し少なくとも2モル以上のアルデヒド、および1モルの一級アミンを、2級脂肪族アミン、3級脂肪族アミンまたは塩基性含窒素複素環化合物の存在下で反応させることによって得られる(国際公開2004/009708および特開平11−12258参照。)。 The oxazine compound represented by the formula (OX-3) is a secondary aliphatic compound in which 1 mol of a phenol compound, at least 2 mol or more of an aldehyde, and 1 mol of a primary amine are added to one phenolic hydroxyl group in an organic solvent. It can be obtained by reacting in the presence of an amine, a tertiary aliphatic amine or a basic nitrogen-containing heterocyclic compound (see International Publication No. 2004/009708 and JP-A-11-12258).

式(OX−4)〜式(OX−6)で表されるオキサジン化合物は、4,4’−ジアミノジフェニルメタン等の、複数のベンゼン環とそれらを結合する有機基とを有するジアミン、ホルマリン等のアルデヒド、およびフェノールを、n−ブチルアルコール中、90℃以上の温度で脱水縮合反応させることにより得られる(特開2004−352670参照。)。 The oxazine compound represented by the formula (OX-4) to the formula (OX-6) is a diamine having a plurality of benzene rings and an organic group that binds them, such as 4,4′-diaminodiphenylmethane, and formalin. It can be obtained by subjecting an aldehyde and phenol to a dehydration condensation reaction in n-butyl alcohol at a temperature of 90 ° C. or higher (see JP 2004-352670 A).

<オキサゾリン化合物>
例えば、本発明の液晶配向剤は、液晶表示素子における電気特性を長期に安定させる目的から、オキサゾリン化合物をさらに含有していてもよい。オキサゾリン化合物はオキサゾリン構造を有する化合物である。オキサゾリン化合物は1種の化合物であってもよいし、2種以上の化合物であってもよい。オキサゾリン化合物の含有量は、上記の目的から、ポリアミック酸またはその誘導体に対して0.1〜50重量%であることが好ましく、1〜40重量%であることがより好ましく、1〜20重量%であることがさらに好ましい。または、オキサゾリン化合物の含有量は、オキサゾリン化合物中のオキサゾリン構造をオキサゾリンに換算したときに、ポリアミック酸またはその誘導体に対して0.1〜40重量%であることが、上記の目的から好ましい。
<Oxazoline compound>
For example, the liquid crystal aligning agent of this invention may further contain the oxazoline compound from the objective of stabilizing the electrical property in a liquid crystal display element for a long period of time. An oxazoline compound is a compound having an oxazoline structure. The oxazoline compound may be one type of compound or two or more types of compounds. The content of the oxazoline compound is preferably 0.1 to 50% by weight, more preferably 1 to 40% by weight, and more preferably 1 to 20% by weight with respect to the polyamic acid or a derivative thereof for the above purpose. More preferably. Alternatively, the content of the oxazoline compound is preferably 0.1 to 40% by weight with respect to the polyamic acid or a derivative thereof when the oxazoline structure in the oxazoline compound is converted to oxazoline.

以下にオキサゾリン化合物について具体的に説明する。
オキサゾリン化合物は、1つの化合物中にオキサゾリン構造を1種だけ有していてもよいし、2種以上有していてもよい。またオキサゾリン化合物は、1つの化合物中にオキサゾリン構造を1個有していればよいが、2個以上有することが好ましい。またオキサゾリン化合物は、オキサゾリン構造を側鎖に有する重合体であってもよいし、共重合体であってもよい。オキサゾリン構造を側鎖に有する重合体は、オキサゾリン構造を側鎖に有するモノマーの単独重合体であってもよいし、オキサゾリン構造を側鎖に有するモノマーとオキサゾリン構造を有しないモノマーとの共重合体であってもよい。オキサゾリン構造を側鎖に有する共重合体は、オキサゾリン構造を側鎖に有する2種以上のモノマーの共重合体であってもよいし、オキサゾリン構造を側鎖に有する2種以上のモノマーとオキサゾリン構造を有しないモノマーとの共重合体であってもよい。
The oxazoline compound will be specifically described below.
The oxazoline compound may have only one type of oxazoline structure in one compound, or may have two or more types. Further, the oxazoline compound may have one oxazoline structure in one compound, but preferably has two or more. The oxazoline compound may be a polymer having an oxazoline structure in the side chain, or may be a copolymer. The polymer having an oxazoline structure in the side chain may be a homopolymer of a monomer having an oxazoline structure in the side chain, or a copolymer of a monomer having an oxazoline structure in the side chain and a monomer having no oxazoline structure It may be. The copolymer having an oxazoline structure in the side chain may be a copolymer of two or more monomers having an oxazoline structure in the side chain, or two or more monomers having an oxazoline structure in the side chain and an oxazoline structure. It may also be a copolymer with a monomer that does not have.

オキサゾリン構造は、オキサゾリン構造中の酸素および窒素の一方または両方とポリアミック酸のカルボニル基とが反応し得るようにオキサゾリン化合物中に存在する構造であることが好ましい。 The oxazoline structure is preferably a structure present in the oxazoline compound so that one or both of oxygen and nitrogen in the oxazoline structure can react with the carbonyl group of the polyamic acid.

オキサゾリン化合物としては、例えば2,2’−ビス(2−オキサゾリン)、1,2,4−トリス−(2−オキサゾリニル−2)−ベンゼン、4−フラン−2−イルメチレン−2−フェニル−4H−オキサゾール−5−オン、1,4−ビス(4,5−ジヒドロ−2−オキサゾリル)ベンゼン、1,3−ビス(4,5−ジヒドロ−2−オキサゾリル)ベンゼン、2,3−ビス(4−イソプロペニル−2−オキサゾリン−2−イル)ブタン、2,2’−ビス−4−ベンジル−2−オキサゾリン、2,6−ビス(イソプロピル−2−オキサゾリン−2−イル)ピリジン、2,2’−イソプロピリデンビス(4−tert−ブチル−2−オキサゾリン)、2,2’−イソプロピリデンビス(4−フェニル−2−オキサゾリン)、2,2’−メチレンビス(4−tert−ブチル−2−オキサゾリン)、および2,2’−メチレンビス(4−フェニル−2−オキサゾリン)が挙げられる。これらの他、エポクロス(商品名、(株)日本触媒製)のようなオキサゾリルを有するポリマーやオリゴマーも挙げられる。これらのうち、より好ましくは、1,3−ビス(4,5−ジヒドロ−2−オキサゾリル)ベンゼンが挙げられる。 Examples of the oxazoline compound include 2,2′-bis (2-oxazoline), 1,2,4-tris- (2-oxazolinyl-2) -benzene, 4-furan-2-ylmethylene-2-phenyl-4H—. Oxazol-5-one, 1,4-bis (4,5-dihydro-2-oxazolyl) benzene, 1,3-bis (4,5-dihydro-2-oxazolyl) benzene, 2,3-bis (4- Isopropenyl-2-oxazolin-2-yl) butane, 2,2′-bis-4-benzyl-2-oxazoline, 2,6-bis (isopropyl-2-oxazolin-2-yl) pyridine, 2,2 ′ -Isopropylidenebis (4-tert-butyl-2-oxazoline), 2,2'-isopropylidenebis (4-phenyl-2-oxazoline), 2,2'-methylenebi (4-tert-butyl-2-oxazoline), and 2,2'-methylenebis (4-phenyl-2-oxazoline) and the like. In addition to these, polymers and oligomers having oxazolyl such as Epocross (trade name, manufactured by Nippon Shokubai Co., Ltd.) are also included. Of these, 1,3-bis (4,5-dihydro-2-oxazolyl) benzene is more preferable.

<エポキシ化合物>
例えば、本発明の液晶配向剤は、液晶表示素子における電気特性を長期に安定させる目的から、エポキシ化合物をさらに含有していてもよい。エポキシ化合物は1種の化合物であってもよいし、2種以上の化合物であってもよい。エポキシ化合物の含有量は、上記の目的から、ポリアミック酸またはその誘導体に対して0.1〜50重量%であることが好ましく、1〜40重量%であることがより好ましく、1〜20重量%であることがさらに好ましい。
<Epoxy compound>
For example, the liquid crystal aligning agent of the present invention may further contain an epoxy compound for the purpose of stabilizing the electrical characteristics of the liquid crystal display element for a long period of time. The epoxy compound may be one type of compound or two or more types of compounds. The content of the epoxy compound is preferably 0.1 to 50% by weight, more preferably 1 to 40% by weight, and more preferably 1 to 20% by weight with respect to the polyamic acid or derivative thereof for the above purpose. More preferably.

以下にエポキシ化合物について具体的に説明する。
エポキシ化合物としては、分子内にエポキシ環を1つまたは2つ以上有する種々の化合物が挙げられる。分子内にエポキシ環を1つ有する化合物としては、例えばフェニルグリシジルエーテル、ブチルグリシジルエーテル、3,3,3−トリフルオロメチルプロピレンオキシド、スチレンオキシド、ヘキサフルオロプロピレンオキシド、シクロヘキセンオキシド、3−グリシドキシプロピルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、N−グリシジルフタルイミド、(ノナフルオロ−N−ブチル)エポキシド、パーフルオロエチルグリシジルエーテル、エピクロロヒドリン、エピブロモヒドリン、N,N−ジグリシジルアニリン、および3−[2−(パーフルオロヘキシル)エトキシ]−1,2−エポキシプロパンが挙げられる。
The epoxy compound will be specifically described below.
Examples of the epoxy compound include various compounds having one or more epoxy rings in the molecule. Examples of the compound having one epoxy ring in the molecule include phenyl glycidyl ether, butyl glycidyl ether, 3,3,3-trifluoromethyl propylene oxide, styrene oxide, hexafluoropropylene oxide, cyclohexene oxide, 3-glycidoxy Propyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, N-glycidylphthalimide, (nonafluoro-N-butyl) epoxide, perfluoroethylglycidyl ether, epichlorohydrin, epibromohydrin, N, N-diglycidylaniline, and 3- [2- (perfluorohexyl) ethoxy] -1,2-epoxypropane.

分子内にエポキシ環を2つ有する化合物としては、例えばエチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2−ジブロモネオペンチルグリコールジグリシジルエーテル、3,4−エポキシシクロヘキセニルメチル−3’,4’−エポキシシクロヘキセンカルボキシレート、セロキサイド8000(商品名、(株)ダイセル製)、および3−(N,N−ジグリシジル)アミノプロピルトリメトキシシランが挙げられる。 Examples of the compound having two epoxy rings in the molecule include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl. Ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 3,4-epoxycyclohexenylmethyl-3 ', 4'-epoxycyclohexene carboxylate, celloxide 8000 (trade name, manufactured by Daicel Corporation), and 3- (N, N-diglycidyl) aminopropyltrimethoxysilane It is.

分子内にエポキシ環を3つ有する化合物としては、例えば2−[4−(2,3−エポキシプロポキシ)フェニル]−2−[4−[1,1−ビス[4−([2,3−エポキシプロポキシ]フェニル)]エチル]フェニル]プロパン(商品名「テクモアVG3101L」、(三井化学(株)製))が挙げられる。 Examples of the compound having three epoxy rings in the molecule include 2- [4- (2,3-epoxypropoxy) phenyl] -2- [4- [1,1-bis [4-([2,3- Epoxypropoxy] phenyl)] ethyl] phenyl] propane (trade name “Techmore VG3101L” (manufactured by Mitsui Chemicals, Inc.)).

分子内にエポキシ環を4つ有する化合物としては、例えば1,3,5,6−テトラグリシジル−2,4−ヘキサンジオール、N,N,N’,N’−テトラグリシジル−m−キシレンジアミン、1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルメタン、および3−(N−アリル−N−グリシジル)アミノプロピルトリメトキシシランが挙げられる。 Examples of the compound having four epoxy rings in the molecule include 1,3,5,6-tetraglycidyl-2,4-hexanediol, N, N, N ′, N′-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N ′, N′-tetraglycidyl-4,4′-diaminodiphenylmethane, and 3- (N-allyl-N-glycidyl) Aminopropyltrimethoxysilane is mentioned.

上記の他、分子内にエポキシ環を有する化合物の例として、エポキシ環を有するオリゴマーや重合体も挙げられる。エポキシ環を有するモノマーとしては、例えばグリシジル(メタ)アクリレート、3,4−エポキシシクロヘキシル(メタ)アクリレート、およびメチルグリシジル(メタ)アクリレートが挙げられる。 In addition to the above, examples of the compound having an epoxy ring in the molecule include oligomers and polymers having an epoxy ring. Examples of the monomer having an epoxy ring include glycidyl (meth) acrylate, 3,4-epoxycyclohexyl (meth) acrylate, and methyl glycidyl (meth) acrylate.

エポキシ環を有するモノマーと共重合を行う他のモノマーとしては、例えば(メタ)アクリル酸、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、iso−ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、スチレン、メチルスチレン、クロルメチルスチレン、(3−エチル−3−オキセタニル)メチル(メタ)アクリレート、N−シクロヘキシルマレイミド、およびN−フェニルマレイミドが挙げられる。 Examples of other monomers copolymerized with a monomer having an epoxy ring include (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, and iso-butyl. (Meth) acrylate, t-butyl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, styrene, methylstyrene, chloromethyl Styrene, (3-ethyl-3-oxetanyl) methyl (meth) acrylate, N-cyclohexylmaleimide, and N-phenylmaleimide.

エポキシ環を有するモノマーの重合体の好ましい具体例としては、ポリグリシジルメタクリレート等が挙げられる。また、エポキシ環を有するモノマーと他のモノマーとの共重合体の好ましい具体例としては、N−フェニルマレイミド−グリシジルメタクリレート共重合体、N−シクロヘキシルマレイミド−グリシジルメタクリレート共重合体、ベンジルメタクリレート−グリシジルメタクリレート共重合体、ブチルメタクリレート−グリシジルメタクリレート共重合体、2−ヒドロキシエチルメタクリレート−グリシジルメタクリレート共重合体、(3−エチル−3−オキセタニル)メチルメタクリレート−グリシジルメタクリレート共重合体、およびスチレン−グリシジルメタクリレート共重合体が挙げられる。 Preferable specific examples of the monomer polymer having an epoxy ring include polyglycidyl methacrylate. Preferred examples of the copolymer of the monomer having an epoxy ring and another monomer include N-phenylmaleimide-glycidyl methacrylate copolymer, N-cyclohexylmaleimide-glycidyl methacrylate copolymer, benzyl methacrylate-glycidyl methacrylate. Copolymer, butyl methacrylate-glycidyl methacrylate copolymer, 2-hydroxyethyl methacrylate-glycidyl methacrylate copolymer, (3-ethyl-3-oxetanyl) methyl methacrylate-glycidyl methacrylate copolymer, and styrene-glycidyl methacrylate copolymer Coalescence is mentioned.

これら例の中でも、N,N,N’,N’−テトラグリシジル−m−キシレンジアミン、1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルメタン、商品名「テクモアVG3101L」、3,4−エポキシシクロヘキセニルメチル−3’,4’−エポキシシクロヘキセンカルボキシレート、N−フェニルマレイミド−グリシジルメタクリレート共重合体、セロキサイド8000(商品名、(株)ダイセル製)、および2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランが特に好ましい。 Among these examples, N, N, N ′, N′-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N ′, N′— Tetraglycidyl-4,4′-diaminodiphenylmethane, trade name “Techmore VG3101L”, 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexene carboxylate, N-phenylmaleimide-glycidyl methacrylate copolymer, celoxide 8000 (trade name, manufactured by Daicel Corporation) and 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane are particularly preferred.

より体系的には、エポキシ化合物としては、例えばグリシジルエーテル、グリシジルエステル、グリシジルアミン、エポキシ基含有アクリル系樹脂、グリシジルアミド、グリシジルイソシアヌレート、鎖状脂肪族型エポキシ化合物、および環状脂肪族型エポキシ化合物が挙げられる。なお、エポキシ化合物はエポキシ基を有する化合物を意味し、エポキシ樹脂はエポキシ基を有する樹脂を意味する。 More systematically, examples of the epoxy compound include glycidyl ether, glycidyl ester, glycidyl amine, epoxy group-containing acrylic resin, glycidyl amide, glycidyl isocyanurate, chain aliphatic epoxy compound, and cyclic aliphatic epoxy compound. Is mentioned. In addition, an epoxy compound means the compound which has an epoxy group, and an epoxy resin means resin which has an epoxy group.

エポキシ化合物としては、例えばグリシジルエーテル、グリシジルエステル、グリシジルアミン、エポキシ基含有アクリル系樹脂、グリシジルアミド、グリシジルイソシアヌレート、鎖状脂肪族型エポキシ化合物、および環状脂肪族型エポキシ化合物が挙げられる。 Examples of the epoxy compound include glycidyl ether, glycidyl ester, glycidyl amine, epoxy group-containing acrylic resin, glycidyl amide, glycidyl isocyanurate, chain aliphatic epoxy compound, and cyclic aliphatic epoxy compound.

グリシジルエーテルとしては、例えばビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、ビスフェノール型エポキシ化合物、水素化ビスフェノール−A型エポキシ化合物、水素化ビスフェノール−F型エポキシ化合物、水素化ビスフェノール−S型エポキシ化合物、水素化ビスフェノール型エポキシ化合物、臭素化ビスフェノール−A型エポキシ化合物、臭素化ビスフェノール−F型エポキシ化合物、フェノールノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物、臭素化フェノールノボラック型エポキシ化合物、臭素化クレゾールノボラック型エポキシ化合物、ビスフェノールAノボラック型エポキシ化合物、ナフタレン骨格含有エポキシ化合物、芳香族ポリグリシジルエーテル化合物、ジシクロペンタジエンフェノール型エポキシ化合物、脂環式ジグリシジルエーテル化合物、脂肪族ポリグリシジルエーテル化合物、ポリサルファイド型ジグリシジルエーテル化合物、およびビフェノール型エポキシ化合物が挙げられる。 Examples of the glycidyl ether include bisphenol A type epoxy compound, bisphenol F type epoxy compound, bisphenol S type epoxy compound, bisphenol type epoxy compound, hydrogenated bisphenol-A type epoxy compound, hydrogenated bisphenol-F type epoxy compound, hydrogenated bisphenol. -S type epoxy compound, hydrogenated bisphenol type epoxy compound, brominated bisphenol-A type epoxy compound, brominated bisphenol-F type epoxy compound, phenol novolac type epoxy compound, cresol novolac type epoxy compound, brominated phenol novolak type epoxy compound Brominated cresol novolac type epoxy compound, bisphenol A novolac type epoxy compound, naphthalene skeleton-containing epoxy compound, aromatic polymer Glycidyl ether compounds, dicyclopentadiene phenol type epoxy compound, alicyclic diglycidyl ether compounds, aliphatic polyglycidyl ether compound, a polysulfide-type diglycidyl ether compound, and biphenol type epoxy compound.

グリシジルエステルとしては、例えばジグリシジルエステル化合物およびグリシジルエステルエポキシ化合物が挙げられる。 Examples of the glycidyl ester include a diglycidyl ester compound and a glycidyl ester epoxy compound.

グリシジルアミンとしては、例えばポリグリシジルアミン化合物およびグリシジルアミン型エポキシ樹脂が挙げられる。 Examples of the glycidylamine include polyglycidylamine compounds and glycidylamine type epoxy resins.

エポキシ基含有アクリル系化合物としては、例えばオキシラニルを有するモノマーの単独重合体および共重合体が挙げられる。 Examples of the epoxy group-containing acrylic compound include homopolymers and copolymers of monomers having oxiranyl.

グリシジルアミドとしては、例えばグリシジルアミド型エポキシ化合物が挙げられる。 Examples of glycidyl amide include glycidyl amide type epoxy compounds.

鎖状脂肪族型エポキシ化合物としては、例えばアルケン化合物の炭素−炭素二重結合を酸化して得られる、エポキシ基を含有する化合物が挙げられる。 Examples of the chain aliphatic epoxy compound include compounds containing an epoxy group obtained by oxidizing a carbon-carbon double bond of an alkene compound.

環状脂肪族型エポキシ化合物としては、例えばシクロアルケン化合物の炭素−炭素二重結合を酸化して得られる、エポキシ基を含有する化合物が挙げられる。 Examples of the cycloaliphatic epoxy compound include a compound containing an epoxy group obtained by oxidizing a carbon-carbon double bond of a cycloalkene compound.

ビスフェノールA型エポキシ化合物としては、例えばjER828、jER1001、jER1002、jER1003、jER1004、jER1007、jER1010(いずれも商品名、三菱化学(株)製)、エポトートYD−128(東都化成(株)製)、DER−331、DER−332、DER−324(いずれもThe Dow Chemical Company製)、エピクロン840、エピクロン850、エピクロン1050(いずれも商品名、DIC(株)製)、エポミックR−140、エポミックR−301、およびエポミックR−304(いずれも商品名、三井化学(社)製)が挙げられる。 Examples of the bisphenol A type epoxy compound include jER828, jER1001, jER1002, jER1003, jER1004, jER1007, jER1010 (all trade names, manufactured by Mitsubishi Chemical Corporation), Epototo YD-128 (manufactured by Tohto Kasei Co., Ltd.), DER -331, DER-332, DER-324 (all manufactured by The Dow Chemical Company), Epicron 840, Epicron 850, Epicron 1050 (all trade names, manufactured by DIC Corporation), Epomic R-140, Epomic R-301 , And Epomic R-304 (both trade names, manufactured by Mitsui Chemicals, Inc.).

ビスフェノールF型エポキシ化合物としては、例えばjER806、jER807、jER4004P(いずれも商品名、三菱化学(株)製)、エポトートYDF−170、エポトートYDF−175S、エポトートYDF−2001(いずれも商品名、東都化成(株)製)、DER−354(商品名、ダウ・ケミカル社製)、エピクロン830、およびエピクロン835(いずれも商品名、DIC(株)製)が挙げられる。 Examples of the bisphenol F type epoxy compound include jER806, jER807, jER4004P (all trade names, manufactured by Mitsubishi Chemical Corporation), Epototo YDF-170, Epototo YDF-175S, Epototo YDF-2001 (all trade names, Toto Kasei) DER-354 (trade name, manufactured by Dow Chemical Company), Epicron 830, and Epicron 835 (all trade names, manufactured by DIC Corporation).

ビスフェノール型エポキシ化合物としては、例えば2,2−ビス(4−ヒドロキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパンのエポキシ化物が挙げられる。 Examples of the bisphenol type epoxy compound include epoxidized products of 2,2-bis (4-hydroxyphenyl) -1,1,1,3,3,3-hexafluoropropane.

水素化ビスフェノール−A型エポキシ化合物としては、例えばサントートST−3000(商品名、東都化成(株)製)、リカレジンHBE−100(商品名、新日本理化(株)製)、およびデナコールEX−252(商品名、ナガセケムテックス(株)製)が挙げられる。 Examples of the hydrogenated bisphenol-A type epoxy compound include Santo Tote ST-3000 (trade name, manufactured by Toto Kasei Co., Ltd.), Rica Resin HBE-100 (trade name, manufactured by Shin Nippon Rika Co., Ltd.), and Denacol EX-252. (Trade name, manufactured by Nagase ChemteX Corporation).

水素化ビスフェノール型エポキシ化合物としては、例えば水素化2,2−ビス(4−ヒドロキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパンのエポキシ化物が挙げられる。 Examples of the hydrogenated bisphenol type epoxy compound include an epoxidized product of hydrogenated 2,2-bis (4-hydroxyphenyl) -1,1,1,3,3,3-hexafluoropropane.

臭素化ビスフェノール−A型エポキシ化合物としては、例えばjER5050、jER5051(いずれも商品名、三菱化学(株)製)、エポトートYDB−360、エポトートYDB−400(いずれも商品名、東都化成(株)製)、DER−530、DER−538(いずれも商品名、The Dow Chemical Company製)、エピクロン152、およびエピクロン153(いずれも商品名、DIC(株)製)が挙げられる。 Examples of brominated bisphenol-A type epoxy compounds include jER5050, jER5051 (both trade names, manufactured by Mitsubishi Chemical Corporation), Epototo YDB-360, Epototo YDB-400 (both trade names, manufactured by Toto Kasei Co., Ltd.). ), DER-530, DER-538 (all are trade names, manufactured by The Dow Chemical Company), Epicron 152, and Epicron 153 (all are trade names, manufactured by DIC Corporation).

フェノールノボラック型エポキシ化合物としては、例えばjER152、jER154(いずれも商品名、三菱化学(株)製)、YDPN−638(商品名、東都化成社製)、DEN431、DEN438(いずれも商品名、The Dow Chemical Company製)、エピクロンN−770(商品名、DIC(株)製)、EPPN−201、およびEPPN−202(いずれも商品名、日本化薬(株)製)が挙げられる。 Examples of the phenol novolac type epoxy compound include jER152, jER154 (both trade names, manufactured by Mitsubishi Chemical Corporation), YDPN-638 (trade names, manufactured by Tohto Kasei Co., Ltd.), DEN431, DEN438 (both trade names, The Dow Chemical Company), Epicron N-770 (trade name, manufactured by DIC Corporation), EPPN-201, and EPPN-202 (all trade names, manufactured by Nippon Kayaku Co., Ltd.).

クレゾールノボラック型エポキシ化合物としては、例えばjER180S75(商品名、三菱化学(株)製)、YDCN−701、YDCN−702(いずれも商品名、東都化成社製)、エピクロンN−665、エピクロンN−695(いずれも商品名、DIC(株)製)、EOCN−102S、EOCN−103S、EOCN−104S、EOCN−1020、EOCN−1025、およびEOCN−1027(いずれも商品名、日本化薬(株)製)が挙げられる。 Examples of the cresol novolac type epoxy compound include jER180S75 (trade name, manufactured by Mitsubishi Chemical Corporation), YDCN-701, YDCN-702 (all trade names, manufactured by Tohto Kasei Co., Ltd.), Epicron N-665, Epicron N-695. (All trade names, manufactured by DIC Corporation), EOCN-102S, EOCN-103S, EOCN-104S, EOCN-1020, EOCN-1025, and EOCN-1027 (all trade names, manufactured by Nippon Kayaku Co., Ltd.) ).

ビスフェノールAノボラック型エポキシ化合物としては、例えばjER157S70(商品名、三菱化学(株)製)、およびエピクロンN−880(商品名、DIC(株)製)が挙げられる。 Examples of the bisphenol A novolac type epoxy compound include jER157S70 (trade name, manufactured by Mitsubishi Chemical Corporation), and Epicron N-880 (trade name, manufactured by DIC Corporation).

ナフタレン骨格含有エポキシ化合物としては、例えばエピクロンHP−4032、エピクロンHP−4700、エピクロンHP−4770(いずれも商品名、DIC(株)製)、およびNC−7000(商品名、日本化薬社製)が挙げられる。 As the naphthalene skeleton-containing epoxy compound, for example, Epicron HP-4032, Epicron HP-4700, Epicron HP-4770 (all trade names, manufactured by DIC Corporation), and NC-7000 (trade names, manufactured by Nippon Kayaku Co., Ltd.) Is mentioned.

芳香族ポリグリシジルエーテル化合物としては、例えばハイドロキノンジグリシジルエーテル(下記式EP−1)、カテコールジグリシジルエーテル(下記式EP−2)、レゾルシノールジグリシジルエーテル(下記式EP−3)、2−[4−(2,3−エポキシプロポキシ)フェニル]−2−[4−[1,1−ビス[4−([2,3−エポキシプロポキシ]フェニル)]エチル]フェニル]プロパン(下記式EP−4)、トリス(4−グリシジルオキシフェニル)メタン(下記式EP−5)、jER1031S、jER1032H60(いずれも商品名、三菱化学(株)製)、TACTIX−742(商品名、The Dow Chemical Company製)、デナコールEX−201(商品名、ナガセケムテックス(株)製)、DPPN−503、DPPN−502H、DPPN−501H、NC6000(いずれも商品名、日本化薬(株)製)、テクモアVG3101L(商品名、三井化学(株)製)、下記式EP−6で表される化合物、および下記式EP−7で表される化合物が挙げられる。

Figure 2017003965

Figure 2017003965
Examples of the aromatic polyglycidyl ether compound include hydroquinone diglycidyl ether (following formula EP-1), catechol diglycidyl ether (following formula EP-2), resorcinol diglycidyl ether (following formula EP-3), 2- [4 -(2,3-epoxypropoxy) phenyl] -2- [4- [1,1-bis [4-([2,3-epoxypropoxy] phenyl)] ethyl] phenyl] propane (formula EP-4 below) , Tris (4-glycidyloxyphenyl) methane (following formula EP-5), jER1031S, jER1032H60 (all trade names, manufactured by Mitsubishi Chemical Corporation), TACTIX-742 (trade name, manufactured by The Dow Chemical Company), Denacol EX-201 (trade name, manufactured by Nagase ChemteX Corporation), DPPN-503, DPPN-50 H, DPPN-501H, NC6000 (all trade names, manufactured by Nippon Kayaku Co., Ltd.), Techmore VG3101L (trade names, manufactured by Mitsui Chemicals, Inc.), a compound represented by the following formula EP-6, and the following formula The compound represented by EP-7 is mentioned.
Figure 2017003965

Figure 2017003965

ジシクロペンタジエンフェノール型エポキシ化合物としては、例えばTACTIX−556(商品名、The Dow Chemical Company製)、およびエピクロンHP−7200(商品名、DIC(株)製)が挙げられる。 Examples of the dicyclopentadiene phenol type epoxy compound include TACTIX-556 (trade name, manufactured by The Dow Chemical Company), and Epicron HP-7200 (trade name, manufactured by DIC Corporation).

脂環式ジグリシジルエーテル化合物としては、例えばシクロヘキサンジメタノールジグリシジルエーテル化合物、およびリカレジンDME−100(商品名、新日本理化(株)製)が挙げられる。 Examples of the alicyclic diglycidyl ether compound include cyclohexane dimethanol diglycidyl ether compound and licarresin DME-100 (trade name, manufactured by Shin Nippon Rika Co., Ltd.).

脂肪族ポリグリシジルエーテル化合物としては、例えばエチレングリコールジグリシジルエーテル(下記式EP−8)、ジエチレングリコールジグリシジルエーテル(下記式EP−9)、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル(下記式EP−10)、トリプロピレングリコールジグリシジルエーテル(下記式EP−11)、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル(下記式EP−12)、1,4−ブタンジオールジグリシジルエーテル(下記式EP−13)、1,6−ヘキサンジオールジグリシジルエーテル(下記式EP−14)、ジブロモネオペンチルグリコールジグリシジルエーテル(下記式EP−15)、デナコールEX−810、デナコールEX−851、デナコールEX−8301、デナコールEX−911、デナコールEX−920、デナコールEX−931、デナコールEX−211、デナコールEX−212、デナコールEX−313(いずれも商品名、ナガセケムテックス(株)製)、DD−503(商品名、(株)ADEKA製)、リカレジンW−100(商品名、新日本理化(株)製)、1,3,5,6−テトラグリシジル−2,4−ヘキサンジオール(下記式EP−16)、グリセリンポリグリシジルエーテル、ソルビトールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、デナコールEX−313、デナコールEX−611、デナコールEX−321、およびデナコールEX−411(いずれも商品名、ナガセケムテックス(株)製)が挙げられる。

Figure 2017003965

Figure 2017003965
Examples of the aliphatic polyglycidyl ether compound include ethylene glycol diglycidyl ether (following formula EP-8), diethylene glycol diglycidyl ether (following formula EP-9), polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether (following formula EP). -10), tripropylene glycol diglycidyl ether (following formula EP-11), polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether (following formula EP-12), 1,4-butanediol diglycidyl ether (following formula EP-13), 1,6-hexanediol diglycidyl ether (following formula EP-14), dibromoneopentyl glycol diglycidyl ether (following formula EP-15), Denacol EX 810, Denacol EX-851, Denacol EX-8301, Denacol EX-911, Denacol EX-920, Denacol EX-931, Denacol EX-211, Denacol EX-212, Denacol EX-313 (all trade names, Nagase Chemtex) Co., Ltd.), DD-503 (trade name, manufactured by ADEKA Co., Ltd.), Rica Resin W-100 (trade name, manufactured by Shin Nippon Rika Co., Ltd.), 1,3,5,6-tetraglycidyl-2, 4-hexanediol (following formula EP-16), glycerin polyglycidyl ether, sorbitol polyglycidyl ether, trimethylolpropane polyglycidyl ether, pentaerythritol polyglycidyl ether, Denacol EX-313, Denacol EX-611, Denacol EX-321, And de Call EX-411 (trade names, manufactured by Nagase Chemtex Co., Ltd.) and the like.
Figure 2017003965

Figure 2017003965

ポリサルファイド型ジグリシジルエーテル化合物としては、例えばFLDP−50、およびFLDP−60(いずれも商品名、東レチオコール(株)製)が挙げられる。 Examples of the polysulfide-type diglycidyl ether compound include FLDP-50 and FLDP-60 (both are trade names, manufactured by Toraythiol Co., Ltd.).

ビフェノール型エポキシ化合物としては、例えばYX−4000、YL−6121H(いずれも商品名、三菱化学(株)製)、NC−3000P、およびNC−3000S(いずれも商品名、日本化薬(株)製)が挙げられる。 Examples of the biphenol type epoxy compound include YX-4000, YL-6121H (all trade names, manufactured by Mitsubishi Chemical Corporation), NC-3000P, and NC-3000S (all trade names, manufactured by Nippon Kayaku Co., Ltd.). ).

ジグリシジルエステル化合物としては、例えばジグリシジルテレフタレート(下記式EP−17)、ジグリシジルフタレート(下記式EP−18)、ビス(2−メチルオキシラニルメチル)フタレート(下記式EP−19)、ジグリシジルヘキサヒドロフタレート(下記式EP−20)、下記式EP−21で表される化合物、下記式EP−22で表される化合物、および下記式EP−23で表される化合物が挙げられる。

Figure 2017003965
Examples of the diglycidyl ester compound include diglycidyl terephthalate (following formula EP-17), diglycidyl phthalate (following formula EP-18), bis (2-methyloxiranylmethyl) phthalate (following formula EP-19), di Examples include glycidyl hexahydrophthalate (following formula EP-20), a compound represented by the following formula EP-21, a compound represented by the following formula EP-22, and a compound represented by the following formula EP-23.
Figure 2017003965

グリシジルエステルエポキシ化合物としては、例えばjER871、jER872(いずれも商品名、三菱化学(株)製)、エピクロン200、エピクロン400(いずれも商品名、DIC(株)製)、デナコールEX−711、およびデナコールEX−721(いずれも商品名、ナガセケムテックス(株)製)が挙げられる。 Examples of the glycidyl ester epoxy compound include jER871, jER872 (both trade names, manufactured by Mitsubishi Chemical Corporation), Epicron 200, Epicron 400 (all trade names, manufactured by DIC Corporation), Denacol EX-711, and Denacol. EX-721 (all are trade names, manufactured by Nagase ChemteX Corporation).

ポリグリシジルアミン化合物としては、例えばN,N−ジグリシジルアニリン(下記式EP−24)、N,N−ジグリシジル−o−トルイジン(下記式EP−25)、N,N−ジグリシジル−m−トルイジン(下記式EP−26)、N,N−ジグリシジル−2,4,6−トリブロモアニリン(下記式EP−27)、3−(N,N−ジグリシジル)アミノプロピルトリメトキシシラン(下記式EP−28)、N,N,O−トリグリシジル−p−アミノフェノール(下記式EP−29)、N,N,O−トリグリシジル−m−アミノフェノール(下記式EP−30)、N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルメタン(下記式EP−31)、N,N,N’,N’−テトラグリシジル−m−キシリレンジアミン(TETRAD−X(商品名、三菱ガス化学(株)製)、下記式EP−32)、1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン(TETRAD−C(商品名、三菱ガス化学(株)製)、下記式EP−33)、1,4−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン(下記式EP−34)、1,3−ビス(N,N−ジグリシジルアミノ)シクロヘキサン(下記式EP−35)、1,4−ビス(N,N−ジグリシジルアミノ)シクロヘキサン(下記式EP−36)、1,3−ビス(N,N−ジグリシジルアミノ)ベンゼン(下記式EP−37)、1,4−ビス(N,N−ジグリシジルアミノ)ベンゼン(下記式EP−38)、2,6−ビス(N,N−ジグリシジルアミノメチル)ビシクロ[2.2.1]ヘプタン(下記式EP−39)、N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジシクロヘキシルメタン(下記式EP−40)、2,2’−ジメチル−(N,N,N’,N’−テトラグリシジル)−4,4’−ジアミノビフェニル(下記式EP−41)、N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルエーテル(下記式EP−42)、1,3,5−トリス(4−(N,N−ジグリシジル)アミノフェノキシ)ベンゼン(下記式EP−43)、2,4,4’−トリス(N,N−ジグリシジルアミノ)ジフェニルエーテル(下記式EP−44)、トリス(4−(N,N−ジグリシジル)アミノフェニル)メタン(下記式EP−45)、3,4,3’,4’−テトラキス(N,N−ジグリシジルアミノ)ビフェニル(下記式EP−46)、3,4,3’,4’−テトラキス(N,N−ジグリシジルアミノ)ジフェニルエーテル(下記式EP−47)、下記式EP−48で表される化合物、および下記式EP−49で表される化合物が挙げられる。

Figure 2017003965

Figure 2017003965

Figure 2017003965

Figure 2017003965

Figure 2017003965
Examples of the polyglycidylamine compound include N, N-diglycidylaniline (following formula EP-24), N, N-diglycidyl-o-toluidine (following formula EP-25), N, N-diglycidyl-m-toluidine ( The following formula EP-26), N, N-diglycidyl-2,4,6-tribromoaniline (the following formula EP-27), 3- (N, N-diglycidyl) aminopropyltrimethoxysilane (the following formula EP-28 ), N, N, O-triglycidyl-p-aminophenol (following formula EP-29), N, N, O-triglycidyl-m-aminophenol (following formula EP-30), N, N, N ′ , N′-tetraglycidyl-4,4′-diaminodiphenylmethane (following formula EP-31), N, N, N ′, N′-tetraglycidyl-m-xylylenediamine (TETRAD) X (trade name, manufactured by Mitsubishi Gas Chemical Co., Ltd.), the following formula EP-32), 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane (TETRAD-C (trade name, Mitsubishi Gas Chemical Co., Ltd.) )), Following formula EP-33), 1,4-bis (N, N-diglycidylaminomethyl) cyclohexane (following formula EP-34), 1,3-bis (N, N-diglycidylamino) cyclohexane (Formula EP-35), 1,4-bis (N, N-diglycidylamino) cyclohexane (Formula EP-36), 1,3-bis (N, N-diglycidylamino) benzene (Formula EP -37), 1,4-bis (N, N-diglycidylamino) benzene (the following formula EP-38), 2,6-bis (N, N-diglycidylaminomethyl) bicyclo [2.2.1] Heptane (Formula EP- 39), N, N, N ′, N′-tetraglycidyl-4,4′-diaminodicyclohexylmethane (the following formula EP-40), 2,2′-dimethyl- (N, N, N ′, N′- Tetraglycidyl) -4,4′-diaminobiphenyl (following formula EP-41), N, N, N ′, N′-tetraglycidyl-4,4′-diaminodiphenyl ether (following formula EP-42), 1,3 , 5-Tris (4- (N, N-diglycidyl) aminophenoxy) benzene (following formula EP-43), 2,4,4′-tris (N, N-diglycidylamino) diphenyl ether (following formula EP-44) ), Tris (4- (N, N-diglycidyl) aminophenyl) methane (following formula EP-45), 3,4,3 ′, 4′-tetrakis (N, N-diglycidylamino) biphenyl (following formula EP) -46), 3, 4, 3 Examples include ', 4'-tetrakis (N, N-diglycidylamino) diphenyl ether (the following formula EP-47), a compound represented by the following formula EP-48, and a compound represented by the following formula EP-49.
Figure 2017003965

Figure 2017003965

Figure 2017003965

Figure 2017003965

Figure 2017003965

オキシラニルを有するモノマーの単独重合体としては、例えばポリグリシジルメタクリレートが挙げられる。オキシラニルを有するモノマーの共重合体としては、例えばN−フェニルマレイミド−グリシジルメタクリレート共重合体、N−シクロヘキシルマレイミド−グリシジルメタクリレート共重合体、ベンジルメタクリレート−グリシジルメタクリレート共重合体、ブチルメタクリレート−グリシジルメタクリレート共重合体、2−ヒドロキシエチルメタクリレート−グリシジルメタクリレート共重合体、(3−エチル−3−オキセタニル)メチルメタクリレート−グリシジルメタクリレート共重合体、およびスチレン−グリシジルメタクリレート共重合体が挙げられる。 Examples of the homopolymer of the monomer having oxiranyl include polyglycidyl methacrylate. Examples of the copolymer of monomers having oxiranyl include N-phenylmaleimide-glycidyl methacrylate copolymer, N-cyclohexylmaleimide-glycidyl methacrylate copolymer, benzyl methacrylate-glycidyl methacrylate copolymer, butyl methacrylate-glycidyl methacrylate copolymer. Examples thereof include 2-hydroxyethyl methacrylate-glycidyl methacrylate copolymer, (3-ethyl-3-oxetanyl) methyl methacrylate-glycidyl methacrylate copolymer, and styrene-glycidyl methacrylate copolymer.

オキシラニルを有するモノマーとしては、例えばグリシジル(メタ)アクリレート、3,4−エポキシシクロヘキシル(メタ)アクリレート、およびメチルグリシジル(メタ)アクリレートが挙げられる。 Examples of the monomer having oxiranyl include glycidyl (meth) acrylate, 3,4-epoxycyclohexyl (meth) acrylate, and methyl glycidyl (meth) acrylate.

オキシラニルを有するモノマーの共重合体におけるオキシラニルを有するモノマー以外の他のモノマーとしては、例えば(メタ)アクリル酸、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、iso−ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、スチレン、メチルスチレン、クロルメチルスチレン、(3−エチル−3−オキセタニル)メチル(メタ)アクリレート、N−シクロヘキシルマレイミド、およびN−フェニルマレイミドが挙げられる。 Examples of the monomer other than the monomer having oxiranyl in the copolymer of the monomer having oxiranyl include, for example, (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, and butyl (meth). Acrylate, iso-butyl (meth) acrylate, t-butyl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, styrene, Examples include methylstyrene, chloromethylstyrene, (3-ethyl-3-oxetanyl) methyl (meth) acrylate, N-cyclohexylmaleimide, and N-phenylmaleimide.

グリシジルイソシアヌレートとしては、例えば1,3,5−トリグリシジル−1,3,5−トリアジン−2,4,6−(1H,3H,5H)−トリオン(下記式EP−50)、1,3−ジグリシジル−5−アリル−1,3,5−トリアジン−2,4,6−(1H,3H,5H)−トリオン(下記式EP−51)、およびグリシジルイソシアヌレート型エポキシ樹脂が挙げられる。

Figure 2017003965
Examples of glycidyl isocyanurate include 1,3,5-triglycidyl-1,3,5-triazine-2,4,6- (1H, 3H, 5H) -trione (the following formula EP-50), 1,3. -Diglycidyl-5-allyl-1,3,5-triazine-2,4,6- (1H, 3H, 5H) -trione (following formula EP-51) and glycidyl isocyanurate type epoxy resin.
Figure 2017003965

鎖状脂肪族型エポキシ化合物としては、例えばエポキシ化ポリブタジエン、およびエポリードPB3600(商品名、(株)ダイセル製)が挙げられる。 Examples of the chain aliphatic epoxy compound include epoxidized polybutadiene and epolide PB3600 (trade name, manufactured by Daicel Corporation).

環状脂肪族型エポキシ化合物としては、例えば3,4−エポキシシクロヘキセニルメチル−3’,4’−エポキシシクロヘキセンカルボキシレート(セロキサイド2021((株)ダイセル製)、下記式EP−52)、2−メチル−3,4−エポキシシクロヘキシルメチル−2’−メチル−3’,4’−エポキシシクロヘキシルカルボキシレート(下記式EP−53)、2,3−エポキシシクロペンタン−2’,3’−エポキシシクロペンタンエーテル(下記式EP−54)、ε−カプロラクトン変性3,4−エポキシシクロヘキシルメチル−3’,4’−エポキシシクロヘキサンカルボキレート、1,2:8,9−ジエポキシリモネン(セロキサイド3000(商品名、(株)ダイセル製)、下記式EP−55)、下記式EP−56で表される化合物、セロキサイド8000(商品名、(株)ダイセル製、下記式EP−57)、CY−175、CY−177、CY−179(いずれも商品名、The Ciba-Geigy Chemical Corp.製(ハンツマン・ジャパン(株)から入手できる。))、EHPD−3150(商品名、(株)ダイセル製)、および環状脂肪族型エポキシ樹脂が挙げられる。

Figure 2017003965
Examples of the cycloaliphatic epoxy compound include 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexenecarboxylate (Celoxide 2021 (manufactured by Daicel Corporation), the following formula EP-52), 2-methyl -3,4-epoxycyclohexylmethyl-2'-methyl-3 ', 4'-epoxycyclohexylcarboxylate (following formula EP-53), 2,3-epoxycyclopentane-2', 3'-epoxycyclopentane ether (Formula EP-54), ε-caprolactone-modified 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate, 1,2: 8,9-diepoxy limonene (Celoxide 3000 (trade name, ( Manufactured by Daicel Corporation), the following formula EP-55), a compound represented by the following formula EP-56, LOXIDE 8000 (trade name, manufactured by Daicel Corporation, the following formula EP-57), CY-175, CY-177, CY-179 (all trade names, manufactured by The Ciba-Geigy Chemical Corp. (Huntsman Japan Co., Ltd.) )), EHPD-3150 (trade name, manufactured by Daicel Corporation), and cycloaliphatic epoxy resins.
Figure 2017003965

エポキシ化合物は、ポリグリシジルアミン化合物、ビスフェノールAノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物、および環状脂肪族型エポキシ化合物の一以上であることが好ましく、N,N,N’,N’−テトラグリシジル−m−キシレンジアミン、1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルメタン、商品名「テクモアVG3101L」、3,4−エポキシシクロヘキセニルメチル−3’,4’−エポキシシクロヘキセンカルボキシレート、N−フェニルマレイミド−グリシジルメタクリレート共重合体、N,N,O−トリグリシジル−p−アミノフェノール、ビスフェノールAノボラック型エポキシ化合物、およびクレゾールノボラック型エポキシ化合物の1つ以上であることがより好ましい。 The epoxy compound is preferably one or more of a polyglycidylamine compound, a bisphenol A novolac type epoxy compound, a cresol novolac type epoxy compound, and a cyclic aliphatic type epoxy compound, and N, N, N ′, N′-tetraglycidyl -M-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N ′, N′-tetraglycidyl-4,4′-diaminodiphenylmethane, trade name “Techmore VG3101L” 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexene carboxylate, N-phenylmaleimide-glycidyl methacrylate copolymer, N, N, O-triglycidyl-p-aminophenol, bisphenol A novolak type Epoxy compounds, And it is more preferably one or more cresol novolac type epoxy compound.

また例えば、本発明の液晶配向剤は各種添加剤をさらに含有していてもよい。各種添加剤としては、例えばポリアミック酸およびその誘導体以外の高分子化合物、および低分子化合物が挙げられ、それぞれの目的に応じて選択して使用することができる。 For example, the liquid crystal aligning agent of this invention may further contain various additives. Examples of the various additives include high molecular compounds other than polyamic acid and its derivatives, and low molecular compounds, which can be selected and used according to their respective purposes.

例えば、前記高分子化合物としては、有機溶媒に可溶性の高分子化合物が挙げられる。このような高分子化合物を本発明の液晶配向剤に添加することは、形成される液晶配向膜の電気特性や配向性を制御する観点から好ましい。該高分子化合物としては、例えばポリアミド、ポリウレタン、ポリウレア、ポリエステル、ポリエポキサイド、ポリエステルポリオール、シリコーン変性ポリウレタン、およびシリコーン変性ポリエステルが挙げられる。 For example, the polymer compound includes a polymer compound that is soluble in an organic solvent. It is preferable to add such a polymer compound to the liquid crystal aligning agent of the present invention from the viewpoint of controlling the electrical characteristics and orientation of the liquid crystal alignment film to be formed. Examples of the polymer compound include polyamide, polyurethane, polyurea, polyester, polyepoxide, polyester polyol, silicone-modified polyurethane, and silicone-modified polyester.

また、前記低分子化合物としては、例えば1)塗布性の向上を望むときにはかかる目的に沿った界面活性剤、2)帯電防止の向上を必要とするときは帯電防止剤、3)基板との密着性の向上を望むときにはシランカップリング剤やチタン系のカップリング剤、また、4)低温でイミド化を進行させる場合はイミド化触媒、が挙げられる。 Examples of the low molecular weight compound include 1) a surfactant in accordance with the purpose when improvement in coatability is desired, 2) an antistatic agent when improvement in antistatic is required, and 3) adhesion to the substrate. In the case where it is desired to improve the properties, a silane coupling agent or a titanium-based coupling agent, and 4) an imidization catalyst in the case where imidization proceeds at a low temperature can be mentioned.

シランカップリング剤としては、例えばビニルトリメトキシシラン、ビニルトリエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルトリメトキシシラン、パラアミノフェニルトリメトキシシラン、パラアミノフェニルトリエトキシシラン、メタアミノフェニルトリメトキシシラン、メタアミノフェニルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−クロロプロピルメチルジメトキシシラン、3−クロロプロピルトリメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、N−(1,3−ジメチルブチリデン)−3−(トリエトキシシリル)−1−プロピルアミン、およびN,N’−ビス[3−(トリメトキシシリル)プロピル]エチレンジアミンが挙げられる。好ましいシランカップリング剤は3−アミノプロピルトリエトキシシランである。 Examples of the silane coupling agent include vinyltrimethoxysilane, vinyltriethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyltri Methoxysilane, paraaminophenyltrimethoxysilane, paraaminophenyltriethoxysilane, metaaminophenyltrimethoxysilane, metaaminophenyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-glycidoxy Propyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-chloropropylmethyldimethoxysilane, 3-chloropropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane , 3-mercaptopropyltrimethoxysilane, N- (1,3-dimethylbutylidene) -3- (triethoxysilyl) -1-propylamine, and N, N′-bis [3- (trimethoxysilyl) Propyl] ethylenediamine. A preferred silane coupling agent is 3-aminopropyltriethoxysilane.

イミド化触媒としては、例えばトリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン等の脂肪族アミン類;N,N−ジメチルアニリン、N,N−ジエチルアニリン、メチル置換アニリン、ヒドロキシ置換アニリン等の芳香族アミン類;ピリジン、メチル置換ピリジン、ヒドロキシ置換ピリジン、キノリン、メチル置換キノリン、ヒドロキシ置換キノリン、イソキノリン、メチル置換イソキノリン、ヒドロキシ置換イソキノリン、イミダゾール、メチル置換イミダゾール、ヒドロキシ置換イミダゾール等の環式アミン類が挙げられる。前記イミド化触媒は、N,N−ジメチルアニリン、o−,m−,p−ヒドロキシアニリン、o−,m−,p−ヒドロキシピリジン、およびイソキノリンから選ばれる1種または2種以上であることが好ましい。 Examples of imidation catalysts include aliphatic amines such as trimethylamine, triethylamine, tripropylamine, and tributylamine; aromatic amines such as N, N-dimethylaniline, N, N-diethylaniline, methyl-substituted aniline, and hydroxy-substituted aniline. And cyclic amines such as pyridine, methyl-substituted pyridine, hydroxy-substituted pyridine, quinoline, methyl-substituted quinoline, hydroxy-substituted quinoline, isoquinoline, methyl-substituted isoquinoline, hydroxy-substituted isoquinoline, imidazole, methyl-substituted imidazole, and hydroxy-substituted imidazole. . The imidation catalyst may be one or more selected from N, N-dimethylaniline, o-, m-, p-hydroxyaniline, o-, m-, p-hydroxypyridine, and isoquinoline. preferable.

シランカップリング剤の添加量は、通常、ポリアミック酸またはその誘導体の総重量の0〜20重量%であり、0.1〜10重量%であることが好ましい。 The addition amount of the silane coupling agent is usually 0 to 20% by weight, preferably 0.1 to 10% by weight, based on the total weight of the polyamic acid or its derivative.

イミド化触媒の添加量は、通常、ポリアミック酸またはその誘導体のカルボニル基に対して0.01〜5当量であり、0.05〜3当量であることが好ましい。 The amount of the imidation catalyst added is usually 0.01 to 5 equivalents, preferably 0.05 to 3 equivalents, relative to the carbonyl group of the polyamic acid or derivative thereof.

その他の添加剤の添加量は、その用途に応じて異なるが、通常、ポリアミック酸またはその誘導体の総重量の0〜100重量%であり、0.1〜50重量%であることが好ましい。 The addition amount of other additives varies depending on the application, but is usually 0 to 100% by weight, preferably 0.1 to 50% by weight, based on the total weight of the polyamic acid or derivative thereof.

本発明のポリアミック酸またはその誘導体は、ポリイミドの膜の形成に用いられる公知のポリアミック酸またはその誘導体と同様に製造することができる。テトラカルボン酸二無水物の総仕込み量は、ジアミンの総モル数とほぼ等モル(モル比0.9〜1.1程度)とすることが好ましい。 The polyamic acid or derivative thereof of the present invention can be produced in the same manner as a known polyamic acid or derivative thereof used for forming a polyimide film. The total amount of tetracarboxylic dianhydride is preferably approximately equimolar to the total number of moles of diamine (molar ratio of about 0.9 to 1.1).

本発明のポリアミック酸またはその誘導体の分子量は、ポリスチレン換算の重量平均分子量(Mw)で、7,000〜500,000であることが好ましく、10,000〜200,000であることがより好ましい。前記ポリアミック酸またはその誘導体の分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法による測定から求めることができる。 The molecular weight of the polyamic acid or derivative thereof according to the present invention is preferably 7,000 to 500,000, more preferably 10,000 to 200,000 in terms of polystyrene-equivalent weight average molecular weight (Mw). The molecular weight of the polyamic acid or derivative thereof can be determined from measurement by gel permeation chromatography (GPC).

本発明のポリアミック酸またはその誘導体は、多量の貧溶剤で沈殿させて得られる固形分をIR、NMRで分析することによりその存在を確認することができる。またKOHやNaOH等の強アルカリの水溶液による前記ポリアミック酸またはその誘導体の分解物の有機溶剤による抽出物をGC、HPLCまたはGC−MSで分析することにより、使用されているモノマーを確認することができる。 The presence of the polyamic acid or derivative thereof of the present invention can be confirmed by analyzing the solid content obtained by precipitation with a large amount of poor solvent by IR or NMR. It is also possible to confirm the monomer used by analyzing the extract of the decomposition product of the polyamic acid or its derivative with an aqueous solution of strong alkali such as KOH or NaOH by an organic solvent by GC, HPLC or GC-MS. it can.

また例えば、本発明の液晶配向剤は、液晶配向剤の塗布性や前記ポリアミック酸またはその誘導体の濃度の調整の観点から、溶剤をさらに含有していてもよい。前記溶剤は、高分子成分を溶解する能力を持った溶剤であれば格別制限なく適用可能である。前記溶剤は、ポリアミック酸、可溶性ポリイミド等の高分子成分の製造工程や用途面で通常使用されている溶剤を広く含み、使用目的に応じて、適宜選択できる。前記溶剤は1種でも2種以上の混合溶剤であってもよい。 For example, the liquid crystal aligning agent of this invention may further contain the solvent from a viewpoint of the applicability | paintability of a liquid crystal aligning agent, and the adjustment of the density | concentration of the said polyamic acid or its derivative (s). The solvent can be applied without any particular limitation as long as it has a capability of dissolving the polymer component. The said solvent contains the solvent normally used in the manufacturing process and use surface of polymer components, such as a polyamic acid and a soluble polyimide, and can be suitably selected according to the intended purpose. The solvent may be one type or a mixed solvent of two or more types.

溶剤としては、前記ポリアミック酸またはその誘導体の親溶剤や、塗布性改善を目的とした他の溶剤が挙げられる。 Examples of the solvent include a parent solvent for the polyamic acid or a derivative thereof, and other solvents for the purpose of improving coatability.

ポリアミック酸またはその誘導体に対し親溶剤である非プロトン性極性有機溶剤としては、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン、ジメチルイミダゾリジノン、N−メチルカプロラクタム、N−メチルプロピオンアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、ジエチルアセトアミド、γ−ブチロラクトン等のラクトンが挙げられる。 Examples of the aprotic polar organic solvent that is a parent solvent for polyamic acid or its derivatives include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethylimidazolidinone, N-methylcaprolactam, and N-methylpropion. Examples include amides, N, N-dimethylacetamide, dimethyl sulfoxide, N, N-dimethylformamide, N, N-diethylformamide, diethylacetamide, γ-butyrolactone, and other lactones.

塗布性改善等を目的とした他の溶剤の例としては、乳酸アルキル、3−メチル−3−メトキシブタノール、テトラリン、イソホロン、エチレングリコールモノブチルエーテル等のエチレングリコールモノアルキルエーテル、ジエチレングリコールモノエチルエーテル等のジエチレングリコールモノアルキルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールプロピルメチルエーテル、ジエチレングリコールブチルメチルエーテル、ジエチレングリコールブチルエチルエーテル、ジイソブチルケトン、ジペンチルエーテル、エチレングリコールモノアルキルまたはフェニルアセテート、トリエチレングリコールモノアルキルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル等のプロピレングリコールモノアルキルエーテル、マロン酸ジエチル等のマロン酸ジアルキル、ジプロピレングリコールモノメチルエーテル等のジプロピレングリコールモノアルキルエーテル、これらアセテート類等のエステル化合物が挙げられる。 Examples of other solvents for the purpose of improving coating properties include alkyl lactate, 3-methyl-3-methoxybutanol, tetralin, isophorone, ethylene glycol monoalkyl ethers such as ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, etc. Diethylene glycol monoalkyl ether, diethylene glycol ethyl methyl ether, diethylene glycol propyl methyl ether, diethylene glycol butyl methyl ether, diethylene glycol butyl ethyl ether, diisobutyl ketone, dipentyl ether, ethylene glycol monoalkyl or phenyl acetate, triethylene glycol monoalkyl ether, propylene glycol monomethyl ether , Propylene glycol monobutyl ether Propylene glycol monoalkyl ethers such as ether, dialkyl malonate diethyl malonate, dipropylene glycol monoalkyl ethers such as dipropylene glycol monomethyl ether, ester compounds such as those acetates and the like.

これらの中で、前記溶剤は、N−メチル−2−ピロリドン、ジメチルイミダゾリジノン、γ−ブチロラクトン、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールプロピルメチルエーテル、ジエチレングリコールブチルメチルエーテル、ジイソブチルケトン、ジペンチルエーテル、およびジプロピレングリコールモノメチルエーテルが好ましい。 Among these, the solvent is N-methyl-2-pyrrolidone, dimethylimidazolidinone, γ-butyrolactone, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, propylene glycol monobutyl ether, propylene glycol monomethyl ether, diethylene glycol ethyl methyl ether. Diethylene glycol propyl methyl ether, diethylene glycol butyl methyl ether, diisobutyl ketone, dipentyl ether, and dipropylene glycol monomethyl ether are preferred.

また、インクジェット法にて塗布膜を印刷する場合には、上記親溶剤と塗布性改善を目的とした他の溶剤を適宜選択することができる。下記第1溶剤〜第4溶剤を併用することにより、より塗布性の優れた液晶配向剤を得ることができる。 Moreover, when printing a coating film by the inkjet method, the other solvent for the purpose of the said parent solvent and coating property improvement can be selected suitably. By using the following first to fourth solvents in combination, a liquid crystal aligning agent with better coating properties can be obtained.

第1溶剤として、N−メチル−2−ピロリドン、γ−ブチロラクトン、1,3−ジメチル−2−イミダゾリジノン、N−エチル−2−ピロリドンからなる群から選ばれる少なくとも1つ、第2溶剤として、ブチルセロソルブ、1−ブトキシ−2−プロパノ−ル、ジエチレングリコ−ルエチルメチルエ−テル、ジエチレングリコールプロピルメチルエーテルからなる群から選ばれる少なくとも1つ、第3溶剤として、ジイソブチルケトン、ジペンチルエーテルからなる群から選ばれる少なくとも1つ、そして、第4溶剤として、ジエチレングリコールエチルプロピルエーテル、ジエチレングリコールブチルメチルエーテル、ジエチレングリコールブチルエチルエーテルからなる群から選ばれる少なくとも1つを含有することが好ましく、さらに第1溶剤の割合が全溶剤重量に対して20〜89重量%であり、第2溶剤の割合が全溶剤重量に対して10〜60重量%であり、第3溶剤の割合が全溶媒重量に対して0.1〜15重量%であり、そして、第4溶剤の割合が全溶剤重量に対して0.1〜20重量%であることがより好ましい。 As the first solvent, at least one selected from the group consisting of N-methyl-2-pyrrolidone, γ-butyrolactone, 1,3-dimethyl-2-imidazolidinone, N-ethyl-2-pyrrolidone, and the second solvent , At least one selected from the group consisting of butyl cellosolve, 1-butoxy-2-propanol, diethylene glycol ethyl methyl ether, diethylene glycol propyl methyl ether, and at least selected from the group consisting of diisobutyl ketone and dipentyl ether as the third solvent. One and the fourth solvent preferably contains at least one selected from the group consisting of diethylene glycol ethyl propyl ether, diethylene glycol butyl methyl ether, diethylene glycol butyl ethyl ether, and The proportion of one solvent is 20 to 89% by weight with respect to the total solvent weight, the proportion of the second solvent is 10 to 60% by weight with respect to the total solvent weight, and the proportion of the third solvent is with respect to the total solvent weight. It is more preferable that the ratio of the fourth solvent is 0.1 to 15% by weight with respect to the total solvent weight.

本発明の液晶配向剤中のポリアミック酸の濃度は0.1〜40重量%であることが好ましい。この液晶配向剤を基板に塗布するときには、膜厚の調整のために、含有されているポリアミック酸を予め溶剤により希釈する操作が必要とされることがある。 The concentration of the polyamic acid in the liquid crystal aligning agent of the present invention is preferably 0.1 to 40% by weight. When this liquid crystal aligning agent is applied to the substrate, an operation of diluting the contained polyamic acid with a solvent in advance may be required to adjust the film thickness.

本発明の液晶配向剤における固形分濃度は特に限定されるものではなく、下記の種々の塗布法に合わせ最適な値を選べばよい。通常、塗布時のムラやピンホール等を抑えるため、ワニス重量に対し、好ましくは0.1〜30重量%、より好ましくは1〜10重量%である。 The solid content concentration in the liquid crystal aligning agent of the present invention is not particularly limited, and an optimum value may be selected in accordance with the following various coating methods. Usually, in order to suppress unevenness and pinholes at the time of application, the content is preferably 0.1 to 30% by weight, more preferably 1 to 10% by weight, based on the varnish weight.

本発明の液晶配向剤の粘度は、塗布する方法、ポリアミック酸またはその誘導体の濃度、使用するポリアミック酸またはその誘導体の種類、溶剤の種類と割合によって好ましい範囲が異なる。例えば、印刷機による塗布の場合は5〜100mPa・s(より好ましくは10〜80mPa・s)である。5mPa・sより小さいと十分な膜厚を得ることが難しくなり、100mPa・sを超えると印刷ムラが大きくなることがある。スピンコートによる塗布の場合は5〜200mPa・s(より好ましくは10〜100mPa・s)が適している。インクジェット塗布装置を用いて塗布する場合は5〜50mPa・s(より好ましくは5〜20mPa・s)が適している。液晶配向剤の粘度は回転粘度測定法により測定され、例えば回転粘度計(東機産業製TVE−20L型)を用いて測定(測定温度:25℃)される。 The preferred range of the viscosity of the liquid crystal aligning agent of the present invention varies depending on the coating method, the concentration of the polyamic acid or derivative thereof, the type of polyamic acid or derivative used, and the type and ratio of the solvent. For example, in the case of application by a printing press, it is 5 to 100 mPa · s (more preferably 10 to 80 mPa · s). If it is less than 5 mPa · s, it is difficult to obtain a sufficient film thickness, and if it exceeds 100 mPa · s, printing unevenness may increase. In the case of application by spin coating, 5 to 200 mPa · s (more preferably 10 to 100 mPa · s) is suitable. In the case of coating using an inkjet coating apparatus, 5 to 50 mPa · s (more preferably 5 to 20 mPa · s) is suitable. The viscosity of the liquid crystal aligning agent is measured by a rotational viscosity measuring method, and is measured using a rotational viscometer (TVE-20L type manufactured by Toki Sangyo Co., Ltd.) (measurement temperature: 25 ° C.).

本発明の液晶配向膜について、詳細に説明する。本発明の液晶配向膜は、前述した本発明の液晶配向剤の塗膜を加熱することによって形成される膜である。本発明の液晶配向膜は、液晶配向剤から液晶配向膜を作製する通常の方法によって得ることができる。例えば本発明の液晶配向膜は、本発明の液晶配向剤の塗膜を形成する工程と、加熱乾燥する工程と、加熱焼成する工程を経ることによって得ることができる。本発明の液晶配向膜については、必要に応じて後述の通り、塗膜工程、加熱乾燥工程の後に光を照射して、または加熱焼成工程の後に光を照射して異方性を付与してもよい。 The liquid crystal alignment film of the present invention will be described in detail. The liquid crystal alignment film of this invention is a film | membrane formed by heating the coating film of the liquid crystal aligning agent of this invention mentioned above. The liquid crystal alignment film of the present invention can be obtained by an ordinary method for producing a liquid crystal alignment film from a liquid crystal aligning agent. For example, the liquid crystal alignment film of the present invention can be obtained through a step of forming a coating film of the liquid crystal alignment agent of the present invention, a step of drying by heating, and a step of baking by heating. About the liquid crystal aligning film of this invention, as later mentioned as needed, it irradiates light after a coating-film process and a heat-drying process, or irradiates light after a heat-firing process, and provides anisotropy. Also good.

塗膜は、通常の液晶配向膜の作製と同様に、液晶表示素子における基板に本発明の液晶配向剤を塗布することによって形成することができる。基板には、ITO(IndiumTinOxide)、IZO(In−ZnO)、IGZO(In−Ga−ZnO)電極等の電極やカラーフィルタ等が設けられていてもよいガラス製の基板が挙げられる。 A coating film can be formed by apply | coating the liquid crystal aligning agent of this invention to the board | substrate in a liquid crystal display element similarly to preparation of a normal liquid crystal aligning film. Examples of the substrate include a glass substrate in which electrodes such as ITO (Indium Tin Oxide), IZO (In 2 O 3 —ZnO), and IGZO (In—Ga—ZnO 4 ) electrodes and a color filter may be provided. .

液晶配向剤を基板に塗布する方法としてはスピンナー法、印刷法、ディッピング法、滴下法、インクジェット法等が一般に知られている。これらの方法は本発明においても同様に適用可能である。 As a method for applying a liquid crystal aligning agent to a substrate, a spinner method, a printing method, a dipping method, a dropping method, an ink jet method and the like are generally known. These methods are similarly applicable in the present invention.

前記加熱乾燥工程は、オーブンまたは赤外炉の中で加熱処理する方法、ホットプレート上で加熱処理する方法等が一般に知られている。加熱乾燥工程は溶剤の蒸発が可能な範囲内の温度で実施することが好ましく、加熱焼成工程における温度に対して比較的低い温度で実施することがより好ましい。具体的には加熱乾燥温度は30℃〜150℃の範囲であること、さらには50℃〜120℃の範囲であることが好ましい。 As the heat drying step, a method of heat treatment in an oven or an infrared furnace, a method of heat treatment on a hot plate, and the like are generally known. The heat drying step is preferably performed at a temperature within a range where the solvent can be evaporated, and more preferably at a temperature relatively lower than the temperature in the heat baking step. Specifically, the heat drying temperature is preferably in the range of 30 ° C to 150 ° C, and more preferably in the range of 50 ° C to 120 ° C.

前記加熱焼成工程は、前記ポリアミック酸またはその誘導体が脱水・閉環反応を呈するのに必要な条件で行うことができる。前記塗膜の焼成は、オーブンまたは赤外炉の中で加熱処理する方法、ホットプレート上で加熱処理する方法等が一般に知られている。これらの方法も本発明において同様に適用可能である。一般に100〜300℃程度の温度で1分間〜3時間行うことが好ましく、120〜280℃がより好ましく、150〜250℃がさらに好ましい。 The heating and baking step can be performed under conditions necessary for the polyamic acid or its derivative to exhibit a dehydration / ring-closure reaction. As for the baking of the coating film, a method of heat treatment in an oven or an infrared furnace, a method of heat treatment on a hot plate, and the like are generally known. These methods are equally applicable in the present invention. In general, it is preferably performed at a temperature of about 100 to 300 ° C for 1 minute to 3 hours, more preferably 120 to 280 ° C, and further preferably 150 to 250 ° C.

光配向法による本発明の液晶配向膜の形成方法について、詳細に説明する。光配向法を用いた本発明の液晶配向膜は、塗膜を加熱乾燥した後、放射線の直線偏光または無偏光を照射することにより、塗膜に異方性を付与し、その膜を加熱焼成することにより形成することができる。または、塗膜を加熱乾燥し、加熱焼成した後に、放射線の直線偏光または無偏光を照射することにより形成する事ができる。配向性の点から、放射線の照射工程は加熱焼成工程前に行うのが好ましい。 The method for forming the liquid crystal alignment film of the present invention by the photo-alignment method will be described in detail. The liquid crystal alignment film of the present invention using the photo-alignment method gives the film anisotropy by irradiating with linearly polarized light or non-polarized light after the coating film is heated and dried, and the film is heated and fired. Can be formed. Or it can form by irradiating the linearly polarized light or non-polarized light of a radiation, after heating-drying and heating-baking a coating film. From the viewpoint of orientation, the radiation irradiation step is preferably performed before the heating and baking step.

さらに、液晶配向膜の液晶配向能を上げるために、塗膜を加熱しながら放射線の直線偏光または無偏光を照射することもできる。放射線の照射は、塗膜を加熱乾燥する工程、または加熱焼成する工程で行ってもよく、加熱乾燥工程と加熱焼成工程の間に行ってもよい。該工程における加熱乾燥温度は、30℃〜150℃の範囲であること、さらには50℃〜120℃の範囲であることが好ましい。また該工程における加熱焼成温度は、30℃〜300℃の範囲であること、さらには50℃〜250℃の範囲であることが好ましい。 Furthermore, in order to raise the liquid crystal aligning ability of a liquid crystal aligning film, a linearly polarized light or non-polarized light can be irradiated while heating a coating film. Irradiation may be performed in a step of heating and drying the coating film or a step of heating and baking, or may be performed between the heating and drying step and the heating and baking step. The heating and drying temperature in this step is preferably in the range of 30 ° C to 150 ° C, and more preferably in the range of 50 ° C to 120 ° C. Moreover, it is preferable that the heat-firing temperature in this process is the range of 30 degreeC-300 degreeC, Furthermore, it is preferable that it is the range of 50 degreeC-250 degreeC.

放射線としては、例えば150〜800nmの波長の光を含む紫外線または可視光を用いることができるが、300〜400nmの光を含む紫外線が好ましい。また、直線偏光または無偏光を用いることができる。これらの光は、前記塗膜に液晶配向能を付与することができる光であれば特に限定されないが、液晶に対して強い配向規制力を発現させたい場合、直線偏光が好ましい。 As the radiation, for example, ultraviolet light or visible light including light having a wavelength of 150 to 800 nm can be used, but ultraviolet light including light of 300 to 400 nm is preferable. Further, linearly polarized light or non-polarized light can be used. These lights are not particularly limited as long as they can impart a liquid crystal alignment ability to the coating film, but linearly polarized light is preferable when it is desired to develop a strong alignment regulating force for liquid crystals.

本発明の液晶配向膜は、低エネルギーの光照射でも高い液晶配向能を示すことができる。前記放射線照射工程における直線偏光の照射量は0.05〜20J/cmであることが好ましく、0.5〜10J/cmがより好ましい。また直線偏光の波長は200〜400nmであることが好ましく、300〜400nmであることがより好ましい。直線偏光の膜表面に対する照射角度は特に限定されないが、液晶に対する強い配向規制力を発現させたい場合、膜表面に対してなるべく垂直であることが配向処理時間短縮の観点から好ましい。また、本発明の液晶配向膜は、直線偏光を照射することにより、直線偏光の偏光方向に対して垂直な方向に液晶を配向させることができる。 The liquid crystal alignment film of the present invention can exhibit high liquid crystal alignment ability even with low energy light irradiation. Dose of linearly polarized light in the irradiation step is preferably from 0.05~20J / cm 2, more preferably 0.5~10J / cm 2. The wavelength of linearly polarized light is preferably 200 to 400 nm, and more preferably 300 to 400 nm. Although the irradiation angle with respect to the film surface of linearly polarized light is not particularly limited, it is preferable from the viewpoint of shortening the alignment processing time that it is as perpendicular as possible to the film surface in order to develop a strong alignment regulating force for the liquid crystal. The liquid crystal alignment film of the present invention can align liquid crystal in a direction perpendicular to the polarization direction of linearly polarized light by irradiating linearly polarized light.

プレチルト角を発現させたい場合に前記膜に照射する光は、前述同様直線偏光であっても無偏光であってもよい。プレチルト角を発現させたい場合に前記膜に照射される光の照射量は0.05〜20J/cmであることが好ましく、0.5〜10J/cmが特に好ましく、その波長は250〜400nmであることが好ましく、300〜380nmが特に好ましい。プレチルト角を発現させたい場合に前記膜に照射する光の前記膜表面に対する照射角度は特に限定されないが、30〜60度であることが配向処理時間短縮の観点から好ましい。 When the pretilt angle is to be expressed, the light applied to the film may be linearly polarized light or non-polarized light as described above. Dose of light applied to the film when it is desired to express a pre-tilt angle is preferably from 0.05~20J / cm 2, particularly preferably 0.5~10J / cm 2, its wavelength is 250 400 nm is preferable, and 300 to 380 nm is particularly preferable. When it is desired to develop a pretilt angle, the irradiation angle of the light applied to the film with respect to the film surface is not particularly limited, but is preferably 30 to 60 degrees from the viewpoint of shortening the alignment processing time.

放射線の直線偏光または無偏光を照射する工程に使用する光源には、超高圧水銀ランプ、高圧水銀ランプ、低圧水銀ランプ、Deep UVランプ、ハロゲンランプ、メタルハライドランプ、ハイパワーメタルハライドランプ、キセノンランプ、水銀キセノンランプ、エキシマランプ、KrFエキシマレーザー、蛍光ランプ、LEDランプ、ナトリウムランプ、マイクロウェーブ励起無電極ランプ、などを制限なく用いることができる。 The light source used in the process of irradiating linearly polarized light or non-polarized light includes ultra-high pressure mercury lamp, high pressure mercury lamp, low pressure mercury lamp, deep UV lamp, halogen lamp, metal halide lamp, high power metal halide lamp, xenon lamp, mercury A xenon lamp, an excimer lamp, a KrF excimer laser, a fluorescent lamp, an LED lamp, a sodium lamp, a microwave excitation electrodeless lamp, and the like can be used without limitation.

本発明の液晶配向膜は、前述した工程以外の他の工程をさらに含む方法によって好適に得られる。例えば、本発明の液晶配向膜は焼成または放射線照射後の膜を洗浄液で洗浄する工程は必須としないが、他の工程の都合で洗浄工程を設けることができる。 The liquid crystal alignment film of the present invention can be suitably obtained by a method that further includes steps other than the steps described above. For example, the liquid crystal alignment film of the present invention does not require a process of cleaning the film after baking or radiation irradiation with a cleaning liquid, but a cleaning process can be provided for convenience of other processes.

洗浄液による洗浄方法としては、ブラッシング、ジェットスプレー、蒸気洗浄または超音波洗浄等が挙げられる。これらの方法は単独で行ってもよいし、併用してもよい。洗浄液としては純水または、メチルアルコール、エチルアルコール、イソプロピルアルコール等の各種アルコール類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、塩化メチレン等のハロゲン系溶剤、アセトン、メチルエチルケトン等のケトン類を用いることができるが、これらに限定されるものではない。もちろん、これらの洗浄液は十分に精製された不純物の少ないものが用いられる。このような洗浄方法は、本発明の液晶配向膜の形成における前記洗浄工程にも適用することができる。 Examples of the cleaning method using the cleaning liquid include brushing, jet spray, steam cleaning, and ultrasonic cleaning. These methods may be performed alone or in combination. The cleaning liquid is pure water, various alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol, aromatic hydrocarbons such as benzene, toluene, xylene, halogen solvents such as methylene chloride, and ketones such as acetone and methyl ethyl ketone. Although it can be used, it is not limited to these. Of course, these cleaning liquids are sufficiently purified and have few impurities. Such a cleaning method can also be applied to the cleaning step in the formation of the liquid crystal alignment film of the present invention.

本発明の液晶配向膜の液晶配向能を高めるために、加熱焼成工程の前後、または、偏光または無偏光の放射線照射の前後に、熱や光によるアニール処理を用いることができる。該アニール処理において、アニール温度が30〜180℃、好ましくは50〜150℃であり、時間は1分〜2時間が好ましい。また、アニール処理に使用するアニール光には、UVランプ、蛍光ランプ、LEDランプなどが挙げられる。光の照射量は0.3〜10J/cmであることが好ましい。 In order to enhance the liquid crystal alignment ability of the liquid crystal alignment film of the present invention, annealing treatment with heat or light can be used before or after the heating and baking step or before or after irradiation with polarized or non-polarized radiation. In the annealing treatment, the annealing temperature is 30 to 180 ° C., preferably 50 to 150 ° C., and the time is preferably 1 minute to 2 hours. Examples of the annealing light used for the annealing treatment include a UV lamp, a fluorescent lamp, and an LED lamp. The light irradiation amount is preferably 0.3 to 10 J / cm 2 .

本発明の液晶配向膜の膜厚は、特に限定されないが、10〜300nmであることが好ましく、30〜150nmであることがより好ましい。本発明の液晶配向膜の膜厚は、段差計やエリプソメータ等の公知の膜厚測定装置によって測定することができる。 Although the film thickness of the liquid crystal aligning film of this invention is not specifically limited, It is preferable that it is 10-300 nm, and it is more preferable that it is 30-150 nm. The film thickness of the liquid crystal alignment film of the present invention can be measured by a known film thickness measuring device such as a step meter or an ellipsometer.

本発明の液晶配向膜は特に大きな配向の異方性を持つことを特徴とする。このような異方性の大きさは特開2005−275364等に記載の偏光IRを用いた方法で評価する事ができる。また以下の実施例に示すようにエリプソメトリーを用いた方法によっても評価することができる。詳しくは、分光エリプソメータによって液晶配向膜のリタデーション値を測定することができる。膜のリタデーション値はポリマー主鎖の配向度に比例して大きくなる。すなわち、大きなリタデーション値を持つものは、大きな配向度を持ち、液晶配向膜として使用した場合、より大きな異方性を持つ配向膜が液晶組成物に対し大きな配向規制力を持つと考えられる。 The liquid crystal alignment film of the present invention is particularly characterized by having a large alignment anisotropy. The magnitude of such anisotropy can be evaluated by a method using polarized IR described in JP-A-2005-275364. Further, as shown in the following examples, evaluation can also be made by a method using ellipsometry. Specifically, the retardation value of the liquid crystal alignment film can be measured by a spectroscopic ellipsometer. The retardation value of the film increases in proportion to the degree of orientation of the polymer main chain. That is, those having a large retardation value have a large degree of alignment, and when used as a liquid crystal alignment film, an alignment film having a greater anisotropy is considered to have a large alignment regulating force on the liquid crystal composition.

本発明の液晶配向膜は横電界方式の液晶表示素子に好適に用いることができる。横電界方式の液晶表示素子に用いる場合、Pt角が小さいほど、また液晶配向能が高いほど暗状態での黒表示レベルは高くなり、コントラストが向上する。Pt角は0.1°以下が好ましい。 The liquid crystal alignment film of the present invention can be suitably used for a horizontal electric field type liquid crystal display element. When used in a horizontal electric field type liquid crystal display element, the smaller the Pt angle and the higher the liquid crystal alignment ability, the higher the black display level in the dark state and the better the contrast. The Pt angle is preferably 0.1 ° or less.

本発明の液晶配向膜は、液晶ディスプレイ用の液晶組成物の配向用途以外に、光学補償材やその他すべての液晶材料の配向制御に用いることができる。また本発明の配向膜は大きな異方性を有するので、単独で光学補償材用途に使用することができる。 The liquid crystal alignment film of the present invention can be used for alignment control of an optical compensation material and all other liquid crystal materials in addition to the alignment use of a liquid crystal composition for a liquid crystal display. Further, since the alignment film of the present invention has large anisotropy, it can be used alone for an optical compensator application.

本発明の液晶表示素子について、詳細に説明する。
本発明は、対向配置されている一対の基板と、前記一対の基板それぞれの対向している面の一方または両方に形成されている電極と、前記一対の基板それぞれの対向している面に形成された液晶配向膜と、前記一対の基板間に形成された液晶層とを有する液晶表示素子において、前記液晶配向膜が本発明の配向膜である液晶表示素子を提供する。
The liquid crystal display element of the present invention will be described in detail.
The present invention is formed on a pair of substrates disposed opposite to each other, an electrode formed on one or both of the surfaces opposed to each of the pair of substrates, and a surface opposed to each of the pair of substrates. A liquid crystal display element having a liquid crystal alignment film formed and a liquid crystal layer formed between the pair of substrates, wherein the liquid crystal alignment film is the alignment film of the present invention.

前記電極は、基板の一面に形成される電極であれば特に限定されない。このような電極には、例えばITOや金属の蒸着膜等が挙げられる。また電極は、基板の一方の面の全面に形成されていてもよいし、例えばパターン化されている所望の形状に形成されていてもよい。電極の前記所望の形状には、例えば櫛型またはジグザグ構造等が挙げられる。電極は、一対の基板のうちの一方の基板に形成されていてもよいし、両方の基板に形成されていてもよい。電極の形成の形態は液晶表示素子の種類に応じて異なり、例えばIPS型液晶表示素子の場合は前記一対の基板の一方に電極が配置され、その他の液晶表示素子の場合は前記一対の基板の双方に電極が配置される。前記基板または電極の上に前記液晶配向膜が形成される。 The electrode is not particularly limited as long as it is an electrode formed on one surface of the substrate. Examples of such electrodes include ITO and metal vapor deposition films. Further, the electrode may be formed on the entire surface of one surface of the substrate, or may be formed in a desired shape that is patterned, for example. Examples of the desired shape of the electrode include a comb shape or a zigzag structure. The electrode may be formed on one of the pair of substrates, or may be formed on both substrates. The form of electrode formation varies depending on the type of liquid crystal display element. For example, in the case of an IPS liquid crystal display element, an electrode is disposed on one of the pair of substrates, and in the case of other liquid crystal display elements, the electrodes of the pair of substrates are arranged. Electrodes are arranged on both sides. The liquid crystal alignment film is formed on the substrate or electrode.

前記液晶層は、液晶配向膜が形成された面が対向している前記一対の基板によって液晶組成物が挟持される形で形成される。液晶層の形成では、微粒子や樹脂シート等の、前記一対の基板の間に介在して適当な間隔を形成するスペーサを必要に応じて用いることができる。 The liquid crystal layer is formed in such a manner that the liquid crystal composition is sandwiched between the pair of substrates facing each other on which the liquid crystal alignment film is formed. In the formation of the liquid crystal layer, a spacer such as fine particles or a resin sheet that is interposed between the pair of substrates to form an appropriate interval can be used as necessary.

液晶組成物には、特に制限はなく、誘電率異方性が正または負の各種の液晶組成物を用いることができる。誘電率異方性が正の好ましい液晶組成物には、特許3086228、特許2635435、特表平5−501735、特開平8−157826、特開平8−231960、特開平9−241644(EP885272A1)、特開平9−302346(EP806466A1)、特開平8−199168(EP722998A1)、特開平9−235552、特開平9−255956、特開平9−241643(EP885271A1)、特開平10−204016(EP844229A1)、特開平10−204436、特開平10−231482、特開2000−087040、特開2001−48822等に開示されている液晶組成物が挙げられる。 The liquid crystal composition is not particularly limited, and various liquid crystal compositions having a positive or negative dielectric anisotropy can be used. Preferred liquid crystal compositions having a positive dielectric anisotropy include Japanese Patent No. 3086228, Japanese Patent No. 2635435, Japanese Patent Application Laid-Open No. 5-501735, Japanese Patent Application Laid-Open No. 8-157826, Japanese Patent Application Laid-Open No. 8-231960, Japanese Patent Application Laid-Open No. 9-241644 (EP 8852272A1), Kaihei 9-302346 (EP806466A1), JP-A-8-199168 (EP722998A1), JP-A-9-235552, JP-A-9-255556, JP-A-9-241643 (EP885271A1), JP-A-10-204016 (EP844229A1), JP-A-10 -204436, JP-A-10-231482, JP-A-2000-087040, JP-A-2001-48822, and the like.

前記負の誘電率異方性を有する液晶組成物の好ましい例として、特開昭57−114532、特開平2−4725、特開平4−224885、特開平8−40953、特開平8−104869、特開平10−168076、特開平10−168453、特開平10−236989、特開平10−236990、特開平10−236992、特開平10−236993、特開平10−236994、特開平10−237000、特開平10−237004、特開平10−237024、特開平10−237035、特開平10−237075、特開平10−237076、特開平10−237448(EP967261A1)、特開平10−287874、特開平10−287875、特開平10−291945、特開平11−029581、特開平11−080049、特開2000−256307、特開2001−019965、特開2001−072626、特開2001−192657、特開2010−037428、国際公開2011/024666、国際公開2010/072370、特表2010−537010、特開2012−077201、特開2009−084362等に開示されている液晶組成物が挙げられる。 Preferred examples of the liquid crystal composition having negative dielectric anisotropy are disclosed in JP-A-57-114532, JP-A-2-4725, JP-A-4-224855, JP-A-8-40953, JP-A-8-104869, Kaihei 10-168076, JP-A-10-168453, JP-A-10-236989, JP-A-10-236990, JP-A-10-236992, JP-A-10-236993, JP-A-10-236994, JP-A-10-237000, JP-A-10-237000 -237004, JP-A-10-237024, JP-A-10-237035, JP-A-10-237075, JP-A-10-237076, JP-A-10-237448 (EP967261A1), JP-A-10-287874, JP-A-10-287875, JP-A-10-287875. 10-291945, JP-A-11-029581, Kaihei 11-080049, JP 2000-256307, JP 2001-019965, JP 2001-072626, JP 2001-192657, JP 2010-037428, International Publication 2011/024666, International Publication 2010/072370, Special Table 2010. Examples thereof include liquid crystal compositions disclosed in Japanese Patent No. 5370010, Japanese Patent Application Laid-Open No. 2012-0702201, Japanese Patent Application Laid-Open No. 2009-084362, and the like.

誘電率異方性が正または負の液晶組成物に1種以上の光学活性化合物を添加して使用することも何ら差し支えない。 One or more optically active compounds may be added to a liquid crystal composition having a positive or negative dielectric anisotropy.

また例えば、本発明の素子に用いる液晶組成物は、例えば配向性を向上させる観点から、添加物をさらに添加してもよい。このような添加物は、光重合性モノマー、光学活性な化合物、酸化防止剤、紫外線吸収剤、色素、消泡剤、重合開始剤、重合禁止剤などである。 Further, for example, the liquid crystal composition used in the device of the present invention may further contain an additive from the viewpoint of improving the orientation. Such additives are photopolymerizable monomers, optically active compounds, antioxidants, ultraviolet absorbers, dyes, antifoaming agents, polymerization initiators, polymerization inhibitors, and the like.

以下、本発明を実施例により説明する。なお、実施例において用いる評価法および化合物は次の通りである。 Hereinafter, the present invention will be described with reference to examples. The evaluation methods and compounds used in the examples are as follows.

1.重量平均分子量(Mw)
ポリアミック酸の重量平均分子量は、2695セパレーションモジュール・2414示差屈折計(Waters製)を用いてGPC法により測定し、ポリスチレン換算することにより求めた。得られたポリアミック酸をリン酸−DMF混合溶液(リン酸/DMF=0.6/100:重量比)で、ポリアミック酸濃度が約2重量%になるように希釈した。カラムはHSPgel RT MB−M(Waters製)を使用し、前記混合溶液を展開剤として、カラム温度50℃、流速0.40mL/minの条件で測定を行った。標準ポリスチレンは東ソー(株)製TSK標準ポリスチレンを用いた。
2.電圧保持率
「水嶋他、第14回液晶討論会予稿集 p78(1988)」に記載の方法で行った。測定は、波高±5Vの矩形波をセルに印加して行った。測定は60℃で行った。この値は、印加した電圧がフレーム周期後どの程度保持されているかを示す指標であり、この値が100%ならば全ての電荷が保持されていることを示す。ポジ型液晶を搭載したセルでは99.0%以上、ネガ型液晶を搭載したセルでは97.5%以上であれば表示品位が良好な液晶表示素子となる。
3.液晶中のイオン量測定(イオン密度)
応用物理、第65巻、第10号、1065(1996)に記載の方法に従い、東陽テクニカ社製、液晶物性測定システム6254型を用いて測定した。周波数0.01Hzの三角波を用い、±10Vの電圧範囲、温度60℃で測定した(電極の面積は1cm)。イオン密度が大きいとイオン性不純物による焼き付き等の不具合が発生しやすい。即ち、イオン密度は焼き付き発生を予測する指標となる物性値である。この値が40pC以下であれば表示品位が良好な液晶表示素子となる。
1. Weight average molecular weight (Mw)
The weight average molecular weight of the polyamic acid was measured by GPC method using a 2695 separation module / 2414 differential refractometer (manufactured by Waters) and calculated by polystyrene conversion. The obtained polyamic acid was diluted with a phosphoric acid-DMF mixed solution (phosphoric acid / DMF = 0.6 / 100: weight ratio) so that the polyamic acid concentration was about 2% by weight. The column was HSPgel RT MB-M (manufactured by Waters), and measurement was performed under the conditions of a column temperature of 50 ° C. and a flow rate of 0.40 mL / min using the mixed solution as a developing agent. As the standard polystyrene, TSK standard polystyrene manufactured by Tosoh Corporation was used.
2. The voltage holding ratio was measured by the method described in “Mizushima et al., 14th Liquid Crystal Discussion Group Proceedings p78 (1988)”. The measurement was performed by applying a rectangular wave having a wave height of ± 5 V to the cell. The measurement was performed at 60 ° C. This value is an index indicating how much the applied voltage is retained after the frame period. If this value is 100%, it indicates that all charges are retained. A liquid crystal display element having a good display quality is obtained when the cell having the positive type liquid crystal is 99.0% or more and the cell having the negative type liquid crystal is 97.5% or more.
3. Measurement of ion content in liquid crystal (ion density)
According to the method described in Applied Physics, Vol. 65, No. 10, 1065 (1996), measurement was performed using a liquid crystal property measuring system 6254 type manufactured by Toyo Technica. Using a triangular wave with a frequency of 0.01 Hz, measurement was performed at a voltage range of ± 10 V and a temperature of 60 ° C. (electrode area is 1 cm 2 ). If the ion density is high, defects such as seizure due to ionic impurities are likely to occur. That is, the ion density is a physical property value that serves as an index for predicting the occurrence of image sticking. If this value is 40 pC or less, a liquid crystal display element with good display quality is obtained.

<テトラカルボン酸二無水物>

Figure 2017003965
<Tetracarboxylic dianhydride>
Figure 2017003965

<ジアミン>

Figure 2017003965
<Diamine>
Figure 2017003965

<溶剤>
NMP: N−メチル−2−ピロリドン
BC: ブチルセロソルブ(エチレングリコールモノブチルエーテル)
BP: 1−ブトキシ−2−プロパノール
GBL: γ−ブチロラクトン
EDM: ジエチレングリコールエチルメチルエーテル
BDM: ジエチレングリコールブチルメチルエーテル
DIBK: ジイソブチルケトン
DPE: ジペンチルエーテル
<Solvent>
NMP: N-methyl-2-pyrrolidone BC: Butyl cellosolve (ethylene glycol monobutyl ether)
BP: 1-butoxy-2-propanol GBL: γ-butyrolactone EDM: diethylene glycol ethyl methyl ether BDM: diethylene glycol butyl methyl ether DIBK: diisobutyl ketone DPE: dipentyl ether

<添加剤>
Ad1: N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルメタン
Ad2: 1,3−ビス(4,5−ジヒドロ−2−オキサゾリル)ベンゼン
Ad3: 2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン
Ad4: セロキサイド8000(商品名、(株)ダイセル製)
<Additives>
Ad1: N, N, N ′, N′-tetraglycidyl-4,4′-diaminodiphenylmethane Ad2: 1,3-bis (4,5-dihydro-2-oxazolyl) benzene Ad3: 2- (3,4- Epoxycyclohexyl) ethyltrimethoxysilane Ad4: Celoxide 8000 (trade name, manufactured by Daicel Corporation)

[合成例1]ワニスの合成
攪拌翼、窒素導入管を装着した100mL3つ口フラスコに、式(D−1)で表される化合物1.8562gおよび式(D−8)で表される化合物0.1946gを入れ、N−メチル−2−ピロリドン(NMP)を34.0g加えた。その溶液を氷冷させ液温を5℃とした後、式(AN−5)(m=8)で表される化合物3.9492gを加え、12時間室温で攪拌させた。そこにγ−ブチロラクトン(GBL)30.0gおよびブチルセロソルブ(BC)30.0gを加え、溶質のポリマーの重量平均分子量が所望する重量平均分子量になるまで、その溶液を60℃で加熱攪拌し、溶質の重量平均分子量がおおよそ11,000であり樹脂分濃度が6重量%であるワニス1を得た。
[Synthesis Example 1] Synthesis of varnish Stirring blades, Compound (0) represented by Formula (D-8) and Compound 0 represented by Formula (D-8) were added to a 100 mL three-necked flask equipped with a nitrogen inlet tube. 1946 g was added, and 34.0 g of N-methyl-2-pyrrolidone (NMP) was added. The solution was ice-cooled and the liquid temperature was adjusted to 5 ° C., and then 3.9492 g of the compound represented by the formula (AN-5) (m = 8) was added, followed by stirring at room temperature for 12 hours. Thereto was added 30.0 g of γ-butyrolactone (GBL) and 30.0 g of butyl cellosolve (BC), and the solution was heated and stirred at 60 ° C. until the weight average molecular weight of the solute polymer reached the desired weight average molecular weight. A varnish 1 having a weight average molecular weight of approximately 11,000 and a resin concentration of 6% by weight was obtained.

[合成例2〜18]
テトラカルボン酸二無水物およびジアミンを変更した以外は、合成例1に準拠して、ポリマー固形分濃度が6重量%のワニス2〜ワニス18を調製した。重量平均分子量は、光反応性構造を有する原料を使用するポリマーはおおよそ11,000から13,000、光反応性構造を有する原料を使用しないポリマーは45,000から50,000に調製した。使用したテトラカルボン酸二無水物およびジアミンと、得られたポリマーの重量平均分子量を表1に示す。合成例1も表1に再掲する。
[Synthesis Examples 2 to 18]
Varnish 2 to Varnish 18 having a polymer solid content concentration of 6 wt% were prepared in accordance with Synthesis Example 1 except that tetracarboxylic dianhydride and diamine were changed. The weight average molecular weight was approximately 11,000 to 13,000 for the polymer using the raw material having the photoreactive structure, and 45,000 to 50,000 for the polymer not using the raw material having the photoreactive structure. Table 1 shows the tetracarboxylic dianhydride and diamine used and the weight average molecular weight of the polymer obtained. Synthesis example 1 is also shown in Table 1.

Figure 2017003965
Figure 2017003965

[実施例1]単層型液晶配向剤の調製、電気特性測定用セルの作成および電気特性測定
攪拌翼、窒素導入管を装着した50mLナスフラスコに合成例1で合成したワニス1を10.0g秤取り、そこにN−メチル−2−ピロリドン(NMP)5.0gおよびブチルセロソルブ(BC)5.0gを加え室温で1時間攪拌し樹脂分濃度3重量%の液晶配向剤1を得た。この液晶配向剤をIPS電極付きガラス基板およびカラムスペーサー付きガラス基板にスピンナー法により塗布した(2,000rpm、15秒)。塗布後、基板を80℃で3分間加熱し、溶剤を蒸発させた後、ウシオ電機(株)製マルチライトML−501C/Bを用い、基板に対して鉛直方向から、偏光板を介して紫外線の直線偏光を照射した。この時の露光エネルギーは、ウシオ電機(株)製紫外線積算光量計UIT−150(受光器:UVD−S365)を用いて光量を測定し、波長365nmで1.3±0.1J/cmになるよう、露光時間を調整した。230℃にて20分間焼成処理を行い、膜厚およそ100nmの膜を形成した。次いで、これらの配向膜が形成された基板2枚を、配向膜が形成されている面を対向させ、かつ、対向する配向膜の間に液晶組成物を注入するための空隙を設けて貼り合わせた。この時、それぞれの配向膜に照射された直線偏光の偏光方向が平行になるようにした。これらのセルにネガ型液晶組成物Aを注入し、セル厚7μmの液晶セル(液晶表示素子)を作製した。
[Example 1] Preparation of single-layer type liquid crystal aligning agent, creation of electric characteristic measurement cell and electric characteristic measurement 10.0 g of varnish 1 synthesized in Synthesis Example 1 in a 50 mL eggplant flask equipped with a stirring blade and a nitrogen introduction tube Weighing, 5.0 g of N-methyl-2-pyrrolidone (NMP) and 5.0 g of butyl cellosolve (BC) were added thereto and stirred at room temperature for 1 hour to obtain a liquid crystal aligning agent 1 having a resin content concentration of 3% by weight. This liquid crystal aligning agent was applied to a glass substrate with an IPS electrode and a glass substrate with a column spacer by a spinner method (2,000 rpm, 15 seconds). After coating, the substrate was heated at 80 ° C. for 3 minutes to evaporate the solvent, and then UV light was passed through the polarizing plate from the vertical direction with respect to the substrate using Multilight ML-501C / B manufactured by USHIO INC. The linearly polarized light was irradiated. The exposure energy at this time is 1.3 ± 0.1 J / cm 2 at a wavelength of 365 nm by measuring the amount of light using a UV integrated light meter UIT-150 (receiver: UVD-S365) manufactured by USHIO INC. The exposure time was adjusted so that A baking treatment was performed at 230 ° C. for 20 minutes to form a film with a thickness of about 100 nm. Next, the two substrates on which these alignment films are formed are bonded together with the surfaces on which the alignment films are formed facing each other and with a gap for injecting the liquid crystal composition between the facing alignment films. It was. At this time, the polarization directions of the linearly polarized light irradiated to the respective alignment films were made parallel. The negative liquid crystal composition A was injected into these cells to produce a liquid crystal cell (liquid crystal display element) having a cell thickness of 7 μm.

<ネガ型液晶組成物A>

Figure 2017003965
物性値:NI 75.7℃; Δε −4.1; Δn 0.101; η 14.5mPa・s. <Negative liquid crystal composition A>
Figure 2017003965
Physical property values: NI 75.7 ° C .; Δε-4.1; Δn 0.101; η 14.5 mPa · s.

この液晶セルの電圧保持率は5V−30Hzで99.4%であり、イオン密度は15pCであった。このセルを点灯させたバックライト試験機(富士フィルム(株)製、FujiCOLOR LED Viewer Pro HR−2;輝度2,700cd/m)の上に1,000時間載せた。1,000時間後の測定用セルの電圧保持率は99.4%であり、イオン密度は15pCであった。以上のバックライト試験機によるセルの1,000時間光暴露と、その前後での電圧保持率およびイオン密度測定を合わせて、以降信頼性試験と称する。 The voltage holding ratio of this liquid crystal cell was 99.4% at 5 V-30 Hz, and the ion density was 15 pC. The cell was mounted on a backlight tester (Fuji Film Co., Ltd., FujiCOLOR LED Viewer Pro HR-2; brightness 2,700 cd / m 2 ) for 1,000 hours. The voltage holding ratio of the measurement cell after 1,000 hours was 99.4%, and the ion density was 15 pC. The light exposure of the cell by the above backlight tester for 1,000 hours and the voltage holding ratio and ion density measurement before and after that are collectively referred to as a reliability test.

[実施例2〜5]
使用するワニスを変更した以外は、実施例1に準拠して、液晶セルを作製し、信頼性試験を行った。測定結果を実施例1と併せて表2に示す。
[Examples 2 to 5]
A liquid crystal cell was produced in accordance with Example 1 except that the varnish to be used was changed, and a reliability test was performed. The measurement results are shown in Table 2 together with Example 1.

[実施例6]
使用するワニスと、露光エネルギーが、ウシオ電機(株)製紫外線積算光量計UIT−150(受光器:UVD−S254)を用いて光量を測定し、波長254nmで0.5±0.02J/cmになるよう、露光時間を変更した以外は、実施例1に準拠して、液晶セルを作製し、信頼性試験を行った。
[Example 6]
The varnish to be used and the exposure energy were measured using a UV integrated light meter UIT-150 (receiver: UVD-S254) manufactured by Ushio Electric Co., Ltd., and 0.5 ± 0.02 J / cm at a wavelength of 254 nm. Except that the exposure time was changed so as to be 2 , a liquid crystal cell was produced according to Example 1 and subjected to a reliability test.

[実施例7]
使用するワニスと、露光エネルギーが、ウシオ電機(株)製紫外線積算光量計UIT−150(受光器:UVD−S313)を用いて光量を測定し、波長313nmで0.5±0.02J/cmになるよう、露光時間を変更した以外は、実施例1に準拠して、液晶セルを作製し、信頼性試験を行った。
[Example 7]
The varnish to be used and the exposure energy were measured with a UV integrated light meter UIT-150 (receiver: UVD-S313) manufactured by Ushio Electric Co., Ltd., and 0.5 ± 0.02 J / cm at a wavelength of 313 nm. Except that the exposure time was changed so as to be 2 , a liquid crystal cell was produced according to Example 1 and subjected to a reliability test.

Figure 2017003965
Figure 2017003965

実施例1〜7のすべてのセルにおいて初期値、信頼性試験後の値において良好な結果が得られた。ここで初期値とは、セル作製後、上記バックライト試験機に載せずに測定した結果である。 In all the cells of Examples 1 to 7, good results were obtained in the initial value and the value after the reliability test. Here, the initial value is a result obtained by measuring the cell without mounting it on the backlight tester.

[実施例8]ブレンド型液晶配向剤の調製、電気特性測定用セルの作成および電気特性測定
攪拌翼、窒素導入管を装着した50mLナスフラスコに合成例2で合成したワニス2を3.0gおよび合成例8で合成したワニス8を7.0g秤取り、そこにN−メチル−2−ピロリドン(NMP)5.0gおよびブチルセロソルブ(BC)5.0gを加え室温で1時間攪拌し樹脂分濃度3重量%の液晶配向剤8を得た。実施例1に記載の方法に準じ液晶セルを作製した。この液晶セルの電圧保持率は5V−30Hzで99.7%であり、イオン密度は10pCであった。1,000時間光暴露後の測定用セルの電圧保持率は99.6%であり、イオン密度は15pCであった。
[Example 8] Preparation of blend-type liquid crystal aligning agent, creation of electric characteristic measurement cell and electric characteristic measurement 3.0 g of varnish 2 synthesized in Synthesis Example 2 in a 50 mL eggplant flask equipped with a stirring blade and a nitrogen introduction tube 7.0 g of varnish 8 synthesized in Synthesis Example 8 was weighed, 5.0 g of N-methyl-2-pyrrolidone (NMP) and 5.0 g of butyl cellosolve (BC) were added thereto, and the mixture was stirred at room temperature for 1 hour, and the resin content concentration was 3 A weight% liquid crystal aligning agent 8 was obtained. A liquid crystal cell was produced according to the method described in Example 1. The voltage holding ratio of this liquid crystal cell was 99.7% at 5 V-30 Hz, and the ion density was 10 pC. The voltage holding ratio of the measurement cell after exposure to light for 1,000 hours was 99.6%, and the ion density was 15 pC.

[実施例9〜11、14〜17、20]
使用するワニスを変更した以外は、実施例8に準拠して、液晶セルを作製し、電圧保持率、イオン密度の測定および信頼性試験を行った。使用するワニスおよび測定結果を実施例8と併せて表3に示す。なお表3中、ワニスAは光反応性構造を有する原料を使用するポリマーを含有するワニス、ワニスBは光反応性構造を有する原料を使用しないポリマーを含有するワニスであることを示す。
[Examples 9 to 11, 14 to 17, 20]
A liquid crystal cell was prepared according to Example 8 except that the varnish to be used was changed, and voltage holding ratio, ion density measurement and reliability test were performed. The varnish used and the measurement results are shown in Table 3 together with Example 8. In Table 3, varnish A represents a varnish containing a polymer using a raw material having a photoreactive structure, and varnish B represents a varnish containing a polymer not using a raw material having a photoreactive structure.

[実施例12、18]
使用するワニスと、露光エネルギーが、ウシオ電機(株)製紫外線積算光量計UIT−150(受光器:UVD−S254)を用いて光量を測定し、波長254nmで0.5±0.02J/cmになるよう、露光時間を変更した以外は、実施例1に準拠して、液晶セルを作製し、信頼性試験を行った。測定結果を表3に示す。
[Examples 12 and 18]
The varnish to be used and the exposure energy were measured using a UV integrated light meter UIT-150 (receiver: UVD-S254) manufactured by Ushio Electric Co., Ltd., and 0.5 ± 0.02 J / cm at a wavelength of 254 nm. Except that the exposure time was changed so as to be 2 , a liquid crystal cell was produced according to Example 1 and subjected to a reliability test. Table 3 shows the measurement results.

[実施例13、19]
使用するワニスと、露光エネルギーが、ウシオ電機(株)製紫外線積算光量計UIT−150(受光器:UVD−S313)を用いて光量を測定し、波長313nmで0.5±0.02J/cmになるよう、露光時間を変更した以外は、実施例1に準拠して、液晶セルを作製し、信頼性試験を行った。測定結果を表3に示す。
[Examples 13 and 19]
The varnish to be used and the exposure energy were measured with a UV integrated light meter UIT-150 (receiver: UVD-S313) manufactured by Ushio Electric Co., Ltd., and 0.5 ± 0.02 J / cm at a wavelength of 313 nm. Except that the exposure time was changed so as to be 2 , a liquid crystal cell was produced according to Example 1 and subjected to a reliability test. Table 3 shows the measurement results.

Figure 2017003965
Figure 2017003965

実施例8〜20のすべてのセルにおいて初期値、1,000時間光暴露後の値において良好な結果が得られた。 Good results were obtained in all the cells of Examples 8 to 20 at the initial value and the value after 1,000 hours of light exposure.

[実施例21]
実施例8で調製したポリマー固形分濃度3重量%の液晶配向剤8に対して、添加剤(Ad1)をポリマー100重量部当たり5重量部添加した。得られた液晶配向剤を用いて、実施例1に準じた方法で液晶セルを作製し、信頼性試験を行った。
[Example 21]
5 parts by weight of the additive (Ad1) was added to 100 parts by weight of the polymer with respect to the liquid crystal aligning agent 8 having a polymer solid content concentration of 3% by weight prepared in Example 8. Using the obtained liquid crystal aligning agent, the liquid crystal cell was produced by the method according to Example 1, and the reliability test was done.

[実施例22]
実施例8で調製したポリマー固形分濃度3重量%の液晶配向剤8に対して、添加剤(Ad2)をポリマー100重量部当たり5重量部添加した。得られた液晶配向剤を用いて、実施例1に準じた方法で液晶セルを作製し、信頼性試験を行った。
[Example 22]
5 parts by weight of the additive (Ad2) was added to 100 parts by weight of the polymer with respect to the liquid crystal aligning agent 8 having a polymer solid content concentration of 3% by weight prepared in Example 8. Using the obtained liquid crystal aligning agent, the liquid crystal cell was produced by the method according to Example 1, and the reliability test was done.

[実施例23]
実施例8で調製したポリマー固形分濃度3重量%の液晶配向剤8に対して、添加剤(Ad3)をポリマー100重量部当たり5重量部添加した。得られた液晶配向剤を用いて、実施例1に準じた方法で液晶セルを作製し、信頼性試験を行った。
[Example 23]
5 parts by weight of the additive (Ad3) was added to 100 parts by weight of the polymer with respect to the liquid crystal aligning agent 8 having a polymer solid content concentration of 3% by weight prepared in Example 8. Using the obtained liquid crystal aligning agent, the liquid crystal cell was produced by the method according to Example 1, and the reliability test was done.

[実施例24]
実施例8で調製したポリマー固形分濃度3重量%の液晶配向剤8に対して、添加剤(Ad4)をポリマー100重量部当たり5重量部添加した。得られた液晶配向剤を用いて、実施例1に準じた方法で液晶セルを作製し、信頼性試験を行った。
[Example 24]
5 parts by weight of the additive (Ad4) was added to 100 parts by weight of the polymer with respect to the liquid crystal aligning agent 8 having a polymer solid content concentration of 3% by weight prepared in Example 8. Using the obtained liquid crystal aligning agent, the liquid crystal cell was produced by the method according to Example 1, and the reliability test was done.

[実施例25]
実施例11で調製したポリマー固形分濃度3重量%の液晶配向剤11に対して、添加剤(Ad1)をポリマー100重量部当たり5重量部添加した。得られた液晶配向剤を用いて、実施例1に準じた方法で液晶セルを作製し、信頼性試験を行った。
[Example 25]
5 parts by weight of the additive (Ad1) per 100 parts by weight of the polymer was added to the liquid crystal aligning agent 11 having a polymer solid content concentration of 3% by weight prepared in Example 11. Using the obtained liquid crystal aligning agent, the liquid crystal cell was produced by the method according to Example 1, and the reliability test was done.

[実施例26]
実施例11で調製したポリマー固形分濃度3重量%の液晶配向剤11に対して、添加剤(Ad2)をポリマー100重量部当たり5重量部添加した。得られた液晶配向剤を用いて、実施例1に準じた方法で液晶セルを作製し、信頼性試験を行った。
[Example 26]
5 parts by weight of the additive (Ad2) was added to 100 parts by weight of the polymer with respect to the liquid crystal aligning agent 11 having a polymer solid content concentration of 3% by weight prepared in Example 11. Using the obtained liquid crystal aligning agent, the liquid crystal cell was produced by the method according to Example 1, and the reliability test was done.

[実施例27]
実施例11で調製したポリマー固形分濃度3重量%の液晶配向剤11に対して、添加剤(Ad3)をポリマー100重量部当たり5重量部添加した。得られた液晶配向剤を用いて、実施例1に準じた方法で液晶セルを作製し、信頼性試験を行った。
[Example 27]
5 parts by weight of the additive (Ad3) was added to 100 parts by weight of the polymer with respect to the liquid crystal aligning agent 11 having a polymer solid content concentration of 3% by weight prepared in Example 11. Using the obtained liquid crystal aligning agent, the liquid crystal cell was produced by the method according to Example 1, and the reliability test was done.

[実施例28]
実施例11で調製したポリマー固形分濃度3重量%の液晶配向剤11に対して、添加剤(Ad4)をポリマー100重量部当たり5重量部添加した。得られた液晶配向剤を用いて、実施例1に準じた方法で液晶セルを作製し、信頼性試験を行った。
[Example 28]
5 parts by weight of the additive (Ad4) was added to 100 parts by weight of the polymer with respect to the liquid crystal aligning agent 11 having a polymer solid content concentration of 3% by weight prepared in Example 11. Using the obtained liquid crystal aligning agent, the liquid crystal cell was produced by the method according to Example 1, and the reliability test was done.

実施例21〜28の測定結果を表4に示す。

Figure 2017003965
The measurement results of Examples 21 to 28 are shown in Table 4.
Figure 2017003965

実施例21〜28のすべてのセルにおいて、添加剤を添加しても、初期値、1,000時間光暴露後の値において良好な結果が得られた。 In all the cells of Examples 21 to 28, even when the additive was added, good results were obtained at the initial value and the value after 1,000 hours of light exposure.

[比較例1〜2]
液晶配向剤1を液晶配向剤21または22に代えた以外は、実施例1に記載の方法に準拠して液晶セルを作製し、信頼性試験を行った。測定結果を表5に示す。
[Comparative Examples 1-2]
A liquid crystal cell was produced according to the method described in Example 1 except that the liquid crystal aligning agent 1 was replaced with the liquid crystal aligning agent 21 or 22, and a reliability test was performed. Table 5 shows the measurement results.

比較例1〜2のすべてのセルにおいて、特に1,000時間光暴露後の値が大きく低下する結果が得られた。 In all the cells of Comparative Examples 1 and 2, particularly, the value after 1,000 hours of light exposure was greatly reduced.

[比較例3]
液晶配向剤6を液晶配向剤23に代えた以外は、実施例6に記載の方法に準拠して液晶セルを作製し、信頼性試験を行った。測定結果を表5に示す。
[Comparative Example 3]
A liquid crystal cell was produced according to the method described in Example 6 except that the liquid crystal aligning agent 6 was replaced with the liquid crystal aligning agent 23, and a reliability test was performed. Table 5 shows the measurement results.

[比較例4]
液晶配向剤7を液晶配向剤24に代えた以外は、実施例7に記載の方法に準拠して液晶セルを作製し、信頼性試験を行った。測定結果を表5に示す。
[Comparative Example 4]
A liquid crystal cell was prepared according to the method described in Example 7 except that the liquid crystal aligning agent 7 was replaced with the liquid crystal aligning agent 24, and a reliability test was performed. Table 5 shows the measurement results.

Figure 2017003965
Figure 2017003965

[比較例5〜6、9〜10]
使用するワニスを変更した以外は、実施例8に準拠して液晶セルを作製し、信頼性試験を行った。使用するワニスおよび測定結果を表6に示す。
[Comparative Examples 5-6, 9-10]
A liquid crystal cell was produced according to Example 8 except that the varnish to be used was changed, and a reliability test was performed. Table 6 shows the varnish used and the measurement results.

[比較例7、11]
使用するワニスを変更した以外は、実施例18に準拠して液晶セルを作製し、信頼性試験を行った。使用するワニスおよび測定結果を表6に示す。
[Comparative Examples 7 and 11]
A liquid crystal cell was produced according to Example 18 except that the varnish to be used was changed, and a reliability test was performed. Table 6 shows the varnish used and the measurement results.

[比較例8、12]
使用するワニスを変更した以外は、実施例19に準拠して液晶セルを作製し、信頼性試験を行った。使用するワニスおよび測定結果を表6に示す。
[Comparative Examples 8 and 12]
A liquid crystal cell was produced according to Example 19 except that the varnish to be used was changed, and a reliability test was performed. Table 6 shows the varnish used and the measurement results.

Figure 2017003965
Figure 2017003965

比較例1〜12のすべてのセルにおいて、特に1,000時間光暴露後の値が、大きく低下する結果が得られた。 In all the cells of Comparative Examples 1 to 12, the value after exposure to light for 1,000 hours was greatly reduced.

[合成例19〜28]ワニスの合成
テトラカルボン酸二無水物およびジアミンを変更した以外は、合成例1に準拠して、ポリマー固形分濃度が6重量%のワニス19〜ワニス28を調製した。重量平均分子量は、光反応性構造を有する原料を使用するポリマーはおおよそ11,000から13,000、光反応性構造を有する原料を使用しないポリマーは45,000から50,000に調製した。使用したテトラカルボン酸二無水物およびジアミンと、得られたポリマーの重量平均分子量を表7に示す。

Figure 2017003965
[Synthesis Examples 19 to 28] Synthesis of Varnishes Varnish 19 to varnish 28 having a polymer solid concentration of 6% by weight were prepared according to Synthesis Example 1 except that tetracarboxylic dianhydride and diamine were changed. The weight average molecular weight was approximately 11,000 to 13,000 for the polymer using the raw material having the photoreactive structure, and 45,000 to 50,000 for the polymer not using the raw material having the photoreactive structure. Table 7 shows the tetracarboxylic dianhydride and diamine used and the weight average molecular weight of the polymer obtained.
Figure 2017003965

[実施例29〜34]単層型液晶配向剤の調製、電気特性測定用セルの作成および電気特性測定
使用するワニスを変更した以外は、実施例1に準拠して、液晶セルを作製し、電圧保持率、イオン密度の測定および信頼性試験を行った。測定結果を表8に示す。
[Examples 29 to 34] A liquid crystal cell was prepared according to Example 1 except that the preparation of a single-layer liquid crystal aligning agent, the creation of an electrical property measurement cell, and the electrical property measurement were changed, except that the varnish used was changed. Measurement of voltage holding ratio and ion density and reliability test were performed. Table 8 shows the measurement results.

Figure 2017003965
実施例29〜34のすべてのセルにおいて初期値、信頼性試験後の値において良好な結果が得られた。ここで初期値とは、セル作製後、上記バックライト試験機に載せずに測定した結果である。
Figure 2017003965
In all the cells of Examples 29 to 34, good results were obtained in the initial value and the value after the reliability test. Here, the initial value is a result obtained by measuring the cell without mounting it on the backlight tester.

[実施例35〜44]
使用するワニスを変更した以外は、実施例8に準拠して、液晶セルを作製し、電圧保持率、イオン密度の測定および信頼性試験を行った。使用するワニスおよび測定結果を表9に示す。なお表9中、ワニスAは光反応性構造を有する原料を使用するポリマーを含有するワニス、ワニスBは光反応性構造を有する原料を使用しないポリマーを含有するワニスであることを示す。

Figure 2017003965
[Examples 35 to 44]
A liquid crystal cell was prepared according to Example 8 except that the varnish to be used was changed, and voltage holding ratio, ion density measurement and reliability test were performed. Table 9 shows the varnish used and the measurement results. In Table 9, varnish A represents a varnish containing a polymer using a raw material having a photoreactive structure, and varnish B represents a varnish containing a polymer not using a raw material having a photoreactive structure.
Figure 2017003965

実施例35〜44のすべてのセルにおいて初期値、信頼性試験後の値において良好な結果が得られた。 In all the cells of Examples 35 to 44, good results were obtained in the initial value and the value after the reliability test.

[実施例45]
合成例1で合成したワニスを大過剰のメタノール中に注ぎ、反応生成物を沈殿させた。沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥することにより、ポリアミック酸を3g得た。このポリアミック酸に、NMPを48.0g、γ−ブチロラクトン(GBL)を12.0g、1−ブトキシ−2−プロパノール(BP)を16.0g、ジエチレングリコールエチルメチルエーテル(EDM)を15.0g、ジエチレングリコールブチルメチルエーテル(BDM)を3.0g、ジイソブチルケトン(DIBK)を3.0g加え、固形分濃度3.0重量%、溶剤組成がNMP/GBL/BP/EDM/BDM/DIBK=48/12/16/15/3/3となる液晶配向剤49を調製した。この液晶配向剤をガラス基板にインクジェット塗布装置(コニカミノルタ製インクジェット装置EB100XY100)にて塗布した。塗布後、基板を80℃で3分間加熱し、溶剤を蒸発させた後、ウシオ電機(株)製マルチライトML−501C/Bを用い、基板に対して鉛直方向から、偏光板を介して紫外線の直線偏光を照射した。この時の露光エネルギーは、ウシオ電機(株)製紫外線積算光量計UIT−150(受光器:UVD−S365)を用いて光量を測定し、波長365nmで1.3±0.1J/cmになるよう、露光時間を調整した。230℃にて20分間焼成処理を行い、膜厚およそ100nmの膜を形成した。次いで、これらの配向膜が形成された基板2枚を、配向膜が形成されている面を対向させ、かつ、対向する配向膜の間に液晶組成物を注入するための空隙を設けて貼り合わせた。この時、それぞれの配向膜に照射された直線偏光の偏光方向が平行になるようにした。これらのセルにネガ型液晶組成物Aを注入し、セル厚7μmの液晶セル(液晶表示素子)を作製した。
[Example 45]
The varnish synthesized in Synthesis Example 1 was poured into a large excess of methanol to precipitate the reaction product. The precipitate was washed with methanol and dried under reduced pressure at 40 ° C. for 15 hours to obtain 3 g of polyamic acid. In this polyamic acid, 48.0 g of NMP, 12.0 g of γ-butyrolactone (GBL), 16.0 g of 1-butoxy-2-propanol (BP), 15.0 g of diethylene glycol ethyl methyl ether (EDM), diethylene glycol 3.0 g of butyl methyl ether (BDM) and 3.0 g of diisobutyl ketone (DIBK) were added, the solid content concentration was 3.0% by weight, and the solvent composition was NMP / GBL / BP / EDM / BDM / DIBK = 48/12 / The liquid crystal aligning agent 49 used as 16/15/3/3 was prepared. This liquid crystal aligning agent was apply | coated to the glass substrate with the inkjet coating apparatus (inkjet apparatus EB100XY100 made from Konica Minolta). After coating, the substrate was heated at 80 ° C. for 3 minutes to evaporate the solvent, and then UV light was passed through the polarizing plate from the vertical direction with respect to the substrate using Multilight ML-501C / B manufactured by USHIO INC. The linearly polarized light was irradiated. The exposure energy at this time is 1.3 ± 0.1 J / cm 2 at a wavelength of 365 nm by measuring the amount of light using a UV integrated light meter UIT-150 (receiver: UVD-S365) manufactured by USHIO INC. The exposure time was adjusted so that A baking treatment was performed at 230 ° C. for 20 minutes to form a film with a thickness of about 100 nm. Next, the two substrates on which these alignment films are formed are bonded together with the surfaces on which the alignment films are formed facing each other and with a gap for injecting the liquid crystal composition between the facing alignment films. It was. At this time, the polarization directions of the linearly polarized light irradiated to the respective alignment films were made parallel. The negative liquid crystal composition A was injected into these cells to produce a liquid crystal cell (liquid crystal display element) having a cell thickness of 7 μm.

この液晶セルの電圧保持率は5V−30Hzで99.3%であり、イオン密度は15pCであった。このセルを点灯させたバックライト試験機(富士フィルム(株)製、FujiCOLOR LED Viewer Pro HR−2;輝度2,700cd/m)の上に1,000時間載せた。1,000時間後の測定用セルの電圧保持率は99.3%であり、イオン密度は15pCであった。 The voltage holding ratio of this liquid crystal cell was 99.3% at 5 V-30 Hz, and the ion density was 15 pC. The cell was mounted on a backlight tester (Fuji Film Co., Ltd., FujiCOLOR LED Viewer Pro HR-2; brightness 2,700 cd / m 2 ) for 1,000 hours. The voltage holding ratio of the measurement cell after 1,000 hours was 99.3%, and the ion density was 15 pC.

[実施例46]
溶剤組成がNMP/GBL/ブチルセロソルブ(BC)/EDM/BDM/ジペンチルエーテル(DPE)=48/12/12/15/3/7となるように変更した以外は実施例45に準拠して、液晶セルを作製し、電圧保持率、イオン密度の測定および信頼性試験を行った。この液晶セルの電圧保持率は5V−30Hzで99.4%であり、イオン密度は15pCであった。また、1,000時間光暴露後の測定用セルの電圧保持率は99.3%であり、イオン密度は15pCであった。
[Example 46]
In accordance with Example 45 except that the solvent composition was changed to NMP / GBL / butyl cellosolve (BC) / EDM / BDM / dipentyl ether (DPE) = 48/12/12/15/3/7, the liquid crystal A cell was fabricated, and voltage holding ratio and ion density were measured and a reliability test was performed. The voltage holding ratio of this liquid crystal cell was 99.4% at 5 V-30 Hz, and the ion density was 15 pC. Further, the voltage holding ratio of the measuring cell after exposure to light for 1,000 hours was 99.3%, and the ion density was 15 pC.

[実施例47]
使用するワニスを合成例3で合成したワニス3に変更した以外は、実施例45に準拠して、液晶セルを作製し、電圧保持率、イオン密度の測定および信頼性試験を行った。この液晶セルの電圧保持率は5V−30Hzで99.4%であり、イオン密度は15pCであった。また、1,000時間光暴露後の測定用セルの電圧保持率は99.4%であり、イオン密度は15pCであった。
[Example 47]
A liquid crystal cell was prepared in accordance with Example 45 except that the varnish used was changed to varnish 3 synthesized in Synthesis Example 3, and voltage holding ratio, ion density measurement and reliability test were performed. The voltage holding ratio of this liquid crystal cell was 99.4% at 5 V-30 Hz, and the ion density was 15 pC. Further, the voltage holding ratio of the measurement cell after 1,000 hours of light exposure was 99.4%, and the ion density was 15 pC.

[実施例48]
使用するワニスを合成例3で合成したワニス3に変更した以外は、実施例46に準拠して、液晶セルを作製し、電圧保持率、イオン密度の測定および信頼性試験を行った。この液晶セルの電圧保持率は5V−30Hzで99.4%であり、イオン密度は15pCであった。また、1,000時間光暴露後の測定用セルの電圧保持率は99.3%であり、イオン密度は15pCであった。
[Example 48]
A liquid crystal cell was prepared in accordance with Example 46 except that the varnish used was changed to varnish 3 synthesized in Synthesis Example 3, and voltage holding ratio, ion density measurement and reliability test were performed. The voltage holding ratio of this liquid crystal cell was 99.4% at 5 V-30 Hz, and the ion density was 15 pC. Further, the voltage holding ratio of the measuring cell after exposure to light for 1,000 hours was 99.3%, and the ion density was 15 pC.

[実施例49]
合成例1で合成したワニスを大過剰のメタノール中に注ぎ、反応生成物を沈殿させた。沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥することにより、ポリアミック酸を0.9g得た。さらに合成例11で合成したワニス11についても同様の手順でポリアミック酸2.1g得た。このポリアミック酸に、NMPを48.0g、γ−ブチロラクトン(GBL)を12.0g、1−ブトキシ−2−プロパノール(BP)を16.0g、ジエチレングリコールエチルメチルエーテル(EDM)を15.0g、ジエチレングリコールブチルメチルエーテル(BDM)を3.0g、ジイソブチルケトン(DIBK)を3.0g加え、固形分濃度3.0重量%、溶剤組成がNMP/GBL/BP/EDM/BDM/DIBK=48/12/16/15/3/3となる液晶配向剤53を調製した。この液晶配向剤を使用した以外は実施例45に準拠して、液晶セルを作製し、電圧保持率、イオン密度の測定および信頼性試験を行った。この液晶セルの電圧保持率は5V−30Hzで99.8%であり、イオン密度は10pCであった。また、1,000時間光暴露後の測定用セルの電圧保持率は99.6%であり、イオン密度は15pCであった。
[Example 49]
The varnish synthesized in Synthesis Example 1 was poured into a large excess of methanol to precipitate the reaction product. The precipitate was washed with methanol and dried under reduced pressure at 40 ° C. for 15 hours to obtain 0.9 g of polyamic acid. Furthermore, 2.1 g of polyamic acid was obtained in the same procedure for the varnish 11 synthesized in Synthesis Example 11. In this polyamic acid, 48.0 g of NMP, 12.0 g of γ-butyrolactone (GBL), 16.0 g of 1-butoxy-2-propanol (BP), 15.0 g of diethylene glycol ethyl methyl ether (EDM), diethylene glycol 3.0 g of butyl methyl ether (BDM) and 3.0 g of diisobutyl ketone (DIBK) were added, the solid content concentration was 3.0% by weight, and the solvent composition was NMP / GBL / BP / EDM / BDM / DIBK = 48/12 / The liquid crystal aligning agent 53 used as 16/15/3/3 was prepared. A liquid crystal cell was prepared according to Example 45 except that this liquid crystal aligning agent was used, and voltage holding ratio and ion density were measured and a reliability test was performed. The voltage holding ratio of this liquid crystal cell was 99.8% at 5 V-30 Hz, and the ion density was 10 pC. The voltage holding ratio of the measurement cell after 1,000 hours of light exposure was 99.6%, and the ion density was 15 pC.

[実施例50]
溶剤組成がNMP/GBL/BC/EDM/BDM/DPE=48/12/12/15/3/7となるように変更した以外は実施例49に準拠して、液晶セルを作製し、電圧保持率、イオン密度の測定および信頼性試験を行った。この液晶セルの電圧保持率は5V−30Hzで99.7%であり、イオン密度は10pCであった。また、1,000時間光暴露後の測定用セルの電圧保持率は99.6%であり、イオン密度は15pCであった。
[Example 50]
A liquid crystal cell was prepared according to Example 49 except that the solvent composition was changed to NMP / GBL / BC / EDM / BDM / DPE = 48/12/12/15/3/7, and the voltage was maintained. The rate and ion density were measured and the reliability test was performed. The voltage holding ratio of this liquid crystal cell was 99.7% at 5 V-30 Hz, and the ion density was 10 pC. The voltage holding ratio of the measurement cell after 1,000 hours of light exposure was 99.6%, and the ion density was 15 pC.

[実施例51]
合成例3で合成したワニスを大過剰のメタノール中に注ぎ、反応生成物を沈殿させた。沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥することにより、ポリアミック酸を0.9g得た。さらに合成例11で合成したワニス10についても同様の手順でポリアミック酸2.1g得た。このポリアミック酸に、NMPを48.0g、γ−ブチロラクトン(GBL)を12.0g、1−ブトキシ−2−プロパノール(BP)を16.0g、ジエチレングリコールエチルメチルエーテル(EDM)を15.0g、ジエチレングリコールブチルメチルエーテル(BDM)を3.0g、ジイソブチルケトン(DIBK)を3.0g加え、固形分濃度3.0重量%、溶剤組成がNMP/GBL/BP/EDM/BDM/DIBK=48/12/16/15/3/3となる液晶配向剤55を調製した。この液晶配向剤を使用した以外は実施例45に準拠して、液晶セルを作製し、電圧保持率、イオン密度の測定および信頼性試験を行った。この液晶セルの電圧保持率は5V−30Hzで99.8%であり、イオン密度は10pCであった。また、1,000時間光暴露後の測定用セルの電圧保持率は99.5%であり、イオン密度は15pCであった。
[Example 51]
The varnish synthesized in Synthesis Example 3 was poured into a large excess of methanol to precipitate the reaction product. The precipitate was washed with methanol and dried under reduced pressure at 40 ° C. for 15 hours to obtain 0.9 g of polyamic acid. Furthermore, 2.1 g of polyamic acid was obtained with the same procedure for the varnish 10 synthesized in Synthesis Example 11. In this polyamic acid, 48.0 g of NMP, 12.0 g of γ-butyrolactone (GBL), 16.0 g of 1-butoxy-2-propanol (BP), 15.0 g of diethylene glycol ethyl methyl ether (EDM), diethylene glycol 3.0 g of butyl methyl ether (BDM) and 3.0 g of diisobutyl ketone (DIBK) were added, the solid content concentration was 3.0% by weight, and the solvent composition was NMP / GBL / BP / EDM / BDM / DIBK = 48/12 / The liquid crystal aligning agent 55 used as 16/15/3/3 was prepared. A liquid crystal cell was prepared according to Example 45 except that this liquid crystal aligning agent was used, and voltage holding ratio and ion density were measured and a reliability test was performed. The voltage holding ratio of this liquid crystal cell was 99.8% at 5 V-30 Hz, and the ion density was 10 pC. The voltage holding ratio of the measurement cell after 1,000 hours of light exposure was 99.5%, and the ion density was 15 pC.

[実施例52]
溶剤組成がNMP/GBL/BC/EDM/BDM/DPE=48/12/12/15/3/7となるように変更した以外は実施例51に準拠して、液晶セルを作製し、電圧保持率、イオン密度の測定および信頼性試験を行った。この液晶セルの電圧保持率は5V−30Hzで99.8%であり、イオン密度は10pCであった。また、1,000時間光暴露後の測定用セルの電圧保持率は99.6%であり、イオン密度は10pCであった。
[Example 52]
A liquid crystal cell was prepared according to Example 51 except that the solvent composition was changed to NMP / GBL / BC / EDM / BDM / DPE = 48/12/12/15/3/7, and the voltage was maintained. The rate and ion density were measured and the reliability test was performed. The voltage holding ratio of this liquid crystal cell was 99.8% at 5 V-30 Hz, and the ion density was 10 pC. The voltage holding ratio of the measurement cell after 1,000 hours of light exposure was 99.6%, and the ion density was 10 pC.

本発明の光配向用液晶配向剤を使用すれば、長時間の使用においても高い電圧保持率および耐光性を維持し、表示品位の高い液晶表示素子を提供することができる。本発明の光配向用液晶配向剤は横電界型液晶表示素子に好適に適用することができる。 If the liquid crystal aligning agent for photo-alignment of the present invention is used, a high voltage holding ratio and light resistance can be maintained even when used for a long time, and a liquid crystal display element with high display quality can be provided. The liquid crystal aligning agent for photo-alignment of the present invention can be suitably applied to a lateral electric field type liquid crystal display element.

Claims (15)

テトラカルボン酸二無水物およびその誘導体からなる群から選ばれる少なくとも1つと、ジアミンを反応させて得られる、ポリアミック酸、ポリアミック酸エステルおよびこれらをイミド化して得られるポリイミドからなる群から選ばれる少なくとも1つの重合体を含む、光配向用液晶配向剤であって;
前記重合体の原料モノマーの少なくとも1つが光反応性構造を有し、かつ、前記ジアミンが下記式(1)で表される化合物の少なくとも1つを含む、光配向用液晶配向剤。
Figure 2017003965
式(1)において、nは独立して炭素数1〜6のアルキレンであり;そして、
前記テトラカルボン酸二無水物の誘導体とは、テトラカルボン酸ジエステルまたはテトラカルボン酸ジエステルジクロリドである。
At least one selected from the group consisting of polyamic acid, polyamic acid ester obtained by reacting diamine with at least one selected from the group consisting of tetracarboxylic dianhydride and derivatives thereof, and polyimide obtained by imidizing these. A liquid crystal aligning agent for photo-alignment comprising two polymers;
The liquid crystal aligning agent for photo-alignment in which at least 1 of the raw material monomer of the said polymer has a photoreactive structure, and the said diamine contains at least 1 of the compound represented by following formula (1).
Figure 2017003965
In formula (1), n is independently alkylene having 1 to 6 carbons; and
The derivative of tetracarboxylic dianhydride is tetracarboxylic acid diester or tetracarboxylic acid diester dichloride.
テトラカルボン酸二無水物およびその誘導体、およびジアミンからなる群から選ばれる少なくとも1つの光反応性構造を有する化合物を含み、かつ、ジアミンが式(1)で表される化合物の少なくとも1つを含む原料モノマーを反応させて得られる重合体の少なくとも1つを含むか;または、
テトラカルボン酸二無水物およびその誘導体、およびジアミンからなる群から選ばれる少なくとも1つの光反応性構造を有する化合物を含む原料モノマーを反応させて得られる重合体の少なくとも1つと、
テトラカルボン酸二無水物およびその誘導体、およびジアミンのいずれもが光反応性構造を有さず、かつ、ジアミンが式(1)で表される化合物の少なくとも1つを含む原料モノマーを反応させて得られる重合体の少なくとも1つとを同時に含む、請求項1に記載の光配向用液晶配向剤。
A compound having at least one photoreactive structure selected from the group consisting of tetracarboxylic dianhydrides and derivatives thereof, and diamines, and the diamine includes at least one compound represented by formula (1) Contains at least one polymer obtained by reacting raw material monomers; or
At least one polymer obtained by reacting a raw material monomer containing a compound having at least one photoreactive structure selected from the group consisting of tetracarboxylic dianhydride and derivatives thereof, and diamine;
None of tetracarboxylic dianhydride and derivatives thereof, and diamines have a photoreactive structure, and a raw material monomer containing at least one compound represented by formula (1) is reacted with diamine. The liquid crystal aligning agent for photo-alignment of Claim 1 containing at least 1 of the polymer obtained simultaneously.
テトラカルボン酸二無水物およびその誘導体、およびジアミンからなる群から選ばれる少なくとも1つの光反応性構造を有する化合物を含み、かつ、ジアミンが式(1)で表される化合物の少なくとも1つを含む原料モノマーを反応させて得られる重合体の少なくとも1つと、当該重合体と混合して用いるその他の重合体を含み、その他の重合体が、
テトラカルボン酸二無水物およびその誘導体、およびジアミンのいずれもが光反応性構造を有さない原料モノマーを反応させて得られる重合体である、請求項2に記載の光配向用液晶配向剤。
A compound having at least one photoreactive structure selected from the group consisting of tetracarboxylic dianhydrides and derivatives thereof, and diamines, and the diamine includes at least one compound represented by formula (1) Including at least one polymer obtained by reacting raw material monomers and another polymer used by mixing with the polymer, the other polymer,
The liquid crystal aligning agent for photo-alignment according to claim 2, wherein all of tetracarboxylic dianhydride and its derivative and diamine are polymers obtained by reacting raw material monomers not having a photoreactive structure.
テトラカルボン酸二無水物およびその誘導体、およびジアミンからなる群から選ばれる少なくとも1つの光反応性構造を有する化合物を含み、かつ、ジアミンが式(1)で表される化合物の少なくとも1つを含む原料モノマーを反応させて得られる重合体の少なくとも1つと、当該重合体と混合して用いるその他の重合体を含み、その他の重合体が、
テトラカルボン酸二無水物およびその誘導体、およびジアミンのいずれもが光反応性構造を有さず、かつジアミンが式(1)で表される化合物の少なくとも1つを含む原料モノマーを反応させて得られる重合体である、請求項2に記載の光配向用液晶配向剤。
A compound having at least one photoreactive structure selected from the group consisting of tetracarboxylic dianhydrides and derivatives thereof, and diamines, and the diamine includes at least one compound represented by formula (1) Including at least one polymer obtained by reacting raw material monomers and another polymer used by mixing with the polymer, the other polymer,
None of tetracarboxylic dianhydride and its derivatives, and diamines have a photoreactive structure, and are obtained by reacting raw material monomers containing at least one compound represented by formula (1). The liquid crystal aligning agent for photo-alignment of Claim 2 which is a polymer obtained.
テトラカルボン酸二無水物およびその誘導体、およびジアミンからなる群から選ばれる少なくとも1つの光反応性構造を有する化合物を含む原料モノマーを反応させて得られる重合体の少なくとも1つと、
テトラカルボン酸二無水物およびその誘導体、およびジアミンのいずれもが光反応性構造を有さず、かつ、ジアミンが式(1)で表される化合物の少なくとも1つを含む原料モノマーを反応させて得た重合体の少なくとも1つとを同時に含む、請求項1に記載の光配向用液晶配向剤。
At least one polymer obtained by reacting a raw material monomer containing a compound having at least one photoreactive structure selected from the group consisting of tetracarboxylic dianhydride and derivatives thereof, and diamine;
None of tetracarboxylic dianhydride and derivatives thereof, and diamines have a photoreactive structure, and a raw material monomer containing at least one compound represented by formula (1) is reacted with diamine. The liquid crystal aligning agent for photo-alignment of Claim 1 containing at least 1 of the obtained polymer simultaneously.
原料モノマーの光反応性構造が光異性化構造である、請求項1〜5のいずれか1項に記載の光配向用液晶配向剤。 The liquid crystal aligning agent for photo-alignment of any one of Claims 1-5 whose photoreactive structure of a raw material monomer is a photoisomerization structure. 原料モノマーの光反応性構造が紫外線によって結合が開裂する構造である、請求項1〜5のいずれか1項に記載の光配向用液晶配向剤。 The liquid crystal aligning agent for photo-alignment of any one of Claims 1-5 whose photoreactive structure of a raw material monomer is a structure where a coupling | bonding cleaves with an ultraviolet-ray. 原料モノマーの光反応性構造が光二量化構造である、請求項1〜5のいずれか1項に記載の光配向用液晶配向剤。 The liquid crystal aligning agent for photo-alignment of any one of Claims 1-5 whose photoreactive structure of a raw material monomer is a photodimerization structure. 光異性化構造を有するテトラカルボン酸二無水物またはジアミンが式(II)〜(VI)で表される化合物の少なくとも1つである、請求項6に記載の光配向用液晶配向剤;
Figure 2017003965
式(II)〜(V)において、RおよびRは独立して−NHを有する1価の有機基または−CO−O−CO−を有する1価の有機基であり、式(IV)においてRは2価の有機基であり、式(VI)においてRは独立して−NHまたは−CO−O−CO−を有する芳香環である。
The liquid crystal aligning agent for photo-alignment of Claim 6 whose tetracarboxylic dianhydride or diamine which has a photoisomerization structure is at least one of the compounds represented by Formula (II)-(VI);
Figure 2017003965
In formulas (II) to (V), R 2 and R 3 are each independently a monovalent organic group having —NH 2 or a monovalent organic group having —CO—O—CO—, in) R 4 is a divalent organic group, and R 5 in formula (VI) is an aromatic ring having a -NH 2 or -CO-O-CO- independently.
光異性化構造を有するテトラカルボン酸二無水物またはジアミンが式(II−1)、(II−2)、(III−1)、(III−2)、(IV−1)、(IV−2)、(V−1)〜(V−3)、(VI−1)、および(VI−2)で表される化合物の群から選ばれる少なくとも1つである、請求項9に記載の光配向用液晶配向剤;
Figure 2017003965

Figure 2017003965
上記各式において、環を構成するいずれかの炭素原子に結合位置が固定されていない基は、その環における結合位置が任意であることを示し;
式(V−2)において、Rは独立して−CH、−OCH、−CF、または−COOCHであり、aは0〜2の整数であり;
式(V−3)において、環Aおよび環Bはそれぞれ独立して、単環式炭化水素、縮合多環式炭化水素および複素環から選ばれる少なくとも1つであり、
11は、炭素数1〜20の直鎖アルキレン、−COO−、−OCO−、−NHCO−、−CONH−、−N(CH)CO−、または−CON(CH)−であり、
12は、炭素数1〜20の直鎖アルキレン、−COO−、−OCO−、−NHCO−、−CONH−、−N(CH)CO−、または−CON(CH)−であり、
11およびR12において、直鎖アルキレンの−CH−の1つまたは2つは−O−で置換されてもよく、
〜R10は、それぞれ独立して、−F、−CH、−OCH、−CF、または−OHであり、そして、
b〜eは、それぞれ独立して、0〜4の整数である。
A tetracarboxylic dianhydride or diamine having a photoisomerization structure is represented by formulas (II-1), (II-2), (III-1), (III-2), (IV-1), (IV-2). ), (V-1) to (V-3), (VI-1), and photoalignment according to claim 9, which is at least one selected from the group of compounds represented by (VI-2). Liquid crystal aligning agent;
Figure 2017003965

Figure 2017003965
In the above formulas, a group whose bonding position is not fixed to any carbon atom constituting the ring indicates that the bonding position in the ring is arbitrary;
In formula (V-2), R 6 is independently —CH 3 , —OCH 3 , —CF 3 , or —COOCH 3 , and a is an integer of 0 to 2;
In formula (V-3), ring A and ring B are each independently at least one selected from monocyclic hydrocarbons, condensed polycyclic hydrocarbons and heterocyclic rings,
R 11 is a linear alkylene having 1 to 20 carbon atoms, —COO—, —OCO—, —NHCO—, —CONH—, —N (CH 3 ) CO—, or —CON (CH 3 ) —,
R 12 is a linear alkylene having 1 to 20 carbon atoms, —COO—, —OCO—, —NHCO—, —CONH—, —N (CH 3 ) CO—, or —CON (CH 3 ) —,
In R 11 and R 12 , one or two of the linear alkylene —CH 2 — may be substituted with —O—,
R 7 to R 10 are each independently —F, —CH 3 , —OCH 3 , —CF 3 , or —OH; and
b to e are each independently an integer of 0 to 4.
アルケニル置換ナジイミド化合物、ラジカル重合性不飽和二重結合を有する化合物、オキサジン化合物、オキサゾリン化合物、およびエポキシ化合物からなる化合物の群から選ばれる少なくとも1つをさらに含有する、請求項1〜10のいずれか1項に記載の光配向用液晶配向剤。 The alkenyl-substituted nadiimide compound, a compound having a radically polymerizable unsaturated double bond, an oxazine compound, an oxazoline compound, and at least one selected from the group consisting of epoxy compounds, further comprising any one of claims 1 to 10. The liquid crystal aligning agent for photo-alignment of 1 item | term. 横電界型液晶表示素子の製造に用いられる、請求項1〜11のいずれか1項に記載の光配向用液晶配向剤。 The liquid crystal aligning agent for photo-alignment of any one of Claims 1-11 used for manufacture of a horizontal electric field type liquid crystal display element. 請求項1〜12のいずれか1項に記載の光配向用液晶配向剤によって形成される液晶配向膜。 The liquid crystal aligning film formed with the liquid crystal aligning agent for photo-alignment of any one of Claims 1-12. 請求項13に記載の液晶配向膜を有する液晶表示素子。 The liquid crystal display element which has a liquid crystal aligning film of Claim 13. 請求項13に記載の液晶配向膜を有する横電界型液晶表示素子。 A lateral electric field type liquid crystal display device having the liquid crystal alignment film according to claim 13.
JP2016055016A 2015-06-11 2016-03-18 Liquid crystal alignment agent for forming liquid crystal alignment film for photo alignment, liquid crystal alignment film, and liquid crystal display device using the same Active JP6627595B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015118519 2015-06-11
JP2015118519 2015-06-11

Publications (2)

Publication Number Publication Date
JP2017003965A true JP2017003965A (en) 2017-01-05
JP6627595B2 JP6627595B2 (en) 2020-01-08

Family

ID=57612920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016055016A Active JP6627595B2 (en) 2015-06-11 2016-03-18 Liquid crystal alignment agent for forming liquid crystal alignment film for photo alignment, liquid crystal alignment film, and liquid crystal display device using the same

Country Status (4)

Country Link
JP (1) JP6627595B2 (en)
KR (1) KR20160146520A (en)
CN (1) CN106244171B (en)
TW (1) TWI705091B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019142952A1 (en) * 2018-01-18 2019-07-25 신동명 Photoactive agent, method for manufacturing same, and method for manufacturing liquid crystal aligning agent comprising same
CN110998424A (en) * 2017-08-10 2020-04-10 捷恩智株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same
CN111139087A (en) * 2019-12-30 2020-05-12 常州市尚科新材料有限公司 Liquid crystal photo-alignment agent, liquid crystal photo-alignment film, and preparation method and application thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018106096A (en) * 2016-12-28 2018-07-05 Jnc株式会社 Liquid crystal alignment agent for optical alignment used for optical alignment method, optical alignment film using the same, and liquid crystal display
WO2018221568A1 (en) * 2017-05-31 2018-12-06 日産化学株式会社 Functional resin composition for phase-shifting modulation element in which liquid crystal is used
KR102198214B1 (en) 2017-11-03 2021-01-04 주식회사 엘지화학 Liquid crystal alignment composition, process for preparing liquid crystal alignment film, and liquid crystal alignment film, liquid crystal display device using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09194725A (en) * 1996-01-23 1997-07-29 Japan Synthetic Rubber Co Ltd Film-forming agent
JP2009175684A (en) * 2007-12-26 2009-08-06 Chisso Corp Liquid crystal aligning agent, liquid crystal alignment layer, and liquid crystal display element
JP2011028223A (en) * 2009-06-25 2011-02-10 Chisso Corp Liquid crystal aligning agent, liquid crystal alignment layer, and liquid crystal display device
JP2012193167A (en) * 2011-03-02 2012-10-11 Jnc Corp Diamine, liquid crystal alignment agent using the same, liquid crystal display element, and method of forming liquid crystal alignment film

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3893659B2 (en) 1996-03-05 2007-03-14 日産化学工業株式会社 Liquid crystal alignment treatment method
JP4126731B2 (en) 1997-03-13 2008-07-30 Jsr株式会社 Liquid crystal alignment agent
JP4620438B2 (en) 2004-02-27 2011-01-26 チッソ株式会社 Liquid crystal alignment film, liquid crystal alignment agent, and liquid crystal display element
JP4775796B2 (en) 2006-03-14 2011-09-21 独立行政法人物質・材料研究機構 Liquid crystal alignment film, liquid crystal alignment agent, and liquid crystal display element
JP2008233713A (en) 2007-03-23 2008-10-02 Sony Corp Liquid crystal display device and electronic equipment
JP5156894B2 (en) 2007-09-13 2013-03-06 独立行政法人物質・材料研究機構 Liquid crystal aligning agent, liquid crystal aligning film, manufacturing method thereof, and liquid crystal display element
JP5041163B2 (en) * 2008-06-18 2012-10-03 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
JP5041169B2 (en) * 2008-09-11 2012-10-03 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
JP5729299B2 (en) * 2009-07-21 2015-06-03 日産化学工業株式会社 Diamine compound, polyamic acid, polyimide and liquid crystal alignment treatment agent
JP5556482B2 (en) * 2009-09-15 2014-07-23 Jnc株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN102344816B (en) * 2010-08-03 2014-02-19 奇美实业股份有限公司 Liquid crystal aligning agent, liquid crystal aligning film prepared by using same and liquid crystal display element prepared by using liquid crystal aligning agent
CN102558096B (en) * 2010-12-30 2015-01-21 达兴材料股份有限公司 Aromatic diamine compound, polyamic acid and polyimide prepared from aromatic diamine compound, and liquid crystal aligning agent
JP2012155311A (en) * 2011-01-05 2012-08-16 Jnc Corp Liquid crystal aligning agent for forming photo-aligning liquid crystal alignment layer, liquid crystal alignment layer and liquid crystal display element using the same
KR101990302B1 (en) * 2011-05-18 2019-06-18 주식회사 동진쎄미켐 Diamine Compound, Method for Preparing the same, Liquid Crystal Alignment Agent, Liquid Crystal Alignment Film and Liquid Crystal Display Device
CN103702976B (en) * 2011-05-18 2016-04-20 株式会社东进世美肯 Amine compound, preparation method thereof, liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP6233304B2 (en) * 2012-04-24 2017-11-22 Jnc株式会社 Liquid crystal alignment agent, liquid crystal alignment film for forming liquid crystal alignment film for photo-alignment, and liquid crystal display element using the same
TWI477479B (en) * 2013-07-18 2015-03-21 Daxin Materials Corp Benzene diamine, polymer, composition for alignment film, alignment film, and liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09194725A (en) * 1996-01-23 1997-07-29 Japan Synthetic Rubber Co Ltd Film-forming agent
JP2009175684A (en) * 2007-12-26 2009-08-06 Chisso Corp Liquid crystal aligning agent, liquid crystal alignment layer, and liquid crystal display element
JP2011028223A (en) * 2009-06-25 2011-02-10 Chisso Corp Liquid crystal aligning agent, liquid crystal alignment layer, and liquid crystal display device
JP2012193167A (en) * 2011-03-02 2012-10-11 Jnc Corp Diamine, liquid crystal alignment agent using the same, liquid crystal display element, and method of forming liquid crystal alignment film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110998424A (en) * 2017-08-10 2020-04-10 捷恩智株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same
CN110998424B (en) * 2017-08-10 2023-08-15 捷恩智株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same
WO2019142952A1 (en) * 2018-01-18 2019-07-25 신동명 Photoactive agent, method for manufacturing same, and method for manufacturing liquid crystal aligning agent comprising same
US20200399204A1 (en) * 2018-01-18 2020-12-24 Dong Myung Shin Photo activator and manufacturing method of the same and photo alignment agent including the same
CN111139087A (en) * 2019-12-30 2020-05-12 常州市尚科新材料有限公司 Liquid crystal photo-alignment agent, liquid crystal photo-alignment film, and preparation method and application thereof
CN111139087B (en) * 2019-12-30 2022-12-27 常州市尚科新材料有限公司 Liquid crystal photo-alignment agent, liquid crystal photo-alignment film, and preparation method and application thereof

Also Published As

Publication number Publication date
KR20160146520A (en) 2016-12-21
TWI705091B (en) 2020-09-21
CN106244171A (en) 2016-12-21
TW201643205A (en) 2016-12-16
CN106244171B (en) 2020-12-25
JP6627595B2 (en) 2020-01-08

Similar Documents

Publication Publication Date Title
JP6308282B2 (en) Liquid crystal alignment agent, liquid crystal alignment film for forming liquid crystal alignment film for photo-alignment, and liquid crystal display element using the same
JP6398236B2 (en) Liquid crystal aligning agent and liquid crystal display element
JP6213281B2 (en) Photosensitive diamine, liquid crystal aligning agent, and liquid crystal display element
TWI692506B (en) Liquid crystal aligning agent for forming liquid crystal aligning layer, liquid crystal aligning layer and liquid crystal display device using the same
JP6056187B2 (en) Liquid crystal alignment agent, liquid crystal alignment film for forming liquid crystal alignment film for photo-alignment, and liquid crystal display element using the same
JP6057070B2 (en) Liquid crystal aligning agent and liquid crystal display element using the same
JP6090570B2 (en) Liquid crystal alignment agent, liquid crystal alignment film for forming liquid crystal alignment film for photo-alignment, and liquid crystal display element using the same
TWI700312B (en) Liquid crystal aligning agent for forming liquid crystal alignment film for photoalignment, liquid crystal alignment film, and liquid crystal display device using the same
JP6350852B2 (en) Liquid crystal aligning agent, liquid crystal display element, and tetracarboxylic dianhydride
JP6103257B2 (en) Liquid crystal alignment agent, liquid crystal alignment film for forming liquid crystal alignment film for photo-alignment, and liquid crystal display element using the same
JP6565730B2 (en) Diamine, polyamic acid or derivative thereof, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6252009B2 (en) Novel diamine, polymer using the same, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6627595B2 (en) Liquid crystal alignment agent for forming liquid crystal alignment film for photo alignment, liquid crystal alignment film, and liquid crystal display device using the same
JP6589657B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element using the same
JP2016224415A (en) Liquid crystal aligning agent for forming liquid crystal alignment film for photoalignment, liquid crystal alignment film and liquid crystal display element using the same
JP2018010108A (en) Liquid crystal aligning agent for forming liquid crystal alignment film for photo-alignment, liquid crystal alignment film and liquid crystal display element using the same
JP2017088801A (en) Diamine, polyamic acid or derivative of the same, liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP2016041683A (en) Triazole-containing tetracarboxylic acid dianhydride, liquid crystal aligning agent, liquid crystal alignment layer, and liquid crystal display device
JP6561624B2 (en) Liquid crystal alignment agent, liquid crystal alignment film for forming liquid crystal alignment film for photo-alignment, and liquid crystal display element using the same
JP6398480B2 (en) Diamine, polyamic acid or derivative thereof, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP2017203980A (en) Liquid crystal display
CN107557023B (en) Liquid crystal aligning agent for forming liquid crystal alignment film for photo-alignment, liquid crystal alignment film, and liquid crystal display element using same
JP2017146597A (en) Liquid crystal alignment agent for forming liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display using the same
JP2020008867A (en) Tetracarboxylic acid dianhydride
JP2019007988A (en) Liquid crystal aligning agent for forming liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191118

R150 Certificate of patent or registration of utility model

Ref document number: 6627595

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250