JP2017003066A - Orifice, liquid feeding device using the same, application device, and manufacturing method of optical film - Google Patents

Orifice, liquid feeding device using the same, application device, and manufacturing method of optical film Download PDF

Info

Publication number
JP2017003066A
JP2017003066A JP2015119899A JP2015119899A JP2017003066A JP 2017003066 A JP2017003066 A JP 2017003066A JP 2015119899 A JP2015119899 A JP 2015119899A JP 2015119899 A JP2015119899 A JP 2015119899A JP 2017003066 A JP2017003066 A JP 2017003066A
Authority
JP
Japan
Prior art keywords
orifice
diameter
opening
coating
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015119899A
Other languages
Japanese (ja)
Other versions
JP6472139B2 (en
JP2017003066A5 (en
Inventor
山口 貴志
Takashi Yamaguchi
貴志 山口
松岡 明宏
Akihiro Matsuoka
明宏 松岡
良知 東
Yoshitomo Azuma
良知 東
広樹 横山
Hiroki Yokoyama
広樹 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2015119899A priority Critical patent/JP6472139B2/en
Priority to KR1020160069180A priority patent/KR102429718B1/en
Priority to TW105118070A priority patent/TWI682815B/en
Priority to CN201610423348.0A priority patent/CN106246652B/en
Publication of JP2017003066A publication Critical patent/JP2017003066A/en
Publication of JP2017003066A5 publication Critical patent/JP2017003066A5/ja
Application granted granted Critical
Publication of JP6472139B2 publication Critical patent/JP6472139B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/08Influencing flow of fluids of jets leaving an orifice
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • B05C11/1002Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0254Coating heads with slot-shaped outlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C9/00Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important
    • B05C9/08Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation
    • B05C9/14Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation the auxiliary operation involving heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/007After-treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Coating Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an orifice capable of accelerating deagglomeration and capable of suppressing accumulation of particles, a liquid feeding device using the orifice, an application device, and a manufacturing method of an optical film.SOLUTION: An orifice includes: an orifice body 12; an inflow opening 14 positioned on an inflow side of the orifice body; a reduced diameter part 20 that comprises a primary side inner wall 18 having a curved surface 22 continuing from the inflow opening and having a curvature radius of 1-10 mm, and a diameter reduction surface 24 continuing from the curved surface and reducing its diameter to a narrow opening 16 at an angle of 120-180°; and an enlarged diameter part 30 that comprises a secondary side inner wall 28 continuing from the narrow opening to an outflow opening 26, and enlarging its diameter at an angle of 2-10°. The ratio of the diameter of the narrow opening to the diameter of the inflow opening is 0.07-0.18.SELECTED DRAWING: Figure 1

Description

本発明は、オリフィス、及びこれを用いた送液装置、塗布装置、並びに光学フィルムの製造方法に関する。   The present invention relates to an orifice, a liquid feeding apparatus using the same, a coating apparatus, and a method for producing an optical film.

粒子を含む液体が、広い分野で使用されている。例えば、連続搬送される帯状のウエブの表面に、粒子を含む液体(塗布液ともいう)を塗布し、所望の厚さの塗膜を形成することにより、光学フィルム等の機能性フィルムを製造することが行われている。機能性フィルムの製造プロセスでは、流路を介して粒子を含む液体を塗布ヘッドに送液し、塗布ヘッドからウエブに粒子を含む液体を供給する。   Liquids containing particles are used in a wide range of fields. For example, a functional film such as an optical film is manufactured by applying a liquid containing particles (also referred to as a coating solution) to the surface of a belt-like web that is continuously conveyed to form a coating film having a desired thickness. Things have been done. In the process for producing a functional film, a liquid containing particles is fed to a coating head through a flow path, and the liquid containing particles is supplied from the coating head to the web.

粒子を含む液体を用いた場合、製造プロセス中で粒子が凝集し、粒子の凝集体となることがあり、粒子の凝集体を分散させることが必要となる。   When a liquid containing particles is used, the particles may aggregate in the manufacturing process to form particle aggregates, and it is necessary to disperse the particle aggregates.

特許文献1では、狭い流路に強制的に送液することで加圧した後、幅の広い流路に送液することにより、有機架橋高分子粒子の一次粒子の凝集体を一次粒子にまで解凝集処理することが記載されている。   In patent document 1, after pressurizing by forcibly sending liquid to a narrow channel, and sending to a wide channel, the aggregate of primary particles of organic crosslinked polymer particles is made into primary particles. It is described that a deagglomeration treatment is performed.

特開2014−196468号公報JP 2014-196468 A

しかしながら、特許文献1の技術では、凝集体の解凝集が十分でなく、また流路の流入側で粒子が滞留する懸念がある。   However, in the technique of Patent Document 1, there is a concern that the aggregates are not sufficiently deagglomerated and particles are retained on the inflow side of the flow path.

本発明はこのような事情に鑑みてなされたもので、粒子凝集体の解凝集を促進することができ、かつ粒子の滞留を抑制できるオリフィス、及びこれを用いた送液装置、塗布装置、並びに光学フィルムの製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, an orifice capable of promoting deagglomeration of particle aggregates and suppressing particle retention, a liquid feeding device, a coating device using the same, and It aims at providing the manufacturing method of an optical film.

本発明の一態様によると、オリフィスは、オリフィス本体と、オリフィス本体の流入側に位置する流入開口と、流入開口から連続する1〜10mmの曲率半径の曲面と、曲面から連続し120〜180°の角度で狭窄開口に縮径する縮径面とを有する一次側内壁で構成される縮径部と、狭窄開口から流出開口に連続し、かつ2〜10°の角度で拡径する二次側内壁で構成される拡径部と、を備え、流入開口の直径に対する狭窄開口の直径の比が0.07〜0.18である。   According to one aspect of the present invention, the orifice includes an orifice body, an inflow opening located on the inflow side of the orifice body, a curved surface having a radius of curvature of 1 to 10 mm continuous from the inflow opening, and a continuous surface from the curved surface of 120 to 180 °. A diameter-reduced portion composed of a primary-side inner wall having a reduced-diameter surface that is reduced in diameter to a stenosis opening at an angle, and a secondary side that is continuous from the stenosis opening to the outflow opening and expands at an angle of 2 to 10 ° And a ratio of the diameter of the narrowed opening to the diameter of the inflow opening is 0.07 to 0.18.

好ましくは、一次側内壁の縮径面の角度が130〜170°である。   Preferably, the angle of the reduced diameter surface of the primary side inner wall is 130 to 170 °.

好ましくは、二次側内壁の拡径する角度が5〜8°である。   Preferably, the angle at which the diameter of the secondary inner wall expands is 5 to 8 °.

好ましくは、流入開口の直径に対する狭窄開口の直径の比が0.07〜0.14である。   Preferably, the ratio of the diameter of the constriction opening to the diameter of the inflow opening is 0.07 to 0.14.

本発明の別の態様によると、送液装置は、粒子を含む流体が通過する流路と、流路の一部に設けられ、流体が通過する上述のオリフィスと、流路とオリフィスとに、流体を送るための駆動源と、を備える。   According to another aspect of the present invention, a liquid delivery device includes a flow path through which a fluid containing particles passes, a part of the flow path, the orifice through which the fluid passes, the flow path and the orifice, A drive source for sending fluid.

本発明の別の態様によると、塗布装置は、粒子を含む塗布液が通過する流路と、流路の一部に設けられ、塗布液が通過する上述のオリフィスと、オリフィスの下流側に設けられた塗布ヘッドと、を備える。   According to another aspect of the present invention, a coating apparatus includes a flow path through which a coating liquid containing particles passes, the above-described orifice through which the coating liquid passes, provided in a part of the flow path, and a downstream side of the orifice. An application head.

本発明の別の態様によると、光学フィルムの製造方法は、上述の塗布装置から、連続搬送されるウエブに粒子を含む塗布液を供給し、塗膜を形成する工程と、塗膜を乾燥、及び/又は硬化させる工程と、を含む。   According to another aspect of the present invention, a method for producing an optical film includes a step of supplying a coating liquid containing particles from the above-described coating apparatus to a continuously conveyed web, forming a coating film, and drying the coating film. And / or curing.

本発明によれば、粒子を含む液体を用いた製造プロセスにおいて、粒子の解凝集を促進し、粒子の滞留を抑制することができる。   ADVANTAGE OF THE INVENTION According to this invention, the deaggregation of particle | grains can be accelerated | stimulated and the stay of particle | grains can be suppressed in the manufacturing process using the liquid containing particle | grains.

オリフィスの側面図、及び断面図である。It is the side view and sectional drawing of an orifice. 光学フィルムの製造ラインの概略構成図である。It is a schematic block diagram of the manufacturing line of an optical film. 送液装置の概略構成図である。It is a schematic block diagram of a liquid feeding apparatus. 実施例の結果を示す表図である。It is a table | surface figure which shows the result of an Example.

以下、添付図面にしたがって本発明の好ましい実施の形態について説明する。本発明は以下の好ましい実施の形態により説明される。本発明の範囲を逸脱すること無く、多くの手法により変更を行うことができ、本実施の形態以外の他の実施の形態を利用することができる。したがって、本発明の範囲内における全ての変更が特許請求の範囲に含まれる。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. The present invention is illustrated by the following preferred embodiments. Changes can be made by many techniques without departing from the scope of the present invention, and other embodiments than the present embodiment can be utilized. Accordingly, all modifications within the scope of the present invention are included in the claims.

ここで、図中、同一の記号で示される部分は、同様の機能を有する同様の要素である。また、本明細書中で、数値範囲を“ 〜 ”を用いて表す場合は、“ 〜 ”で示される上限、下限の数値も数値範囲に含むものとする。   Here, in the drawing, portions indicated by the same symbols are similar elements having similar functions. In addition, in the present specification, when a numerical range is expressed using “˜”, upper and lower numerical values indicated by “˜” are also included in the numerical range.

図1(A)は、本実施形態のオリフィスの矢視B−B線方向の側面図であり、図1(B)本実施形態のオリフィスの断面図である。本実施形態のオリフィス10は、流体を流すための配管60の間に配置される。   FIG. 1 (A) is a side view of the orifice of the present embodiment in the direction of the arrow BB line, and FIG. 1 (B) is a cross-sectional view of the orifice of the present embodiment. The orifice 10 of this embodiment is arrange | positioned between the piping 60 for flowing a fluid.

オリフィス10は、円柱状のオリフィス本体12を有する。オリフィス本体12は、例えば、ステンレス鋼の材質で構成される。但し、これらの材質はステンレス鋼に限定されない。オリフィス本体12の外径ODは、例えば15〜30mmである。但し、外径ODは、オリフィス10が適用される送液装置、塗布装置等を考慮して、適宜決定される。オリフィス本体12の形状は円柱状に限定されない。   The orifice 10 has a cylindrical orifice body 12. The orifice body 12 is made of, for example, a stainless steel material. However, these materials are not limited to stainless steel. The outer diameter OD of the orifice body 12 is, for example, 15 to 30 mm. However, the outer diameter OD is appropriately determined in consideration of a liquid feeding device, a coating device, or the like to which the orifice 10 is applied. The shape of the orifice body 12 is not limited to a cylindrical shape.

オリフィス本体12は、矢印Aで示す流体の流れ方向に対して流入側に位置する流入開口14を備えている。流入開口14は、粒子を含む流体を受け入れる。流入開口14の直径ID1は、流入側に接続される配管60の内径とほぼ等しいことが、流体の抵抗が減少することから好ましい。流入開口14の直径ID1は、例えば10〜20mmである。但し、直径ID1は、オリフィス10が適用される送液装置、塗布装置等を考慮して、適宜決定される。   The orifice body 12 includes an inflow opening 14 positioned on the inflow side with respect to the fluid flow direction indicated by the arrow A. The inflow opening 14 receives a fluid containing particles. It is preferable that the diameter ID1 of the inflow opening 14 is substantially equal to the inner diameter of the pipe 60 connected to the inflow side because the resistance of the fluid is reduced. The diameter ID1 of the inflow opening 14 is, for example, 10 to 20 mm. However, the diameter ID1 is appropriately determined in consideration of a liquid feeding device, a coating device, or the like to which the orifice 10 is applied.

オリフィス本体12は、流入開口14から狭窄開口16に連続する一次側内壁18を含む縮径部20を備えている。狭窄開口16の直径ID2は、例えば、1〜5mmである。本実施形態では、流入開口14の直径ID1と対する狭窄開口16の直径ID2の比(ID2/ID1)は、0.07〜0.18の範囲であり、0.07〜0.14の範囲であることが好ましい。   The orifice body 12 includes a reduced diameter portion 20 including a primary side inner wall 18 continuous from the inflow opening 14 to the narrowed opening 16. The diameter ID2 of the constriction opening 16 is, for example, 1 to 5 mm. In the present embodiment, the ratio (ID2 / ID1) of the diameter ID2 of the constriction opening 16 to the diameter ID1 of the inflow opening 14 is in the range of 0.07 to 0.18, and in the range of 0.07 to 0.14. Preferably there is.

一次側内壁18は、流入開口14から連続する1〜10mmの曲率半径rの曲面22を有している。曲面22は、流入開口14より直径の小さい狭窄開口16に向かう。さらに、一次側内壁18は、曲面22から連続し、120〜180°の角度αで狭窄開口16に縮径する縮径面24を有する。縮径面24の縮径の角度αは、130〜170°であることが好ましい。   The primary side inner wall 18 has a curved surface 22 having a radius of curvature r of 1 to 10 mm continuous from the inflow opening 14. The curved surface 22 is directed to the narrowed opening 16 having a smaller diameter than the inflow opening 14. Furthermore, the primary side inner wall 18 has a reduced diameter surface 24 that is continuous from the curved surface 22 and that reduces the diameter to the narrowed opening 16 at an angle α of 120 to 180 °. The diameter α of the diameter reduction surface 24 is preferably 130 to 170 °.

縮径部20の長さ(流入開口14から狭窄開口16までの距離)は、例えば、10〜100mmである。但し、この長さに限定されない。   The length of the reduced diameter portion 20 (the distance from the inflow opening 14 to the narrowed opening 16) is, for example, 10 to 100 mm. However, it is not limited to this length.

縮径面24の角度αは、断面視で、狭窄開口16を挟んで位置する縮径面24にそれぞれ接する接線のなす角度を意味する。ここで縮径とは、流体の流れ方向から見て、一次側内壁18の直径(内径)が減少することを意味する。   The angle α of the diameter-reduced surface 24 means an angle formed by tangent lines that are in contact with the diameter-reduced surface 24 located across the narrowed opening 16 in a sectional view. Here, the term “reduced diameter” means that the diameter (inner diameter) of the primary side inner wall 18 decreases as viewed from the fluid flow direction.

本実施形態では、一次側内壁18は120〜180°の角度αで縮径しているので、一次側内壁18は、流入開口14の直径ID1から狭窄開口16の直径ID2に比較的急に縮径している。   In the present embodiment, since the primary side inner wall 18 is reduced in diameter by an angle α of 120 to 180 °, the primary side inner wall 18 is relatively abruptly reduced from the diameter ID 1 of the inflow opening 14 to the diameter ID 2 of the constriction opening 16. It has a diameter.

オリフィス本体12は、狭窄開口16から流出開口26に連続し、かつ2〜10°の角度βで拡径する二次側内壁28を含む拡径部30を備えている。なお、拡径の角度βは、5〜8°であることが好ましい。   The orifice body 12 includes a diameter-enlarged portion 30 that includes a secondary inner wall 28 that is continuous from the constriction opening 16 to the outflow opening 26 and expands at an angle β of 2 to 10 °. In addition, it is preferable that the expansion angle β is 5 to 8 °.

流出開口26は、基本的に流入開口14の直径ID1と同じ直径ID3を有し、流出開口26の直径ID3は、例えば10〜20mmである。また、流出開口26の直径ID3は、流出側に接続される配管60の内径とほぼ等しい。但し、直径ID3は、オリフィス10が適用される送液装置、塗布装置等を考慮して、適宜決定される。また、拡径部30の長さは、例えば80〜200mmである。但し、この長さに限定されない。   The outflow opening 26 basically has the same diameter ID3 as the diameter ID1 of the inflow opening 14, and the diameter ID3 of the outflow opening 26 is, for example, 10 to 20 mm. The diameter ID3 of the outflow opening 26 is substantially equal to the inner diameter of the pipe 60 connected to the outflow side. However, the diameter ID3 is appropriately determined in consideration of a liquid feeding device, a coating device, and the like to which the orifice 10 is applied. Moreover, the length of the enlarged diameter part 30 is 80-200 mm, for example. However, it is not limited to this length.

二次側内壁28は、狭窄開口16から流出開口26に、断面視で直線的に連続する。二次側内壁28の角度βは、断面視で、狭窄開口16を挟んで位置する二次側内壁28の延長線のなす角度を意味する。ここで、拡径とは、流体の流れ方向から見て、二次側内壁28の直径(内径)が拡大することを意味する。   The secondary side inner wall 28 continues linearly from the narrowed opening 16 to the outflow opening 26 in a sectional view. The angle β of the secondary side inner wall 28 means an angle formed by an extension line of the secondary side inner wall 28 located across the narrowed opening 16 in a sectional view. Here, the term “expanded diameter” means that the diameter (inner diameter) of the secondary side inner wall 28 increases as viewed from the fluid flow direction.

二次側内壁28は狭窄開口16から流出開口26に連続し、かつ2〜10°の角度βで拡径しているので、拡径部30における二次側内壁28の拡径の角度βは、狭窄開口16から流出開口26の間、2〜10°の範囲で基本的に一定である。すなわち、拡径部30は、断面視で、狭窄開口16を挟んで位置する二次側内壁28が平行となる部分(狭路とも言う)を有していない。   Since the secondary side inner wall 28 is continuous from the constriction opening 16 to the outflow opening 26 and is expanded in diameter by 2 to 10 °, the expansion angle β of the secondary side inner wall 28 in the expanded diameter portion 30 is The distance between the constriction opening 16 and the outflow opening 26 is basically constant in the range of 2 to 10 °. That is, the enlarged diameter portion 30 does not have a portion (also referred to as a narrow path) in which the secondary inner wall 28 located across the narrowed opening 16 is parallel in a cross-sectional view.

オリフィス10は、縮径部20の流入側に一次側フランジ32を備える。一次側フランジ32には、オリフィス10と流入側の配管60とを接続する際に使用するシール部材(不図示)を収容するための溝34を備える。   The orifice 10 includes a primary flange 32 on the inflow side of the reduced diameter portion 20. The primary side flange 32 is provided with a groove 34 for accommodating a seal member (not shown) used when connecting the orifice 10 and the inflow side pipe 60.

オリフィス10は、拡径部30の流出側に二次側フランジ36を備える。二次側フランジ36には、オリフィス10と流出側の配管60とを接続する際に使用するシール部材(不図示)を収容するための溝38を備える。   The orifice 10 includes a secondary flange 36 on the outflow side of the enlarged diameter portion 30. The secondary flange 36 is provided with a groove 38 for accommodating a seal member (not shown) used when connecting the orifice 10 and the outflow side pipe 60.

本実施形態のオリフィス10においては、粒子を含む液体が流入開口14からオリフィス本体12の縮径部20に流入する。液体中の粒子同士が凝集して凝集体を形成している場合がある。一次側内壁18は、直径の小さい狭窄開口16に120〜180°の縮径面24により急に縮径されているので、液体が狭窄開口16を通過する際に乱流が発生する。この乱流により粒子の凝集体が解凝集が促進される。また、一次側内壁18は1〜10mmの曲率半径の曲面22を有しているので、縮径部20内に粒子が滞留することを抑制することができる。したがって、粒子の滞留に起因する故障を抑制できる。粒子が縮径部20に滞留すると、滞留した粒子が解凝集されずにオリフィス10を通過する場合がある。解凝集されない粒子により故障(例えば、スジ故障、点欠陥、性能を発揮できない等)が発生しうる。   In the orifice 10 of the present embodiment, a liquid containing particles flows from the inflow opening 14 into the reduced diameter portion 20 of the orifice body 12. In some cases, particles in the liquid aggregate to form an aggregate. Since the primary side inner wall 18 is suddenly reduced in diameter by the diameter-reduced surface 24 of 120 to 180 ° to the narrowed opening 16 having a small diameter, turbulent flow is generated when the liquid passes through the narrowed opening 16. This turbulent flow promotes deagglomeration of the particle aggregates. Moreover, since the primary side inner wall 18 has the curved surface 22 having a radius of curvature of 1 to 10 mm, it is possible to prevent particles from staying in the reduced diameter portion 20. Therefore, it is possible to suppress a failure due to particle retention. When the particles stay in the reduced diameter portion 20, the staying particles may pass through the orifice 10 without being deagglomerated. Failure (for example, streak failure, point defects, performance failure, etc.) may occur due to particles that are not deagglomerated.

狭窄開口16を通過した流体は拡径部30へ移動し、流出開口26から流出される。拡径部30へ移動した流体中の凝集体は乱流により解凝集されている。流体が狭窄開口16から流出開口26から流出されるまでの間に、解凝集された粒子を再凝集させない必要がある。本実施形態の拡径部30の二次側内壁28は2〜10°の緩やかな角度βで拡径し、狭路を有していない。拡径しているので、流体中の粒子同士を接触させないように作用し、再凝集を抑制できる。また、2〜10°の緩やかな角度βであるので、粒子が二次側内壁28に接触しやすい。粒子が二次側内壁28に接触することで、粒子が再凝集した場合でも二次側内壁28に接触により解凝集が促進される。   The fluid that has passed through the narrowed opening 16 moves to the enlarged diameter portion 30 and flows out from the outflow opening 26. Aggregates in the fluid that has moved to the enlarged diameter portion 30 are deagglomerated by turbulent flow. It is necessary that the deagglomerated particles are not re-agglomerated until the fluid flows from the constriction opening 16 to the outflow opening 26. The secondary inner wall 28 of the enlarged diameter portion 30 of the present embodiment is enlarged at a gentle angle β of 2 to 10 ° and does not have a narrow path. Since the diameter is increased, the particles in the fluid act so as not to contact each other, and reaggregation can be suppressed. Further, since the angle is a gentle angle β of 2 to 10 °, the particles are likely to contact the secondary side inner wall 28. When the particles come into contact with the secondary side inner wall 28, deaggregation is promoted by contact with the secondary side inner wall 28 even when the particles reaggregate.

ここで解凝集とは、粒子の凝集体のサイズ(長辺の長さ)が、オリフィスの通過前と比較して、オリフィスの通過後に20%以下のサイズになることを意味する。   Here, deagglomeration means that the size of the aggregate of particles (long side length) is 20% or less after passing through the orifice, compared to before passing through the orifice.

本実施形態のオリフィスで上述の作用が働いて、粒子の解凝集の促進と、粒子の滞留を抑制できると推定される。なお、以上説明したオリフィス10の具体的な効果について、後述する実施例で説明する。   It is presumed that the above-described action works in the orifice of the present embodiment, so that the promotion of particle deagglomeration and the retention of particles can be suppressed. In addition, the specific effect of the orifice 10 demonstrated above is demonstrated in the Example mentioned later.

図2は、本実施形態のオリフィスを適用した塗布装置を、光学フィルムの製造ライン設けた製造ラインの概略構成図である。   FIG. 2 is a schematic configuration diagram of a production line in which a coating apparatus to which the orifice of the present embodiment is applied is provided on a production line for optical films.

光学フィルムの製造ラインは、ロール状に巻き回された樹脂フィルム(以下、「ウエブW」と称する)を連続的に送り出す工程と、ウエブWをロール状に巻き取る工程との間に、ウエブに塗膜を形成する工程と、塗膜を乾燥する工程、及び/又は塗布膜を硬化する工程等を適宜必要な数だけの工程が準備される。   The optical film production line includes a step of continuously feeding a resin film wound in a roll shape (hereinafter referred to as “web W”) and a step of winding the web W into a roll shape. A necessary number of processes are prepared as appropriate, such as a process of forming a coating film, a process of drying the coating film, and / or a process of curing the coating film.

図2に示される製造ライン100は、塗布位置においてウエブWを巻き掛けるバックアップローラ102と、バックアップローラ102に相対する位置に配置される塗布ヘッドであるスロットダイ104と、を有している。スロットダイ104には、配管60を介して光学フィルムを製造するため、粒子を含む塗布液106が供給される。ここで、配管60が粒子を含む塗布液が通過する流路となる。流路は、粒子を含む塗布液106が通過することができれば、その材質、形状等は限定されない。なお、粒子を含む塗布液106から製造される光学フィルムとして、例えば、防眩性フィルム、散乱フィルム、及び拡散フィルムを挙げることができる。   The production line 100 shown in FIG. 2 includes a backup roller 102 around which the web W is wound at the coating position, and a slot die 104 that is a coating head disposed at a position facing the backup roller 102. The slot die 104 is supplied with a coating liquid 106 containing particles in order to manufacture an optical film via the pipe 60. Here, the pipe 60 becomes a flow path through which the coating liquid containing particles passes. The material, shape, and the like of the channel are not limited as long as the coating liquid 106 containing particles can pass through. In addition, as an optical film manufactured from the coating liquid 106 containing particle | grains, an anti-glare film, a scattering film, and a diffusion film can be mentioned, for example.

本実施形態ではスロットダイ104を塗布ヘッドとして例示した。ここで、塗布ヘッドは、粒子を含む流体を塗布することができれば、その方式は限定されない。例えば、エクストルージョン方式、インクジェットヘッド方式、スライド塗布方式等を使用することができる。   In this embodiment, the slot die 104 is exemplified as the coating head. Here, the method of the application head is not limited as long as it can apply a fluid containing particles. For example, an extrusion method, an inkjet head method, a slide coating method, or the like can be used.

粒子を含む塗布液106は貯留タンク108に貯留される。この貯留タンク108とスロットダイ104とは配管60を介して流体連通している。貯留タンク108とスロットダイ104との間には、上流側から下流側に、送液ポンプ110、圧力計112、減圧脱気装置114、濾過フィルタ116、流量計118、オリフィス10が配管60の一部に設けられる。   The coating liquid 106 containing particles is stored in a storage tank 108. The storage tank 108 and the slot die 104 are in fluid communication via a pipe 60. Between the storage tank 108 and the slot die 104, there are a liquid feed pump 110, a pressure gauge 112, a vacuum degassing device 114, a filtration filter 116, a flow meter 118, and an orifice 10 from the upstream side to the downstream side. Provided in the section.

「上流」、「下流」とは、塗布液(流体)の移動方向に対して用いられる。ある基準に対して移動方向側に位置する場合を「下流」、移動方向と反対側に位置する場合を「上流」と定義される。   “Upstream” and “downstream” are used with respect to the moving direction of the coating liquid (fluid). A case of being located on the moving direction side with respect to a certain reference is defined as “downstream”, and a case of being located on the opposite side of the moving direction is defined as “upstream”.

本実施形態において、塗布装置は、流路と、オリフィスと、オリフィスの下流側に塗布ヘッドと、を少なくとも備えていれば良い。   In the present embodiment, the coating apparatus may include at least a flow path, an orifice, and a coating head on the downstream side of the orifice.

送液ポンプ110としては、公知の各種タイプのポンプが使用できるが、粒子を含む塗布液106を考慮すると、ダイヤフラムポンプが好ましい。   Various known types of pumps can be used as the liquid feed pump 110, but a diaphragm pump is preferable in consideration of the coating liquid 106 containing particles.

圧力計112は公知の各種タイプの圧力計が使用できる。濾過フィルタ116や減圧脱気装置114は、塗布液106の組成等に応じて適宜の仕様のものが採用できる。流量計118としては、公知の各種タイプの流量計が使用できるが、コリオリ式流量計が好ましく使用できる。   Various types of known pressure gauges can be used as the pressure gauge 112. As the filter 116 and the vacuum degassing device 114, those having appropriate specifications can be adopted according to the composition of the coating liquid 106 and the like. Various known types of flow meters can be used as the flow meter 118, but a Coriolis flow meter can be preferably used.

製造ライン100による光学フィルムの製造方法の一例について説明する。   An example of the manufacturing method of the optical film by the manufacturing line 100 is demonstrated.

塗布ヘッドであるスロットダイ104と、オリフィス10と、流路である配管60とを有する塗布装置を準備し、粒子を含む塗布液106を調製し、貯留タンク108に貯留する。   A coating apparatus having a slot die 104 as a coating head, an orifice 10 and a pipe 60 as a flow path is prepared, and a coating liquid 106 containing particles is prepared and stored in a storage tank 108.

ウエブWが巻回されたロールからウエブWが連続的に送り出され、ウエブWに帯電している静電気が静電除電装置(不図示)により除電され、引き続きウエブW上に付着している異物が除塵装置(不図示)により除去される。   The web W is continuously sent out from the roll on which the web W is wound, and the static electricity charged on the web W is removed by an electrostatic static eliminator (not shown), and the foreign matter adhering to the web W continues. It is removed by a dust removing device (not shown).

ウエブWの裏面をバックアップローラ102に巻き掛けて、ウエブWを連続搬送する。連続搬送されるウエブWの表面に塗布ヘッドであるスロットダイ104から粒子を含む塗布液106を供給し、塗膜を形成する。ここで、塗膜とは、ウエブWの表面に形成され、所望の膜厚となるよう制御された塗布液を意味する。   The back surface of the web W is wound around the backup roller 102 and the web W is continuously conveyed. A coating liquid 106 containing particles is supplied from a slot die 104 serving as a coating head to the surface of the web W that is continuously conveyed to form a coating film. Here, the coating film means a coating solution which is formed on the surface of the web W and is controlled to have a desired film thickness.

粒子を含む塗布液106は、貯留タンク108から、塗布液(流体)を送るための駆動源である送液ポンプ110によりスロットダイ104に圧送される。圧送された塗布液106は、圧力計112、減圧脱気装置114、濾過フィルタ116、オリフィス10を経て配管60を介してスロットダイ104に供給される。   The coating liquid 106 containing particles is pressure-fed from the storage tank 108 to the slot die 104 by a liquid feeding pump 110 that is a driving source for sending the coating liquid (fluid). The coating liquid 106 thus pumped is supplied to the slot die 104 via the pipe 60 via the pressure gauge 112, the vacuum degassing device 114, the filtration filter 116, and the orifice 10.

本実施形態のオリフィス10に、粒子を含む塗布液106を通過させることにより、塗布液106中の粒子の凝集体を解凝集することができる。その結果、塗布液106の粒子がスロットダイ104のスロットで目詰まりする現象を回避することができる。また、ウエブWに形成される塗膜に粒子を均一に分散することができる。所望の光学特性を有する光学フィルムを製造することが可能となる。オリフィス10内で粒子の滞留が抑制され、滞留に起因する故障が抑制される。   By allowing the coating liquid 106 containing particles to pass through the orifice 10 of the present embodiment, the aggregate of particles in the coating liquid 106 can be deagglomerated. As a result, it is possible to avoid the phenomenon that the particles of the coating liquid 106 are clogged in the slot of the slot die 104. Further, the particles can be uniformly dispersed in the coating film formed on the web W. An optical film having desired optical characteristics can be produced. The retention of particles in the orifice 10 is suppressed, and failures due to the retention are suppressed.

オリフィス10は、スロットダイ104に最も近くの上流側に配置されることが好ましい。例えば、スロットダイ104の給液口から1000mm以内の距離に設けることが好ましい。塗布液中の粒子が再凝集する前にスロットダイ104に塗布液106を供給することができる。   Orifice 10 is preferably located on the upstream side closest to slot die 104. For example, it is preferably provided at a distance within 1000 mm from the liquid supply port of the slot die 104. The coating liquid 106 can be supplied to the slot die 104 before the particles in the coating liquid reaggregate.

塗膜が形成されたウエブWは、引き続いて処理ゾーン120へと連続搬送される。処理ゾーン120は、ウエブWに形成された塗膜を乾燥、及び/又は硬化させる工程を含んでいる。例えば、塗膜を乾燥する工程は、熱風による対流乾燥方式、赤外線などの輻射熱による輻射乾燥方式等、種々の乾燥方式により塗膜から水、溶媒等を除去する工程を意味する。また、塗膜を硬化する工程は、塗膜に紫外線、電磁波、粒子線等の活性線を照射することにより、塗膜に含まれる化合物に架橋反応、重合反応等を起こして塗膜の硬度を高めることを意味する。   The web W on which the coating film is formed is continuously conveyed to the processing zone 120. The processing zone 120 includes a step of drying and / or curing the coating film formed on the web W. For example, the process of drying a coating film means the process of removing water, a solvent, etc. from a coating film by various drying systems, such as the convection drying system by a hot air, and the radiation drying system by radiant heats, such as infrared rays. The process of curing the coating film involves irradiating the coating film with active rays such as ultraviolet rays, electromagnetic waves, and particle beams, thereby causing a crosslinking reaction, a polymerization reaction, etc. to the compound contained in the coating film, thereby increasing the hardness of the coating film. It means to increase.

乾燥、及び/又は硬化された塗膜を有するウエブWはロール状に巻き取られる。   The web W having a dried and / or cured coating film is wound into a roll.

一般的な光学フィルムの製造方法について説明したが、ウエブWに供給される塗布液の種類を変更することにより、光学フィルムでも、光学補償フィルム、防眩フィルム、防眩性反射防止フィルム等の特定のフィルムを製造することができる。   Although a general optical film manufacturing method has been described, by changing the type of coating liquid supplied to the web W, it is possible to identify optical compensation films, antiglare films, antiglare antireflection films, etc. The film can be manufactured.

光学フィルムに用いられる材料について説明する。   The material used for the optical film will be described.

ウエブは、可撓性の連続した帯状であって膜厚の薄い部材を意味し、樹脂フィルムを用いることが好ましい。樹脂フィルムを構成するポリマーとしては、セルロースアシレート(例、トリアセチルセルロース、ジアセチルセルロース、代表的には富士フイルム(株)製TAC−TD80U,TD80UFなど)、ポリアミド、ポリカーボネート、ポリエステル(例、ポリエチレンテレフタレート、ポリエチレンナフタレート)、ポリスチレン、ポリオレフィン、ノルボルネン系樹脂(アートン:商品名、JSR(株)製)、非晶質ポリオレフィン(ゼオネックス:商品名、日本ゼオン(株)製)、(メタ)アクリル系樹脂(アクリペットVRL20A:商品名、三菱レイヨン(株)製、特開2004−70296号公報や特開2006−171464号公報記載の環構造含有アクリル系樹脂)などが挙げられる。このうちトリアセチルセルロース、ポリエチレンテレフタレート、ポリエチレンナフタレートが好ましく、特にトリアセチルセルロースが好ましい。   The web means a flexible continuous belt-like member having a thin film thickness, and it is preferable to use a resin film. As the polymer constituting the resin film, cellulose acylate (eg, triacetylcellulose, diacetylcellulose, typically TAC-TD80U, TD80UF, etc. manufactured by Fuji Film Co., Ltd.), polyamide, polycarbonate, polyester (eg, polyethylene terephthalate) , Polyethylene naphthalate), polystyrene, polyolefin, norbornene resin (Arton: trade name, manufactured by JSR Corporation), amorphous polyolefin (ZEONEX: trade name, manufactured by ZEON Corporation), (meth) acrylic resin (Acrypet VRL20A: trade name, manufactured by Mitsubishi Rayon Co., Ltd., ring structure-containing acrylic resin described in JP-A No. 2004-70296 and JP-A No. 2006-171464), and the like. Of these, triacetyl cellulose, polyethylene terephthalate, and polyethylene naphthalate are preferable, and triacetyl cellulose is particularly preferable.

塗布液は溶媒、及び粒子を少なくとも含んでいる。他にバインダーポリマーを含んでも良い。塗布液の粘度は、例えば、0.5〜20mPa・sである。塗布液の粘度は、振動式粘度計(株式会社エー・アンド・デイ社製、型名:SV−1A)を使用し、25℃での測定値とすることができる。   The coating solution contains at least a solvent and particles. In addition, a binder polymer may be included. The viscosity of the coating solution is, for example, 0.5 to 20 mPa · s. The viscosity of the coating solution can be measured at 25 ° C. using a vibration viscometer (manufactured by A & D Co., Ltd., model name: SV-1A).

溶媒としては、例えば、有機溶媒を挙げることができる。有機溶媒として、例えばアルコール系では、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、イソブタノール、第二ブタノール、第三ブタノール、イソアミルアルコール、1−ペンタノール、n−ヘキサノール、メチルアミルアルコール等、ケトン系では、メチルイソブチルケトン、メチルエチルケトン、ジエチルケトン、アセトン、シクロヘキサノン、ジアセトンアルコール等、エステル系では、酢酸メチル、酢酸エチル、酢酸n−プロピル、酢酸イソプロピル、酢酸イソブチル、酢酸n−ブチル、酢酸イソアミル、酢酸n−アミル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、酪酸エチル、酢酸メチル、乳酸メチル、乳酸エチル等、エーテル、アセタール系では、1,4ジオキサン、テトラヒドロフラン、2−メチルフラン、テトラヒドロピラン、ジエチルアセタール等、炭化水素系では、ヘキサン、ヘプタン、オクタン、イソオクタン、リグロイン、シクロヘキサン、メチルシクロヘキサン、トルエン、キシレン、エチルベンゼン、スチレン、ジビニルベンゼン等、ハロゲン炭化水素系では、四塩化炭素、クロロホルム、塩化メチレン、塩化エチレン、1,1,1−トリクロルエタン、1,1,2−トリクロルエタン、トリクロルエチレン、テトラクロルエチレン、1,1,1,2−テトラクロルエタン等、多価アルコールおよびその誘導体系では、エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノアセテート、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、ブタンジオール、ヘキシレングリコール、1,5−ペンタンジオール、グリセリンモノアセテート、グリセリンエーテル類、1,2,6−ヘキサントリオール等、脂肪酸系では、蟻酸、酢酸、プロピオン酸、絡酸、イソ絡酸、イソ吉草酸、乳酸等、窒素化合物系では、ホルムアミド、N,N−ジメチルホルムアミド、アセトアミド、アセトニトリル等、イオウ化合物系では、ジメチルスルホキシド等、が挙げられる。   Examples of the solvent include organic solvents. As an organic solvent, for example, in an alcohol system, methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, tert-butanol, isoamyl alcohol, 1-pentanol, n-hexanol, methyl amyl alcohol, etc. In the ketone system, methyl isobutyl ketone, methyl ethyl ketone, diethyl ketone, acetone, cyclohexanone, diacetone alcohol, etc. In the ester system, methyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate, isobutyl acetate, n-butyl acetate, acetic acid Isoamyl, n-amyl acetate, methyl propionate, ethyl propionate, methyl butyrate, ethyl butyrate, methyl acetate, methyl lactate, ethyl lactate, ether, acetal, 1,4 dioxane, teto Hydrofuran, 2-methylfuran, tetrahydropyran, diethyl acetal, etc., hydrocarbon type, hexane, heptane, octane, isooctane, ligroin, cyclohexane, methylcyclohexane, toluene, xylene, ethylbenzene, styrene, divinylbenzene, etc., halogen hydrocarbon type In, carbon tetrachloride, chloroform, methylene chloride, ethylene chloride, 1,1,1-trichloroethane, 1,1,2-trichloroethane, trichloroethylene, tetrachloroethylene, 1,1,1,2-tetrachloroethane In the case of polyhydric alcohols and derivatives thereof, ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monoacetate, diethylene glycol, propylene Glycolic acid, dipropylene glycol, butanediol, hexylene glycol, 1,5-pentanediol, glycerin monoacetate, glycerin ethers, 1,2,6-hexanetriol, etc. In fatty acid systems, formic acid, acetic acid, propionic acid, In the case of nitrogen compounds such as entrained acid, isoentangled acid, isovaleric acid, and lactic acid, formamide, N, N-dimethylformamide, acetamide, acetonitrile, and the like, and in the case of sulfur compounds, dimethyl sulfoxide and the like can be mentioned.

有機溶媒の中でメチルイソブチルケトン、メチルエチルケトン、シクロヘキサノン、アセトン、トルエン、キシレン、酢酸エチル、1−ペンタノール等が特に好ましい。また、有機溶媒には、凝集性制御の目的でアルコール、多価アルコール系の溶媒を適宜混合して用いてもよい。これらの有機溶媒は、単独でも混合して用いてもよく、塗布組成物中に有機溶媒総量として、20質量%〜90質量%含有することが好ましく、30質量%〜80質量%含有することがより好ましく、40質量%〜70質量%含有することが最も好ましい。粒子含有層の表面形状の安定化のためには、沸点が100℃未満の溶媒と沸点が100℃以上の溶媒を併用することが好ましい。なお、溶媒は有機溶媒に限定されない。   Among organic solvents, methyl isobutyl ketone, methyl ethyl ketone, cyclohexanone, acetone, toluene, xylene, ethyl acetate, 1-pentanol and the like are particularly preferable. In addition, an alcohol or a polyhydric alcohol solvent may be appropriately mixed with the organic solvent for the purpose of controlling cohesion. These organic solvents may be used alone or in combination, and the coating composition preferably contains 20% by mass to 90% by mass, and preferably 30% by mass to 80% by mass, as the total amount of the organic solvent. More preferably, it is most preferable to contain 40 mass%-70 mass%. In order to stabilize the surface shape of the particle-containing layer, it is preferable to use a solvent having a boiling point of less than 100 ° C. and a solvent having a boiling point of 100 ° C. or more in combination. The solvent is not limited to an organic solvent.

塗布液中に含まれる粒子とは、0.05〜100μmの体積平均粒子径を有する粒子を指す。塗布液に含まれる粒子としては、例えば、架橋ポリメチルメタアクリレート、架橋メチルメタアクリレート−スチレン共重合体、架橋メチルメタアクリレート−メチルアクリレート共重合粒子、架橋アクリレート−スチレン共重合粒子、架橋ポリスチレン粒子、架橋メチルメタアクリレート−架橋変性アクリレート共重合粒子、メラミンホルムアルデヒド樹脂粒子、ベンゾグアナミンホルムアルデヒド樹脂粒子等の樹脂粒子が好ましく挙げられる。なかでも架橋ポリメチルメタアクリレート、架橋メチルメタアクリレート−スチレン共重合体等が好ましい。   The particle | grains contained in a coating liquid point out the particle | grains which have a volume average particle diameter of 0.05-100 micrometers. As particles contained in the coating liquid, for example, crosslinked polymethyl methacrylate, crosslinked methyl methacrylate-styrene copolymer, crosslinked methyl methacrylate-methyl acrylate copolymer particles, crosslinked acrylate-styrene copolymer particles, crosslinked polystyrene particles, Preferred examples include resin particles such as crosslinked methyl methacrylate-crosslinked modified acrylate copolymer particles, melamine formaldehyde resin particles, and benzoguanamine formaldehyde resin particles. Of these, crosslinked polymethyl methacrylate, crosslinked methyl methacrylate-styrene copolymer and the like are preferable.

上述の粒子の一例としては、市販されている樹脂粒子を挙げることができ、例えば、綜研化学(株)製のケミスノー、MX600、MX675、RX0855、MX800、SX713L、MX1500H等、あるいは積水化成品工業(株)製のテックポリマー、SSX108HXE、SSX108LXESSX−106TN、SSX−106FB、XX120S等を用いることができる。   Examples of the above-mentioned particles include commercially available resin particles. For example, Chemisnow, MX600, MX675, RX0855, MX800, SX713L, MX1500H, etc. manufactured by Soken Chemical Co., Ltd., or Sekisui Plastics Industries ( TECH Polymer, SSX108HXE, SSX108LXESSX-106TN, SSX-106FB, XX120S, etc. can be used.

塗布液中に以下の物質を含ませることができる。   The following substances can be contained in the coating solution.

マトリックスを形成するバインダーポリマーとしては、特に限定されないが、電離放射線等による硬化後に飽和炭化水素鎖、又はポリエーテル鎖を主鎖として有する透光性のバインダーポリマーであることが好ましい。また、硬化後の主たるバインダーポリマーは架橋構造を有することが好ましい。なお、バインダーポリマーは、防眩層中(固形分)、55〜94質量%を構成するのが好ましい。さらに好ましくは75〜90質量%である。   Although it does not specifically limit as a binder polymer which forms a matrix, It is preferable that it is a translucent binder polymer which has a saturated hydrocarbon chain or a polyether chain as a principal chain after hardening by ionizing radiation etc. Moreover, it is preferable that the main binder polymer after hardening has a crosslinked structure. In addition, it is preferable that a binder polymer comprises 55-94 mass% in a glare-proof layer (solid content). More preferably, it is 75-90 mass%.

硬化後に飽和炭化水素鎖を主鎖として有するバインダーポリマーとしては、下記に述べる第一群の化合物より選ばれるエチレン性不飽和モノマーおよびこれらの重合体が好ましい。また、ポリエーテル鎖を主鎖として有するポリマーとしては、下記に述べる第二群の化合物より選ばれるエポキシ系モノマーおよびこれらの開環による重合体が好ましい。さらにこれらのモノマー類の混合物の重合体も好ましい。   As the binder polymer having a saturated hydrocarbon chain as a main chain after curing, an ethylenically unsaturated monomer selected from compounds of the first group described below and a polymer thereof are preferable. Moreover, as a polymer which has a polyether chain as a principal chain, the epoxy-type monomer chosen from the compound of the 2nd group described below and the polymer by these ring-opening are preferable. Furthermore, a polymer of a mixture of these monomers is also preferable.

重合開始剤は、上記モノマー100質量部に対して、重合開始剤総量で0.1〜15質量部の範囲で使用することが好ましく、1〜10質量部の範囲がより好ましい。   It is preferable to use a polymerization initiator in the range of 0.1-15 mass parts with respect to 100 mass parts of said monomers by the polymerization initiator total amount, and the range of 1-10 mass parts is more preferable.

次に、本実施形態のオリフィスを利用した送液装置について図3を参照して説明する。図2に示した構成と同様の構成には同一符号を付して説明を省略する場合がある。粒子を含む流体202は、貯留タンク108に貯留される。この貯留タンク108と第2貯留タンク130とは、流路である配管60を介して流体連通している。送液装置200は、貯留タンク108と第2貯留タンク130との間には、上流側から下流側に、送液ポンプ110、圧力計112、減圧脱気装置114、濾過フィルタ116、流量計118、オリフィス10が配管60の一部に設けられる。なお、送液装置は、流路と、オリフィスと、駆動源とを少なくとも備えていれば良い。   Next, a liquid feeding device using the orifice of this embodiment will be described with reference to FIG. The same components as those illustrated in FIG. 2 may be denoted by the same reference numerals and description thereof may be omitted. The fluid 202 containing particles is stored in the storage tank 108. The storage tank 108 and the second storage tank 130 are in fluid communication via a pipe 60 that is a flow path. The liquid feeding device 200 is provided between the storage tank 108 and the second storage tank 130 from the upstream side to the downstream side, from the liquid feeding pump 110, the pressure gauge 112, the vacuum degassing device 114, the filtration filter 116, and the flow meter 118. The orifice 10 is provided in a part of the pipe 60. In addition, the liquid feeding apparatus should just be provided with the flow path, the orifice, and the drive source at least.

ここで、配管60が粒子を含む流体202が通過する流路となる。流路は、粒子を含む流体202が通過することができれば、その材質、形状等は限定されない。   Here, the pipe 60 becomes a flow path through which the fluid 202 containing particles passes. The material, shape, and the like of the flow path are not limited as long as the fluid 202 containing particles can pass through.

粒子を含む流体202は、貯留タンク108から、流体を送るための駆動源である送液ポンプ110により第2貯留タンク130と圧送される。圧送された流体202は、圧力計112、減圧脱気装置114、濾過フィルタ116、オリフィス10を経て配管60を介して第2貯留タンク130に供給される。   The fluid 202 containing particles is pressure-fed from the storage tank 108 to the second storage tank 130 by a liquid feed pump 110 that is a drive source for sending fluid. The fluid 202 that has been pumped is supplied to the second storage tank 130 via the pipe 60 via the pressure gauge 112, the vacuum degassing device 114, the filtration filter 116, and the orifice 10.

本実施形態のオリフィス10に、粒子を含む流体202を通過させることにより、流体202中の粒子の凝集体を解凝集することができる。この結果、粒子が分散された流体202を得ることができる。   By allowing the fluid 202 containing particles to pass through the orifice 10 of the present embodiment, the aggregates of the particles in the fluid 202 can be deagglomerated. As a result, a fluid 202 in which particles are dispersed can be obtained.

流体を送るための駆動源として、送液ポンプ110を例示したが、ポンプの種類は限定されない。また、駆動源としてポンプだけでなく、例えば、貯留タンク108を高所に配置し、位置エネルギーを、流体を送る駆動源として利用することもできる。ここで、送液とは粒子を含む流体を、流路を通して移動させることを言う。   Although the liquid feed pump 110 is illustrated as a drive source for sending fluid, the type of pump is not limited. In addition to the pump as a drive source, for example, the storage tank 108 can be arranged at a high place, and the potential energy can be used as a drive source for sending fluid. Here, “liquid feeding” refers to moving a fluid containing particles through a flow path.

粒子を含む流体として、例えば、顔料を含むペンキ、顔料を含むインク、磁性微粒子を含む磁気テープ塗料、テフロン微粒子を含む撥水剤(テフロンは登録商標)、エマルションを含む食品、エマルションを含む化粧品などを例示することができる。   Examples of fluids containing particles include paints containing pigments, inks containing pigments, magnetic tape coatings containing magnetic fine particles, water repellents containing Teflon fine particles (Teflon is a registered trademark), foods containing emulsions, cosmetics containing emulsions, etc. Can be illustrated.

例示した、粒子を含む流体を、本実施形態のオリフィスを通過させることにより、粒子の凝集体を解凝集することができる。また、粒子の滞留を抑制することができる。   By passing the exemplified fluid containing particles through the orifice of the present embodiment, the aggregate of particles can be deagglomerated. Further, the retention of particles can be suppressed.

流体とは気体、又は液体を意味する。また、粒子とは、0.05〜100μmの体積平均粒子径を有する粒子を意味する。   A fluid means a gas or a liquid. Moreover, a particle means the particle | grains which have a volume average particle diameter of 0.05-100 micrometers.

以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、製造条件等は本発明の趣旨から逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下の具体例に制限されるものではない。   The present invention will be described more specifically with reference to the following examples. The materials, production conditions, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the following specific examples.

[試験1]
1000gのメチルエチルケトンとメチルイソブチルケトンとの混合溶媒(混合比率:11:89)に、体積平均粒子径2.8μmの架橋アクリレート−スチレン共重合粒子を3g添加して、粒子を含む流体として調製した。
[Test 1]
3 g of crosslinked acrylate-styrene copolymer particles having a volume average particle diameter of 2.8 μm was added to 1000 g of a mixed solvent of methyl ethyl ketone and methyl isobutyl ketone (mixing ratio: 1: 1: 89) to prepare a fluid containing particles.

調製された流体を1(kg/min)の流量で、110°の縮径角度(縮径面の角度α)、0mmの狭路長さ、7°の拡径角度(二次側内壁の拡径する角度β)、4mmの曲率半径r、及び7%の縮小率(狭窄開口の直径/流入開口の直径 × 100)の形状を有するオリフィスに通過させた。   The prepared fluid at a flow rate of 1 (kg / min), a 110 ° diameter reduction angle (angle α of the diameter reduction surface), a 0 mm narrow path length, and a 7 ° diameter expansion angle (expansion of the secondary inner wall). (Diameter angle β) was passed through an orifice having a shape with a radius of curvature r of 4 mm and a reduction ratio of 7% (diameter of constriction opening / diameter of inflow opening × 100).

[試験2〜21]
試験1で用いた流体を、図4の表に記載の形状のオリフィスに通過させた。オリフィスの形状を変更した以外は、試験1と同じ条件とした。
[Tests 2 to 21]
The fluid used in Test 1 was passed through an orifice having the shape shown in the table of FIG. The conditions were the same as in Test 1 except that the shape of the orifice was changed.

〈評価〉
以下の解凝集の効果、滞留の有無、及び総合評価で評価を行い、その評価を、図4の表の各項目に記載した。
<Evaluation>
Evaluation was performed based on the following deagglomeration effect, presence / absence of retention, and comprehensive evaluation, and the evaluation was described in each item of the table of FIG.

(解凝集の効果)
流体をオリフィスに通過させる前と、通過させた後との粒子の凝集体のサイズを比較した。凝集体のサイズを光学顕微鏡で検鏡プレートに滴下した液を観察することで観測した。具体的には、顕微鏡で流体を撮影し、得られた写真から凝集体の長辺を測定し、凝集体のサイズとした。解凝集前の凝集体のサイズを以下のようにして求めた。オリフィス通過前の塗布液から10個の凝集体をランダムに選択し、各凝集体の長辺を測定した。長辺の平均値を解凝集前の凝集体のサイズとした。
(Effect of deagglomeration)
The particle agglomerates were compared in size before and after passing the fluid through the orifice. The size of the aggregate was observed by observing the liquid dropped on the spectroscopic plate with an optical microscope. Specifically, the fluid was photographed with a microscope, and the long side of the aggregate was measured from the obtained photograph to obtain the size of the aggregate. The size of the aggregate before deagglomeration was determined as follows. Ten aggregates were randomly selected from the coating solution before passing through the orifice, and the long sides of each aggregate were measured. The average value of the long side was taken as the size of the aggregate before deagglomeration.

同様に、解凝集後の凝集体のサイズを以下のようにして求めた。オリフィス通過後の流体から10個の凝集体をランダムに選択し、各凝集体の長辺を測定した。長辺の平均値を解凝集後の凝集体のサイズとした。   Similarly, the size of the aggregate after deagglomeration was determined as follows. Ten aggregates were randomly selected from the fluid after passing through the orifice, and the long side of each aggregate was measured. The average value of the long side was taken as the size of the aggregate after deagglomeration.

解凝集の効果を、解凝集後の(凝集体のサイズ/解凝集前の凝集体のサイズ)×100の比率で以下の3段階で評価した。
A:解凝集前の凝集体のサイズに対する解凝集後の凝集体のサイズの比率が5%以下。
B:解凝集前の凝集体のサイズに対する解凝集後の凝集体のサイズの比率が20%以下。
C:解凝集前の凝集体のサイズに対する解凝集後の凝集体のサイズの比率が20%より大きい。
The effect of deagglomeration was evaluated in the following three steps at a ratio of (aggregate size / aggregate size before deagglomeration) × 100 after deagglomeration.
A: The ratio of the size of the aggregate after deaggregation to the size of the aggregate before deaggregation is 5% or less.
B: The ratio of the size of the aggregate after deaggregation to the size of the aggregate before deaggregation is 20% or less.
C: The ratio of the size of the aggregate after deaggregation to the size of the aggregate before deaggregation is greater than 20%.

(滞留の有無)
オリフィスの縮径部に、粒子が滞留するかを、CFD(Computational Fluid Dynamics)シミュレーションによる流速分布により観測した。CFDシミュレーションのソフトウェアとしてSTAR−LT(株式会社シーディー・アダプコ・ジャパン社製)を使用し、ハードウェアとして市販の汎用的なパーソナルコンピュータを使用した。滞留の有無について以下の3段階で評価した。ここで故障とは粒子の凝集に起因するスジ故障や点欠陥を意味する。スジ故障や点欠陥について、テストでは目視検査で行い、製造機では面検機(自動カメラ検査機)で検査を行った。
A:滞留なく、故障のおそれなし。
B:滞留しやすいが問題ないレベルである。
C:滞留があり、故障発生の可能性あり。
(Residence)
It was observed by flow velocity distribution by CFD (Computational Fluid Dynamics) whether particles were retained in the reduced diameter portion of the orifice. STAR-LT (manufactured by C.A.Dapco Japan Co., Ltd.) was used as CFD simulation software, and a commercially available general-purpose personal computer was used as hardware. The presence or absence of residence was evaluated in the following three stages. Here, the failure means a streak failure or a point defect caused by particle aggregation. For streaks and point defects, the test was conducted by visual inspection, and the production machine was inspected by an inspection machine (automatic camera inspection machine).
A: No stagnation and no risk of failure.
B: Although it is easy to stay, it is a level which does not have a problem.
C: There is a stagnation and a failure may occur.

(総合評価)
解凝集の効果、及び滞留の有無を考慮して、製造適正について以下の3段階で総合評価を行った。
A:より好ましい(解凝集の効果、及び滞留の有無が何れもがA)。
B:採用可(解凝集の効果、及び滞留の有無が何れもがB以上で、総合評価のAを除く)。
C:採用不可(解凝集の効果、及び滞留の有無が何れがC)。
(Comprehensive evaluation)
Considering the effect of deagglomeration and the presence or absence of stagnation, a comprehensive evaluation was performed on the production suitability in the following three stages.
A: More preferable (the effect of deagglomeration and the presence or absence of retention are both A).
B: Adoption is possible (the effect of deagglomeration and the presence or absence of retention are both B or more, excluding A in the comprehensive evaluation).
C: Not applicable (C is the effect of deagglomeration and the presence or absence of retention).

(評価結果)
図4の表の試験2〜5、8〜11,14,15,18,19に示されるように、120〜180°の縮径角度α、0mmの狭路長さ、2〜10°の拡径角度β、1〜10mmの曲率半径r、及び7〜18%の縮小率のオリフィスに、粒子を含む流体を通過させた場合、B以上の評価を得た。
(Evaluation results)
As shown in tests 2 to 5, 8 to 11, 14, 15, 18, and 19 in the table of FIG. 4, the diameter reduction angle α of 120 to 180 °, the narrow path length of 0 mm, and the expansion of 2 to 10 °. When a fluid containing particles was passed through an orifice having a diameter angle β, a curvature radius r of 1 to 10 mm, and a reduction rate of 7 to 18%, an evaluation of B or more was obtained.

試験2〜5中の試験3,4に見られるように、狭路長さ、拡径角度β、曲率半径r、及び縮小率を一定とした場合、130〜170°の縮径角度αにすることで、Aの総合評価が得られた。   As seen in Tests 3 and 4 in Tests 2 to 5, when the narrow path length, the diameter expansion angle β, the curvature radius r, and the reduction ratio are constant, the diameter reduction angle α is 130 to 170 °. Thus, a comprehensive evaluation of A was obtained.

試験8〜11中の試験9,10に見られるように、縮径角度α、狭路長さ、曲率半径r、及び縮小率を一定とした場合、5〜8°の拡径角度βにすることで、Aの総合評価が得られた。   As seen in Tests 9 and 10 in Tests 8 to 11, when the diameter reduction angle α, the narrow path length, the radius of curvature r, and the reduction rate are constant, the diameter expansion angle β is 5 to 8 °. Thus, a comprehensive evaluation of A was obtained.

試験4,18,19中の試験4,18に見られるように、縮径角度α、狭路長さ、拡径角度β、及び曲率半径rを一定とした場合、7〜14%の縮小率にすることで、Aの総合評価が得られた。   As seen in Tests 4 and 18 in Tests 4, 18 and 19, when the diameter reduction angle α, the narrow path length, the diameter expansion angle β and the radius of curvature r are constant, the reduction rate is 7 to 14%. A comprehensive evaluation of A was obtained.

一方、試験1,6のように120〜180°の縮径角度αの範囲を外れる場合、解凝集効果の評価がCであった。試験7,12のように2〜10°の拡径角度βの範囲を外れる場合、解凝集効果の評価がCであった。試験13,16のように1〜10mmの曲率半径rの範囲を外れる場合、解凝集効果の評価がBであり、滞留の有無の評価がCであった。試験17,20のように7〜18%の縮小率の範囲を外れる場合、解凝集効果の評価がCであった。試験21のように狭路が存在する場合、解凝集効果の評価がCであった。狭路を通過する際に再凝集すると推測される。   On the other hand, the evaluation of the deagglomeration effect was C when the diameter was outside the range of 120 to 180 ° as in Tests 1 and 6. The evaluation of the deagglomeration effect was C when the expansion angle β was outside the range of 2 to 10 ° as in Tests 7 and 12. When the curvature radius r was outside the range of 1 to 10 mm as in Tests 13 and 16, the evaluation of the deagglomeration effect was B, and the evaluation of the presence or absence of retention was C. The evaluation of the deagglomeration effect was C when out of the range of the reduction rate of 7 to 18% as in Tests 17 and 20. When narrow paths existed as in Test 21, the evaluation of the deaggregation effect was C. Presumed to re-aggregate when passing through a narrow path.

10…オリフィス、12…オリフィス本体、14…流入開口、16…狭窄開口、18…一次側内壁、20…縮径部、22…曲面、24…縮径面、26…流出開口、28…二次側内壁、30…拡径部、32…一次側フランジ、34…溝、36…二次側フランジ、38…溝、60…配管、100…製造ライン、102…バックアップローラ、104…スロットダイ、106…塗布液、108…貯留タンク、110…送液ポンプ、112…圧力計、114…減圧脱気装置、116…濾過フィルタ、118…流量計、120…処理ゾーン、130…第2貯留タンク、200…送液装置、202…流体
DESCRIPTION OF SYMBOLS 10 ... Orifice, 12 ... Orifice main body, 14 ... Inflow opening, 16 ... Constriction opening, 18 ... Primary side inner wall, 20 ... Reduced diameter part, 22 ... Curved surface, 24 ... Reduced diameter surface, 26 ... Outflow opening, 28 ... Secondary Side inner wall, 30 ... enlarged diameter portion, 32 ... primary side flange, 34 ... groove, 36 ... secondary side flange, 38 ... groove, 60 ... piping, 100 ... production line, 102 ... backup roller, 104 ... slot die, 106 DESCRIPTION OF SYMBOLS ... Coating liquid, 108 ... Storage tank, 110 ... Liquid feed pump, 112 ... Pressure gauge, 114 ... Depressurization deaerator, 116 ... Filtration filter, 118 ... Flow meter, 120 ... Processing zone, 130 ... Second storage tank, 200 ... Liquid feeding device, 202 ... Fluid

Claims (7)

オリフィス本体と、
前記オリフィス本体の流入側に位置する流入開口と、
前記流入開口から連続する1〜10mmの曲率半径の曲面と、前記曲面から連続し120〜180°の角度で狭窄開口に縮径する縮径面とを有する一次側内壁で構成される縮径部と、
前記狭窄開口から流出開口に連続し、かつ2〜10°の角度で拡径する二次側内壁で構成される拡径部と、を備え、
前記流入開口の直径に対する前記狭窄開口の直径の比が0.07〜0.18であるオリフィス。
An orifice body;
An inflow opening located on the inflow side of the orifice body;
A reduced diameter portion composed of a primary inner wall having a curved surface with a radius of curvature of 1 to 10 mm continuous from the inflow opening and a reduced diameter surface continuous from the curved surface and reduced in diameter to a constriction opening at an angle of 120 to 180 °. When,
A diameter-expanding portion that is continuous from the narrowing opening to the outflow opening and that is configured by a secondary inner wall that expands at an angle of 2 to 10 °, and
An orifice having a ratio of the diameter of the constriction opening to the diameter of the inflow opening of 0.07 to 0.18.
前記一次側内壁の前記縮径面の角度が130〜170°である請求項1に記載のオリフィス。   The orifice according to claim 1, wherein an angle of the reduced diameter surface of the primary side inner wall is 130 to 170 °. 前記二次側内壁の拡径する角度が5〜8°である請求項1又は2に記載のオリフィス。   The orifice according to claim 1 or 2, wherein an angle of diameter expansion of the secondary side inner wall is 5 to 8 °. 前記流入開口の直径に対する前記狭窄開口の直径の比が0.07〜0.14である請求項1から3のいずれか一項に記載のオリフィス。   The orifice according to any one of claims 1 to 3, wherein a ratio of the diameter of the constriction opening to the diameter of the inflow opening is 0.07 to 0.14. 粒子を含む流体が通過する流路と、
前記流路の一部に設けられ、前記流体が通過する請求項1から4のいずれか一項に記載のオリフィスと、
前記流路と前記オリフィスとに、前記流体を送るための駆動源と、
を備える送液装置。
A flow path through which a fluid containing particles passes;
The orifice according to any one of claims 1 to 4, provided in a part of the flow path, through which the fluid passes;
A drive source for sending the fluid to the flow path and the orifice;
A liquid feeding device comprising:
粒子を含む塗布液が通過する流路と、
前記流路の一部に設けられ、前記塗布液が通過する請求項1から4のいずれか一項に記載のオリフィスと、
前記オリフィスの下流側に設けられた塗布ヘッドと、
を備える塗布装置。
A flow path through which a coating liquid containing particles passes,
The orifice according to any one of claims 1 to 4, which is provided in a part of the flow path and through which the coating liquid passes,
A coating head provided downstream of the orifice;
A coating apparatus comprising:
請求項6に記載の塗布装置から、連続搬送されるウエブに粒子を含む塗布液を供給し、塗膜を形成する工程と、
前記塗膜を乾燥、及び/又は硬化させる工程と、
を含む光学フィルムの製造方法。
A step of supplying a coating liquid containing particles to the continuously conveyed web from the coating apparatus according to claim 6 to form a coating film;
Drying and / or curing the coating film;
The manufacturing method of the optical film containing this.
JP2015119899A 2015-06-15 2015-06-15 Orifice, liquid feeding device using the same, coating device, and optical film manufacturing method Active JP6472139B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015119899A JP6472139B2 (en) 2015-06-15 2015-06-15 Orifice, liquid feeding device using the same, coating device, and optical film manufacturing method
KR1020160069180A KR102429718B1 (en) 2015-06-15 2016-06-03 Orifice, liquid feeding device and coating device using the same, and method of manufacturing optical film
TW105118070A TWI682815B (en) 2015-06-15 2016-06-08 Orifice, liquid feeding device and coating device using the same, and method of manufacturing optical film
CN201610423348.0A CN106246652B (en) 2015-06-15 2016-06-15 The manufacturing method of aperture part, liquid feeding device, apparatus for coating and optical thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015119899A JP6472139B2 (en) 2015-06-15 2015-06-15 Orifice, liquid feeding device using the same, coating device, and optical film manufacturing method

Publications (3)

Publication Number Publication Date
JP2017003066A true JP2017003066A (en) 2017-01-05
JP2017003066A5 JP2017003066A5 (en) 2017-11-16
JP6472139B2 JP6472139B2 (en) 2019-02-20

Family

ID=57613548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015119899A Active JP6472139B2 (en) 2015-06-15 2015-06-15 Orifice, liquid feeding device using the same, coating device, and optical film manufacturing method

Country Status (4)

Country Link
JP (1) JP6472139B2 (en)
KR (1) KR102429718B1 (en)
CN (1) CN106246652B (en)
TW (1) TWI682815B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108043662A (en) * 2018-01-23 2018-05-18 佛山市雅路斯工业设备有限公司 A kind of coating head
DE102022124763A1 (en) * 2022-09-27 2024-03-28 Khs Gmbh Nozzle with conical flow channel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57156200A (en) * 1980-12-12 1982-09-27 Hydronautics Method and device for eroding surface of solid by using high-speed liquid jet
JPS6381824A (en) * 1986-09-25 1988-04-12 Canon Inc Control of fine particle flow
JPH09100748A (en) * 1995-08-02 1997-04-15 Trw Inc Cavitating venturi for low reynolds-number flow
US20130037153A1 (en) * 2011-08-14 2013-02-14 Watermiser, Llc Elliptical chambered flow restrictor
WO2014120066A1 (en) * 2013-01-31 2014-08-07 Scania Cv Ab Egr-system, engine comprising such system and vehicle comprising such engine

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2108195U (en) * 1991-03-30 1992-06-24 石油大学(华东) Jet generator with self-oscillation cavitation structure
CN2124339U (en) * 1992-06-27 1992-12-09 石油大学(北京) Jet generator with self-oscillatory cavitation erosion structure
EP0931941B1 (en) * 1997-08-15 2005-12-28 Fujikin Inc. Orifice for pressure type flow rate control unit and process for manufacturing orifice
JP2003159549A (en) * 2001-09-12 2003-06-03 Ikeuchi:Kk Spray nozzle
EP1834699A4 (en) * 2005-01-07 2008-06-25 Kobe Steel Ltd Thermal spraying nozzle device and thermal spraying equipment
CN100406130C (en) * 2005-06-30 2008-07-30 宝山钢铁股份有限公司 Cold air powered spraying method and device
WO2009128292A1 (en) * 2008-04-18 2009-10-22 パナソニック電工株式会社 Cleaning-water discharging faucet system
CN201187288Y (en) * 2008-04-19 2009-01-28 邓海波 Multifunctional downhole liquid-producing processor
JP4413266B1 (en) * 2008-12-15 2010-02-10 アクアサイエンス株式会社 Object cleaning method and object cleaning system
DE102011078508B4 (en) * 2011-07-01 2017-11-09 Lechler Gmbh full cone nozzle
JP5798411B2 (en) * 2011-08-25 2015-10-21 株式会社Screenホールディングス Coating device
JP2013173091A (en) * 2012-02-24 2013-09-05 Toppan Printing Co Ltd Coating device and coating film forming method
JP6118544B2 (en) * 2012-11-29 2017-04-19 Idec株式会社 Fine bubble generating nozzle and fine bubble generating device
JP2014196468A (en) 2013-03-04 2014-10-16 三菱化学株式会社 Production method of diol slurry for polyester, production method of polyester resin composition, and polyester film
TWM468351U (en) * 2013-05-02 2013-12-21 Yamaguchi Industry Co Ltd Device for generating bubble
JP6068271B2 (en) * 2013-06-10 2017-01-25 東レ株式会社 Coating device and coating device
JP6167321B2 (en) * 2014-04-11 2017-07-26 有限会社オーケー・エンジニアリング Loop flow type bubble generating nozzle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57156200A (en) * 1980-12-12 1982-09-27 Hydronautics Method and device for eroding surface of solid by using high-speed liquid jet
JPS6381824A (en) * 1986-09-25 1988-04-12 Canon Inc Control of fine particle flow
JPH09100748A (en) * 1995-08-02 1997-04-15 Trw Inc Cavitating venturi for low reynolds-number flow
US20130037153A1 (en) * 2011-08-14 2013-02-14 Watermiser, Llc Elliptical chambered flow restrictor
WO2014120066A1 (en) * 2013-01-31 2014-08-07 Scania Cv Ab Egr-system, engine comprising such system and vehicle comprising such engine

Also Published As

Publication number Publication date
KR20160147653A (en) 2016-12-23
KR102429718B1 (en) 2022-08-08
JP6472139B2 (en) 2019-02-20
CN106246652A (en) 2016-12-21
TW201707792A (en) 2017-03-01
TWI682815B (en) 2020-01-21
CN106246652B (en) 2019-10-18

Similar Documents

Publication Publication Date Title
JP6472139B2 (en) Orifice, liquid feeding device using the same, coating device, and optical film manufacturing method
JP2009198545A (en) Multilayer film and method of manufacturing the same
JP4924505B2 (en) Antiglare film, method for producing the same, polarizing plate using antiglare film, and display device
JP2003260400A (en) Coating method and apparatus
JP2007117987A (en) Painting device
JP2009025604A (en) Polarizing plate protective film, method and apparatus for manufacturing the same, and polarizing plate, method for manufacturing the same, and display device
Lee et al. Effects of surface morphological structure of a brown alga miyeok (Undaria pinnatifida) on sustainable drag reduction
JP4505810B2 (en) Application method and production method of antiglare film
JP2003285343A (en) Method for manufacturing optical thin film and optical thin film
JP5135845B2 (en) LAMINATE MANUFACTURING METHOD AND OPTICAL FILM MANUFACTURING METHOD
JP2007245024A (en) Coating method, device, and method for manufacturing optical film
JP2009234169A (en) Manufacturing method for optical film
JP2011143348A (en) Coating apparatus and method for producing optical film using the same
JP2010115637A (en) Coating device
JP4163876B2 (en) Application method
JP5157340B2 (en) Manufacturing method of coating material and coating device
JP5277271B2 (en) Method for producing film with particle-containing layer
JPWO2013018341A1 (en) Manufacturing method of optical film
JP2014000496A (en) Method for forming coating film
JP2004105865A (en) Method for polymer-solution filtration and solution film-forming method
JP2017003066A5 (en)
JP2006247531A (en) Coating method and production method of optical film
JP2009215525A (en) Optical film, method for manufacturing the same, polarizing plate and display using optical film
JP5087230B2 (en) Coating method and optical film manufacturing method
JP7152378B2 (en) Coating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190121

R150 Certificate of patent or registration of utility model

Ref document number: 6472139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250