JP2016524072A - 可変後縁内側半径を有するタービンベーン - Google Patents

可変後縁内側半径を有するタービンベーン Download PDF

Info

Publication number
JP2016524072A
JP2016524072A JP2016518333A JP2016518333A JP2016524072A JP 2016524072 A JP2016524072 A JP 2016524072A JP 2016518333 A JP2016518333 A JP 2016518333A JP 2016518333 A JP2016518333 A JP 2016518333A JP 2016524072 A JP2016524072 A JP 2016524072A
Authority
JP
Japan
Prior art keywords
platform
radius
outer platform
inner radius
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016518333A
Other languages
English (en)
Other versions
JP6392333B2 (ja
Inventor
ポーター,スティーヴン,ディー.
オルス,ジョン,ティー.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Technologies Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of JP2016524072A publication Critical patent/JP2016524072A/ja
Application granted granted Critical
Publication of JP6392333B2 publication Critical patent/JP6392333B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/023Transition ducts between combustor cans and first stage of the turbine in gas-turbine engines; their cooling or sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/047Nozzle boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • F01D25/162Bearing supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/122Fluid guiding means, e.g. vanes related to the trailing edge of a stator vane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

タービンベーンは、内側プラットフォームと外側プラットフォームとの間に延在するエアフォイルを有する。エアフォイルは中空である。エアフォイル内部の中空部は、内側前縁と内側後縁との間に延在する。内側半径は、内側後縁において円周方向に画定され、内側前縁から内側後縁に延在する壁の間において測定される。内側半径は、内側プラットフォームと外側プラットフォームとの間に画定された半径方向の全長に沿って変化する。中間タービンフレーム及びガスタービンエンジンも開示される。

Description

(関連出願の参照)
本出願は、2013年6月14日に出願された米国仮出願第61/835015号の優先権を主張するものである。
本発明は、内側半径が半径方向に沿って変化するタービンベーンに関する。
ガスタービンエンジンは公知であり、これは一般に、圧縮空気を、燃料と混合して点火する燃焼セクション内に圧縮空気を供給するための圧縮機を含む。この燃焼生成物は、タービンロータを通して下流へと移動して、それらを回転させる。タービンロータは静止ベーンと交互に配置され、これらのベーンは、燃焼生成物が下流側のタービンロータに到達するときに燃焼生成物の流れを所望の状況になるよう適切に導くように使用される。
ベーンが用いられる一つの位置として、より高圧のタービンロータとより低圧のタービンロータとの間に位置付けられた中間タービンフレーム内が挙げられる。ベーンは、一般に、エアフォイル外周部を含み、中空である。エアフォイルの後縁の内側半径(inner radius)は、通常、ベーンの半径寸法に沿って一定であってきた。この内側半径は、円周方向において画定されるものである。
特徴的な実施形態では、タービンベーンは、内側プラットフォームと外側プラットフォームとの間に延在するエアフォイルを有する。エアフォイルは中空である。エアフォイル内部の中空部は、内側前縁と内側後縁との間に延在する。内側半径(inner radius)は、内側後縁において円周方向に画定され、内側前縁から内側後縁に延在する2つの壁の間において測定される。内側半径は、内側プラットフォームと外側プラットフォームとの間に画定された半径方向の全長に沿って変化する。
先の実施形態に従う別の実施形態では、内側半径は、内側及び外側プラットフォームの少なくとも一方における内側半径のほうが、内側プラットフォームと外側プラットフォームとの間の半径方向に画定された領域内に配置されたより小さい半径位置における内側半径よりも大きい。
先の実施形態のいずれかに従う別の実施形態では、内側半径は、内側及び外側プラットフォームの両方における内側半径のほうが、より小さい半径位置における内側半径よりも大きい。
先の実施形態のいずれかに従う別の実施形態では、より小さい半径位置は、内側及び外側プラットフォームの少なくとも一方における内側半径よりも小さい、略一定の内側半径を含み、内側後縁の半径方向長さの大部分に沿って使用される。
先の実施形態のいずれかに従う別の実施形態では、内側及び外側プラットフォームの少なくとも一方における内側半径の、より小さい半径位置における内側半径に対する比は、1.1〜6.1である。
先の実施形態のいずれかに従う別の実施形態では、シール領域が、内側及び外側プラットフォームの少なくとも一方における後縁を越えた位置に形成される。
先の実施形態のいずれかに従う別の実施形態では、リブが、内側及び外側プラットフォームの少なくとも一方における内側後縁を越えた位置に形成される。
先の実施形態のいずれかに従う別の実施形態では、エアフォイルの外側前縁及び内側前縁が内側プラットフォームと外側プラットフォームとの間を非垂直角度で延在するように、ベーンが傾斜する。
先の実施形態のいずれかに従う別の実施形態では、内側プラットフォームと外側プラットフォームとの間に複数個の長さが異なる内側半径が存在する。
別の特徴的な実施形態では、ガスタービンエンジンに使用される中間タービンフレームが、内側プラットフォーム及び外側プラットフォームを含む複数個のベーンを有する。各ベーンは、内側プラットフォームと外側プラットフォームとの間に延在するエアフォイルを有する。エアフォイルは中空であり、エアフォイル内部の中空部は、内側前縁と内側後縁との間に延在する。内側半径は、内側後縁において円周方向に画定され、中空部を画定する円周方向の壁の間において測定される。内側半径は、内側プラットフォームと外側プラットフォームとの間に画定された半径方向長さに沿って変化する。
先の実施形態に従う別の実施形態では、内側半径は、内側及び外側プラットフォームの少なくとも一方における内側半径のほうが、内側プラットフォームと外側プラットフォームとの間の半径方向に画定された領域内に配置されたより小さい半径位置における内側半径よりも大きい。
先の実施形態のいずれかに従う別の実施形態では、内側半径は、内側及び外側プラットフォームの両方における半径のほうが、内側プラットフォームと外側プラットフォームとの間の半径方向におけるより小さい半径位置の内側半径よりも長い。
先の実施形態のいずれかに従う別の実施形態では、より小さい半径位置は、内側及び外側プラットフォームの少なくとも一方における内側半径よりも小さい、略一定の内側半径を含み、その略一定の内側半径は、内側後縁の半径方向長さの大部分に沿って使用される。
先の実施形態のいずれかに従う別の実施形態では、内側及び外側プラットフォームの少なくとも一方における内側半径の、より小さい半径位置における内側半径に対する比は、1.1〜6.1である。
先の実施形態のいずれかに従う別の実施形態では、シール領域が、内側及び外側プラットフォームの少なくとも一方における後縁を越えた位置に形成される。
先の実施形態のいずれかに従う別の実施形態では、リブが、内側及び外側プラットフォームの少なくとも一方における内側後縁を越えた位置に形成される。
先の実施形態のいずれかに従う別の実施形態では、エアフォイルの外側前縁及び内側前縁が内側プラットフォームと外側プラットフォームとの間を非垂直角度で延在するように、ベーンが傾斜する。
先の実施形態のいずれかに従う別の実施形態では、内側プラットフォームと外側プラットフォームとの間に複数個の長さが異なる内側半径が存在する。
別の特徴的な実施形態では、ガスタービンエンジンは、より高圧のタービンロータと、より低圧のタービンロータと、より高圧のタービンロータおよびより低圧のタービンロータの間に位置付けられるとともに、ベアリングを支持する中間タービンフレームと、を有する。中間タービンフレームは、内側プラットフォーム及び外側プラットフォームと、内側プラットフォームと外側プラットフォームとの間に延在するエアフォイルを各々が含む複数個のベーンとを含む。エアフォイルは中空であり、エアフォイル内部の中空部は、内側前縁と内側後縁との間に延在する。内側プラットフォーム及び外側プラットフォームの少なくとも一方における内側前縁の第一の位置は、内側後縁の半径方向中間の第二の位置よりも、エアフォイルの外側前縁からより長い距離をあけて離間される。
先の実施形態に従う別の実施形態では、内側半径が、内側後縁において円周方向に画定され、中空部を画定する円周方向の壁の間において測定される。内側半径は、内側プラットフォームと外側プラットフォームとの間に画定された半径方向長さに沿って変化し、第一の位置と第二の位置とにおいて異なる距離を提供する。
先の実施形態のいずれかに従う別の実施形態では、内側半径は、内側及び外側プラットフォームの少なくとも一方における内側半径のほうが、内側プラットフォームと外側プラットフォームとの間の半径方向における領域内に配置されたより小さい半径位置における内側半径よりも大きい。
先の実施形態のいずれかに従う別の実施形態では、内側半径は、内側及び外側プラットフォームの両方における内側半径のほうが、内側プラットフォームと外側プラットフォームとの間の半径方向におけるより小さい半径位置における内側半径よりも大きい。
先の実施形態のいずれかに従う別の実施形態では、より小さい半径位置は、内側及び外側プラットフォームの少なくとも一方における内側半径よりも小さい、略一定の内側半径を含み、その略一定の内側半径は、内側後縁の半径方向長さの大部分に沿って使用される。
先の実施形態のいずれかに従う別の実施形態では、内側及び外側プラットフォームの少なくとも一方における内側半径の、より小さい半径位置における内側半径に対する比は、1.1〜6.1である。
先の実施形態のいずれかに従う別の実施形態では、シール領域が、内側及び外側プラットフォームの少なくとも一方における後縁を越えて画定された領域内の位置に形成される。
先の実施形態のいずれかに従う別の実施形態では、エアフォイルの外側前縁及び内側前縁が内側プラットフォームと外側プラットフォームとの間を非垂直角度で延在するように、ベーンが傾斜する。
先の実施形態のいずれかに従う別の実施形態では、内側プラットフォームと外側プラットフォームとの間に複数個の長さが異なる内側半径が存在する。
前の段落、特許請求の範囲または以下の記述及び図面の実施形態、実施例及び代替案は、任意のそれらのさまざまな態様または個々の特徴を含み、独立して用いられてもよいし、任意の組み合わせにおいて用いられてもよい。一実施形態に関連して記述された特徴は、そのような特徴が互いに矛盾しない限り、すべての実施形態に応用できる。
これらの及び他の特徴は、以下の図面及び明細書から最もよく理解できる。
ガスタービンエンジンを示す図である。 図1Aのガスタービンエンジンに組み込まれる中間タービンフレームを示す図である。 ベーンの詳細を示す図である。 第一の実行可能な後縁内側半径を示す図である。 代替的な後縁内側半径を示す図である。 図2Aと図2Bの代替案との間の差異の詳細を示す図である。 代替的な実施形態を示す図である。 設計課題を示す図である。 別の設計課題を示す図である。 図2Cの線4−4に沿った断面図である。 代替的な実施形態を示す図である。
図1Aは、ガスタービンエンジン20を概略的に図示する。ガスタービンエンジン20は、2スプールターボファンとして本明細書に開示され、通常、ファンセクション22、圧縮機セクション24、燃焼器セクション26、及びタービンセクション28を組み込む。代替的なエンジンは、他のシステムまたは特徴の中でも、オーグメンタセクション(図示せず)を含んでもよい。ファンセクション22が、ナセル15内に画定されたバイパスダクト内のバイパス流路Bに沿って空気を吹き流し、さらに、圧縮機セクション24が、圧縮のためにコア流路Cに沿って空気を吹き流し、この空気は、燃焼器セクション26へと連絡し、その後、タービンセクション28を通して膨張する。開示した限定されない実施形態では、2スプールターボファンガスタービンエンジンとして描写したが、本明細書に記述した概念が2スプールターボファンの使用に限定されず、本教示が3スプール構成を含む他のタイプのタービンエンジンにも応用できることが理解されるはずである。
例示のエンジン20は、通常、低速スプール30及び高速スプール32を含み、これらのスプールは、いくつかのベアリングシステム38によって、エンジン静止構造体36に対してエンジンの中心長手方向軸Aを中心に回転するように取り付けられている。さまざまな位置におけるさまざまなベアリングシステム38を、代替的または追加的に提供することができ、ベアリングシステム38の位置を、用途に適切なように変えることができることが理解されるはずである。
低速スプール30は、通常、ファン42、低圧圧縮機44及び低圧タービン46を相互接続する内側シャフト40を含む。内側シャフト40は、変速機構を通じてファン42に接続されており、例示のガスタービンエンジン20では、ギア付き構造体48として図示され、低速スプール30よりも低速でファン42を駆動する。高速スプール32は、高圧圧縮機52と高圧タービン54とを相互接続する外側シャフト50を含む。燃焼器56が、例示のガスタービン20では、高圧圧縮機52と高圧タービン54との間に配置されている。エンジン静止構造体36の中間タービンフレーム57が、通常、高圧タービン54と低圧タービン46との間に配置されている。中間タービンフレーム57は、さらに、ベアリングシステム38をタービンセクション28内において支持する。内側シャフト40と外側シャフト50とは同軸に配置されており、ベアリングシステム38によって、それらの長手方向軸と同一直線上にあるエンジンの中心長手方向軸Aを中心に回転する。図1Aに示さない、3スプールを備えたエンジン20の実施形態では、複数の中間タービンフレーム57が、例えば、高スプールと中間スプールとの間、及び中間スプールと低スプールとの間に存在してもよい。当業者は、本明細書に開示されたさまざまな実施形態を、さまざまな構成のエンジン20において見られる複数のそのようなスプール間位置に適用することができる。
コア空気流が、低圧圧縮機44、その後、高圧圧縮機52によって圧縮され、燃焼器56内で混合されて燃料とともに燃焼される。その後、高圧タービン54及び低圧タービン46にわたる間に膨張される。中間タービンフレーム57は、コア空気流路C内にエアフォイル59を含む。タービン46、54は、それぞれ、膨張に反応して、低速スプール30及び高速スプール32を回転させる。ファンセクション22、圧縮機セクション24、燃焼器セクション26、タービンセクション28及びファン駆動歯車装置48の各々の位置を変えることができることが認識される。例えば、歯車装置48は、燃焼器セクション26の後方、さらにはタービンセクション28の後方に位置してもよく、ファンセクション22は、歯車装置48の位置の前方に位置付けられてもよいし、後方に位置付けられてもよい。
一実施例のエンジン20は、高バイパスギア付き航空機エンジンである。さらなる実施例では、エンジン20のバイパス比は、約6(6)よりも大きく、実施例の実施形態では、約10(10)よりも大きい。そして、ギア付き構造体48は、遊星歯車装置などの遊星歯車列またはギア減速比が約2.3よりも大きい他の歯車装置であり、低圧タービン46は、約5よりも大きい圧力比を有する。開示した一実施形態では、エンジン20のバイパス比は、約10(10:1)よりも大きく、ファンの直径が、低圧圧縮機44の直径よりもかなり大きく、そして低圧タービン46の圧力比が、約5(5:1)よりも大きい。低圧タービン46の圧力比は、排気ノズルの前方の低圧タービン46の出口における圧力に対する、低圧タービン46の入口の前方で測定された圧力である。ギア付き構造体48は、遊星歯車装置などの遊星歯車列またはギア減速比が約2.3:1よりも大きい他の歯車装置であってもよい。しかしながら、前述のパラメータが、ギア付き構造体エンジンの一実施形態の単なる例示であり、本発明を、直接駆動ターボファンを含む他のガスタービンエンジンにも応用できることが理解されるはずである。
高バイパス比に起因するバイパス流路Bによってかなりの量の推力がもたらされる。エンジン20のファンセクション22は、特定の飛行条件、一般の巡航であれば、約0.8マッハ及び約35000フィート用に設計されている。この0.8マッハ及び35000フィートの飛行条件は、エンジンの燃費が最良であり、「バケット巡航推力当たり燃料消費率(「TSFC」)」としても公知であり、燃焼される燃料のlbmをその最小点でエンジンが発生する推力のlbfで割った業界標準パラメータである。「低ファン圧力比」は、ファン出口ガイドベーン(「FEGV」)装置を含まない、ファンブレードのみにわたる圧力比である。限定されない一実施形態に従う、本明細書に開示されるような低ファン圧力比は、約1.45未満である。「低修正ファン先端速度」は、実際のファン先端速度(ft/秒)を業界標準温度補正値[(Tram°R)/(518.7°R)]0.5で割ったものである。限定されない一実施形態に従う、本明細書に開示されるような「低修正ファン先端速度」は、約1150ft/秒よりも遅い。
図1Bは、ガスタービンエンジン20に組み込むことができる中間タービンフレーム80を図示する。換言すれば、中間タービンフレーム80は、中間タービンフレーム57の位置に使用し、ベアリング38を支持することができる。外側プラットフォーム82が、内側プラットフォーム84と間隔をあけて位置する。エアフォイル86が、内側プラットフォーム84と外側プラットフォーム82との間に延在する。エアフォイル86は、中空状と見ることができる。
図1Cは、ベーン200の詳細を示す。ベーン200は、エアフォイル86並びにプラットフォーム82及び84の一部分を含むように画定される。図1Cに示すように、ベーン200は分割される。図1Cには、共に接続されて繰り返しユニットをもたらす二つのベーン200を示すが、他の実施形態では、単一の繰り返しユニット内に存在するベーン200の数は、一つでもよいし、複数であってもよい。繰り返しユニットは、エンジン20の中心線を中心にして軸方向に組み立てられて、略円周方向の構造体を形成する。このように、一つ以上のベーン200を含む複数の繰り返しユニットを共に結合することによって、図1Bに示すような中間タービンフレーム80が形成される。他方で、開示した実施形態では、中間タービンフレーム80は、単一パートとして鋳造される。
図2Aに示すように、後縁90における内側半径89は、比較的小さい。代替的に、図2Bは、より大きい後縁半径190を示す。
図2Cは、図2Bの半径190と図2Aの半径89との間の材料の量の差異を示す。
図2Dは、プラットフォームにおける半径が過度に小さいことに関連して懸念が生じる別のベーンの実施形態486を概略的に示す。ベーン486は傾斜しており、これは、490における前縁の外端が内端491よりもさらに前方に離間されていることを意味する。この結果、外側後縁492も、内側後縁494に対して前方に離間される。別の言い方をすれば、前縁及び後縁は、非垂直角度でプラットフォームから延在する。
シール500(概略的に示す)が、プラットフォーム82及び84の両方に位置付けられる。シール500は、エアフォイル486内部の中空部を封鎖してはならない。いくぶん概略的に示すように、半径190ではなく、図2Cに図示するような半径89を使用すると、後部の半径方向内端におけるシール500が中空の部分を封鎖する可能性がある。これは望ましくはない。これにより、プラットフォームの一つにより大きい半径を有することは有益であり得るという別の理由となる。
図3Aは、後縁内側半径190の終端が後縁内側半径89の終端よりも前に位置することを示す。仮に、内側プラットフォーム84において後縁内側半径89を使用すると、それがシール領域94を横切って延在する。それ故に、内側プラットフォーム84においてはより大きい半径190であることが望ましい。
同様に、図3Bに示すリブ98が外側プラットフォーム82に形成され、後縁のより大きい内側半径190は、リブ98を横切る手前で終端する。
しかしながら、図2Cから認識できるように、より大きい半径190を使用する結果として、追加の材料が必要となる。追加の材料は、必ずしも、プラットフォーム82とプラットフォーム84との間のベーン86内の半径方向の全長に沿わなくてもよい。
それ故に、図4Aは、後縁90の内面100の半径方向に沿った可変半径(variable radius)を示す。半径R1が、外側プラットフォーム82において使用され、後縁面100の半径方向の全長の大部分に延在する半径R2へと合流する。遷移半径R3が、内側プラットフォーム84に延在する半径R4に遷移するように使用できる。R1〜R4が、図4の平面内に画定されることが理解されるはずである。換言すれば、R1〜R4は、図2Cに示すような、略円周方向かつベーン86の壁102と壁104との間において測定される。
図4Aは、エアフォイル86の外側後縁における外壁101を示す。図4から認識できるように、この外面は、内面100よりも一定である。他方で、外面は、変化させてもよい。
実施形態では、R1及びR4は、R2よりもかなり大きくてもよい。実施例として、R1及びR4は、0.156インチ(約0.2286センチメートル)であり、一方で、R2は、0.030インチ(約0.1016センチメートル)であってもよい。実施形態では、R1またはR4の、R2に対する比は、1.1〜6.1であってもよい。ここでもまた、R2は、面100の半径方向の全長の大部分に延在してもよい。
実施形態では、任意の数の変化する半径を使用することができる。実施例として、小さい遷移半径と、その後に大きい内径半径(inner diameter radius)と、を持つ小半径(small radius)を外径(outer diameter)に使用することができる。さらに、前に開示したように、外側半径(outer radius)が大きく、内半径(internal radius)が小さく、そして内側半径が大きくてもよい。さらに、外側半径が大きく、内半径が大きく、そして内側半径が小さくてもよい。特定の用途に適切に、いくつかの半径の任意の数の組み合わせを使用することができる。
図4Aに示すように、プラットフォーム82及び84における面100の地点300及び302は、符号301に示すような中間部よりも、流れ方向Dにおけるさらなる上流側に離間されてもよい。別の言い方をすれば、半径方向中間部301は、外側部300及び302よりも、外壁101に近くてもよい。
図4Aは、開示した特徴の実行力を示す実施例であり、さまざまな可能性を図示する。実施例として、半径方向中央突出部304の半径は、部分301よりも大きい。
実際に、図4Bは、さらに想定され得る実施形態290を示し、半径方向外側部により大きい半径R0が存在し、遷移半径Tが一定半径Cと融合し、別の遷移半径Tに合流して、最終的に内端におけるより大きい半径RIに合流する。一定半径Cは、ベーン290の半径方向の全長の大部分に延在してもよい。
全長に沿って可変の半径を使用することにより、材料を除去し、それ故に、応力及び前述のような他の物理的な問題になおも対処しつつ、軽量化をもたらす。一実施例では、可変半径の使用によって、1ポンドほども軽量化を達成することができる。
本発明の実施形態を開示したが、当業者は、特定の変更が本開示の範囲内に収まることを認識する。その理由のために、以下の特許請求の範囲が、本開示の真の範囲及び内容を決定するように考慮されるはずである。

Claims (27)

  1. 内側プラットフォームと外側プラットフォームとの間に延在するエアフォイルであって、中空であり、かつ、前記エアフォイル内の中空部が内側前縁と内側後縁との間に延在する、エアフォイルと、
    前記内側前縁から前記内側後縁へと延在する2つの壁の間において測定された、前記内側後縁において円周方向に画定された内側半径であって、前記内側プラットフォームと前記外側プラットフォームとの間に画定される半径方向長さに沿って変化する、内側半径と、
    を備えた、タービンベーン。
  2. 前記内側半径は、前記内側プラットフォーム及び前記外側プラットフォームの少なくとも一方における内側半径のほうが、前記内側プラットフォームと前記外側プラットフォームとの間の半径方向に画定された領域内に配置されたより小さい半径位置における内側半径よりも大きい、請求項1に記載のタービンベーン。
  3. 前記内側半径は、前記内側プラットフォーム及び前記外側プラットフォームの両方における内側半径のほうが、前記より小さい半径位置における内側半径よりも大きい、請求項2に記載のタービンベーン。
  4. 前記より小さい半径位置が、前記内側プラットフォーム及び前記外側プラットフォームの少なくとも一方における前記内側半径よりも小さい、略一定の内側半径を含み、前記一定の内側半径は、前記内側後縁の半径方向長さの大部分に沿って使用される、請求項2に記載のタービンベーン。
  5. 前記内側プラットフォーム及び前記外側プラットフォームの少なくとも一方における前記内側半径の、前記より小さい半径位置における前記内側半径に対する比が、1.1〜6.1である、請求項2に記載のタービンベーン。
  6. シール領域が、前記内側プラットフォーム及び前記外側プラットフォームの少なくとも一方における前記後縁を越えた位置に形成された、請求項2に記載のタービンベーン。
  7. リブが、前記内側プラットフォーム及び前記外側プラットフォームの少なくとも一方における前記内側後縁を越えた位置に形成された、請求項2に記載のタービンベーン。
  8. 前記エアフォイルの外側前縁及び内側前縁が前記内側プラットフォームと前記外側プラットフォームとの間を非垂直角度で延在するように、前記ベーンが傾斜する、請求項2に記載のタービンベーン。
  9. 前記内側プラットフォームと前記外側プラットフォームとの間に複数個の長さが異なる内側半径が存在する、請求項2に記載のタービンベーン。
  10. 内側プラットフォーム及び外側プラットフォームを含み、かつ前記内側プラットフォームと前記外側プラットフォームとの間に延在するエアフォイルを各々が有する、複数個のベーンを備えており、
    前記エアフォイルは中空であり、前記エアフォイル内の中空部が内側前縁と内側後縁との間に延在し、前記中空部を画定する円周方向の壁の間において測定された、前記内側後縁において円周方向に画定された内側半径が、前記内側プラットフォームと前記外側プラットフォームとの間に画定された半径方向長さに沿って変化する、ガスタービンエンジン用の中間タービンフレーム。
  11. 前記内側半径は、前記内側プラットフォーム及び前記外側プラットフォームの少なくとも一方における内側半径のほうが、前記内側プラットフォームと前記外側プラットフォームとの間の半径方向に画定された領域内に配置されたより小さい半径位置における内側半径よりも大きい、請求項10に記載のガスタービンエンジン用の中間タービンフレーム。
  12. 前記内側半径は、前記内側プラットフォーム及び前記外側プラットフォームの両方における半径のほうが、前記内側プラットフォームと前記外側プラットフォームとの間の半径方向における前記より小さい半径位置における内側半径よりも大きい、請求項11に記載のガスタービンエンジン用の中間タービンフレーム。
  13. 前記より小さい半径位置が、前記内側プラットフォーム及び前記外側プラットフォームの少なくとも一方における前記内側半径よりも小さい、略一定の内側半径を含み、前記一定の内側半径は、前記内側後縁の半径方向長さの大部分に沿って使用される、請求項11に記載のガスタービンエンジン用の中間タービンフレーム。
  14. 前記内側プラットフォーム及び前記外側プラットフォームの少なくとも一方における前記内側半径の、前記より小さい半径位置における前記内側半径に対する比が、1.1〜6.1である、請求項11に記載のガスタービンエンジン用の中間タービンフレーム。
  15. シール領域が、前記内側プラットフォーム及び前記外側プラットフォームの少なくとも一方における前記後縁を越えた位置に形成された、請求項11に記載のガスタービンエンジン用の中間タービンフレーム。
  16. リブが、前記内側プラットフォーム及び前記外側プラットフォームの少なくとも一方における前記内側後縁を越えた位置に形成された、請求項11に記載のガスタービンエンジン用の中間タービンフレーム。
  17. 前記エアフォイルの外側前縁及び内側前縁が前記内側プラットフォームと前記外側プラットフォームとの間を非垂直角度で延在するように、前記ベーンが傾斜する、請求項11に記載の中間タービンフレーム。
  18. 前記内側プラットフォームと前記外側プラットフォームとの間に複数個の長さが異なる内側半径が存在する、請求項11に記載の中間タービンフレーム。
  19. より高圧のタービンロータと、より低圧のタービンロータと、前記より高圧のタービンロータと前記より低圧のタービンロータとの間に位置付けられるとともにベアリングを支持する中間タービンフレームと、を備えたガスタービンエンジンであって、
    前記中間タービンフレームが、内側プラットフォームと、外側プラットフォームと、前記内側プラットフォームと前記外側プラットフォームとの間に延在するエアフォイルを各々が含む複数個のベーンと、を含み、
    前記エアフォイルは中空であり、前記エアフォイル内の中空部が内側前縁と内側後縁との間に延在し、前記内側プラットフォーム及び前記外側プラットフォームの少なくとも一方における前記内側前縁の第一の位置が、前記内側後縁の半径方向中間の第二の位置よりも、前記エアフォイルの外側前縁からより長い距離をあけて離間された、ガスタービンエンジン。
  20. 前記中空部を画定する円周方向の壁の間において測定された、前記内側後縁において円周方向に画定された内側半径が、前記内側プラットフォームと前記外側プラットフォームとの間に画定された半径方向長さに沿って変化し、前記第一の位置と前記第二の位置とにおいて異なる距離を提供する、請求項19に記載のガスタービンエンジン。
  21. 前記内側半径は、前記内側プラットフォーム及び前記外側プラットフォームの少なくとも一方における内側半径のほうが、前記内側プラットフォームと前記外側プラットフォームとの間の半径方向における領域内に配置されたより小さい半径位置における内側半径よりも大きい、請求項20に記載のガスタービンエンジン。
  22. 前記内側半径は、前記内側プラットフォーム及び前記外側プラットフォームの両方における半径のほうが、前記内側プラットフォームと前記外側プラットフォームとの間の半径方向における前記より小さい半径位置における内側半径よりも大きい、請求項21に記載のガスタービンエンジン。
  23. 前記より小さい半径位置が、前記内側プラットフォーム及び前記外側プラットフォームの少なくとも一方における前記内側半径よりも小さい、略一定の内側半径を含み、前記一定の内側半径は、前記内側後縁の半径方向長さの大部分に沿って使用される、請求項21に記載のガスタービンエンジン。
  24. 前記内側プラットフォーム及び前記外側プラットフォームの少なくとも一方における前記内側半径の、前記より小さい半径位置における前記内側半径に対する比が、1.1〜6.1である、請求項21に記載のガスタービンエンジン。
  25. シール領域が、前記内側プラットフォーム及び前記外側プラットフォームの少なくとも一方における前記後縁を越えて画定される領域内の位置に形成された、請求項20に記載のガスタービンエンジン。
  26. 前記エアフォイルの外側前縁及び内側前縁が前記内側プラットフォームと前記外側プラットフォームとの間を非垂直角度で延在するように、前記ベーンが傾斜する、請求項20に記載のガスタービンエンジン。
  27. 前記内側プラットフォームと前記外側プラットフォームとの間に複数個の長さが異なる内側半径が存在する、請求項20に記載のガスタービンエンジン。
JP2016518333A 2013-06-14 2014-05-20 可変後縁内側半径を有するタービンベーン Active JP6392333B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361835015P 2013-06-14 2013-06-14
US61/835,015 2013-06-14
PCT/US2014/038748 WO2014200673A1 (en) 2013-06-14 2014-05-20 Turbine vane with variable trailing edge inner radius

Publications (2)

Publication Number Publication Date
JP2016524072A true JP2016524072A (ja) 2016-08-12
JP6392333B2 JP6392333B2 (ja) 2018-09-19

Family

ID=52022655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016518333A Active JP6392333B2 (ja) 2013-06-14 2014-05-20 可変後縁内側半径を有するタービンベーン

Country Status (5)

Country Link
US (1) US10619496B2 (ja)
EP (1) EP3008290B1 (ja)
JP (1) JP6392333B2 (ja)
ES (1) ES2695723T3 (ja)
WO (1) WO2014200673A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9920641B2 (en) 2015-02-23 2018-03-20 United Technologies Corporation Gas turbine engine mid-turbine frame configuration

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346703A (ja) * 1993-04-26 1994-12-20 United Technol Corp <Utc> ダンパ装置
US20110008163A1 (en) * 2009-07-08 2011-01-13 Ian Francis Prentice Composite article and support frame assembly
JP2012507657A (ja) * 2008-10-31 2012-03-29 ゼネラル・エレクトリック・カンパニイ 鋸壁形タービンノズル
US8424313B1 (en) * 2012-01-31 2013-04-23 United Technologies Corporation Gas turbine engine mid turbine frame with flow turning features

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2849747A1 (de) 1978-11-16 1980-05-29 Volkswagenwerk Ag Aus keramischen werkstoffen bestehender axial-leitschaufelkranz fuer gasturbinen
US4511306A (en) 1982-02-02 1985-04-16 Westinghouse Electric Corp. Combustion turbine single airfoil stator vane structure
US6312219B1 (en) * 1999-11-05 2001-11-06 General Electric Company Narrow waist vane
US6371725B1 (en) 2000-06-30 2002-04-16 General Electric Company Conforming platform guide vane
EP1180578A1 (de) * 2000-08-16 2002-02-20 Siemens Aktiengesellschaft Anordnung von Turbinenschaufeln
US6851924B2 (en) * 2002-09-27 2005-02-08 Siemens Westinghouse Power Corporation Crack-resistance vane segment member
FR2877390B1 (fr) * 2004-10-29 2010-09-03 Snecma Moteurs Secteur de distribution de turbine alimente en air de refroidissement
US7435058B2 (en) * 2005-01-18 2008-10-14 Siemens Power Generation, Inc. Ceramic matrix composite vane with chordwise stiffener
US7371046B2 (en) * 2005-06-06 2008-05-13 General Electric Company Turbine airfoil with variable and compound fillet
WO2007113149A1 (de) * 2006-03-31 2007-10-11 Alstom Technology Ltd Leitschaufel für eine strömungsmaschine, insbesondere für eine dampfturbine
EP1847684A1 (de) 2006-04-21 2007-10-24 Siemens Aktiengesellschaft Turbinenschaufel
WO2009115384A1 (de) 2008-03-19 2009-09-24 Alstom Technology Ltd Leitschaufel mit hakenförmigem befestigungselement für eine gasturbine
US8740557B2 (en) * 2009-10-01 2014-06-03 Pratt & Whitney Canada Corp. Fabricated static vane ring
US9097141B2 (en) 2011-09-15 2015-08-04 Pratt & Whitney Canada Corp. Axial bolting arrangement for mid turbine frame

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346703A (ja) * 1993-04-26 1994-12-20 United Technol Corp <Utc> ダンパ装置
JP2012507657A (ja) * 2008-10-31 2012-03-29 ゼネラル・エレクトリック・カンパニイ 鋸壁形タービンノズル
US20110008163A1 (en) * 2009-07-08 2011-01-13 Ian Francis Prentice Composite article and support frame assembly
US8424313B1 (en) * 2012-01-31 2013-04-23 United Technologies Corporation Gas turbine engine mid turbine frame with flow turning features

Also Published As

Publication number Publication date
JP6392333B2 (ja) 2018-09-19
WO2014200673A1 (en) 2014-12-18
US10619496B2 (en) 2020-04-14
EP3008290A4 (en) 2017-01-25
US20160069197A1 (en) 2016-03-10
EP3008290B1 (en) 2018-10-31
ES2695723T3 (es) 2019-01-10
EP3008290A1 (en) 2016-04-20

Similar Documents

Publication Publication Date Title
US10087782B2 (en) Engine mid-turbine frame transfer tube for low pressure turbine case cooling
US9982548B2 (en) Turbine vanes with variable fillets
US9121287B2 (en) Hollow fan blade with honeycomb filler
US10294871B2 (en) Exhaust nozzle arrangement for geared turbofan
US10107122B2 (en) Variable vane overlap shroud
US10024172B2 (en) Gas turbine engine airfoil
US9476308B2 (en) Gas turbine engine serpentine cooling passage with chevrons
US10641114B2 (en) Turbine vane with non-uniform wall thickness
EP3266983B1 (en) Cooling system for an airfoil of a gas powered turbine
US11280214B2 (en) Gas turbine engine component
US11111801B2 (en) Turbine vane with platform pad
JP6392333B2 (ja) 可変後縁内側半径を有するタービンベーン
EP3052764B1 (en) Mid-turbine frame wiht a plurality of vanes.
US10731661B2 (en) Gas turbine engine with short inlet and blade removal feature

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180822

R150 Certificate of patent or registration of utility model

Ref document number: 6392333

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250