JP2016505269A - Method for selecting a single-cell organism in which a mutation has been induced, and a microfluidic device used therefor - Google Patents

Method for selecting a single-cell organism in which a mutation has been induced, and a microfluidic device used therefor Download PDF

Info

Publication number
JP2016505269A
JP2016505269A JP2015553650A JP2015553650A JP2016505269A JP 2016505269 A JP2016505269 A JP 2016505269A JP 2015553650 A JP2015553650 A JP 2015553650A JP 2015553650 A JP2015553650 A JP 2015553650A JP 2016505269 A JP2016505269 A JP 2016505269A
Authority
JP
Japan
Prior art keywords
phototaxis
selecting
organism
cell organism
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015553650A
Other languages
Japanese (ja)
Other versions
JP6316316B2 (en
Inventor
サン ジュン シム,
サン ジュン シム,
ヨン フワン キム,
ヨン フワン キム,
ホ ソク クワク,
ホ ソク クワク,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea University Research and Business Foundation
Original Assignee
Korea University Research and Business Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea University Research and Business Foundation filed Critical Korea University Research and Business Foundation
Publication of JP2016505269A publication Critical patent/JP2016505269A/en
Application granted granted Critical
Publication of JP6316316B2 publication Critical patent/JP6316316B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/08Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • G01N2035/00158Elements containing microarrays, i.e. "biochip"

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Toxicology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本発明は、微細流体光反応装置及び光反応特性が変化した単細胞生物体を選別する方法を提供する。本発明によると、前記微細流体システムを利用して、走光性をベースに改良された単細胞生物体を効果的に利用することができる。また、細胞単位で容易なモニタリングが可能で、収集した結果の統計的分析を含んだ様々な分析を介して、変化した光反応性及び/または光敏感性を持つ突然変異菌株を容易に、また高速で選別できて、走光性及び光転換効率の相関解明、光転換効率が向上した改良された単細胞生物体選別に有用に活用できる。The present invention provides a microfluidic photoreaction apparatus and a method for sorting unicellular organisms having altered photoreaction characteristics. According to the present invention, the microfluidic system can be used to effectively use an improved single-cell organism based on phototaxis. It can also be easily monitored on a cell-by-cell basis, allowing mutant strains with altered photoreactivity and / or photosensitivity to be easily and via various analyzes including statistical analysis of collected results. It can be selected at high speed, and can be usefully used for elucidation of the correlation between phototaxis and light conversion efficiency, and improved single cell organism selection with improved light conversion efficiency.

Description

本発明は、突然変異が誘発された単細胞生物体の選別方法及びこれに用いられる微細流体装置に関し、より詳しくは走光性を利用した突然変異単細胞生物体の選別方法で、前記方法は、単細胞生物体に光を照射して走光性を誘発する工程と、前記単細胞生物体の走光性指標を算出する工程と、対照群と比較して、前記単細胞生物体の走光性指標が変化した場合、これを目的する突然変異が誘発された単細胞生物体として選別する工程と、を含む。 The present invention relates to a method for selecting a mutated unicellular organism and a microfluidic device used therefor, and more particularly, a method for selecting a mutated unicellular organism using phototaxis, which method includes a unicellular organism. If the chemotaxis index of the unicellular organism is changed compared to the step of irradiating the body with light to induce phototaxis, the step of calculating the phototactic index of the unicellular organism, and the control group, this Selecting as a unicellular organism in which the targeted mutation has been induced.

バクテリア、酵母、及び微細藻類を含む様々な単細胞生物体は、農業、畜産、水産、医薬及び資源分野で多様な目的に利用される。例えば、バクテリア及び酵母は、医薬用タンパク質発現に広く用いられ、特に微細藻類は、光エネルギーと二酸化炭素及び無機物質からバイオディーゼルに転換が可能な中性脂質を多量生産できる能力があって、近年化石燃料使用量の急増によるエネルギー資源枯渇問題及び温室ガス排出による地球温暖化問題を解決できる代案の一つとして注目されている。 Various unicellular organisms including bacteria, yeast, and microalgae are used for various purposes in agriculture, livestock, fisheries, medicine and resources. For example, bacteria and yeast are widely used for the expression of pharmaceutical proteins. In particular, microalgae have the ability to produce a large amount of neutral lipids that can be converted into biodiesel from light energy, carbon dioxide, and inorganic substances. It is attracting attention as an alternative to solve the problem of energy resource depletion due to the rapid increase of fossil fuel consumption and global warming due to greenhouse gas emissions.

微細藻類は、クロロフィル、カロチノイド、フィコビリンスなどといった色素を含有していて、光合成を介して細胞成長及びこれに必要な有機物質を合成できる単細胞性藻類を微細藻類(microalgae)といい、多くの植物性プランクトンがこれに属する。現在まで数十万種を越える微細藻類が淡水及び海洋生態系に存在すると報告されていて、様々な目的のために研究開発が試みられているが、遺伝子操作の限界等によって生産性向上のための菌株改良などに多くの困難に直面している。 Microalgae contain pigments such as chlorophyll, carotenoids, and phycobilins, and unicellular algae that can synthesize cell growth and organic substances necessary for this through photosynthesis are called microalgae, and many plants Sex plankton belongs to this. To date, it has been reported that more than hundreds of thousands of microalgae are present in freshwater and marine ecosystems, and research and development have been attempted for various purposes. We are faced with many difficulties in improving strains.

このような微細藻類の効率的利用のために、目的に合う最適な菌株開発、培地最適化、最適反応器設計、代謝工程と生産物精製などのための研究が必要である。 For the efficient use of such microalgae, research for optimal strain development, medium optimization, optimal reactor design, metabolic process and product purification that meet the purpose is necessary.

この中最適な菌株を開発する方法中一つが、微細藻類のゲノムに特定または無作為突然変異を誘発した後、目的する性質、例えば光合成効率増大、高い脂質生産量または迅速な生長速度のような特徴を示す菌株を発掘することである。 One of these methods to develop the optimal strain is to induce specific or random mutations in the microalgae genome, followed by desired properties such as increased photosynthetic efficiency, high lipid production or rapid growth rate. It is to excavate a strain exhibiting characteristics.

米国公開特許公報第2008−00254493号は、タンパク質分解酵素を発現しない突然変異微生物菌株の選別方法に関し、突然変異が発生した菌株をタンパク質分解酵素の気質が含まれたゲル上で培養して、気質の分解の可否を介した突然変異菌株を選別することに対して開示している。 US Patent Publication No. 2008-00254493 relates to a method for selecting a mutant microbial strain that does not express a proteolytic enzyme, and the cultivated strain is cultured on a gel containing a proteolytic enzyme temperament, It is disclosed to select mutant strains through the possibility of degradation.

大韓民国公開特許公報第2011−0018798号は、微細流体細胞チップ、これを利用した細胞死滅定量分析法及び細胞映像分析装置に関し、微細流体システムを利用して細胞死滅をリアルタイムで分析及び映像化できる装置及び方法を開示している。 Korean Patent Application Publication No. 2011-0018798 relates to a microfluidic cell chip, a cell death quantitative analysis method and a cell image analyzer using the same, and an apparatus capable of analyzing and imaging cell death in real time using a microfluidic system And a method are disclosed.

しかし、これは多くの場合、複雑な生化学的及び分子生物学的分析が伴う数万個の菌株に対するスクリーニングが求められる。従って、スクリーニング初期段階で菌株を高速選別できる方法の開発が求められる。
そこで、本発明者等は、前記問題を解決して効率的に単細胞生物体を選別するための方法を開発するために鋭意努力した結果、微細流体光反応装置を利用して、走光性をベースに改良された単細胞生物体を効果的に選別できることを確認して、本発明を完成することになった。
However, this often requires screening against tens of thousands of strains with complex biochemical and molecular biological analyses. Therefore, development of a method capable of selecting strains at a high speed in the initial stage of screening is required.
Therefore, as a result of diligent efforts to develop a method for efficiently selecting single-cell organisms by solving the above problems, the present inventors have used microfluidic photoreaction devices as a basis for phototaxis. It was confirmed that the improved single cell organism could be effectively selected, and the present invention was completed.

米国特許出願公開第2008/00254493号明細書US Patent Application Publication No. 2008/00254493 韓国特許第2011−0018798号公報Korean Patent No. 2011-0018798

本発明の目的は、改良された光反応性等の特徴を有する遺伝子変異が誘発された最適な単細胞生物体を迅速かつ効率的に選別できる方法及び装置を提供するところにある。 An object of the present invention is to provide a method and apparatus capable of quickly and efficiently selecting an optimal single-cell organism in which a gene mutation having characteristics such as improved photoreactivity is induced.

前記目的を達成するために本発明は、(a)単細胞生物体に光を照射して走光性を誘発する工程と、(b)前記単細胞生物体の走光性指標を算出する工程と、(c)対照群と比較して、前記単細胞生物体の走光性指標が変化した場合、これを目的する突然変異が誘発された単細胞生物体として選別する工程と、を含む走光性を利用した突然変異単細胞生物体の選別方法及び前記方法によって選別された突然変異単細胞生物体を提供する。 In order to achieve the above object, the present invention includes (a) irradiating a single cell organism with light to induce phototaxis, (b) calculating a phototaxis index of the single cell organism, and (c) ) When the phototaxis index of the single cell organism is changed as compared with the control group, the mutant single cell using phototaxis comprising the step of selecting as a single cell organism in which the mutation intended for this is induced Provided are a method for selecting an organism and a mutant single cell organism selected by the method.

本発明はまた、光透過性個体流入部と、前記個体流入部とは別に形成される個体到達部と、前記個体流入部及び前記個体到達部に流体疎通可能に連結されたチャネル部と、前記チャネル部の両末端の間に形成された計測部と、を含む微細流体光反応装置を提供する。 The present invention also includes a light transmissive individual inflow part, an individual reach part formed separately from the individual inflow part, a channel part connected to the individual inflow part and the individual reach part in fluid communication, There is provided a microfluidic photoreaction apparatus including a measurement unit formed between both ends of a channel unit.

光合成微細藻類菌株を本発明の一実現例に係る微細流体システム内で走光性を利用して光反応が特異的な菌株を選別する全体的な過程を図式化した概略図である。FIG. 4 is a schematic diagram illustrating an overall process of selecting a photosynthetic strain having a specific photoreaction using phototaxis in a microfluidic system according to an embodiment of the present invention for a photosynthetic microalgae strain. 本発明に用いられる様々な例示的微細流体光反応装置の平面図である。2 is a plan view of various exemplary microfluidic photoreactors used in the present invention. FIG. 本発明の一実現例で用いられた微細流体光反応装置の平面図(上段)、斜視図(下段)である。It is the top view (upper stage) and perspective view (lower stage) of the microfluidic photoreaction apparatus used in one implementation example of the present invention. 走光性を介した微細藻類選別に効果的な光の波長を決めるために、本発明一実現例により様々な波長のLEDを用いて微細藻類の光反応を測定したグラフである。4 is a graph showing the photoreactions of microalgae measured using LEDs of various wavelengths according to an embodiment of the present invention in order to determine the wavelength of light effective for microalgae selection through phototaxis. 図2Aに図示されたそれぞれの微細流体光反応装置を利用して、走光性による微細藻類の光反応を測定したグラフで、グラフ上の1、2、3、4は、図2Aの各装置に記載された番号に相応するものである。FIG. 2A is a graph obtained by measuring the photoreaction of microalgae due to phototaxis using each microfluidic photoreaction device shown in FIG. 2A. It corresponds to the number indicated. 本発明の一実現例で用いたれた微細藻類菌株内クロロフィルaとクロロフィルbの比(a/b ratio)を示したグラフである。It is the graph which showed ratio (a / b ratio) of the chlorophyll a and chlorophyll b in the microalgae strain | stump | stock used in one implementation example of this invention. 本発明の一実現例に係る微細流体光反応装置を利用して、光反応を示す微細藻類菌株の時間に伴う分布を細胞数でしめしたヒストグラムで、対照群として用いた野生型(wild type)と突然変異菌株群集(colony)の光反応程度を示す。FIG. 5 is a histogram showing the distribution of microalgae strains showing photoreaction with time using the microfluidic photoreaction apparatus according to an embodiment of the present invention in terms of the number of cells, and the wild type used as a control group. And the photoreaction degree of the mutant strain colony. 対照群及び突然変異菌株それぞれにおいて全細胞数に対する光反応を見せた細胞数の比率を介して光反応性を分析したグラフである。It is the graph which analyzed the photoreactivity through the ratio of the cell number which showed the photoreaction with respect to the total cell number in each of a control group and a mutant strain. 対照群と突然変異菌株が走光性によって一定距離(3cm)を移動するのに必要とされた平均所要時間の偏差を示したグラフで、突然変異菌株の間の光敏感度を示す。A graph showing the deviation of the average time required for the control group and the mutant strain to travel a certain distance (3 cm) by phototaxis, showing the photosensitivity between the mutant strains. クロロフィルa/b比率とNPQとの相関を示したたグラフで、クロロフィルa/b比率が高いほどNPQ(non−photochemical quenching)値が低い逆比例相関を示して光合成効率が高いとことを示す。The graph showing the correlation between the chlorophyll a / b ratio and NPQ shows that the higher the chlorophyll a / b ratio, the lower the NPQ (non-photochemical quenching) value, and the higher the photosynthesis efficiency. クロロフィルa/b比率とqP(Photochemical quenchin)の相関を示すグラフで、クロロフィルa/b比率が高いほどqP値が高い相関を示した光合成効率が高いことを示す。It is a graph showing the correlation between the chlorophyll a / b ratio and qP (Photochemical quinchin), and shows that the higher the chlorophyll a / b ratio, the higher the photosynthetic efficiency showing a higher qP value. 本発明の一実施例に係る走光性指標で平均到達時間と光合成効率測定指標であるNPQとの相関グラフで、走光性を介して平均到達時間が速くなった突然変異菌株は、光合成効率測定指標であるNPQ値が低い相関を示して光敏感性が増加した金株は光合成効率が高いことを示す。In the correlation graph between the average arrival time and the photosynthesis efficiency measurement index NPQ in the phototaxis index according to one embodiment of the present invention, the mutant strain whose average arrival time is accelerated through the phototaxis is the photosynthesis efficiency measurement index A gold strain having a low correlation with a low NPQ value and increased photosensitivity indicates high photosynthesis efficiency. 本発明の一実施例に係る走光性指標で平均到達時間と光合成効率測定指標であるqPとの相関グラフで、走光性を介して平均到達時間が速くなった突然変異菌株は光合成効率測定指標であるqPと高い相関を示してNPQと同様に光敏感性が増加した菌株が光合成効率が高いことを示す。In the correlation graph between the average arrival time and the photosynthesis efficiency measurement index qP in the phototaxis index according to one embodiment of the present invention, a mutant strain whose average arrival time is accelerated through the phototaxis is a photosynthesis efficiency measurement index. A strain having a high correlation with a certain qP and having increased photosensitivity like NPQ indicates that the photosynthetic efficiency is high. 走光性を介して一定時間(5分)の間一定距離(3cm)を移動する細胞数を対照群の細胞数で分けた値を示した移動細胞個体数比率とNPQとの相関を比較したグラフである。これは、値が1以上である突然変異菌株は、一定時間の間対照群菌株に対比してより多くの細胞数が移動したことで、光敏感性及び光反応性が優れた突然変異が誘発された菌株を示して、このような菌株は、NPQ値が低い相関を示すので、光合成効率が増加した菌株であることを示す。A graph comparing the correlation between NPQ and the ratio of the number of moving cells showing the value obtained by dividing the number of cells that move a certain distance (3 cm) for a certain time (5 minutes) via the phototaxis by the number of cells in the control group It is. This is because a mutant strain having a value of 1 or more induced a mutation with excellent photosensitivity and photoreactivity by moving a larger number of cells compared to the control strain for a certain period of time. Such a strain shows a correlation with a low NPQ value, indicating that the strain has increased photosynthesis efficiency. 本発明の一実現例に係る微細流体光反応装置を利用して走光性による微細藻類の実際の動きを見せる光学顕微鏡(×40)イメージである。It is an optical microscope (x40) image which shows the actual movement of the micro algae by a phototactic property using the microfluidic photoreaction apparatus which concerns on one implementation example of this invention.

他の方式で定義されない限り、本明細書において使用されたあらゆる技術的・科学的用語は、本発明が属する技術分野に熟練した専門家によって通常理解されるものと同じ意味を有する。通常、本明細書において使用された命名法は、本技術分野において周知であり、しかも汎用されるものである。 Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used in this specification is well known in the art and widely used.

本発明は、運動性を有する光合成単細胞生物体から改良された光反応性を有する突然変異体を走光性の差を通じて効果的に選別することができるとの発見に基づいたもので、具体的に単細胞生物体が有する光敏感性及び/または、光反応性の差を利用して微細流体システム内で突然変異が誘発された細胞の個体別運動の統計的分析を介して光に対する光反応が特異的に変化した特徴を持つ突然変異が誘発された菌株を迅速かつ効率的に選別する可能性があることを発見した。 The present invention is based on the discovery that mutants having improved photoreactivity from photosynthetic unicellular organisms having motility can be effectively screened through differences in phototaxis, specifically, Specificity of light response to light through statistical analysis of individual movements of mutated cells in microfluidic systems using differences in light sensitivity and / or photoreactivity of single-cell organisms It was discovered that mutations with altered characteristics could be screened quickly and efficiently.

従って、一観点において、本発明は、(a)単細胞生物体に光を照射して走光性を誘発する工程と、(b)前記単細胞生物体の走光性指標を算出する工程と、(c)対照群と比較して、前記単細胞生物体の走光性指標が変化した場合、これを目的する突然変異が誘発された単細胞生物体として選別する工程と、を含む走光性を利用した突然変異単細胞生物体の選別方法に関する。 Accordingly, in one aspect, the present invention includes (a) a step of irradiating light to a single cell organism to induce phototaxis, (b) a step of calculating a phototaxis index of the single cell organism, and (c) A mutated single-cell organism utilizing phototaxis comprising the step of selecting a single-cell organism in which a mutation intended for this is induced when the photo-tactic index of the single-cell organism is changed as compared with a control group The present invention relates to a body sorting method.

本発明で用いられた用語「単細胞生物体」、「細胞」または「菌株」は、相互交換的に用いられて、これは運動性があって光に対して反応、走光性を示す多様な単細胞生物を称するもので、例えば光合成細菌またはバクテリア、光合成ができるユーグレナのような原生動物または微細藻類を含む。一実現例では、特に代表的に微細藻類であるコナミドリムシ(Chlamydomonas reinhardtii)が用いられる。 The terms “single cell organism”, “cell” or “strain” as used in the present invention are used interchangeably, and are a variety of single cells that are motility, react to light, and exhibit phototaxis. It refers to organisms and includes, for example, protozoa or microalgae such as photosynthetic bacteria or bacteria, Euglena capable of photosynthesis. In one implementation, particularly the microalga, Chlamydomonas reinhardtii, is used.

本発明で用いられた用語「走光性」とは、光に反応した単細胞生物体の運動で光に沿って移動する陽性走光性または、光を避けて移動する陰性走光性を全部含むものであり、特定光量では陽性走光性を示す場合でも、光の光度が一定強度を越える場合、陰性走光性を示す場合もある。 The term "phototaxis" used in the present invention includes all positive phototaxis that moves along light by movement of a single-cell organism in response to light or negative phototaxis that moves by avoiding light. Even when the specific light quantity shows positive phototaxis, it may show negative phototaxis when the light intensity exceeds a certain intensity.

本発明で用いられた用語「突然変異」とは、変異が誘発されなかった対照群と比較して、遺伝子水準で変異が発生して、このような変異によって表現型、特に走光性、光反応性及び/または、光敏感度等の特徴に差が誘発されたもので、自然界で発見される突然変異はもちろん人為的に導入された突然変異を全部含むものである。突然変異は、無作為または特定位置で発生した突然変異、遺伝子を成すヌクレオチドの付加、欠如、及び/または、置換などによる突然変異を全部含むものである。 The term “mutation” used in the present invention means that a mutation occurs at the gene level compared to a control group in which no mutation was induced, and such mutation causes phenotype, particularly phototaxis, photoreaction. Differences are induced in characteristics such as gender and / or photosensitivity, and naturally occurring mutations include all artificially introduced mutations. Mutations include all mutations due to random or specific occurrences, additions, deletions, and / or substitutions of nucleotides constituting the gene.

本発明で用いられた用語「目的する突然変異」または「目的する特性を持つ」、「目的する特徴が誘発された突然変異」とは、前記のような遺伝的変化によって単細胞生物体で改良しようとする一つ以上の特性が変化、例えば改善、向上したもので、単細胞生物体の最終用途に応じて多様な特性が含まれる。例えば、単細胞生物体として微細藻類が用いられる場合、光合成に関連した特性または指標、例えば、光合成色素を含む光合成機構の変化、光合成効率、光転換効率を含み、、その他成長速度の変化、脂質含有量及び/または脂質成分の変化等を含むが、これに制限するものではない。改善された程度を把握するために、突然変異が誘発された単細胞生物体で相応する特性と比較することができ、当業者ならば、改善された特徴を考慮して適切な基準を選択できて、例えば、対照群と対比して、例えば、約5%以上、約10%以上、約20%以上、約30%以上、約40%以上、約50%以上、約60%以上、約70%以上、約80%以上、約90%以上、約100%以上改善されるのを目的する突然変異が誘発された単細胞生物体として選別することができるはずである。 The terms “target mutation” or “having target characteristics” and “mutation in which a target characteristic is induced” as used in the present invention shall be improved in a unicellular organism by genetic changes as described above. One or more characteristics are changed, eg, improved or improved, and include various characteristics depending on the end use of the unicellular organism. For example, when microalgae are used as unicellular organisms, characteristics or indicators related to photosynthesis, including changes in photosynthetic mechanisms including photosynthetic pigments, photosynthetic efficiency, photoconversion efficiency, other changes in growth rate, lipid content This includes, but is not limited to, changes in the amount and / or lipid component. To ascertain the degree of improvement, it can be compared with the corresponding properties in the mutated unicellular organism, and those skilled in the art can select appropriate criteria taking into account the improved characteristics. For example, compared with the control group, for example, about 5% or more, about 10% or more, about 20% or more, about 30% or more, about 40% or more, about 50% or more, about 60% or more, about 70% From the above, it should be possible to select a single-cell organism in which a mutation aimed to be improved by about 80% or more, about 90% or more, or about 100% or more is induced.

改善された特徴を示す突然変異が誘発された個体を選別する本発明の方法に用いられる単細胞生物体は、自然的または人為的突然変異が誘発されて、ゲノムに一つ以上の突然変異を持つと予測される多様な単細胞生物体を含む突然変異ライブラリ由来であってもよい。また、本発明の方法には、一種類の突然変異を含むと予測される、一つの細胞から由来した単一コロニーまたはそれぞれ同じまたは異なる一つ以上の突然変異を含む多数の細胞から由来した多数コロニー由来であってもよい。例えば、単一コロニー由来の場合、特性確認、または単一コロニーの個別的特性確認を介した最適な特性を示す突然変異単細胞生物体の選別、または多数のコロニー混合物が用いられる場合、突然変異ライブラリから所望の特性を持つ遺伝子変異が誘発された目的する突然変異を効率的選別に用いられることができる。 Single-cell organisms used in the method of the invention for selecting individuals in which mutations exhibiting improved characteristics have been induced The natural or artificial mutation is induced and has one or more mutations in the genome It may be derived from a mutation library containing various unicellular organisms predicted to be The method of the present invention also includes a single colony derived from one cell, predicted to contain one type of mutation, or a number of cells derived from multiple cells each containing one or more of the same or different mutations. It may be derived from a colony. For example, if derived from a single colony, characterization, or selection of mutant single-cell organisms that exhibit optimal properties through individual characterization of single colonies, or mutation libraries when multiple colony mixtures are used Thus, a target mutation in which a gene mutation having a desired characteristic is induced can be used for efficient selection.

本発明方法は、走光性を利用した迅速かつ簡単な分析で、自然界で発見される変異体、または人為的に突然変異が誘発された突然変異ライブラリに含まれた数個〜数万個の突然変異中、所望の突然変異が誘発された個体の選別に効果的に用いられることができる。特に、後者の場合、本発明の方法を繰り返し行って、多量の突然変異が誘発された単細胞生物体を迅速かつ効率的に選別することができる。 The method of the present invention is a rapid and simple analysis using phototaxis, and it is possible to detect several to tens of thousands of sudden mutations included in a mutant found in nature or a mutation library in which mutation has been artificially induced. During mutation, it can be effectively used to select individuals in which the desired mutation has been induced. In particular, in the latter case, the method of the present invention can be repeated to rapidly and efficiently select unicellular organisms in which a large amount of mutation has been induced.

本発明で用いられた用語「光反応性」とは、単細胞生物体に光が照射される場合、走光性によって光の反対側に移動する特性を示すもので、これは一定時間、例えば30分間、一定の光度、例えば30μmol photon m−2−1が照射された場合、導入した総細胞、例えば約3,000個の細胞のうちに走光性によって反対側に到達した細胞数の水で測定されることができる。 The term “photoreactivity” used in the present invention refers to the property of moving to the opposite side of light by phototaxis when light is irradiated on a single-cell organism, and this is a fixed time, for example, 30 minutes. Measured with water of the total number of introduced cells, for example, about 3,000 cells that reached the opposite side by phototaxis when irradiated with a certain luminous intensity, for example, 30 μmol photon m −2 s −1 Can be done.

本発明で用いられた用語「光敏感性」とは、単細胞生物体に光が照射される場合、走光性によって光の反対側もどれだけ迅速に移動するのかを示したもので、一定の光度、例えば30μmol photon m−2−1の光が照射された場合、一定距離、例えば3cmを走光性によって到達するのにかかる時間で測定されることができる。 The term `` photosensitivity '' used in the present invention indicates how quickly the opposite side of the light moves due to phototaxis when light is irradiated on a single-cell organism, and has a constant light intensity, For example, when light of 30 μmol photon m −2 s −1 is irradiated, it can be measured by a time required to reach a certain distance, for example, 3 cm by the phototaxis.

本発明に係る方法は、光に対する単細胞生物体の反応を基本とするもので、本発明で用いられた走光性反応指標または走光性指標は、光に反応した単一細胞生物体の特徴変化を示すことができる指標で、多様な数値を含むことができ、光反応性または光敏感性の中の一つ以上の測定を解して算出されることができる。このような走光性指標は、対照群と比較して、光に対する反応に関連した変化を測定できることならいずれも含むことができ、(i)本発明の方法に用いられた総単細胞生物体数に対する走光性に反応して単位時間当り移動した単細胞生物体数の比;(ii)単位時間当たり移動した単細胞生物体数の分布を基にしたヒストグラム頂点分析;または(iii)前記方法に用いられた単細胞生物体の単位距離当たり移動に所要された平均時間、または速度またはその偏差を含む。例えば、本発明の実施例及び図3乃至9に記載された多様な方式で算出されることができる。例えば、図5の頂点分析を介して野生型菌株と突然変異菌株の反応到達時間の頂点移動を観察することができて、頂点分析を介して細胞の最大反応時間と反応した細胞の比率分析などが可能である。 The method according to the present invention is based on the reaction of a unicellular organism to light, and the phototactic reaction index or phototactic index used in the present invention is a characteristic change of a single cell organism in response to light. Indices that can be shown, can include a variety of numerical values, and can be calculated through one or more measurements of photoreactivity or photosensitivity. Such a phototactic index can include any ability to measure changes associated with response to light as compared to the control group, and (i) relative to the total number of single cell organisms used in the method of the invention. The ratio of the number of unicellular organisms migrated per unit time in response to phototaxis; (ii) a histogram vertex analysis based on the distribution of the number of unicellular organisms migrated per unit time; or (iii) used in the method Includes the average time, or speed, or deviation thereof required to move a single cell organism per unit distance. For example, it can be calculated by various methods described in the embodiments of the present invention and FIGS. For example, it is possible to observe the peak shift of the reaction arrival time of the wild type strain and the mutant strain through the vertex analysis of FIG. 5, and the ratio analysis of the cells that have reacted with the maximum reaction time of the cells through the vertex analysis, etc. Is possible.

本発明に係る一実現例で、本方法が後述する本発明に係る装置に用いられる場合は、例えば、前記方法に(i)用いられた総細胞数対比前記チャネルを介して一定時間前記到達部に移動した総細胞数の比;(ii)一定数の細胞が前記到達部に移動するのに所要された平均時間またはその偏差;(iii)前記方法に用いられた細胞の前記到達部までの移動速度;及び(iv)前記方法に用いられた細胞が前記到達部まで移動するのにかかる時間による細胞数分布を含むが、これに制限するものではない。 In one implementation according to the present invention, when the present method is used in the apparatus according to the present invention, which will be described later, for example, (i) the total cell number used in the method for a certain period of time via the channel The ratio of the total number of cells that have migrated to (ii) the average time or deviation thereof required for a certain number of cells to migrate to the reach; (iii) the cells used in the method to the reach And (iv) including, but not limited to, the cell number distribution according to the time taken for the cells used in the method to move to the arrival part.

本発明の方法に用いられることができる単細胞生物体は、前述した通りであり、例えば走光性及び運動性を示す光合成単細胞生物体、好ましくは微細藻類が用いられる。一実現例で、微細藻類は、緑藻類、硅藻類、紅藻類、鞭毛類、淡緑藻類、茶色鞭毛藻類、黄緑色藻類、渦鞭毛藻類、または、藍藻類である、例えば緑藻類(Chlorella、Dunaliella、Scenedesmus、Haematococcus、Nannochlorisなど)、硅藻類(Skeletonema、Thalassiosira、Phaeodactylum、Chaetocerosなど)、紅藻類(Porphyridium cruentum、Galdieriaなど)、鞭毛類(Isochrysis、Pavlovaなど)、淡録藻類(Tetraselmis、Pyramimonas)、茶色鞭毛藻類(Chlamydomonas、Rhodomonas、Chroomonasなど)、黄緑色藻類(Olistodiscusなど)、渦鞭毛藻類(Crypthecodinium、Alexandrium、Gymnodinium、Chattonella、Kareniaなど)、藍藻類(Spirulina、Synechococcus、Synechocystis、Cyanidiumなど)が挙げられるが、これらに制限するのではない。一実現例では、茶色鞭毛藻類、好ましくはChlamydomonas spp.,Rhodomonas spp.,Chroomonas spp.,さらに好ましくはコナミドリムシ(Chlamydomonas reinhardtii)が用いられるか、これに制限されない。 The unicellular organism that can be used in the method of the present invention is as described above. For example, a photosynthetic unicellular organism exhibiting phototaxis and motility, preferably microalgae, is used. In one implementation, the microalgae are green algae, diatoms, red algae, flagellates, pale green algae, brown flagellates, yellow green algae, dinoflagellates, or cyanobacteria, such as green algae (Chlorella, Dunaliella, Scenedesmus). , Haematococcus, Nannochloris, etc.), diatoms (Scheletonema, Thalassiosira, Phaeodactylum, Chaetoceros, etc.), red algae (Porphyris crusium, Galdieria, etc.) Algae (Chlamydomonas, Rhodomonas, Chromonas, etc.), yellow Color algae (such Olistodiscus), dinoflagellates (Crypthecodinium, Alexandrium, Gymnodinium, Chattonella, etc. Karenia), blue-green algae (Spirulina, Synechococcus, Synechocystis, etc. Cyanidium) but are exemplified, but the embodiment is not limited thereto. In one implementation, brown flagellar alga, preferably Chlamydomonas spp., Rhodomonas spp., Chromonas spp., More preferably Chlamydomonas reinhardtii, is used or not limited.

本発明の方法で、前記(a)工程の前に単細胞生物体を持続的光条件で培養した後、前記単細胞生物体を暗条件で培養する前処理工程を追加で含んでもよい。前処理工程は、持続的な光条件で培養することによって細胞の活性が最も優れた対数期状態で維持するためのものであって、走光性測定直前に暗条件で培養するのは、光に対する敏感性を増加させて、走光性による細胞の光反応性を増加させるためである。 The method of the present invention may further include a pretreatment step of culturing the unicellular organism in a dark condition after culturing the unicellular organism in a continuous light condition before the step (a). The pretreatment step is to maintain the cell activity in the logarithmic phase state where the cell activity is the best by culturing under a continuous light condition. This is to increase sensitivity and increase photoreactivity of cells due to phototaxis.

すなわち、前処理工程は、持続的光条件は、光合成を介して成長する微細藻類が活動性が最も優れた対数期状態になれる光量なら十分であり、特に限定されるのではない。また、対数期により迅速な到達のために、光が持続的に照射されうる。このような条件を満たす限り、光量及び照射時間は限定されないが、例えば持続的光条件は、例えば約20〜50μmol photon m−2−1強度の光を、好ましくは約40μmol photon m−2−1強度の光を約12〜24時間照射するが、これに制限されない。 That is, in the pretreatment step, the continuous light condition is not particularly limited as long as the amount of light that allows the microalgae growing through photosynthesis to be in the logarithmic phase state where the activity is most excellent is sufficient. Also, the light can be continuously irradiated for faster arrival in the logarithmic phase. As long as these conditions are satisfied, the amount of light and the irradiation time are not limited. For example, the continuous light condition is, for example, about 20 to 50 μmol photon m −2 s −1 intensity, preferably about 40 μmol photon m −2 s. Although -1 intensity light is irradiated for about 12 to 24 hours, it is not limited to this.

前記目的を達成する限り様々な範囲の光度及び時間が用いられてもよい。用いられる波長は、実験対象単細胞生物体の具体的種類によって異なってもよい。光合成が可能な単細胞生物体別に、効率的に認知する光の波長があって、当業者ならばこのような事項を考慮して適切な波長を選択できるはずである。例えば、微細藻類クラミドモナスの場合、眼点(eyespot)という光を感知する部分があるが、この部分が認知する光波長が一般的に540〜600nmまたは約430〜500nmの波長を持つ光を認知するので、この波長領域帯の光を用いることが好ましい。 Various ranges of light intensity and time may be used as long as the objective is achieved. The wavelength used may vary depending on the specific type of experimental single cell organism. Each single cell organism capable of photosynthesis has a wavelength of light that is efficiently recognized, and those skilled in the art should be able to select an appropriate wavelength in consideration of such matters. For example, in the case of the microalga Chlamydomonas, there is a part that senses light called eye spots, and the light wavelength that this part recognizes generally recognizes light having a wavelength of 540 to 600 nm or about 430 to 500 nm. Therefore, it is preferable to use light in this wavelength region band.

また、前処理工程の培養は、細胞生長周期の最適な状態である対数増殖期(exponential phase)まで培養した後、次の工程で用いられる。単細胞生物体の生長は、大きく誘導期(lag phase:induction phase);対数増殖期(exponential phase,log phase,growth phase);停止期(stationary phase);及び死滅期(death phase)で構成され、当業者ならば対数増殖期を判別できるはずである。 The culture in the pretreatment step is used in the next step after culturing until the exponential phase, which is the optimal state of the cell growth cycle. The growth of unicellular organisms is largely composed of an induction phase, an exponential phase, an log phase, a log phase, a growth phase; a stationary phase; and a death phase. One skilled in the art should be able to determine the logarithmic growth phase.

本発明の方法による走光性は、陽性及び陰性走光性を全部含む。走光性に関しては、先に説明した通りであり、本発明に係る実現例では、陰性走光性が誘発される。通常の光の強度では、陽性走光性を誘発する単細胞生物体で陰性走光性を誘発するために、強い強度の光が照射されなければならない。すなわち、陰性走光性を誘発できる光の強度は、目的する対象生物体に応じて異なり、このような効果を達成できる多様な光度の光が用いられ、当業者ならば走光性程度を基準に適切な範囲の強度を選択できるはずである。本発明に係る実現例では、微細藻類、特にコナミドリムシ(Chlamydomonas reinhardtii)が用いられて、この場合、光の強度は約30μmolphoton m−2−1cm−1であってもよいが、これに制限されない。光の波長に関しては、前述したとおりである。 The phototaxis according to the method of the present invention includes both positive and negative phototaxis. Regarding the phototaxis, as described above, negative phototaxis is induced in the implementation example according to the present invention. At normal light intensities, in order to induce negative phototaxis in single cell organisms that induce positive phototaxis, intense light must be irradiated. That is, the intensity of light that can induce negative phototaxis varies depending on the target target organism, and light of various luminosities that can achieve such an effect is used. It should be possible to select a range of intensities. In a realization according to the invention, microalgae, in particular Chlamydomonas reinhardtii, are used, in which case the light intensity may be about 30 μmol photon m −2 s −1 cm −1 , Not limited. The wavelength of light is as described above.

本発明の方法により選別された単細胞生物体は、対照群、すなわち突然変異が誘発されなかった菌株、または、参照として使う比較対象菌株と比較して、光反応性及び光敏感性が増加しており、このような特徴の変化は、前述した走光性指標で測定でき、走光性指標が改善されることを目的する突然変異が誘発された菌株として選別することができる。走光性指標の改善程度は、分析対象または指標の種類によって異なるが、例えば対照群と比較して約5%以上、約10%以上、約20%以上、約30%以上、約40%以上、約50%以上、約60%以上、約70%以上、約80%以上、約90%以上、約100%以上改善されたことを目的する突然変異が誘発された単細胞生物体として選別することができるはずである。 Single cell organisms selected by the method of the present invention have increased photoreactivity and photosensitivity compared to a control group, i.e., a strain that has not been mutagenized, or a comparative strain used as a reference. Such a change in characteristics can be measured by the above-described phototaxis index, and can be selected as a strain in which a mutation aimed to improve the phototaxis index is induced. The degree of improvement of the phototaxis index varies depending on the analysis target or the type of the index, but for example, about 5% or more, about 10% or more, about 20% or more, about 30% or more, about 40% or more, compared to the control group, Selecting as a single-cell organism in which a mutation is induced that is intended to be improved by about 50% or more, about 60% or more, about 70% or more, about 80% or more, about 90% or more, about 100% or more It should be possible.

本発明の方法は、突然変異菌株を製作する目的に応じて追加の工程を含んでもよい。例えば、突然変異の選別が、光合成特徴の改質、脂質生産の改質、成長速度改善のためのものならば、それぞれの特徴分析のための追加の工程を含む。例えば、光合成指標、好ましくは光合成色素を含む光合成機構の変化、光合成効率、光転換効率を追加で分析する工程を含んでもよいが、これに制限されない。このような分析方法は、当業界に公示されていて、当業者ならば適切なものを選択でき、例えば本発明の実施例及び図3乃至9に記載された多様な指標、例えばNPQ(non−photochemical quenching)、またはqP(Photochemical quenchin)及び/またはクロロフィルa/b比等を含むか、これに制限されない。 The method of the present invention may include additional steps depending on the purpose of producing the mutant strain. For example, if mutation screening is for modification of photosynthetic characteristics, modification of lipid production, improvement of growth rate, it includes additional steps for each characteristic analysis. For example, a step of additionally analyzing a photosynthesis index, preferably a change in a photosynthesis mechanism including a photosynthesis dye, photosynthesis efficiency, and photoconversion efficiency may be included, but is not limited thereto. Such an analysis method is publicly known in the art, and a person skilled in the art can select an appropriate one. For example, various indicators described in the embodiments of the present invention and FIGS. 3 to 9, such as NPQ (non- including, but not limited to, photochemical quenching), or qP (photochemical quenching) and / or chlorophyll a / b ratio.

他の観点において、本発明は、前記走光性を利用した突然変異単細胞生物体の選別方法によって選別された突然変異単細胞生物体に関する。 In another aspect, the present invention relates to a mutant single cell organism selected by the method for selecting a mutant single cell organism utilizing phototaxis.

前記菌株は、突然変異の様態に合わせて様々な分野で有用物質の生産などのために応用されることができる。例えば、コナミドリムシ(Chlamydomonas reinhardtii)は、現在まで微細藻類のうち最も多くの研究が進行された種であり、他の菌株に比べて形質転換等の遺伝子操作が容易で関連道具が開発されていると共に、ゲノム配列も明らかになっていて、微細藻類のモデル生物体と思われている。従って、光合成機序が改善された突然変異菌株を選別して、これをバイオディーゼル生産のための脂質関連研究、水素生産研究などに活用することができる。 The strain can be applied for production of useful substances in various fields according to the mode of mutation. For example, Chlamydomonas reinhardtii is one of the most studied species of microalgae to date, and genetic manipulations such as transformation are easier than other strains and related tools have been developed. At the same time, the genome sequence has been clarified, and it is considered to be a model organism of microalgae. Accordingly, mutant strains with improved photosynthesis mechanisms can be selected and used for lipid-related research, hydrogen production research, and the like for biodiesel production.

本発明方法により選別された菌株は、実施例及び図7乃至9に記載された通り、クロロフィルa/b比率と光合成効率測定指標であるNPQとqPが、相関の分析を介して、目的する突然変異が誘発されて、これは本方法の優秀性を示している。 As described in the Examples and FIGS. 7 to 9, the strains selected by the method of the present invention have the target chlorophyll a / b ratio and the photosynthetic efficiency measurement indexes NPQ and qP through the analysis of the correlation. Mutation has been induced, indicating the excellence of the method.

また他の観点において、本発明は、光透過性個体流入部と、前記個体流入部とは別に形成される個体到達部と、前記個体流入部及び前記個体到達部に流体疎通可能に連結されたチャネル部と、前記チャネル部の両末端の間に形成された計測部と、を含む微細流体光反応装置に関する。 In another aspect, the present invention is connected to a light transmissive individual inflow portion, an individual reaching portion formed separately from the individual inflow portion, and fluid communication with the individual inflow portion and the individual reaching portion. The present invention relates to a microfluidic photoreaction apparatus including a channel part and a measurement part formed between both ends of the channel part.

本発明の方法は、本発明の方法を達成する限り様々な装置に用いられるのは、当業者に明らかである。すなわち、本発明の装置はもちろん、本発明の装置の各構成と相応する部位を持つこのような目的を達成できる他の装置が用いられてもよい。以下、本発明の装置に含まれた構成及びそれによる名称を例に挙げて説明するか、これに限定されるのではなく、発明を理解して解釈するに当たり相応する構成と解釈されなければならない。 It will be apparent to those skilled in the art that the method of the invention can be used in a variety of devices as long as the method of the invention is accomplished. That is, as well as the apparatus of the present invention, other apparatuses capable of achieving such an object having portions corresponding to the respective configurations of the apparatus of the present invention may be used. Hereinafter, the configurations included in the apparatus of the present invention and the names thereof will be described by way of example, and should not be construed as being limited thereto, but should be construed as corresponding configurations in understanding and interpreting the invention. .

図2A及び2Bを参照すると、本発明の装置は、一定間隔を置いて形成された個体流入部110及び個体到達部120を含み、その間に様々な形のチャネル130が位置する。前記個体流入部110及び個体到達部120は、分析対象である単細胞生物体を入ることができる空間、形及び大きさで形成され、対象個体、例えば単細胞生物体の大きさ、特性及び用いられる個体数に応じて多様な形、大きさ及び/または材質で形成されることができる。走光性に関する反応を見るために、一実現例では、光透過性物質で製作される。形、大きさは、特定形状に制限されるのではなく、同じまたは異なるように形成されてもよい。 Referring to FIGS. 2A and 2B, the apparatus of the present invention includes an individual inflow portion 110 and an individual reach portion 120 formed at regular intervals, and various types of channels 130 are positioned therebetween. The individual inflow part 110 and the individual arrival part 120 are formed in a space, shape and size into which a single-cell organism to be analyzed can enter, and the target individual, for example, the size, characteristics and individual of the single-cell organism are used. Depending on the number, it can be formed in various shapes, sizes and / or materials. In order to see the reaction with respect to phototaxis, in one implementation it is made of a light transmissive material. The shape and size are not limited to a specific shape, but may be the same or different.

前記チャネルは、個体流入部及び個体到達部と流体が疎通できるように形成される。前記チャネルを介して、個体流入部に単細胞生物体と共に導入された培養液及び単細胞生物体が移動する。従って、前記チャネルは、単細胞生物体の移動が邪魔にならないように抵抗性が最小化できる構造及び大きさで製作される。一実現例では、前記チャネルは、前記個体流入部または到達部の径と同等または小さく形成される。他の実現例では、図2Bに記載されのと同じ大きさを持つことができるが、これは例示的であり、これに限定されるのではない。 The channel is formed so that fluid can communicate with the individual inflow portion and the individual arrival portion. Through the channel, the culture solution and the single cell organism introduced together with the single cell organism move into the inflow portion of the individual. Therefore, the channel is fabricated with a structure and size that can minimize resistance so that the movement of a single cell organism is not disturbed. In one implementation, the channel is formed equal to or smaller than the diameter of the individual inflow portion or the reaching portion. In other implementations, it can have the same dimensions as described in FIG. 2B, but this is exemplary and not limiting.

前記チャネルの両末端の間の一部に計測部140が形成される。図10を参照すると、前記計測部は、移動する単細胞生物体を単一細胞レベルで顕微鏡的方法を利用して観察する部位で、単細胞生物体の運動の個別的観察が可能な構造及び大きさで形成される。例えば、本装置に使用しようとする細胞の径を基準に、例えば1個乃至約5個の細胞が通過できる程度の大きさで製作され、用いられる対象単細胞生物体の具体的大きさに応じて変わる。例えば、約10um乃至200um、例えば特に微細藻類クラミドモナスが用いられる場合、径は約50um乃至100umであってもよいが、これに制限されない。 A measurement unit 140 is formed at a part between both ends of the channel. Referring to FIG. 10, the measurement unit is a site for observing a moving single cell organism at a single cell level using a microscopic method, and has a structure and size capable of individually observing the movement of the single cell organism. Formed with. For example, on the basis of the diameter of the cell to be used in this apparatus, for example, it is manufactured in a size that allows passage of 1 to about 5 cells, and depending on the specific size of the target single cell organism used. change. For example, when about 10 μm to 200 μm, for example, the microalga Chlamydomonas is used, the diameter may be about 50 μm to 100 μm, but is not limited thereto.

本発明の微細流体光反応装置に含まれる各構成は、光透過性がある透明な材質で用いられる単細胞生物体に対する毒性がなく、多孔性で生物活性に必要な物質伝達が容易で、単細胞生物体の移動を邪魔しない材質、または前記特徴を有するように前処理された材質で製作されることが好ましい。このような物質としては、例えばPMMA(Poly(methyl methacrylate))、PS(Polystyrene)、またはPDMS(polydimethylsiloxane)等が挙げられるが、これに制限されない。 Each configuration included in the microfluidic photoreaction apparatus of the present invention is not toxic to single cell organisms that are used with transparent materials that are light transmissive, is porous and easily transmits substances necessary for biological activity, and is a single cell organism. It is preferable to manufacture with the material which does not disturb the movement of a body, or the material pre-processed so that it may have the said characteristic. Examples of such a substance include, but are not limited to, PMMA (Polymethyl methacrylate), PS (Polystyrene), PDMS (Polydimethylsiloxane), and the like.

図1を参照すると、本発明の微細流体光反応装置は、光源を追加で含んでもよい。本発明の装置に用いられる単細胞生物体に目的する最適な走光性を誘発できる光源及び波長が選択されて、このような効果を示す限り、分析する対象及び目的に合わせて多様な光源及び波長の光が用いられる。 Referring to FIG. 1, the microfluidic photoreactor of the present invention may additionally include a light source. As long as the light source and wavelength capable of inducing the optimal phototaxis in the single-cell organism used in the apparatus of the present invention are selected and exhibit such effects, various light sources and wavelengths can be selected according to the object and purpose to be analyzed. Light is used.

光源の種類では、一定波長を放出できるものなら可能で、例えばレーザーダイオード、またはLED(Light Emitting Diode)が用いられる。本発明の一実現例では、分析対象に微細藻類が用いられて、特にコナミドリムシ(Chlamydomonas reinhardtii)の場合、緑色と青色波長を出すLED光源が利用される。 Any type of light source can be used as long as it can emit a certain wavelength. For example, a laser diode or an LED (Light Emitting Diode) is used. In one implementation of the present invention, microalgae are used for analysis, and LED light sources that emit green and blue wavelengths are used, particularly in the case of Chlamydomonas reinhardtii.

図1は、本発明の装置及びこれを利用した突然変異単細胞生物体、すなわち菌株選別方法を例示的に示した模式図である。本発明に係る微細流体光反応装置は、走光性を示す運動性のある単細胞生物体の走光性を利用して、光に反応する特徴が変異された生物体の選別に用いられる。例えば、本発明に係る装置の細胞流入部に一定量の走光性及び運動性を持つ単一または多数コロニー由来の単一細胞生物体、例えば微細藻類を導入した後、特定強度の強い光を照射すると、これに反応して、細胞が光源が照射される方向から遠ざかる方向にチャネルを介して移動する。チャネルを介して移動する細胞は、計測部を通過する際に、顕微鏡的観察を介して、走光性指標算定のための各種データ、例えば一定距離移動時間、移動細胞数等、様々なデータが収集されて、これに関しては、前述した記載を参照することができる。本発明に係る実現例で、走光性を利用した突然変異が誘発された単細胞生物体として、微細藻類が用いられる場合、次の工程を含んでもよい。 FIG. 1 is a schematic view exemplarily showing an apparatus of the present invention and a mutant single cell organism using the same, that is, a strain selection method. The microfluidic photoreaction apparatus according to the present invention is used to select organisms whose characteristics of reacting to light are mutated by using the phototaxis of a unicellular organism having mobility that exhibits phototaxis. For example, a single cell organism derived from a single or multiple colony having a certain amount of phototaxis and motility, such as microalgae, is introduced into the cell inflow portion of the device according to the present invention, and then irradiated with light having a specific intensity Then, in response to this, the cell moves through the channel in a direction away from the direction in which the light source is irradiated. When the cells that move through the channel pass through the measurement unit, various data for the calculation of the phototaxis index, such as a certain distance travel time, the number of moving cells, etc. are collected through microscopic observation. In this regard, reference can be made to the above description. In the implementation example according to the present invention, when a microalgae is used as a unicellular organism in which a mutation utilizing phototaxis is induced, the following steps may be included.

例えば、一実現例で、本発明の装置を利用した方法は、例えば(a)単細胞生物体を持続的光条件で培養した後、前記単細胞生物体を暗条件で培養する前処理工程;(b)前記前処理された単細胞生物体を前記光反応装置の細胞流入部に導入する工程;(c)細胞流入部に導入された前記単細胞生物体の走光性を誘発できるよう、前記細胞流入部に光源を照射する工程;(d)前記走光性によって前記チャネルを介して前記到達部に移動する前記単細胞生物体を前記計測部で観察して、走光性反応指標を収集する工程;及び(e)対照群と比較して、前記走光性指標が変化した場合、これを突然変異が誘発された細胞と選別する工程を含むが、これに制限されない。前記前処理工程は、選択的に含んでもよい。本方法に用いられる各用語及び説明は先に説明した本発明方法に関連して言及したのを参照することができる。 For example, in one implementation, a method using the apparatus of the present invention includes, for example, (a) a pretreatment step of culturing a unicellular organism in a dark condition and then culturing the unicellular organism in a dark condition; ) Introducing the pretreated unicellular organism into the cell inflow portion of the photoreactor; (c) introducing into the cell inflow portion so as to induce phototaxis of the unicellular organism introduced into the cell inflow portion; Irradiating a light source; (d) observing the single-cell organism that moves to the arrival part through the channel by the phototaxis by the measurement unit and collecting a phototaxis reaction index; and (e) When the phototaxis index is changed as compared with the control group, the method includes, but is not limited to, selecting the cell from which the mutation has been induced. The pretreatment process may optionally be included. Reference may be made to the terms and descriptions used in the method referred to in connection with the inventive method described above.

以下、本発明を実施例を挙げて詳述する。これらの実施例は単に本発明をより具体的に説明するためのものであり、本発明の範囲がこれらの実施例に制限されないことは当業者において通常の知識を有する者にとって自明である。 Hereinafter, the present invention will be described in detail with reference to examples. These examples are merely for illustrating the present invention more specifically, and it is obvious to those skilled in the art that the scope of the present invention is not limited to these examples.

実施例1:突然変異が誘発された菌株の製造
本実施例に用いられた菌株は、漢陽(ハンヤン)大学のチンオンソン教授研究室で入手したもので、種はChlamydomonas renihardtiiである。
前記菌株は、野生型(wild type)菌株JL428で、野生型菌株に挿入突然変異誘発法(insertional mutation)で無作為突然変異を誘発した後、通常知られているクロロフィルa/b比率が高い菌株が光合成効率が高い可能性が大きい点(Anastasions Melis (2012) Vol.158 930−945)を利用して、一次的にクロロフィルa/b比率が野生型菌株より高い菌株を選別して、本発明方法の効能検証のために用いた。
微細藻類培養に用いられた培地は、TAP培地で、これらの構成成分は[表1]に示した。
Example 1 Production of a Mutation-Induced Strain The strain used in this example was obtained from Professor Chin-onson's laboratory at Hanyang University, and the species is Chlamydomonas renihardtii.
The strain is wild type strain JL428, which is a strain having a high chlorophyll a / b ratio, which is generally known after random mutation is induced in the wild type strain by insertion mutagenesis (insertion mutagenesis). Is highly likely to have high photosynthetic efficiency (Anastasis Melis (2012) Vol. 158 930-945), and a strain having a higher chlorophyll a / b ratio than that of the wild-type strain is selected first. Used for method efficacy verification.
The medium used for microalgae culture was TAP medium, and these constituents are shown in [Table 1].

実施例2:微細藻類培養及び微細流体装置製作
微細流体装置は、シリコン基板に陰性感光剤SU-8 50を回転塗布した後、デザインされたマスクを覆って紫外線露機を利用して紫外線に露出させてフォトリソグラフィ(photo−lithography)を介して製作され、高分子PDMS(Polydimethylsiloxane)と硬化剤を10:1の割合で混合して、フォトリソグラフィで製作されたSU-8モールドの上に製作した。完成されたPDMS微細流体装置はプラズマ処理を介してスライドグラスと結合させた。製作された装置は図2Bのとおりである。
Example 2: Microalgae culture and microfluidic device fabrication A microfluidic device was prepared by spin-coating the negative photosensitizer SU-8 50 on a silicon substrate, then covering the designed mask and exposing it to ultraviolet rays using an ultraviolet exposure machine. The polymer PDMS (Polydimethylsiloxane) and the curing agent were mixed at a ratio of 10: 1 and fabricated on the SU-8 mold fabricated by photolithography. . The completed PDMS microfluidic device was combined with a slide glass via plasma treatment. The manufactured device is as shown in FIG. 2B.

前記装置は、図2Aで見られるように、最適なチャネル構造を選別するために、チャネルの幅及び形態に応じた細胞の運動性を下記の実施例3のように分析した。要約すると、緑色LED光源(540nm)を細胞をいれた入口細胞流入部の部分に照らしながら一定距離に位置する反対側部位、すなわち細胞到達部に到達する細胞数をそれぞれの装置で測定して、その結果を比較した結果、図3Bで見られるように、微細流体装置内細胞流入部と近接したチャネルの幅によって細胞の走光性による運動が影響を受ける現象を確認した。従って、細胞の運動に対する抵抗性を最小化しながら、計測部での個別細胞の観察及び統計的分析を容易にするために、図2Bのようにチャネル入口の幅が4mmから出口の幅が100umに一定に減る形態のチャネルが含まれた装置デザインを選定して、上述した通り製作した。 The device analyzed cell motility as a function of channel width and morphology as in Example 3 below to screen for optimal channel structure, as seen in FIG. 2A. In summary, while the green LED light source (540 nm) is illuminated on the part of the inlet cell inflow part containing the cells, the opposite part located at a certain distance, that is, the number of cells reaching the cell arrival part is measured with each device, As a result of comparing the results, as shown in FIG. 3B, a phenomenon was confirmed in which the movement due to the phototaxis of the cells was affected by the width of the channel adjacent to the cell inflow portion in the microfluidic device. Therefore, in order to facilitate the observation and statistical analysis of individual cells in the measurement unit while minimizing resistance to cell movement, the channel inlet width is changed from 4 mm to the outlet width of 100 μm as shown in FIG. 2B. A device design was selected that contained a constantly reduced form of channel and was fabricated as described above.

実施例3:光の波長に応じた微細藻類の光反応分析
光に対する細胞の光反応性及び光敏感性を効率的に一定に調節するための適応するための前処理過程で、人為的突然変異が誘発されなかったChlamydomonas reinhardtii野生型菌株(JL428)及び実施例1の突然変異菌株をTAP agar培地で種培養(seed culture)した。具体的に、TAP液体培地に40μmol photon m−2−1強度の24時間持続的な光条件及び23℃ 温度条件で2日間培養した。2日間培養した後、対数成長段階に入ると、7.5×10cells ml−1に希釈して暗室条件で1時間保管した。
Example 3: Photoreaction analysis of microalgae according to the wavelength of light Artificial mutation in pretreatment process for adapting to efficiently and constantly adjust the photoreactivity and photosensitivity of cells to light The Chlamydomonas reinhardtii wild type strain (JL428) and the mutant strain of Example 1 were not seed-cultured in TAP agar medium. Specifically, the cells were cultured in a TAP liquid medium for 2 days under a light condition of 40 μmol photon m −2 s −1 intensity for 24 hours and a temperature condition of 23 ° C. After culturing for 2 days, when entering the logarithmic growth stage, it was diluted to 7.5 × 10 3 cells ml −1 and stored for 1 hour in a dark room condition.

以後、暗室条件で1時間保管した細胞を下記の図2Bの細胞流入口の部分に40ul入れて、細胞到達部には40ul TAP培地を入れた後、計測部で倒立光学顕微鏡で走光性による微細藻類細胞の動きを観察した。 Thereafter, 40 ul of cells stored for 1 hour under dark room conditions are put into the cell inlet part of FIG. 2B below, and 40 ul TAP medium is put into the cell arrival part. The movement of algal cells was observed.

光の波長別微細藻類の光反応を分析するために、細胞濃度と条件を前記条件のように一定に維持した後、用いるLED光源の波長を異なるように調節した。緑色(540nm)、赤色(650nm)、青色(470nm)、白色(全波長)、そして暗室条件の計五つの条件で微細藻類の走光性を介した光反応分析を実施した。 In order to analyze the photoreaction of microalgae by wavelength of light, the cell concentration and conditions were kept constant as described above, and then the wavelength of the LED light source used was adjusted to be different. Photoreaction analysis was carried out via the microalgae phototaxis under five conditions: green (540 nm), red (650 nm), blue (470 nm), white (full wavelength), and dark room conditions.

その結果、図3Aで見られるように、微細藻類は、特定波長で敏感な反応を示したが、緑色(540nm)と青色(470nm)で反応性が大きく示され、赤色(650nm)では光に対する反応を示さなかった。これらの結果から、本発明で基本的に用いられる光の波長は540nmの緑色LED光源を用いた。 As a result, as can be seen in FIG. 3A, the microalgae showed a sensitive reaction at a specific wavelength, but showed a large reactivity in green (540 nm) and blue (470 nm), and in red (650 nm) to light. There was no reaction. From these results, a green LED light source having a wavelength of light of 540 nm basically used in the present invention was used.

実施例4:野生型及び突然変異菌株の走光性による光反応パターン分析及び選別
緑色LED光源(540nm)を30μmol photon m−2−1の強度で細胞流入部に光を照らして、計測部に到達する細胞数を30分間分単位で測定した。結果は、図5で見られるように、光反応による各菌株別時間に応じた移動個体数を分析した結果、一定の形態のヒストグラムを得た。突然変異菌株のヒストグラムを対照群のヒストグラムと比較した結果、突然変異1、2、3の場合、対照群に比べて光反応ヒストグラムの頂点が左に移動したのを確認した。それに対して、突然変異4、5の場合、対照群と大きな差を見せなかった。この結果は、光合成効率と間接的に関連するクロロフィルa/b比率と関連して、一般的にクロロフィルa/b比率が高い菌株が光合成効率が高い菌株である確率が高いが、走光性によって得たヒストグラムを分析してみると、対照群に比べてクロロフィルa/b比率が増加した菌株が、光によって移動する細胞数が増加して、対照群とクロロフィルa/b比率が大きい差を見せない突然変異菌株は、走光性による移動細胞数が差が殆どないことから、図5のヒストグラムのパターン分析だけでも、光合成効率が増加した突然変異が誘発された菌株を走光性反応で容易で効率的な観測が可能であることが分かる。
Example 4: Photoreaction pattern analysis based on phototaxis of wild-type and mutant strains and selection Green LED light source (540 nm) is irradiated with light at 30 μmol photon m −2 s −1 to the cell inflow part, The number of cells reached was measured in minutes for 30 minutes. As a result, as shown in FIG. 5, as a result of analyzing the number of migrating individuals according to the time for each strain by photoreaction, a histogram of a certain form was obtained. As a result of comparing the histogram of the mutant strain with the histogram of the control group, it was confirmed that in the case of mutations 1, 2, and 3, the vertex of the photoreaction histogram moved to the left as compared with the control group. In contrast, mutations 4 and 5 did not show a significant difference from the control group. This result is related to the chlorophyll a / b ratio indirectly related to the photosynthetic efficiency. In general, a strain having a high chlorophyll a / b ratio is highly likely to be a strain having a high photosynthetic efficiency. Analysis of the histogram shows that the strain with an increased chlorophyll a / b ratio compared to the control group does not show a large difference between the control group and the chlorophyll a / b ratio due to an increase in the number of cells that migrate due to light. Since the mutant strains have almost no difference in the number of migrating cells due to phototaxis, it is easy and efficient to use the phototaxis reaction for a strain in which the mutation with increased photosynthesis efficiency is induced only by the pattern analysis of the histogram of FIG. It can be seen that this is possible.

また、図6Aで見られるように、全細胞数対比光反応に移動した個体数の比率から、対照群菌株と突然変異菌株の光反応性を比較した結果、対照群菌株の場合、全体細胞の65%が光反応を見せたことに比べて、突然変異1は85%が光反応を見せて移動して、突然変異2、3も80%ほどの細胞が光反応を見せた。それに対して、突然変異4、5は、光反応比率においても対照群と類似する比率を見せた。この結果は、クロロフィルa/b比率の増加による光合成効率が増加した突然変異菌株は、同じ光の強度に対して反応する程度が、対照群に比べてより大きいことを意味して、対照群に比べてクロロフィルa/b比率の増加が大きくない突然変異菌株は、光合成効率の程度が対照群と似ていることを意味して、このような菌株は同じ光の強度に対する光反応性も対照群と似ていることを意味する。 In addition, as seen in FIG. 6A, as a result of comparing the photoreactivity of the control group strain and the mutant strain from the ratio of the number of individuals transferred to the total cell number versus the photoreaction, in the case of the control group strain, Compared to 65% showing a photoreaction, 85% of the mutation 1 migrated with a photoreaction, and about 80% of the mutations 2 and 3 showed a photoreaction. In contrast, mutations 4 and 5 showed similar ratios to the control group in the photoreaction ratio. This result indicates that mutant strains with increased photosynthetic efficiency due to increased chlorophyll a / b ratio have a greater degree of response to the same light intensity compared to the control group. In contrast, mutant strains that do not significantly increase the chlorophyll a / b ratio mean that the degree of photosynthetic efficiency is similar to that of the control group, and such strains also have photoreactivity to the same light intensity and control group. It means that it is similar.

対照群と突然変異菌株の光に対する走光性によって、一定時間内に細胞個体の移動にかかる平均時間の偏差を分析することによって、光に対する敏感性を比較分析でき、これを介して簡単に光反応が特異的な菌株を選別することが可能である。突然変異1、2、3の場合、図6Bで見られるように対照群に比べて平均時間が減少したのを確認できて、突然変異4、5は、対照群に比べて大きく減少しない結果を見せた。この結果は、クロロフィルa/b比率が増加することによって光合成効率が増加した突然変異菌株は、一定の光の強度に対して対照群菌株より敏感であることを意味して、これは細胞の移動速度と関連して示される。同じ光の強度に対して光に対する敏感性が増加した菌株は、さらにはやい反応に移動して一定距離(3cm)を行くのにかかる所用時間が減ることを示す。相対的に対照群菌株とクロロフィルa/b比率が差が殆どない菌株の場合には、一定の光の強度に対する敏感性が似ていて、一定の距離を行くのにかかる時間が対照群菌株と比較して殆ど差がないことを示す。 The sensitivity to light can be analyzed comparatively by analyzing the deviation of the average time taken for cell migration within a certain time, based on the phototaxis of the control group and the mutant strain. It is possible to select specific strains. In the case of mutations 1, 2, and 3, it can be confirmed that the average time decreased as compared with the control group as seen in FIG. 6B. showed. This result means that mutant strains with increased photosynthetic efficiency due to increased chlorophyll a / b ratio are more sensitive than control strains to a certain light intensity, which is a measure of cell migration. Shown in relation to speed. Strains with increased sensitivity to light for the same light intensity show that the time required to move to a certain distance (3 cm) is reduced to a faster reaction. In the case of a strain having a relatively little difference in chlorophyll a / b ratio from the control group strain, the sensitivity to a certain light intensity is similar, and the time taken to travel a certain distance is similar to that of the control group strain. It shows that there is almost no difference.

一方、図5、6A、6Bで見られるように、微細藻類対照群及び突然変異菌株の走光性による光反応性は、図4に示されたクロロフィルa/bの比率と非常に類似するパターンを見せて、これは、本発明で適用した菌株の個体別光反応性に対する統計的分析法によって得た各種指標(ヒストグラムの頂点、移動平均時間、光反応細胞の比率等)が、走光性による光反応性、光敏感性だけでなく突然変異によって発生するクロロフィル等光合成機構の変化とも関連性を持つ可能性があることを示す。 On the other hand, as can be seen in FIGS. 5, 6A and 6B, the photoreactivity due to phototaxis of the microalgae control group and the mutant strain has a pattern very similar to the ratio of chlorophyll a / b shown in FIG. Shown, this shows that various indices (histogram apex, moving average time, ratio of photoreactive cells, etc.) obtained by the statistical analysis method for the individual photoreactivity of the strain applied in the present invention are the light due to phototaxis. It indicates that there is a possibility that it is related not only to reactivity and photosensitivity but also to changes in photosynthesis mechanism such as chlorophyll caused by mutation.

従って、本発明で用いられた微細流体システム内微細藻類の走光性に対する分析方法を利用して一次選別された菌株を対象に光合成効率が向上した菌株をより効率的に探索することができる。 Therefore, it is possible to more efficiently search for a strain having improved photosynthesis efficiency for strains that have been primarily selected using the analysis method for the phototaxis of microalgae in the microfluidic system used in the present invention.

実施例5:選別された突然変異菌株の光合成指標分析
本実施例では、前記の通りに走光性によって選別された突然変異菌株の光合成効率を測定した。指標として、NPQとqPを用いた。NPQは、光合成のために受けた光エネルギー中光合成に使用できず消滅するエネルギーで、NPQ値が低いほど光合成効率が高いことを意味して、qPは光合成に用いられるエネルギーを意味して、qP値が高いほど光合成効率が高いことを意味する。
Example 5: Photosynthesis index analysis of selected mutant strains In this example, the photosynthetic efficiency of mutant strains selected by phototaxis as described above was measured. NPQ and qP were used as indices. NPQ is energy that cannot be used for photosynthesis in the photoenergy received for photosynthesis and disappears. The lower the NPQ value, the higher the photosynthesis efficiency, and qP means the energy used for photosynthesis. A higher value means higher photosynthesis efficiency.

5−1選別された菌株のクロロフィルa/b比率とNPQ、qPと相関分析
選別された菌株のクロロフィルa/b比率とNPQ、qPと相関を次の通り分析した。クロロフィル測定法は、吸光度測定を基本とする公示された方法(Hartumut K.LichtenthalerとClaus Buschmann (2001) F4.3.1−F4.3.8)で測定した。
5-1 Correlation analysis between chlorophyll a / b ratio of selected strains and NPQ, qP The correlation between chlorophyll a / b ratio of selected strains and NPQ, qP was analyzed as follows. Chlorophyll measurement was carried out by the published method based on absorbance measurement (Hartumut K. Richtenthaler and Claus Buschmann (2001) F4.3.1-F4.3.8).

要約すると、フラスコで光度40μmol photon m-2s-1で3日間培養した後、対数成長期に入った時、クロロフィル測定を実施した。フラスコをよく振って1mlを1.5mlチューブに移して、15,000rpmで1分間遠心分離した。遠心分離後、上澄み液を除去して、メタノール1mlを入れた後、ボルテックスを行って、クロロフィルを抽出した。引き続き15,000rpmで1分間遠心分離した後、上澄み液に対してA663.2、A646.8波長で吸光度を測定した。その後、下記の式に代入して、クロロフィルaとbを測定してクロロフィルa/b比率を測定した。
Chl a(g/ml)=16.72×A665.2―9.16×A652.4
Chl b(g/ml)=34.09×A652.4―15.28×A665.2
Chl a/b=Chl a÷ Chl b
In summary, chlorophyll measurement was carried out after entering the logarithmic growth phase after culturing at 40 μmol photon m −2 s −1 for 3 days in a flask. The flask was shaken well to transfer 1 ml to a 1.5 ml tube and centrifuged at 15,000 rpm for 1 minute. After centrifugation, the supernatant was removed and 1 ml of methanol was added, followed by vortexing to extract chlorophyll. Subsequently, the mixture was centrifuged at 15,000 rpm for 1 minute, and the absorbance was measured with respect to the supernatant at A6633.2 and A646.8 wavelengths. Then, the chlorophyll a / b ratio was measured by substituting into the following formula and measuring chlorophyll a and b.
Chla (g / ml) = 16.72 × A665.2-9.16 × A652.4
Chl b (g / ml) = 34.09 × A652.4-15.28 × A665.2
Chl a / b = Chl ÷ Chl b

NPQ及びqPは、TAP培地に寒天をを含む寒天培地で23で菌株を培養した後、Imaging-PAMクロロフィル蛍光分析装備(Heinz Walz GmbH,Germany)を利用して測定した。 NPQ and qP were measured using an Imaging-PAM chlorophyll fluorescence analysis equipment (Heinz Walz GmbH, Germany) after culturing the strain at 23 on an agar medium containing agar in a TAP medium.

以後、実施例3乃至5と同様の分析を介して収得したデータ、すなわち平均移動時間、単位時間到達した細胞群集の細胞比率などと、クロロフィルa/b比率、NPQそしてqPとの分析を実施した。 Thereafter, the data obtained through the same analysis as in Examples 3 to 5, ie, the average migration time, the cell ratio of the cell population that reached the unit time, and the chlorophyll a / b ratio, NPQ and qP were analyzed. .

結果は、図7A及び7Bに記載されている。これに示された通り、クロロフィルa/b比率が高いほどNPQ値が低い相関を示して、qP値は高い相関を示して、光合成効率が高いことを示した。 The results are described in FIGS. 7A and 7B. As shown, the higher the chlorophyll a / b ratio, the lower the correlation of the NPQ value and the higher the qP value, indicating that the photosynthesis efficiency is high.

5−2選別された菌株の平均到達時間とNPQとの相関分析
実施例4に記載された通り、各菌株に対してて得た走光性指標のうち平均到達時間と実施例5に記載された光合成効率測定指標との分析を実施した。
5-2 Correlation analysis between average arrival time of selected strains and NPQ As described in Example 4, among the phototaxis indices obtained for each strain, the average arrival time and Example 5 Analysis with the photosynthetic efficiency measurement index described in 1.

結果は、図8A及び8Bに記載されている。これに示された通り、二つの指標間の相関性を示すr2値が1に近いほど相関性が高く、従来に用いられたクロロフィルa/b比率よりは、本発明の方法による走光性を介して得た指標が、光合成効率が増加した突然変異菌株を選別するのに有用であることを示している。 The results are described in FIGS. 8A and 8B. As shown in this figure, the closer the r2 value indicating the correlation between the two indexes is, the higher the correlation is, and the higher the correlation is, the more the chlorophyll a / b ratio used in the prior art is, The index obtained in this way is useful for selecting mutant strains with increased photosynthetic efficiency.

5−3選別された菌株の対照群対比移動細胞数の比とNPQとの相関分析
実施例4に記載された通り、各菌株に対して得た走光性指標のうち、対照群対比移動細胞数の比と実施例5に記載された光合成効率測定指標との分析を実施した。
5-3 Correlation analysis of the ratio of the number of migrating cells to the control group of the selected strain and NPQ As described in Example 4, among the phototaxis indices obtained for each strain, the control group Analysis of the ratio of the number of contrasting migratory cells and the photosynthesis efficiency measurement index described in Example 5 was performed.

結果は、図9に記載されている。これに示された通り、その比率が1以上である突然変異菌株は、一定時間対照群菌株に対比してより多くの細胞数が移動したことで、これは、光敏感性及び光反応性が優れた突然変異菌株を意味して、このような菌株が、NPQ値が低い相関を示すので、これは、光合成効率が増加した菌株であることを示す。従って、このような結果は、走光性を利用した本発明方法を利用する場合、光合成効率が高い菌株の選別が可能であることを示す。 The results are described in FIG. As shown in this figure, the mutant strain having a ratio of 1 or more migrated more than the control group strain for a certain period of time. By indicating an excellent mutant strain, this strain shows a correlation with a low NPQ value, indicating that this is a strain with increased photosynthetic efficiency. Therefore, such a result shows that a strain having high photosynthesis efficiency can be selected when the method of the present invention using phototaxis is used.

本発明は、走光性を利用して改良された単細胞生物体を微細流体システムを利用して効果的に選別できるもので、細胞単位で容易なモニタリングが可能で、収集した結果の統計的分析を含んだ様々な分析を介して、変化した光反応性及び/または光敏感性を持つ突然変異菌株を容易にまたは高速で選別できて、走光性及び光転換効率の相関解明、光転換効率が向上した改良された単細胞生物体選別に有用に活用できる。 The present invention can effectively select single-cell organisms improved using phototaxis using a microfluidic system, and can be easily monitored on a cell-by-cell basis. Through various analyzes included, mutant strains with altered photoreactivity and / or photosensitivity can be selected easily or at high speed, elucidating the correlation between phototaxis and photoconversion efficiency, and improving photoconversion efficiency It can be used effectively for improved single cell organism selection.

Claims (24)

(a)単細胞生物体に光を照射して走光性を誘発する工程と、
(b)前記単細胞生物体の走光性指標を算出する工程と、
(c)対照群と比較して、前記単細胞生物体の走光性指標が変化した場合、これを目的する突然変異が誘発された単細胞生物体として選別する工程と、を含む走光性を利用した突然変異単細胞生物体の選別方法。
(A) irradiating light on a single-cell organism to induce phototaxis;
(B) calculating the phototaxis index of the unicellular organism;
(C) when the phototaxis index of the single-cell organism is changed as compared with the control group, the step of selecting as a single-cell organism in which the mutation intended for this is induced, A method for selecting mutant single-cell organisms.
前記方法は、前記(a)工程の前に単細胞生物体を持続的光条件で培養した後、前記単細胞生物体を暗条件で培養する前処理工程をさらに含むことを特徴とする請求項1に記載の突然変異単細胞生物体の選別方法。 The method of claim 1, further comprising a pretreatment step of culturing the unicellular organism in a dark condition after culturing the unicellular organism in a dark condition before the step (a). A method for selecting a mutant single-cell organism as described. 前記持続的光条件は、540〜600nmまたは430〜500nmの波長を持つ20〜50μmol photon m−2−1強度の光を、12〜24時間照射することを特徴とする請求項2に記載の突然変異単細胞生物体の選別方法。 3. The continuous light condition according to claim 2, wherein 20 to 50 μmol photon m −2 s −1 intensity light having a wavelength of 540 to 600 nm or 430 to 500 nm is irradiated for 12 to 24 hours. A method for selecting mutant single-cell organisms. 前記前処理工程の培養は、対数増殖期(exponential phase)まで培養することを特徴とする請求項2に記載の突然変異単細胞生物体の選別方法。 The method for selecting a mutant single-cell organism according to claim 2, wherein the culture in the pretreatment step is performed until an exponential growth phase. 前記単細胞生物体は、単一コロニー由来または多数コロニー由来であることを特徴とする請求項1に記載の突然変異単細胞生物体の選別方法。 The method for selecting a mutant single cell organism according to claim 1, wherein the single cell organism is derived from a single colony or a plurality of colonies. 前記走光性は、陽性及び陰性走光性であることを特徴とする請求項1に記載の突然変異単細胞生物体の選別方法。 The method for selecting a mutant single cell organism according to claim 1, wherein the phototaxis is positive and negative phototaxis. 前記走光性は、陰性走光性であり、540〜600nmまたは430〜500nmの波長の光を、20〜50μmol photon m−2−1cm−1強度の光によって誘発されることを特徴とする請求項6に記載の突然変異単細胞生物体の選別方法。 The phototaxis is negative phototaxis, and light having a wavelength of 540 to 600 nm or 430 to 500 nm is induced by light having an intensity of 20 to 50 μmol photon m −2 s −1 cm −1. Item 7. A method for selecting a mutant single-cell organism according to Item 6. 前記走光性指標は、光反応性または光敏感性の中の一つ以上の測定を解して算出されることを特徴とする請求項1に記載の突然変異単細胞生物体の選別方法。 The method for selecting a mutant single cell organism according to claim 1, wherein the phototaxis index is calculated by solving at least one of photoreactivity or photosensitivity. 前記目的する突然変異が誘発された単細胞生物体は、対照群と比較して、光合成色素を含む光合成機構の変化、光合成効率、または光転換効率を含む光合成指標、及び成長速度の中の一つ以上のが改善されたことを特徴とする請求項1に記載の突然変異単細胞生物体の選別方法。 The single-cell organism in which the target mutation has been induced is one of a growth rate of a photosynthesis index including a change in a photosynthetic mechanism including a photosynthetic pigment, a photosynthetic efficiency, or a photoconversion efficiency, as compared with a control group. The method for selecting a mutant single cell organism according to claim 1, wherein the above is improved. 前記走光性指標は、(i)用いられた総単細胞生物体数に対する走光性に反応して単位時間当り移動した単細胞生物体数の比;(ii)単位時間当たり移動した単細胞生物体数の分布を基にしたヒストグラム頂点分析;または(iii)前記方法に用いられた単細胞生物体の単位距離当たり移動に所要された平均時間、または速度またはその偏差を含むことを特徴とする請求項1に記載の突然変異単細胞生物体の選別方法。 The phototaxis index is (i) the ratio of the number of unicellular organisms migrated per unit time in response to phototaxis to the total number of unicellular organisms used; (ii) the distribution of the number of unicellular organisms migrated per unit time A histogram vertex analysis based on: or (iii) an average time, or speed or deviation required for the movement of a single cell organism used in the method per unit distance, or a deviation thereof. A method for selecting mutant single-cell organisms. 前記選別された突然変異単細胞生物体に対して光合成指標を追加で分析する工程を含むことを特徴とする請求項1に記載の突然変異単細胞生物体の選別方法。 The method for selecting a mutant single-cell organism according to claim 1, further comprising a step of analyzing a photosynthesis index for the selected mutant single-cell organism. 前記走光性指標は、光合成色素を含む光合成機構の変化、光合成効率、または光転換効率を含むことを特徴とする請求項11に記載の突然変異単細胞生物体の選別方法。 The method according to claim 11, wherein the phototaxis index includes a change in a photosynthetic mechanism including a photosynthetic pigment, a photosynthetic efficiency, or a photoconversion efficiency. 前記単細胞生物体は、微細藻類であることを特徴とする請求項1に記載の突然変異単細胞生物体の選別方法。 The method for selecting a mutant single cell organism according to claim 1, wherein the single cell organism is a microalgae. 前記微細藻類は、緑藻類、硅藻類、紅藻類、鞭毛類、淡緑藻類、茶色鞭毛藻類、黄緑色藻類、渦鞭毛藻類、または、藍藻類であることを特徴とする請求項13に記載の突然変異単細胞生物体の選別方法。 The mutation according to claim 13, wherein the microalgae are green algae, diatom algae, red algae, flagellates, pale green algae, brown flagellates, yellow green algae, dinoflagellates, or cyanobacteria. Single cell organism sorting method. 前記茶色鞭毛藻類は、Chlamydomonas spp.,Rhodomonas spp.,及びChroomonas spp.の中の一つ以上であることを特徴とする請求項14に記載の突然変異単細胞生物体の選別方法。 The method according to claim 14, wherein the brown flagellate algae is one or more of Chlamydomonas spp., Rhodomonas spp., And Chroomonas spp. 前記Chlamydomonas spp.は、Chlamydomonas reinhardtiiであることを特徴とする請求項15に記載の突然変異単細胞生物体の選別方法。 16. The method for selecting a mutant single cell organism according to claim 15, wherein the Chlamydomonas spp. Is Chlamydomonas reinhardtii. 請求項1〜16の中一項に記載の方法によって選別された突然異単細胞生物体。 A sudden unicellular organism selected by the method according to claim 1. 光透過性個体流入部と、前記個体流入部とは別に形成される個体到達部と、前記個体流入部及び前記個体到達部に流体疎通可能に連結されたチャネル部と、前記チャネル部の両末端の間に形成された計測部と、を含む微細流体光反応装置。 A light-transmitting individual inflow portion, an individual reaching portion formed separately from the individual inflow portion, a channel portion connected to the individual inflow portion and the individual reaching portion in fluid communication, and both ends of the channel portion And a microfluidic photoreaction apparatus including a measurement unit formed between the two. 前記計測部は、前記チャネル部の径と同等または小さく形成されることを特徴とする請求項18に記載の微細流体光反応装置。 19. The microfluidic photoreaction device according to claim 18, wherein the measurement unit is formed to be equal to or smaller than the diameter of the channel unit. 前記計測部の径は、前記個体流入部に導入された個体の運動の個別的観察が可能な大きさで形成されることを特徴とする請求項19に記載の微細流体光反応装置。 20. The microfluidic photoreaction device according to claim 19, wherein the diameter of the measurement unit is formed to a size that allows individual observation of the movement of the individual introduced into the individual inflow unit. 前記計測部の径は、10〜100μmであることを特徴とする請求項19に記載の微細流体光反応装置。 The microfluidic photoreaction apparatus according to claim 19, wherein the diameter of the measurement unit is 10 to 100 m. 前記微細流体光反応装置は、光源を追加で含むことを特徴とする請求項18に記載の微細流体光反応装置。 19. The microfluidic photoreaction device according to claim 18, further comprising a light source. 前記光源は、LED(Light Emitting Diode)またはレーザーダイオードであることを特徴とする請求項22に記載の微細流体光反応装置。 23. The microfluidic photoreaction device according to claim 22, wherein the light source is an LED (Light Emitting Diode) or a laser diode. 前記装置は、請求項1〜17の中いずれか一項に記載の方法に用いられることを特徴とする請求項18に記載の微細流体光反応装置。
The said apparatus is used for the method as described in any one of Claims 1-17, The microfluidic photoreaction apparatus of Claim 18 characterized by the above-mentioned.
JP2015553650A 2013-01-21 2014-01-14 Method for selecting a single-cell organism in which a mutation has been induced, and a microfluidic device used therefor Active JP6316316B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020130006466A KR101471270B1 (en) 2013-01-21 2013-01-21 Method for screening single cell organism with mutation and Microfluidic system for the same
KR10-2013-0006466 2013-01-21
PCT/KR2014/000373 WO2014112762A1 (en) 2013-01-21 2014-01-14 Discrimination method for mutation-induced unicellular organism and microfluidic device used therefor

Publications (2)

Publication Number Publication Date
JP2016505269A true JP2016505269A (en) 2016-02-25
JP6316316B2 JP6316316B2 (en) 2018-04-25

Family

ID=51209817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015553650A Active JP6316316B2 (en) 2013-01-21 2014-01-14 Method for selecting a single-cell organism in which a mutation has been induced, and a microfluidic device used therefor

Country Status (5)

Country Link
US (1) US9650659B2 (en)
EP (1) EP2947154B1 (en)
JP (1) JP6316316B2 (en)
KR (1) KR101471270B1 (en)
WO (1) WO2014112762A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015095085A2 (en) 2013-12-16 2015-06-25 Brubacher John Miles Microorganism evaluation system
KR101699232B1 (en) * 2014-11-12 2017-01-24 고려대학교 산학협력단 Micro device for selecting microalgae strains outstanding phototaxis or chemotaxis and selection method of microalgae strains using the same
US10106861B2 (en) 2016-10-12 2018-10-23 Korea University Research And Business Foundation Microalgae with improved phototaxis and photosynthetic efficiency
KR101872401B1 (en) * 2016-10-12 2018-06-28 고려대학교 산학협력단 Microalgal with Improved Phototactic Response and Photosynthetic Efficiency

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006501860A (en) * 2002-05-22 2006-01-19 プラティパス テクノロジーズ エルエルシー Substrates, devices and methods for assaying cells
US20120225475A1 (en) * 2010-11-16 2012-09-06 1087 Systems, Inc. Cytometry system with quantum cascade laser source, acoustic detector, and micro-fluidic cell handling system configured for inspection of individual cells

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5652098A (en) * 1993-03-12 1997-07-29 The United States Of America As Represented By The United States Department Of Energy Method for rapid isolation of sensitive mutants
AUPM666694A0 (en) * 1994-07-06 1994-07-28 Unisearch Limited Natural antifouling compositions
US20080194029A1 (en) * 2004-05-07 2008-08-14 Peter Hegemann Method for Increasing the Ratio of Homologous to Non-Homologous Recombination
WO2006087366A1 (en) 2005-02-16 2006-08-24 Cilian Ag Screening method for identifying protease secretion-deficient mutants of microorganisms
US8975065B2 (en) 2006-07-24 2015-03-10 California Institute Of Technology Meandering channel fluid device and method
KR101038484B1 (en) 2009-08-18 2011-06-02 한양대학교 산학협력단 Microfluidic cell chip, cell image analyzing apparatus and method for quantitative analysis of cell using the same
CN102918159A (en) * 2010-03-11 2013-02-06 雅各布·埃德尔 Methods of generating hydrogen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006501860A (en) * 2002-05-22 2006-01-19 プラティパス テクノロジーズ エルエルシー Substrates, devices and methods for assaying cells
US20120225475A1 (en) * 2010-11-16 2012-09-06 1087 Systems, Inc. Cytometry system with quantum cascade laser source, acoustic detector, and micro-fluidic cell handling system configured for inspection of individual cells

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HIRSCHBERG, R. ET AL.: "Phototaxis mutants of Chlamydomonas reinhardtii.", J. BACTERIOL., vol. 129, no. 2, JPN6016023487, February 1977 (1977-02-01), pages 803 - 808, XP055276353 *
PAZOUR, G.J. ET AL.: "Mutational analysis of the phototransduction pathway of Chlamydomonas reinhardtii.", J. CELL BIOL., vol. 131, no. 2, JPN6016023489, October 1995 (1995-10-01), pages 427 - 440 *
TAKAHASHI, T. ET AL.: "Diversion of the sign of phototaxis in a Chlamydomonas reinhardtii mutant incorporated with retinal", FEBS LETT., vol. 314, no. 3, JPN6016023492, December 1992 (1992-12-01), pages 275 - 279, XP055276237, DOI: doi:10.1016/0014-5793(92)81488-8 *
WEIBEL. D.B. ET AL.: "Microoxen: microorganisms to move microscale loads.", PROC. NATL. ACAD. SCI. USA, vol. 102, no. 34, JPN6016023493, 23 August 2005 (2005-08-23), pages 11963 - 11967, XP055276229, DOI: doi:10.1073/pnas.0505481102 *
天野正章、外3名: "「単細胞緑藻類クラミドモナス変異株における走光性の符号に与える光合成の影響」", 生物物理, vol. Vol.35, No.Supplement, JPN6016050754, August 1995 (1995-08-01), pages p.S38 *

Also Published As

Publication number Publication date
US20150353981A1 (en) 2015-12-10
KR101471270B1 (en) 2014-12-10
EP2947154A1 (en) 2015-11-25
EP2947154A4 (en) 2016-07-13
US9650659B2 (en) 2017-05-16
KR20140094143A (en) 2014-07-30
EP2947154B1 (en) 2018-05-30
WO2014112762A1 (en) 2014-07-24
JP6316316B2 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
Wang et al. How does the Internet of Things (IoT) help in microalgae biorefinery?
Franco et al. Monoalgal and mixed algal cultures discrimination by using an artificial neural network
Van Wagenen et al. Microplate-based method for high-throughput screening of microalgae growth potential
JP6316316B2 (en) Method for selecting a single-cell organism in which a mutation has been induced, and a microfluidic device used therefor
Torzillo et al. Photoacclimation of Phaeodactylum tricornutum (Bacillariophyceae) cultures grown outdoors in photobioreactors and open ponds
Kromkamp et al. Short-term variations in photosynthetic parameters of Nannochloropsis cultures grown in two types of outdoor mass cultivation systems
Malapascua et al. Photosynthesis and growth kinetics of Chlorella vulgaris R-117 cultured in an internally LED-illuminated photobioreactor.
Niizawa et al. Modeling of the influence of light quality on the growth of microalgae in a laboratory scale photo-bio-reactor irradiated by arrangements of blue and red LEDs
Krichen et al. A new kinetics model to predict the growth of micro-algae subjected to fluctuating availability of light
Kandilian et al. Light transfer in agar immobilized microalgae cell cultures
Busnel et al. Development and validation of a screening system for characterizing and modeling biomass production from cyanobacteria and microalgae: Application to Arthrospira platensis and Haematococcus pluvialis
Leonardi et al. Modeling and simulation of the influence of fractions of blue and red light on the growth of the microalga Scenedesmus quadricauda
Carbone et al. Comparison of Galdieria growth and photosynthetic activity in different culture systems
Palacios et al. Photosynthetic and growth responses of Nannochloropsis oculata (Eustigmatophyceae) during batch cultures in relation to light intensity
Niizawa et al. Light wavelength distribution effects on the growth rate of Scenedesmus quadricauda
Ozcan et al. Evaluation of the interaction of temperature and light intensity on the growth of Phaeodactylum tricornutum: Kinetic modeling and optimization
Mazzelli et al. Development of semi-theoretical light radiation and photosynthetic growth model for the optimal exploitation of wastewaters by microalgae
Zhang et al. Microalgae in microwell arrays exhibit differences with those in flasks: evidence from growth rate, cellular carotenoid, and oxygen production
Zaydan et al. Generation and characterization of pigment mutants of Chlamydomonas reinhardtii CC-124
Li et al. Physiological transition of Chlorella vulgaris from planktonic to immobilized conditions
KR101745415B1 (en) A microfluidic device for capable of screening improved strains with high carbon dioxide fixation efficiency and growth rate based on chemotaxis behavior and a method for screening improved strains with high carbon dioxide fixation efficiency and growth rate based on chemotaxis behavior using thereof
Gao et al. The impact of light/dark regimes on structure and physiology of Chlorella vulgaris biofilms
Leonardi et al. Influence of light stratification on the growth of Scenedesmus quadricauda
Faraloni et al. Nannochloropsis oceanica (Eustigmatophyceae) mutants resistant to rose bengal demonstrate high tolerance to oxygen
KR101699232B1 (en) Micro device for selecting microalgae strains outstanding phototaxis or chemotaxis and selection method of microalgae strains using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170105

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170404

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180327

R150 Certificate of patent or registration of utility model

Ref document number: 6316316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250