JP2016502604A5 - - Google Patents

Download PDF

Info

Publication number
JP2016502604A5
JP2016502604A5 JP2015542126A JP2015542126A JP2016502604A5 JP 2016502604 A5 JP2016502604 A5 JP 2016502604A5 JP 2015542126 A JP2015542126 A JP 2015542126A JP 2015542126 A JP2015542126 A JP 2015542126A JP 2016502604 A5 JP2016502604 A5 JP 2016502604A5
Authority
JP
Japan
Prior art keywords
composite material
cast
additive
casting
cast composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015542126A
Other languages
Japanese (ja)
Other versions
JP2016502604A (en
JP6245267B2 (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/CA2013/050881 external-priority patent/WO2014075194A1/en
Publication of JP2016502604A publication Critical patent/JP2016502604A/en
Publication of JP2016502604A5 publication Critical patent/JP2016502604A5/ja
Application granted granted Critical
Publication of JP6245267B2 publication Critical patent/JP6245267B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明を、その特定の実施形態に関連して説明してきたが、特許請求の範囲の範囲は、実施例に記載される好ましい実施形態によって制限されるべきではなく、全体としての説明と一致した最も広義の解釈が与えられるべきであることを理解されたい。
本発明の好ましい態様は、下記の通りである。
〔1〕(i)アルミニウム、(ii)添加剤とホウ素との包晶反応の生成物、(iii)分散する炭化ホウ素粒子、および(iv)任意選択的にチタンを含む鋳造複合材料であって、
・前記添加剤は、クロム、モリブデン、バナジウム、ニオブ、ジルコニウム、ストロンチウム、スカンジウム、およびそれらの任意の組み合わせからなる群から選択され、
・前記複合材料の試料は、鋳造前に、約700℃の温度まで約120分間加熱した後、前記試料を収容するための溝を有する型を使用して測定した場合に少なくとも100mmの鋳造長さに対応する流動性を有し、前記溝は、約33mmの幅、約6.5mm〜約4.0mmの高さを有し、約10°の水平軸から下方に傾斜する、方法。
〔2〕前記鋳造長さは、少なくとも190mmである、前記〔1〕に記載の鋳造複合材料。
〔3〕前記鋳造複合材料は、保持時間中に保持に供され、鋳造時間中に鋳造に供され、前記保持時間および前記鋳造時間の組み合わせは、少なくとも120分である、前記〔1〕または〔2〕に記載の鋳造複合材料。
〔4〕前記添加剤は、ジルコニウム、ストロンチウム、スカンジウム、およびそれらの任意の組み合わせからなる群から選択される、前記〔1〕〜〔3〕のいずれか1項に記載の鋳造複合材料。
〔5〕前記添加剤は、スカンジウムである、前記〔1〕〜〔3〕のいずれか1項に記載の鋳造複合材料。
〔6〕前記添加剤は、ストロンチウムである、前記〔1〕〜〔3〕のいずれか1項に記載の鋳造複合材料。
〔7〕前記添加剤は、ジルコニウムである、前記〔1〕〜〔3〕のいずれか1項に記載の鋳造複合材料。
〔8〕前記分散する炭化ホウ素粒子の濃度(v/v)は、前記鋳造複合材料の総体積に対して4%〜40%である、前記〔1〕〜〔7〕のいずれか1項に記載の鋳造複合材料。
〔9〕前記添加剤の濃度(w/w)は、前記鋳造複合材料の総重量に対して0.47%〜8.00%である、前記〔8〕に記載の鋳造複合材料。
〔10〕前記鋳造複合材料の総重量に対して0.50%〜4.00%の濃度(w/w)でチタンをさらに含む、前記〔9〕に記載の鋳造複合材料。
〔11〕前記分散する炭化ホウ素粒子の濃度(v/v)は、前記鋳造複合材料の総体積に対して4.5%〜18.9%である、前記〔1〕〜〔7〕のいずれか1項に記載の鋳造複合材料。
〔12〕前記添加剤の濃度(w/w)は、前記鋳造複合材料の総重量に対して0.38%〜4.00%である、前記〔11〕に記載の鋳造複合材料。
〔13〕前記鋳造複合材料の総重量に対して0.40%〜2.00%の濃度(w/w)でチタンをさらに含む、前記〔12〕に記載の鋳造複合材料。
〔14〕前記分散する炭化ホウ素粒子の濃度(v/v)は、前記鋳造複合材料の総体積に対して19.0%〜28.0%である、前記〔1〕〜〔7〕のいずれか1項に記載の鋳造複合材料。
〔15〕前記添加剤の濃度(w/w)は、前記鋳造複合材料の総重量に対して1.69%〜6.00%である、前記〔14〕に記載の鋳造複合材料。
〔16〕前記鋳造複合材料の総重量に対して1.80%〜3.00%の濃度(w/w)でチタンをさらに含む、前記〔15〕に記載の鋳造複合材料。
〔17〕前記分散する炭化ホウ素粒子の濃度(v/v)は、前記鋳造複合材料の総体積に対して25.0%〜28.0%である、前記〔1〕〜〔7〕のいずれか1項に記載の鋳造複合材料。
〔18〕前記分散する炭化ホウ素粒子の濃度(v/v)は、前記鋳造複合材料の総体積に対して28.0%〜33.0%である、前記〔1〕〜〔7〕のいずれか1項に記載の鋳造複合材料。
〔19〕前記添加剤の濃度(w/w)は、前記鋳造複合材料の総重量に対して0.94%〜4.00%である、前記〔17〕または〔18〕に記載の鋳造複合材料。
〔20〕前記鋳造複合材料の総重量に対して1.00%〜2.00%の濃度(w/w)でチタンをさらに含む、前記〔19〕に記載の鋳造複合材料。
〔21〕鋳造複合材料を調製する方法であって、
(a)(i)ホウ素と任意のチタンと包晶反応を起こすことが可能な添加剤を含む溶融アルミニウム合金を、(ii)炭化ホウ素粒子の源と組み合わせて、前記添加剤とホウ素との包晶反応の生成物、および分散する炭化ホウ素粒子を含む鋳造複合材料を提供することであって、
・前記添加剤は、クロム、モリブデン、バナジウム、ニオブ、ジルコニウム、ストロンチウム、スカンジウム、およびそれらの任意の組み合わせからなる群から選択され、
・前記複合材料の試料は、鋳造前に、約700℃の温度まで約120分間加熱した後、前記試料を収容するための溝を有する型を使用して測定した場合に少なくとも100mmの鋳造長さに対応する流動性を有し、前記溝は、約33mmの幅、約6.5mm〜約4.0mmの高さを有し、約10°の水平軸から下方に傾斜する、提供することと、
(b)前記溶融複合物を成形して前記鋳造複合材料を形成することと、を含む、方法。
〔22〕前記鋳造長さは、少なくとも190mmである、前記〔21〕に記載の方法。
〔23〕ステップ(b)の前に、保持時間中に前記溶融複合材料を保持することと、鋳造時間中に前記溶融複合物を鋳造することと、をさらに含む、前記〔21〕または〔22〕に記載の方法。
〔24〕ステップ(a)の前に、溶融アルミニウムまたは溶融アルミニウム合金を前記添加剤と組み合わせることによって前記溶融アルミニウム合金を提供することをさらに含む、前記〔21〕〜〔23〕のいずれか1項に記載の方法。
〔25〕前記添加剤は、ジルコニウム、ストロンチウム、スカンジウム、およびそれらの任意の組み合わせからなる群から選択される、前記〔21〕〜〔24〕のいずれか1項に記載の方法。
〔26〕前記添加剤は、スカンジウムである、前記〔21〕〜〔24〕のいずれか1項に記載の方法。
〔27〕前記添加剤は、ストロンチウムである、前記〔21〕〜〔24〕のいずれか1項に記載の方法。
〔28〕前記添加剤は、ジルコニウムである、前記〔21〕〜〔24〕のいずれか1項に記載の方法。
〔29〕前記分散する炭化ホウ素粒子の濃度(v/v)は、前記鋳造複合材料の総体積に対して4%〜40%である、前記〔21〕〜〔28〕のいずれか1項に記載の方法。
〔30〕前記添加剤の濃度(w/w)は、前記鋳造複合材料の総重量に対して0.47%〜8.00%である、前記〔29〕に記載の方法。
〔31〕前記鋳造複合材料の総重量に対して0.50%〜4.00%の濃度(w/w)でチタンをさらに含む、前記〔30〕に記載の方法。
〔32〕前記分散する炭化ホウ素粒子の濃度(v/v)は、前記鋳造複合材料の総体積に対して4.5%〜18.9%である、前記〔21〕〜〔28〕のいずれか1項に記載の方法。
〔33〕前記添加剤の濃度(w/w)は、前記鋳造複合材料の総重量に対して0.38%〜4.00%である、前記〔32〕に記載の方法。
〔34〕前記複合材料は前記鋳造複合材料の総重量に対して0.40%〜2.00%の濃度(w/w)でチタンをさらに含む、前記〔33〕に記載の方法。
〔35〕前記分散する炭化ホウ素粒子の濃度(v/v)は、前記鋳造複合材料の総体積に対して19.0%〜28.0%である、前記〔21〕〜〔28〕のいずれか1項に記載の方法。
〔36〕前記添加剤の濃度(w/w)は、前記鋳造複合材料の総重量に対して1.68%〜6.00%である、前記〔35〕に記載の方法。
〔37〕前記複合材料は、前記鋳造複合材料の総重量に対して1.80%〜3.00%の濃度(w/w)でチタンをさらに含む、前記〔36〕に記載の方法。
〔38〕前記分散する炭化ホウ素粒子の濃度(v/v)は、前記鋳造複合材料の総体積に対して25.0%〜28.0%である、前記〔21〕〜〔28〕のいずれか1項に記載の方法。
〔39〕前記分散する炭化ホウ素粒子の濃度(v/v)は、前記鋳造複合材料の総体積に対して28.0%〜33.0%である、前記〔21〕〜〔28〕のいずれか1項に記載の方法。
〔40〕前記添加剤の濃度(w/w)は、前記鋳造複合材料の総重量に対して0.94%〜4.00%である、前記〔38〕または〔39〕に記載の方法。
〔41〕前記複合材料は、前記鋳造複合材料の総重量に対して1.00%〜2.00%の濃度(w/w)でチタンをさらに含む、前記〔40〕に記載の方法。
〔42〕前記〔21〕〜〔41〕のいずれか1項に記載の方法によって得られる、鋳造複合材料。
〔43〕(i)アルミニウム、(ii)添加剤とホウ素との包晶反応の生成物、(iii)分散する炭化ホウ素粒子、および(iv)任意選択的にチタンを含む溶融複合材料の鋳造特性および/または成形特性を向上させる方法であって、前記方法は、(a)ホウ素と包晶反応を起こすことが可能な前記添加剤を含む溶融アルミニウム合金を(b)炭化ホウ素粒子の源と組み合わせて融複合材料を提供することを含み、
・前記添加剤は、クロム、モリブデン、バナジウム、ニオブ、ジルコニウム、ストロンチウム、スカンジウム、およびそれらの任意の組み合わせからなる群から選択され、
・前記複合材料の試料は、鋳造前に、約700℃の温度まで約120分間加熱した後、前記試料を収容するための溝を有する型を使用して測定した場合に少なくとも100mmの鋳造長さに対応する流動性を有し、前記溝は、約33mmの幅、約6.5mm〜約4.0mmの高さを有し、約10°の水平軸から下方に傾斜する、方法。
〔44〕前記鋳造長さは、少なくとも190mmである、前記〔43〕に記載の方法。
〔45〕(i)アルミニウム、(ii)添加剤とホウ素との包晶反応の生成物、(iii)分散する炭化ホウ素粒子、および(iv)任意選択的にチタンを含む溶融複合材料の溶融複合材料の成形を促進する方法であって、前記方法は、(a)ホウ素と包晶反応を起こすことが可能な前記添加剤を含む溶融アルミニウム合金を(b)炭化ホウ素粒子の源と組み合わせて融複合材料を提供することを含み、
・前記添加剤は、クロム、モリブデン、バナジウム、ニオブ、ジルコニウム、ストロンチウム、スカンジウム、およびそれらの任意の組み合わせからなる群から選択され、
・前記複合材料の試料は、鋳造前に、約700℃の温度まで約120分間加熱した後、前記試料を収容するための溝を有する型を使用して測定した場合に少なくとも100mmの鋳造長さに対応する流動性を有し、前記溝は、約33mmの幅、約6.5mm〜約4.0mmの高さを有し、約10°の水平軸から下方に傾斜する、方法。
〔46〕前記鋳造長さは、少なくとも190mmである、前記〔45〕に記載の方法。
Although the invention has been described with reference to specific embodiments thereof, the scope of the claims should not be limited by the preferred embodiments described in the examples, but is consistent with the description as a whole. It should be understood that the broadest interpretation should be given.
Preferred embodiments of the present invention are as follows.
[1] A cast composite material comprising (i) aluminum, (ii) a product of a peritectic reaction between the additive and boron, (iii) dispersed boron carbide particles, and (iv) optionally titanium. ,
The additive is selected from the group consisting of chromium, molybdenum, vanadium, niobium, zirconium, strontium, scandium, and any combination thereof;
The composite material sample is heated to a temperature of about 700 ° C. for about 120 minutes before casting, and then measured at a casting length of at least 100 mm when measured using a mold having a groove for containing the sample; The groove has a width of about 33 mm, a height of about 6.5 mm to about 4.0 mm, and is tilted downward from a horizontal axis of about 10 °.
[2] The cast composite material according to [1], wherein the casting length is at least 190 mm.
[3] The cast composite material is subjected to holding during a holding time, is subjected to casting during a casting time, and the combination of the holding time and the casting time is at least 120 minutes. 2].
[4] The cast composite material according to any one of [1] to [3], wherein the additive is selected from the group consisting of zirconium, strontium, scandium, and any combination thereof.
[5] The cast composite material according to any one of [1] to [3], wherein the additive is scandium.
[6] The cast composite material according to any one of [1] to [3], wherein the additive is strontium.
[7] The cast composite material according to any one of [1] to [3], wherein the additive is zirconium.
[8] The concentration (v / v) of the dispersed boron carbide particles is 4% to 40% with respect to the total volume of the cast composite material, according to any one of [1] to [7] Cast composite material as described.
[9] The cast composite material according to [8], wherein the concentration (w / w) of the additive is 0.47% to 8.00% based on the total weight of the cast composite material.
[10] The cast composite material according to [9], further including titanium at a concentration (w / w) of 0.50% to 4.00% based on the total weight of the cast composite material.
[11] The concentration of the dispersed boron carbide particles (v / v) is 4.5% to 18.9% with respect to the total volume of the cast composite material, any one of [1] to [7] The cast composite material according to claim 1.
[12] The cast composite material according to [11], wherein the concentration (w / w) of the additive is 0.38% to 4.00% based on the total weight of the cast composite material.
[13] The cast composite material according to [12], further including titanium at a concentration (w / w) of 0.40% to 2.00% based on the total weight of the cast composite material.
[14] The concentration of the dispersed boron carbide particles (v / v) is 19.0% to 28.0% with respect to the total volume of the cast composite material, and any one of [1] to [7] The cast composite material according to claim 1.
[15] The cast composite material according to [14], wherein the concentration (w / w) of the additive is 1.69% to 6.00% based on the total weight of the cast composite material.
[16] The cast composite material according to [15], further including titanium at a concentration (w / w) of 1.80% to 3.00% based on the total weight of the cast composite material.
[17] The concentration (v / v) of the dispersed boron carbide particles is 25.0% to 28.0% with respect to the total volume of the cast composite material, any one of [1] to [7] The cast composite material according to claim 1.
[18] The concentration of the dispersed boron carbide particles (v / v) is 28.0% to 33.0% with respect to the total volume of the cast composite material, any of [1] to [7] The cast composite material according to claim 1.
[19] The cast composite according to [17] or [18], wherein the concentration (w / w) of the additive is 0.94% to 4.00% based on the total weight of the cast composite material. material.
[20] The cast composite material according to [19], further including titanium at a concentration (w / w) of 1.00% to 2.00% based on the total weight of the cast composite material.
[21] A method for preparing a cast composite material,
(A) (i) a molten aluminum alloy containing an additive capable of causing a peritectic reaction with boron and any titanium; and (ii) combining said additive with boron in combination with a source of boron carbide particles. Providing a casting composite comprising a product of a crystal reaction and dispersed boron carbide particles, comprising:
The additive is selected from the group consisting of chromium, molybdenum, vanadium, niobium, zirconium, strontium, scandium, and any combination thereof;
The composite material sample is heated to a temperature of about 700 ° C. for about 120 minutes before casting, and then measured at a casting length of at least 100 mm when measured using a mold having a groove for containing the sample; The groove has a width of about 33 mm, a height of about 6.5 mm to about 4.0 mm, and is inclined downwardly from a horizontal axis of about 10 °; ,
(B) forming the molten composite to form the cast composite.
[22] The method according to [21], wherein the casting length is at least 190 mm.
[23] Before the step (b), further comprising: holding the molten composite material during a holding time; and casting the molten composite during a casting time. ] The method of description.
[24] The method according to any one of [21] to [23], further comprising providing the molten aluminum alloy by combining molten aluminum or a molten aluminum alloy with the additive before the step (a). The method described in 1.
[25] The method according to any one of [21] to [24], wherein the additive is selected from the group consisting of zirconium, strontium, scandium, and any combination thereof.
[26] The method according to any one of [21] to [24], wherein the additive is scandium.
[27] The method according to any one of [21] to [24], wherein the additive is strontium.
[28] The method according to any one of [21] to [24], wherein the additive is zirconium.
[29] The concentration of the dispersed boron carbide particles (v / v) is 4% to 40% with respect to the total volume of the cast composite material, according to any one of the above [21] to [28] The method described.
[30] The method according to [29], wherein the concentration (w / w) of the additive is 0.47% to 8.00% based on the total weight of the cast composite material.
[31] The method according to [30], further comprising titanium at a concentration (w / w) of 0.50% to 4.00% based on the total weight of the cast composite material.
[32] The concentration of the dispersed boron carbide particles (v / v) is 4.5% to 18.9% with respect to the total volume of the cast composite material, any of [21] to [28] The method according to claim 1.
[33] The method according to [32], wherein the concentration (w / w) of the additive is 0.38% to 4.00% based on the total weight of the cast composite material.
[34] The method according to [33], wherein the composite material further includes titanium at a concentration (w / w) of 0.40% to 2.00% based on the total weight of the cast composite material.
[35] The concentration (v / v) of the dispersed boron carbide particles is 19.0% to 28.0% with respect to the total volume of the cast composite material, and any of [21] to [28] The method according to claim 1.
[36] The method according to [35], wherein the concentration (w / w) of the additive is 1.68% to 6.00% based on the total weight of the cast composite material.
[37] The method according to [36], wherein the composite material further includes titanium at a concentration (w / w) of 1.80% to 3.00% based on a total weight of the cast composite material.
[38] The concentration (v / v) of the dispersed boron carbide particles is 25.0% to 28.0% with respect to the total volume of the cast composite material, and any of [21] to [28] The method according to claim 1.
[39] The concentration (v / v) of the dispersed boron carbide particles is 28.0% to 33.0% with respect to the total volume of the cast composite material, and any of [21] to [28] The method according to claim 1.
[40] The method according to [38] or [39], wherein the concentration (w / w) of the additive is 0.94% to 4.00% based on the total weight of the cast composite material.
[41] The method according to [40], wherein the composite material further includes titanium at a concentration (w / w) of 1.00% to 2.00% based on the total weight of the cast composite material.
[42] A cast composite material obtained by the method according to any one of [21] to [41].
[43] Casting characteristics of molten composite material comprising (i) aluminum, (ii) product of peritectic reaction of additive and boron, (iii) dispersed boron carbide particles, and (iv) optionally titanium. And / or a method of improving the forming properties, wherein the method combines (a) a molten aluminum alloy containing the additive capable of causing a peritectic reaction with boron and (b) a source of boron carbide particles. Providing a fused composite material,
The additive is selected from the group consisting of chromium, molybdenum, vanadium, niobium, zirconium, strontium, scandium, and any combination thereof;
The composite material sample is heated to a temperature of about 700 ° C. for about 120 minutes before casting, and then measured at a casting length of at least 100 mm when measured using a mold having a groove for containing the sample; The groove has a width of about 33 mm, a height of about 6.5 mm to about 4.0 mm, and is tilted downward from a horizontal axis of about 10 °.
[44] The method according to [43], wherein the casting length is at least 190 mm.
[45] Melt composite of (i) aluminum, (ii) product of peritectic reaction between additive and boron, (iii) dispersed boron carbide particles, and (iv) optionally a melt composite comprising titanium. A method of facilitating the forming of a material comprising: (a) melting a molten aluminum alloy containing said additive capable of causing a peritectic reaction with boron in combination with (b) a source of boron carbide particles. Providing a composite material,
The additive is selected from the group consisting of chromium, molybdenum, vanadium, niobium, zirconium, strontium, scandium, and any combination thereof;
The composite material sample is heated to a temperature of about 700 ° C. for about 120 minutes before casting, and then measured at a casting length of at least 100 mm when measured using a mold having a groove for containing the sample; The groove has a width of about 33 mm, a height of about 6.5 mm to about 4.0 mm, and is tilted downward from a horizontal axis of about 10 °.
[46] The method according to [45], wherein the casting length is at least 190 mm.

Claims (13)

(i)アルミニウム、(ii)添加剤とホウ素との包晶反応の生成物、(iii)分散する炭化ホウ素粒子、および(iv)任意選択的にチタンを含む鋳造複合材料であって、
・前記添加剤は、クロム、モリブデン、バナジウム、ニオブ、ジルコニウム、ストロンチウム、スカンジウム、およびそれらの任意の組み合わせからなる群から選択され、
・前記複合材料の試料は、鋳造前に、約700℃の温度まで約120分間加熱した後、前記試料を収容するための溝を有する型を使用して測定した場合に少なくとも100mmの鋳造長さに対応する流動性を有し、前記溝は、約33mmの幅、約6.5mm〜約4.0mmの高さを有し、水平軸から約10°方に傾斜している鋳造複合材料
A cast composite material comprising (i) aluminum, (ii) a product of a peritectic reaction between the additive and boron, (iii) dispersed boron carbide particles, and (iv) optionally titanium.
The additive is selected from the group consisting of chromium, molybdenum, vanadium, niobium, zirconium, strontium, scandium, and any combination thereof;
The composite material sample is heated to a temperature of about 700 ° C. for about 120 minutes before casting, and then measured at a casting length of at least 100 mm when measured using a mold having a groove for containing the sample; flowable corresponding to said groove has a width of approximately 33 mm, a height of about 6.5mm~ about 4.0 mm, is inclined from the horizontal axis to approximately 10 ° lower side, cast composite Material .
前記鋳造長さは、少なくとも190mmである、請求項1に記載の鋳造複合材料。   The cast composite material according to claim 1, wherein the cast length is at least 190 mm. 前記鋳造複合材料は、保持時間中に保持に供され、鋳造時間中に鋳造に供され、前記保持時間および前記鋳造時間の組み合わせは、少なくとも120分である、請求項1記載の鋳造複合材料。 The cast composite material is subjected to the holding in a holding time is subjected to cast during casting time, the combination of the retention time and the casting time is at least 120 minutes, casting the composite material according to claim 1 . 前記添加剤は、スカンジウムである、請求項1記載の鋳造複合材料。 The cast composite material according to claim 1, wherein the additive is scandium. 前記添加剤は、ストロンチウムである、請求項1記載の鋳造複合材料。 The additive is strontium, cast composite material of claim 1. 前記添加剤は、ジルコニウムである、請求項1記載の鋳造複合材料。 The additive is zirconium, cast composite material of claim 1. 前記分散する炭化ホウ素粒子の濃度(v/v)は、前記鋳造複合材料の総体積に対して4%〜40%である、請求項1記載の鋳造複合材料。 The concentration of boron carbide particles to the dispersion (v / v) is 4% to 40% relative to the total volume of the cast composite material, casting composite material according to claim 1. 前記添加剤の濃度(w/w)は、前記鋳造複合材料の総重量に対して0.47%〜8.00%である、請求項に記載の鋳造複合材料。 The cast composite material according to claim 7 , wherein a concentration (w / w) of the additive is 0.47% to 8.00% based on a total weight of the cast composite material. 前記鋳造複合材料の総重量に対して0.50%〜4.00%の濃度(w/w)でチタンをさらに含む、請求項に記載の鋳造複合材料。 The cast composite of claim 8 , further comprising titanium at a concentration (w / w) of 0.50% to 4.00% based on the total weight of the cast composite. 鋳造複合材料を調製する方法であって、
(a)(i)ホウ素と任意のチタンと包晶反応を起こすことが可能な添加剤を含む溶融アルミニウム合金を、(ii)炭化ホウ素粒子の源と組み合わせて、前記添加剤とホウ素との包晶反応の生成物、および分散する炭化ホウ素粒子を含む溶融複合材料を提供するステップであって、
・前記添加剤は、クロム、モリブデン、バナジウム、ニオブ、ジルコニウム、ストロンチウム、スカンジウム、およびそれらの任意の組み合わせからなる群から選択され、
・前記複合材料の試料は、鋳造前に、約700℃の温度まで約120分間加熱した後、前記試料を収容するための溝を有する型を使用して測定した場合に少なくとも100mmの鋳造長さに対応する流動性を有し、前記溝は、約33mmの幅、約6.5mm〜約4.0mmの高さを有し、水平軸から約10°方に傾斜しているステップと、
(b)前記溶融複合物を成形して前記鋳造複合材料を形成するステップと、
を含む、方法。
A method for preparing a cast composite material, comprising:
(A) (i) a molten aluminum alloy containing an additive capable of causing a peritectic reaction with boron and any titanium; and (ii) combining said additive with boron in combination with a source of boron carbide particles. comprising: providing a molten composite material comprising the product of crystallization reaction, and dispersing boron carbide particles,
The additive is selected from the group consisting of chromium, molybdenum, vanadium, niobium, zirconium, strontium, scandium, and any combination thereof;
The composite material sample is heated to a temperature of about 700 ° C. for about 120 minutes before casting, and then measured at a casting length of at least 100 mm when measured using a mold having a groove for containing the sample; flowable corresponding, the groove has a width of about 33 mm, a height of about 6.5mm~ about 4.0 mm, a step which is inclined from the horizontal axis to approximately 10 ° lower side to,
And forming the cast composite material (b) by molding the molten composite,
Including a method.
前記鋳造長さは、少なくとも190mmである、請求項10に記載の方法。 The method of claim 10 , wherein the casting length is at least 190 mm. ステップ(b)の前に、保持時間中に前記溶融複合材料を保持するステップと、鋳造時間中に前記溶融複合物を鋳造するステップと、をさらに含み、前記保持時間および前記鋳造時間の組み合わせは、少なくとも120分である、請求項10に記載の方法。 Prior to step (b), the step of holding the molten composite material during the holding time, the steps of casting the molten composite during the casting time, the further seen containing a combination of the retention time and the cast time 11. The method of claim 10 , wherein is at least 120 minutes . 請求項10に記載の方法によって得られる、鋳造複合材料。 A cast composite material obtained by the method of claim 10 .
JP2015542126A 2012-11-19 2013-11-19 Additive for improving malleability of aluminum-boron carbide composite material Active JP6245267B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261727949P 2012-11-19 2012-11-19
US61/727,949 2012-11-19
PCT/CA2013/050881 WO2014075194A1 (en) 2012-11-19 2013-11-19 Additives for improving the castability of aluminum-boron carbide composite material

Publications (3)

Publication Number Publication Date
JP2016502604A JP2016502604A (en) 2016-01-28
JP2016502604A5 true JP2016502604A5 (en) 2016-05-19
JP6245267B2 JP6245267B2 (en) 2017-12-13

Family

ID=50730443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015542126A Active JP6245267B2 (en) 2012-11-19 2013-11-19 Additive for improving malleability of aluminum-boron carbide composite material

Country Status (8)

Country Link
US (2) US20150275338A1 (en)
EP (1) EP2919932B1 (en)
JP (1) JP6245267B2 (en)
KR (1) KR102014330B1 (en)
CN (2) CN104755194A (en)
AU (1) AU2013344742C1 (en)
CA (1) CA2890771A1 (en)
WO (1) WO2014075194A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107532248B (en) 2015-05-01 2020-06-26 希库蒂米魁北克大学 Composite materials with improved mechanical properties at high temperatures

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3178807A (en) * 1961-10-05 1965-04-20 Du Pont Cermet of aluminum with boron carbide or silicon carbide
IL86947A (en) * 1987-07-15 1992-08-18 Lanxide Technology Co Ltd Process for preparing self-supporting bodies and products made thereby
US5700962A (en) * 1996-07-01 1997-12-23 Alyn Corporation Metal matrix compositions for neutron shielding applications
CA2357323A1 (en) * 2000-09-12 2002-03-12 Her Majesty The Queen In Right Of Canada, As Represented By The Minist Of Natural Resources Canada Hybrid metal matrix composites
US6918970B2 (en) * 2002-04-10 2005-07-19 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration High strength aluminum alloy for high temperature applications
ATE408033T1 (en) * 2002-10-25 2008-09-15 Alcan Int Ltd IMPROVED ALUMINUM ALLOY BORON CARBIDE COMPOSITE
KR101206595B1 (en) * 2004-04-22 2012-11-30 리오 틴토 알칸 인터내셔널 리미티드 Improved recycling method for al-b4c composite materials
DE102005046766B3 (en) * 2005-09-29 2007-04-05 Airbus Deutschland Gmbh Retainer for positioning conductor e.g. electrical cable, in structural component in modern airplane, has support, where retainer experiences torque that is deduced over support and interference units as pair of forces in component
CN200948493Y (en) * 2006-09-04 2007-09-19 包头铝业股份有限公司 Aluminum plate ingot casting equipment
US8017072B2 (en) * 2008-04-18 2011-09-13 United Technologies Corporation Dispersion strengthened L12 aluminum alloys
US8758529B2 (en) * 2010-06-30 2014-06-24 GM Global Technology Operations LLC Cast aluminum alloys

Similar Documents

Publication Publication Date Title
JP2010531805A5 (en)
RU2013148633A (en) FIRE-RESISTANT PRODUCT AND METHOD FOR ITS FORMING (OPTIONS)
SG10201901222TA (en) Processes for producing low nitrogen, essentially nitride-free chromium and chromium plus niobium-containing nickel-based alloys and the resulting chromium and nickel-based alloys
RU2016140099A (en) SINTERED ZIRCON MATERIAL FOR PRESS FORM MATRIX
MX2011007275A (en) Preparation of a photochromic ink.
JP2017500263A5 (en)
RU2012155195A (en) METHOD FOR PRODUCING CEMENTED CARBIDE PRODUCTS
CN103938029B (en) A kind of master alloy nickel molybdenum 30 additive for titanium molybdenum Ni-Ti alloy ingot casting and production method
JP2016502604A5 (en)
JP2015063414A5 (en)
WO2013089886A3 (en) Titanium diboride-silicon carbide composites useful in electrolytic aluminum production cells and methods for producing the same
CN103924115B (en) A kind of nano aluminum nitride strengthens the preparation method of magnesium base composite material
JP2013064106A5 (en)
FR2971503B1 (en) PROCESS FOR MANUFACTURING REFRACTORY GRAINS CONTAINING CHROMIUM OXIDE 3.
WO2019013586A3 (en) Method for forming solid cosmetic material comprising gelling agent
MX2015004617A (en) Method for producing a brush and brush obtained by said method.
RU2011154300A (en) CAST COMPOSITION ALLOY AND METHOD FOR PRODUCING IT
RU2012128394A (en) METHOD OF OBTAINING ALUMINUM-TITANIUM-ZIRCONIUM LIGATURE
WO2015100193A3 (en) Copper based casting products and processes
JP6245267B2 (en) Additive for improving malleability of aluminum-boron carbide composite material
刘世忠 et al. Effect of C content on microstructure of second generation single crystal superalloy
JP2017065951A5 (en)
IN2015DN01106A (en)
MY187928A (en) Process for producing silicon single crystal
GB0914621D0 (en) A method, apparatus, computer readable storage medium and computer program for forming an object