JP2016225015A - Heating device and method for manufacturing the same - Google Patents
Heating device and method for manufacturing the same Download PDFInfo
- Publication number
- JP2016225015A JP2016225015A JP2015107102A JP2015107102A JP2016225015A JP 2016225015 A JP2016225015 A JP 2016225015A JP 2015107102 A JP2015107102 A JP 2015107102A JP 2015107102 A JP2015107102 A JP 2015107102A JP 2016225015 A JP2016225015 A JP 2016225015A
- Authority
- JP
- Japan
- Prior art keywords
- cylindrical support
- holding body
- gap
- ceramic
- hole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 80
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 238000000034 method Methods 0.000 title claims description 20
- 239000000919 ceramic Substances 0.000 claims abstract description 32
- 238000005304 joining Methods 0.000 claims description 16
- 239000000758 substrate Substances 0.000 claims description 11
- 239000012298 atmosphere Substances 0.000 claims description 6
- 238000003825 pressing Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 abstract description 7
- 238000002791 soaking Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 18
- 239000004065 semiconductor Substances 0.000 description 18
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 11
- 239000004020 conductor Substances 0.000 description 10
- 235000012431 wafers Nutrition 0.000 description 10
- 239000000843 powder Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 239000011800 void material Substances 0.000 description 8
- 238000010304 firing Methods 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 6
- 238000009413 insulation Methods 0.000 description 6
- 239000003960 organic solvent Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 229910010293 ceramic material Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000007767 bonding agent Substances 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229920005822 acrylic binder Polymers 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 229910002113 barium titanate Inorganic materials 0.000 description 2
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 2
- 239000005388 borosilicate glass Substances 0.000 description 2
- 238000005219 brazing Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- -1 etc. Substances 0.000 description 2
- 239000002241 glass-ceramic Substances 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052575 non-oxide ceramic Inorganic materials 0.000 description 2
- 239000011225 non-oxide ceramic Substances 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 1
- 238000000231 atomic layer deposition Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000009694 cold isostatic pressing Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 1
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- 229940116411 terpineol Drugs 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 238000001931 thermography Methods 0.000 description 1
Landscapes
- Resistance Heating (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
Description
本発明は、加熱装置及びその製造方法に係り、特にはセラミック製の保持体とセラミック製の筒状支持体との接合部分の構造に特徴を有する加熱装置及びその製造方法に関するものである。 The present invention relates to a heating device and a manufacturing method thereof, and more particularly to a heating device characterized by the structure of a joint portion between a ceramic holder and a ceramic cylindrical support and a manufacturing method thereof.
従来、プラズマCVD、熱CVD、光CVD、ALD、スパッタリング等の成膜装置や、プラズマエッチング、光エッチング等のエッチング装置などといった半導体製造装置がよく知られている。この半導体製造装置は、被処理基材である半導体ウェハ等を保持した状態で各種処理温度に加熱する加熱装置(いわゆるサセプタ)を含んで構成されている。 2. Description of the Related Art Conventionally, semiconductor manufacturing apparatuses such as film forming apparatuses such as plasma CVD, thermal CVD, photo CVD, ALD, and sputtering and etching apparatuses such as plasma etching and photo etching are well known. This semiconductor manufacturing apparatus includes a heating device (so-called susceptor) for heating to various processing temperatures while holding a semiconductor wafer or the like as a substrate to be processed.
一般的にこの種の加熱装置は、セラミック製の保持体とセラミック製の筒状支持体とを備えている。保持体の主面上には半導体ウェハが載置可能となっており、保持体の裏面中央部には筒状支持体の片側端面が接合固定されている。保持体の内部には抵抗発熱体が埋設されていて、その抵抗発熱体に通電することにより、主面上に搭載された半導体ウェハが数百℃に加熱されるようになっている。また、近年においては、セラミック製の保持体とセラミック製の筒状支持体との接合部分にリング状の空隙を形成した加熱装置が提案されている(例えば、特許文献1を参照)。この加熱装置における空隙は、バックサイドガスまたはパージガスを流すためのガス供給路であるため、筒状支持体に設けた連通孔を介して外部の領域に連通されている。 Generally, this type of heating device includes a ceramic holder and a ceramic cylindrical support. A semiconductor wafer can be placed on the main surface of the holding body, and one end face of the cylindrical support is bonded and fixed to the center of the back surface of the holding body. A resistance heating element is embedded in the holder, and a semiconductor wafer mounted on the main surface is heated to several hundred degrees Celsius by energizing the resistance heating element. In recent years, there has been proposed a heating device in which a ring-shaped gap is formed in a joint portion between a ceramic holder and a ceramic cylindrical support (see, for example, Patent Document 1). Since the gap in the heating device is a gas supply path for flowing backside gas or purge gas, it communicates with an external region through a communication hole provided in the cylindrical support.
ところで、近年の半導体製造プロセスにおいては、パターン微細化や歩留まり向上を図るため、被処理基材の加熱処理を行う保持体につき、面内の温度の均一性(面内均熱性)の改善に対する要求が高まってきている。具体的には、保持体の主面における面内均熱性を±1.0%以内とすること、さらには±0.5%以内とすることが期待されている。しかしながら、保持体内の抵抗発熱体で発生した熱は筒状支持体を介して逃げていく(即ち「熱逃げ」する)ため、保持体の温度は筒状支持体との接合部分で大きく低下してしまう。ゆえに、従来の加熱装置では、その構造上、保持体の面内均熱性の悪化を余儀なくされていた。 By the way, in recent semiconductor manufacturing processes, there is a demand for improvement of in-plane temperature uniformity (in-plane thermal uniformity) with respect to a holder for performing heat treatment of a substrate to be processed in order to improve pattern miniaturization and yield. Is growing. Specifically, it is expected that the in-plane thermal uniformity on the main surface of the holding body is within ± 1.0%, and further within ± 0.5%. However, since the heat generated by the resistance heating element in the holding body escapes through the cylindrical support (that is, “heat escapes”), the temperature of the holding body is greatly reduced at the joint portion with the cylindrical support. End up. Therefore, in the conventional heating device, the in-plane heat uniformity of the holding body has been inevitably deteriorated due to its structure.
一方、特許文献1の加熱装置の場合、接合部分に空隙があることで断熱性が向上し、熱逃げを改善できる可能性があるが、この空隙はガス供給路であることから逆に保持体の熱を奪い面内均熱性を悪化させてしまう。従って、上記の従来の加熱装置及び特許文献1の加熱装置のいずれを用いたとしても、半導体ウェハを均一に加熱処理することができず、処理の度合いにばらつきが生じやすかった。その結果、歩留まりの低下につながるという問題があった。 On the other hand, in the case of the heating device of Patent Document 1, there is a possibility that heat insulation can be improved by having a gap in the joint portion, and heat escape can be improved. However, since this gap is a gas supply path, the holding body is reversed. It takes away the heat and worsens the in-plane thermal uniformity. Therefore, even if any of the above-described conventional heating device and the heating device of Patent Document 1 is used, the semiconductor wafer cannot be uniformly heat-treated, and the degree of processing tends to vary. As a result, there is a problem that the yield is reduced.
本発明は上記の課題に鑑みてなされたものであり、その目的は、保持体から筒状支持体への熱逃げを低減することにより、保持体の面内均熱性を改善することができる加熱装置及びその製造方法を提供することにある。 The present invention has been made in view of the above problems, and its purpose is to reduce the heat escape from the holding body to the cylindrical support body, thereby improving the in-plane heat uniformity of the holding body. It is to provide an apparatus and a manufacturing method thereof.
そして上記課題を解決するための手段(手段1)としては、被処理基材が載置される主面及び裏面を有し、抵抗発熱体が埋設されたセラミック製の保持体と、端面が前記裏面に接合されるセラミック製の筒状支持体とを備え、前記保持体と前記筒状支持体との間の接合部分に、外部から隔絶された気密性の空隙が形成されていることを特徴とする加熱装置がある。 And as means (means 1) for solving the above-mentioned problems, the ceramic holding body having the main surface and the back surface on which the substrate to be treated is placed, the resistance heating element is embedded, and the end surface are the above-mentioned A cylindrical support body made of ceramic bonded to the back surface, and an airtight gap isolated from the outside is formed in a joint portion between the holding body and the cylindrical support body. There is a heating device.
従って、手段1に記載の発明によると、保持体と筒状支持体との間の接合部分に、外部から隔絶された気密性の空隙が存在しており、その部分が断熱構造となっている。その結果、保持体から筒状支持体への熱逃げ経路の断面積が減少し、保持体において被処理基材を載せる面内の均熱性が改善される。 Therefore, according to the invention described in the means 1, there is an airtight gap isolated from the outside at the joint portion between the holding body and the cylindrical support body, and this portion has a heat insulating structure. . As a result, the cross-sectional area of the heat escape path from the holding body to the cylindrical support body is reduced, and the in-plane heat uniformity on the substrate on which the substrate to be treated is placed is improved.
本発明において被処理基材とは、保持体に載置されて加熱処理される基材のことを指しており、そのサイズ、形状、材質等は特に限定されないが、例えば無機材料製の板状基材を例示することができる。具体的には、シリコン、ヒ素ガリウム、炭化ケイ素、サファイヤ等からなる半導体ウェハ、アルミニウムや鉄等からなる金属ウェハなどを好適例として挙げることができる。 In the present invention, the substrate to be treated refers to a substrate that is placed on a holder and heat-treated, and its size, shape, material, etc. are not particularly limited, but for example, a plate shape made of an inorganic material A substrate can be exemplified. Specifically, semiconductor wafers made of silicon, arsenic gallium, silicon carbide, sapphire, etc., metal wafers made of aluminum, iron, or the like can be cited as preferred examples.
保持体及び筒状支持体はともにセラミック製である。これら部材を構成するセラミックの種類は限定されないが、例えば、アルミナ、イットリア(酸化イットリウム)、窒化アルミニウム、窒化ホウ素、炭化珪素、窒化珪素などといった高温焼成セラミックを主成分とする焼結体などが好適例として挙げることができる。また、用途に応じて、ホウケイ酸系ガラスやホウケイ酸鉛系ガラスにアルミナ等の無機セラミックフィラーを添加したガラスセラミックのような低温焼成セラミックを主成分とする焼結体を選択してもよい。あるいは、チタン酸バリウム、チタン酸鉛、チタン酸ストロンチウムなどの誘電体セラミックを主成分とする焼結体を選択してもよい。 Both the holding body and the cylindrical support are made of ceramic. The type of ceramic constituting these members is not limited. For example, a sintered body mainly composed of a high-temperature fired ceramic such as alumina, yttria (yttrium oxide), aluminum nitride, boron nitride, silicon carbide, or silicon nitride is suitable. As an example. Moreover, according to a use, you may select the sintered compact which has as a main component the low-temperature baking ceramic like the glass ceramic which added inorganic ceramic fillers, such as an alumina, to the borosilicate glass or lead borosilicate glass. Or you may select the sintered compact which has dielectric ceramics, such as barium titanate, lead titanate, and strontium titanate, as a main component.
なお、半導体製造プロセスにおけるドライエッチングなどの各処理においては、プラズマを用いた技術が種々採用され、プラズマを用いた処理においては、ハロゲンガスなどの腐食性ガスが多用されている。このため、腐食性ガスやプラズマに晒されるサセプタ等のような半導体製造装置用の加熱装置には、耐熱性(例えば700℃以上)に加えて、高い耐食性が要求される。従って、保持体及び筒状支持体は、腐食性ガスやプラズマに対する耐食性がある材料、例えば、窒化アルミニウム、アルミナ、イットリアを主成分とする材料からなることが好ましい。 In each process such as dry etching in the semiconductor manufacturing process, various techniques using plasma are employed, and in the process using plasma, corrosive gas such as halogen gas is frequently used. For this reason, in addition to heat resistance (for example, 700 ° C. or higher), a high corrosion resistance is required for a heating apparatus for a semiconductor manufacturing apparatus such as a susceptor exposed to a corrosive gas or plasma. Therefore, the holding body and the cylindrical support are preferably made of a material having corrosion resistance against corrosive gas or plasma, for example, a material mainly composed of aluminum nitride, alumina, or yttria.
保持体に埋設される抵抗発熱体を構成する導体の材料としては特に限定されないが、例えば、保持体及び筒状支持体を構成するセラミック材料がいわゆる高温焼成セラミック(例えばアルミナ等)からなる場合には、抵抗発熱体を構成する金属として、ニッケル(Ni)、タングステン(W)、モリブデン(Mo)、マンガン(Mn)等やそれらの合金が選択可能である。保持体及び筒状支持体を構成するセラミック材料がいわゆる低温焼成セラミック(例えばガラスセラミック等)からなる場合には、抵抗発熱体を構成する金属として、銅(Cu)または銀(Ag)等やそれらの合金が選択可能である。また、保持体及び筒状支持体を構成するセラミック材料が高誘電率セラミック(例えばチタン酸バリウム等)からなる場合には、ニッケル(Ni)、銅(Cu)、銀(Ag)、パラジウム(Pd)、白金(Pt)等やそれらの合金が選択可能である。なお、抵抗発熱体は、金属粉末を含む導体ペーストを用い、従来周知の手法、例えば印刷法等により塗布された後、焼成することで形成可能である。 The material of the conductor constituting the resistance heating element embedded in the holding body is not particularly limited. For example, when the ceramic material constituting the holding body and the cylindrical support is made of a so-called high-temperature fired ceramic (for example, alumina). Can select nickel (Ni), tungsten (W), molybdenum (Mo), manganese (Mn), or an alloy thereof as a metal constituting the resistance heating element. When the ceramic material constituting the holding body and the cylindrical support is made of a so-called low-temperature fired ceramic (for example, glass ceramic), the metal constituting the resistance heating element is copper (Cu), silver (Ag), or the like. These alloys can be selected. When the ceramic material constituting the holding body and the cylindrical support is made of a high dielectric constant ceramic (for example, barium titanate), nickel (Ni), copper (Cu), silver (Ag), palladium (Pd ), Platinum (Pt), and the like, and alloys thereof. The resistance heating element can be formed by using a conductive paste containing a metal powder and applying the paste by a conventionally known method, for example, a printing method, followed by baking.
本発明においては、保持体の裏面と筒状支持体の端面とは固相接合されている。この接合では、公知の接合剤、例えばアルカリ土類、希土類、アルミニウムの複合酸化物等といった焼結助剤を含むものが用いられる。このような接合剤は、有機溶剤等と混合してペースト状にして、保持体または筒状支持体の接合面に均一に印刷塗布され、その後脱脂処理される。なお、保持体の裏面と筒状支持体の端面とは、ロウ付けやガラス接合等の方法によっても接合することができる。 In the present invention, the back surface of the holder and the end surface of the cylindrical support are solid-phase bonded. In this joining, a known joining agent, for example, a material containing a sintering aid such as alkaline earth, rare earth, aluminum composite oxide or the like is used. Such a bonding agent is mixed with an organic solvent or the like to form a paste, which is uniformly printed on the bonding surface of the holding body or the cylindrical support, and then degreased. In addition, the back surface of the holding body and the end surface of the cylindrical support body can be bonded by a method such as brazing or glass bonding.
本発明において保持体と筒状支持体との間の接合部分には、空隙が形成されている。この空隙は、保持体から筒状支持体への熱逃げ経路の一部を遮断する役割を果たすものである。空隙は、筒状支持体の端面及び保持体の裏面のいずれかに形成されてもよく、あるいはその両方に形成されてもよい。この加熱装置における空隙は、外部から隔絶された気密性の空隙となっている。即ち、この空隙は、それ自身独立した空間となっており、どこの領域にも連通していない。換言すると、この空隙は、外部からの流体の流入、外部への流出がない完全に閉じた空間となっている。 In the present invention, a gap is formed in the joint portion between the holding body and the cylindrical support. This gap serves to block a part of the heat escape path from the holding body to the cylindrical support. The gap may be formed on either the end surface of the cylindrical support and the back surface of the holding body, or may be formed on both. The air gap in this heating device is an airtight air gap isolated from the outside. In other words, the gap itself is an independent space and does not communicate with any area. In other words, this gap is a completely closed space where no fluid flows in and out.
空隙は、筒状支持体の端面に設けられた凹部により形成されていることが好ましい。保持体側には抵抗発熱体が埋設されているため、抵抗発熱体を避けて凹部を形成する必要があり、凹部の形成位置に制約を受ける場合があるからである。それに対して、筒状支持体の端面には抵抗発熱体が存在していないので、凹部の形成位置に制約を受けにくく、保持体側に凹部を設ける場合に比べて製造しやすくなるからである。 The gap is preferably formed by a recess provided in the end face of the cylindrical support. This is because a resistance heating element is embedded on the holding body side, so that it is necessary to form a recess avoiding the resistance heating element, and the position where the recess is formed may be restricted. On the other hand, since the resistance heating element does not exist on the end face of the cylindrical support, it is difficult to be restricted in the formation position of the recess, and it is easier to manufacture compared to the case where the recess is provided on the holding body side.
空隙内は、気体が存在していない真空状態であってもよいが、気体が存在していてもよい。空隙内が真空状態であると、極めて高い断熱性能を付与することができるとともに、保持体及び筒状支持体の接合部分の強度向上を図ることができる。また、空隙内が非真空状態である場合、窒素ガス、アルゴンガス等の不活性ガスが主体として存在していることが好ましい。そのときの空隙内の気圧は、室温で大気圧より低い減圧状態に保たれていることが好ましい。このようにしても、高い断熱性能を付与することができるとともに、接合部分の強度低下を回避することができる。 The void may be in a vacuum state where no gas is present, but may be present. When the space is in a vacuum state, extremely high heat insulation performance can be imparted, and the strength of the joined portion of the holding body and the cylindrical support can be improved. Moreover, when the inside of a space | gap is a non-vacuum state, it is preferable that inert gas, such as nitrogen gas and argon gas, exists mainly. At this time, the air pressure in the gap is preferably maintained at a reduced pressure lower than atmospheric pressure at room temperature. Even if it does in this way, while being able to provide high heat insulation performance, the strength reduction of a junction part can be avoided.
筒状支持体は両方の端面にて開口する貫通孔を有している。その貫通孔内には、例えば保持体内に埋設された抵抗発熱体に電力を供給するための端子電極や、温度測定用の熱電対や、被処理基材を持ち上げるためのリフトピンなどが収容されている。ここで、空隙と貫通孔とを主面と平行な仮想平面に投影したとき、その投影面において空隙は貫通孔を包囲するように形成されていてもよい。空隙をこのように配置することで、貫通孔周りにおいて均等に断熱が図られるため、保持体の面内均熱性の向上につながる。なお、空隙と貫通孔とは同一面に存在していてもよいほか、互いに異なる面に存在していてもよい。 The cylindrical support has through holes that open at both end faces. In the through hole, for example, a terminal electrode for supplying power to a resistance heating element embedded in the holding body, a thermocouple for temperature measurement, a lift pin for lifting the substrate to be processed, and the like are accommodated. Yes. Here, when the void and the through hole are projected onto a virtual plane parallel to the main surface, the void may be formed so as to surround the through hole on the projection surface. By arranging the gaps in this way, heat insulation is evenly provided around the through-holes, leading to an improvement in the in-plane thermal uniformity of the holding body. In addition, the space | gap and the through-hole may exist in the same surface, and may exist in a mutually different surface.
空隙はリング状であって、貫通孔を全周にわたって包囲していてもよい。この構成であると、空隙が貫通孔周りにおいて連続的に配置されることで、保持体の面内均熱性を向上することができる。また、空隙は複数箇所にて分割されたリング状であって、貫通孔を非連続的に包囲していてもよい。この構成であると、貫通孔周りにおいて均等に断熱が図られるばかりでなく、接合部分の強度低下を回避することができる。 The space | gap is ring shape and may surround the through-hole over the perimeter. With this configuration, since the voids are continuously arranged around the through-hole, the in-plane thermal uniformity of the holding body can be improved. Moreover, the space | gap is a ring shape divided | segmented in multiple places, Comprising: The through-hole may be surrounded discontinuously. With this configuration, not only heat insulation can be achieved evenly around the through-holes, but also a decrease in strength of the joint portion can be avoided.
ここで、貫通孔を有する筒状支持体と保持体とを接合した場合、接合部分は円環状領域となる。空隙を形成する凹部は、外部から隔絶された気密性の空隙とすることが可能であるならば、上記円環状領域のどの位置に配置されてもよい。好ましくは、凹部は円環状領域の内周及び外周から若干離間した位置(例えばそれぞれ5mm以上離間した位置)に配置されることがよい。さらには、円環状領域の内周から外周までの距離を、円環状領域の幅(即ち、接合部分の幅)と定義すると、凹部の幅は接合部分の幅の10%〜50%程度、好ましくは30%〜40%程度に設定されることがよい。その理由は、保持体の面内均熱性を確実に向上することができる一方で、接合部分の強度低下を確実に回避することができるからである。なお、この場合において凹部は、円環状領域の内周または外周の近傍に配置されるのではなく、内周及び外周からの離間距離が等しくなる中間位置に配置されることがよい。この構成であると、円環状領域の内周及び外周に到るまでの距離が比較的長くなるため、気密性の空隙を確実に形成することができる。また、凹部の深さは特に限定されず任意に設定されるが、例えば1mm以上であることがよく、3mm以上であることがよりよい。その理由は、1mmよりも浅いと好適な断熱性能を付与することが困難となるからである。ただし、凹部が深すぎると、筒状支持体または保持体の機械的強度の低下につながるおそれがあることから、凹部の深さは例えば10mm以下であることがよく、5mm以上であることがよりよい。 Here, when the cylindrical support body which has a through-hole, and a holding body are joined, a junction part turns into an annular | circular shaped area | region. The concave portion forming the gap may be arranged at any position in the annular region as long as it can be an airtight gap isolated from the outside. Preferably, the concave portion is arranged at a position slightly separated from the inner circumference and the outer circumference of the annular region (for example, a position separated from each other by 5 mm or more). Furthermore, if the distance from the inner periphery to the outer periphery of the annular region is defined as the width of the annular region (that is, the width of the joint portion), the width of the concave portion is preferably about 10% to 50% of the width of the joint portion. Is preferably set to about 30% to 40%. The reason is that while the in-plane thermal uniformity of the holding body can be reliably improved, the strength reduction of the joint portion can be surely avoided. In this case, the concave portion is not disposed in the vicinity of the inner periphery or the outer periphery of the annular region, but may be disposed at an intermediate position where the distances from the inner periphery and the outer periphery are equal. With this configuration, the distance to reach the inner and outer circumferences of the annular region is relatively long, so that an airtight gap can be reliably formed. Further, the depth of the recess is not particularly limited and is arbitrarily set. For example, the depth is preferably 1 mm or more, and more preferably 3 mm or more. The reason is that if it is shallower than 1 mm, it is difficult to provide suitable heat insulation performance. However, if the recess is too deep, the mechanical strength of the cylindrical support or the holding body may be lowered. Therefore, the depth of the recess is preferably 10 mm or less, and more preferably 5 mm or more. Good.
また、上記課題を解決するための別の手段(手段2)としては、上記手段1に記載の装置の製造方法であって、前記保持体及び前記筒状支持体を準備するとともに、前記保持体の前記裏面及び前記筒状支持体の前記端面のうちの少なくとも一方に、後に前記空隙となる凹部を形成しておく準備工程と、前記保持体の前記裏面と前記筒状支持体の前記端面とを重ね合わせ、真空中または減圧雰囲気中で前記保持体と前記筒状支持体とのプレスを行って前記保持体と前記筒状支持体とを接合する接合工程とを含むことを特徴とする加熱装置の製造方法がある。 Moreover, as another means (means 2) for solving the above-mentioned problem, there is provided a method for manufacturing the apparatus according to the above means 1, wherein the holding body and the cylindrical support body are prepared, and the holding body is provided. A preparation step of forming a recess to be the gap later on at least one of the back surface and the end surface of the cylindrical support, and the back surface of the holding body and the end surface of the cylindrical support. And a bonding step of bonding the holding body and the cylindrical support body by pressing the holding body and the cylindrical support body in a vacuum or a reduced pressure atmosphere. There is a device manufacturing method.
従って、手段2に記載の方法によれば、保持体の裏面と筒状支持体の端面とを重ね合わせて保持体と筒状支持体とのプレスを行う接合工程を経ることにより、保持体と筒状支持体とが接合される。このとき、保持体及び筒状支持体は真空中または減圧雰囲気中で接合されることから、両者を強固に接合することができることに加え、外部から隔絶された気密性の空隙を簡単にかつ確実に形成することができる。さらに、この方法によると、抵抗発熱体が酸化されにくくなるので、抵抗発熱体の劣化や抵抗値のばらつきを未然に防止することができる。しかも、非酸化物セラミック製の保持体と筒状支持体とを選択した場合であっても、それら同士の接合を確実に行うことができる。 Therefore, according to the method described in the means 2, the holding body and the end face of the cylindrical support body are overlapped with each other through a joining step of pressing the holding body and the cylindrical support body. The cylindrical support is joined. At this time, since the holding body and the cylindrical support body are bonded in a vacuum or in a reduced pressure atmosphere, in addition to being able to bond both together firmly, an airtight gap isolated from the outside can be easily and reliably obtained. Can be formed. Furthermore, according to this method, the resistance heating element becomes difficult to be oxidized, so that it is possible to prevent deterioration of the resistance heating element and variation in resistance value. And even if it is a case where the support body and cylindrical support body made from a non-oxide ceramic are selected, they can be reliably joined.
準備工程を経て準備される保持体及び筒状支持体は、ともにセラミック焼結体である。これらのセラミック焼結体は、セラミック材料を用いてまずセラミック成形体を作製した後、その成形体を焼成することで得られる。後に空隙となる凹部は、焼成の前後を問わず加工形成することができる。 Both the holding body and the cylindrical support prepared through the preparation process are ceramic sintered bodies. These ceramic sintered bodies are obtained by first producing a ceramic molded body using a ceramic material and then firing the molded body. A concave portion that becomes a void later can be processed and formed before and after firing.
接合工程では、接合面である保持体の裏面及び筒状支持体の端面をあらかじめ研磨加工により平滑化したうえで、互いに重ね合わせることが好ましい。その理由は、表面粗さの小さい平滑な接合面同士を接合することで、接合面同士の密着性が向上し、気密性の高い空隙を確実に形成することができるからである。この場合、接合面の表面粗さ(Ra)は例えば2μm以下とすることがよく、1μm以下とすることがよりよい。また、接合面の平面度は例えば15μm以下とすることがよく、10μm以下とすることがよりよい。 In the joining step, it is preferable that the back surface of the holding body, which is the joining surface, and the end surface of the cylindrical support body are smoothed in advance by polishing and then overlapped with each other. The reason for this is that by joining smooth joint surfaces having a small surface roughness, the adhesion between the joint surfaces can be improved and a highly airtight void can be reliably formed. In this case, the surface roughness (Ra) of the bonding surface is, for example, preferably 2 μm or less, and more preferably 1 μm or less. Further, the flatness of the joint surface is preferably 15 μm or less, and more preferably 10 μm or less.
接合工程では、真空中または減圧雰囲気中で保持体と筒状支持体とのプレスを行う。このとき、接合面には例えば焼結助剤を含む公知の接合剤があらかじめ塗布され、その後プレスによって荷重をかけた状態で加熱処理することにより、保持体と筒状支持体とが接合される。 In the joining step, the holding body and the cylindrical support are pressed in a vacuum or a reduced pressure atmosphere. At this time, a known bonding agent including, for example, a sintering aid is applied to the bonding surfaces in advance, and then the holding body and the cylindrical support are bonded by performing a heat treatment in a state where a load is applied by a press. .
以下、本発明を半導体製造装置用の加熱装置(サセプタ)に具体化した一実施形態を図1〜図6に基づき詳細に説明する。 Hereinafter, an embodiment in which the present invention is embodied in a heating apparatus (susceptor) for a semiconductor manufacturing apparatus will be described in detail with reference to FIGS.
図1、図2に示されるように、本実施形態の半導体製造装置用の加熱装置11は、被処理基材である半導体ウェハ15を保持した状態で所定の処理温度に加熱するためのサセプタである。この加熱装置11は、基本的にセラミック製の保持体21とセラミック製の筒状支持体31とを備えている。 As shown in FIGS. 1 and 2, the heating device 11 for a semiconductor manufacturing apparatus according to the present embodiment is a susceptor for heating to a predetermined processing temperature while holding a semiconductor wafer 15 as a substrate to be processed. is there. The heating device 11 basically includes a ceramic holder 21 and a ceramic cylindrical support 31.
本実施形態の保持体21は、直径が100mm〜500mm程度、厚さが3.0mm〜10.0mm程度の平面視略円形状の板状物である。保持体21は、半導体ウェハ15を保持するための保持面である平坦な主面22と、保持体側の接合面である平坦な裏面23とを有している。この保持体21は、緻密なセラミック焼結体からなり、複数層のセラミック層(図示略)を積層した構造を有している。なお、本実施形態の保持体21は窒化アルミニウム製である。 The holding body 21 of the present embodiment is a plate-like object having a substantially circular shape in a plan view having a diameter of about 100 mm to 500 mm and a thickness of about 3.0 mm to 10.0 mm. The holding body 21 has a flat main surface 22 which is a holding surface for holding the semiconductor wafer 15 and a flat back surface 23 which is a bonding surface on the holding body side. The holding body 21 is made of a dense ceramic sintered body and has a structure in which a plurality of ceramic layers (not shown) are laminated. Note that the holding body 21 of the present embodiment is made of aluminum nitride.
図1、図2に示されるように、本実施形態の筒状支持体31は、上側の端面32及び下側の端面33にて開口する貫通孔34を有する中空円筒状の部材である。この筒状支持体31では、外径が30mm〜90mm程度、内径が10mm〜60mm程度、長さが100mm〜300mm程度となっている。この筒状支持体31は、緻密なセラミック焼結体からなり、本実施形態では保持体21と同じく窒化アルミニウム製である。筒状支持体側の接合面である端面32は、保持体21の裏面23の中央部に対し、焼結助剤の成分を主体とする図示しない接合層を介して接合固定されている。 As shown in FIGS. 1 and 2, the cylindrical support 31 of the present embodiment is a hollow cylindrical member having a through hole 34 that opens at an upper end surface 32 and a lower end surface 33. The cylindrical support 31 has an outer diameter of about 30 mm to 90 mm, an inner diameter of about 10 mm to 60 mm, and a length of about 100 mm to 300 mm. The cylindrical support 31 is made of a dense ceramic sintered body, and is made of aluminum nitride in the present embodiment, like the holding body 21. The end surface 32 which is a joining surface on the cylindrical support side is joined and fixed to the central portion of the back surface 23 of the holding body 21 via a joining layer (not shown) mainly composed of a sintering aid component.
図1に示されるように、保持体21内の所定の深さ位置には、保持体21を全体的に加熱するヒータ電極層としての抵抗発熱体25が埋設されている。抵抗発熱体25は、タングステンやモリブデン等の高融点金属を主成分として形成された導体層であって、本実施形態では同心円状かつ一筆書きとなるようにレイアウトされている。抵抗発熱体25における2つの末端部分は、保持体21の中心部近傍に設けられており、それらの部分に対してビア導体26の一方の端部が接続されている。一方、保持体21の裏面23上には一対の受電電極27が設けられており、それらに対してビア導体26の他方の端部が接続されている。その結果、抵抗発熱体25と受電電極27とがビア導体26を介して電気的に接続された状態となっている。これらの受電電極27の表面上には、筒状支持体31の貫通孔34内に収容された棒状の電極端子43がそれぞれロウ付けによって接合されている。これらの電極端子43に電圧を印加することで、保持体21内に埋設された抵抗発熱体25に電力が供給され、保持体21の温度が上昇するように構成されている。また、筒状支持体31の貫通孔34内には熱電対42が収容されており、保持体21の中心部にはその熱電対42の先端部分44が埋め込まれている。 As shown in FIG. 1, a resistance heating element 25 as a heater electrode layer for heating the entire holding body 21 is embedded at a predetermined depth position in the holding body 21. The resistance heating element 25 is a conductor layer formed of a refractory metal such as tungsten or molybdenum as a main component, and in the present embodiment, the resistance heating element 25 is laid out so as to be concentric and drawn with one stroke. Two end portions of the resistance heating element 25 are provided in the vicinity of the central portion of the holding body 21, and one end portion of the via conductor 26 is connected to these portions. On the other hand, a pair of power receiving electrodes 27 is provided on the back surface 23 of the holding body 21, and the other end of the via conductor 26 is connected to them. As a result, the resistance heating element 25 and the power receiving electrode 27 are electrically connected via the via conductor 26. On the surface of these power receiving electrodes 27, rod-shaped electrode terminals 43 accommodated in the through holes 34 of the cylindrical support 31 are joined by brazing. By applying a voltage to these electrode terminals 43, electric power is supplied to the resistance heating element 25 embedded in the holding body 21, and the temperature of the holding body 21 is increased. Further, a thermocouple 42 is accommodated in the through hole 34 of the cylindrical support 31, and a tip end portion 44 of the thermocouple 42 is embedded in the central portion of the holding body 21.
図1,図2に示されるように、保持体21と筒状支持体31との間の接合部分B1には、外部から隔絶された気密性の空隙41が形成されている。空隙41内は、気体が殆ど存在していない真空状態となっている。この空隙41は、保持体21から筒状支持体31への熱逃げ経路の一部を遮断する役割を果たすものである。この空隙41は、筒状支持体31の端面32に形成された凹部36により構成されるとともに、貫通孔34を全周にわたって連続的に包囲するリング状に形成されている。本実施形態の凹部36は環状溝であって、円環状領域の内周及び外周からそれぞれ3mm以上離間した位置に配置されている。本実施形態では接合部分B1の幅W1が10mmとなっており、凹部36の幅W2は接合部分B1の幅W1の30%〜40%程度に設定されている。具体的には凹部36の幅W2は3mm〜4mm程度に設定されている。また、凹部36は断面矩形状であって、その深さは3mm〜5mm程度に設定されている。 As shown in FIG. 1 and FIG. 2, an airtight gap 41 isolated from the outside is formed in the joint portion B <b> 1 between the holding body 21 and the cylindrical support body 31. The space 41 is in a vacuum state in which almost no gas exists. The gap 41 serves to block a part of the heat escape path from the holding body 21 to the cylindrical support 31. The gap 41 is formed by a recess 36 formed in the end surface 32 of the cylindrical support 31 and is formed in a ring shape that continuously surrounds the through hole 34 over the entire circumference. The recessed part 36 of this embodiment is an annular groove, and is disposed at a position 3 mm or more away from the inner periphery and outer periphery of the annular region. In the present embodiment, the width W1 of the joint portion B1 is 10 mm, and the width W2 of the recess 36 is set to about 30% to 40% of the width W1 of the joint portion B1. Specifically, the width W2 of the recess 36 is set to about 3 mm to 4 mm. Moreover, the recessed part 36 is a cross-sectional rectangular shape, The depth is set to about 3 mm-5 mm.
以下、本実施形態の実施例1の加熱装置11の製造手順を図3に基づいて説明する。 Hereinafter, the manufacturing procedure of the heating apparatus 11 of Example 1 of this embodiment will be described with reference to FIG.
(保持体21の作製)
窒化アルミニウム粉末100重量部に、酸化イットリウム(イットリア;Y2O3)粉末1重量部と、アクリル系バインダ20重量部と、適量の分散剤及び可塑剤と加えた混合物に、トルエン等の有機溶剤を加え、ボールミルにて24時間混合し、グリーンシート用スラリーを作製した。そしてこのスラリーを出発材料として用い、キャスティング装置でスラリーをシート状に成形した後に乾燥させ、約350mm角であって厚さ0.8mmのグリーンシート51を複数枚作製した。
(Preparation of holder 21)
An organic solvent such as toluene is added to a mixture of 100 parts by weight of aluminum nitride powder, 1 part by weight of yttrium oxide (yttria; Y 2 O 3 ) powder, 20 parts by weight of an acrylic binder, and an appropriate amount of dispersant and plasticizer. And mixed for 24 hours with a ball mill to prepare a slurry for green sheets. Then, using this slurry as a starting material, the slurry was formed into a sheet shape with a casting apparatus and then dried to produce a plurality of green sheets 51 having a thickness of about 350 mm and a thickness of 0.8 mm.
また、窒化アルミニウム粉末、アクリル系バインダ、テルピネオール等の有機溶剤の混合物に、タングステンやモリブデン等の導電性粉末を添加して混練することにより、メタライズペーストを作製した。そして、スクリーン印刷装置等を用いてこのメタライズペーストを印刷することにより、特定のグリーンシート51に、後に抵抗発熱体25や受電電極27等となる未焼結導体層52を形成した。また、グリーンシート51にあらかじめビア孔を設けた状態で印刷することにより、後にビア導体26となる未焼結導体部を形成した。なお、静電チャック用電極やRF用電極の形成が必要であれば、後にこれら電極となる未焼結導体層をさらに形成してもよい。また、必要に応じて、各種の穴(例えば、熱電対固定用の穴、リフトピン出没用の穴など)を形成しておいてもよい。 Further, a metallized paste was prepared by adding and kneading conductive powder such as tungsten or molybdenum to a mixture of organic solvents such as aluminum nitride powder, acrylic binder, and terpineol. Then, by printing this metallized paste using a screen printing device or the like, an unsintered conductor layer 52 that later becomes the resistance heating element 25, the power receiving electrode 27, or the like was formed on the specific green sheet 51. Moreover, the green conductor 51 was printed in a state in which a via hole was previously provided, thereby forming an unsintered conductor portion that later became the via conductor 26. If it is necessary to form an electrostatic chuck electrode or an RF electrode, an unsintered conductor layer that will later become these electrodes may be further formed. Moreover, you may form various holes (For example, the hole for thermocouple fixation, the hole for lift pin protrusion, etc.) as needed.
次に、これらのグリーンシート51を複数枚(本実施形態では例えば20枚)熱圧着し、必要に応じて外周を切断して、厚さ約8mmのグリーンシート積層体を作製した。続いて、このグリーンシート積層体をマニシングによって切削加工し、円板状の成形体53を作製した。次に、得られた成形体53を窒素中550℃で12時間脱脂し、脱脂体を得た。さらに、この脱脂体をカーボン炉K1の窒化アルミニウム製さや内に入れ、窒素雰囲気下かつ常圧にて例えば1900℃で4時間焼成し、焼成体54を作製した。さらに、焼成体54の表面を研磨加工して、目的とする寸法(直径330mm×厚さ5mm)の保持体21を作製した。 Next, a plurality of these green sheets 51 (for example, 20 sheets in the present embodiment) were subjected to thermocompression bonding, and the outer periphery was cut as necessary to produce a green sheet laminate having a thickness of about 8 mm. Subsequently, the green sheet laminate was cut by machining to produce a disk-shaped molded body 53. Next, the obtained molded body 53 was degreased in nitrogen at 550 ° C. for 12 hours to obtain a degreased body. Further, this degreased body was put in an aluminum nitride sheath of the carbon furnace K1, and fired at 1900 ° C. for 4 hours in a nitrogen atmosphere and at normal pressure to produce a fired body 54. Further, the surface of the fired body 54 was polished to produce the holding body 21 having a target dimension (diameter 330 mm × thickness 5 mm).
(筒状支持体31の作製)
窒化アルミニウム粉末100重量部に、酸化イットリウム粉末1重量部、PVAバインダ3重量部と、適量の分散剤及び可塑剤とを加えた混合物に、メタノール等の有機溶剤を加え、ボールミルにて15時間混合した。このようにして得られたスラリーをスプレードライヤーにて顆粒化し、これを原料粉末とした。次に、ゴム型61の中央部に中子62を配置した状態で原料粉末を充填し、200MPaの圧力で冷間静水圧プレスした。その結果、貫通孔34及び後に空隙41を形成する凹部36を有する円筒状の成形体63を得た。ここでは、凹部成形用の環状凸部64を内面に備えるゴム型61を使用し、プレス成形と同時に凹部36を形成した。この方法に代え、プレス成形後のマシニングによる加工によって凹部36を形成してもよい。
(Preparation of cylindrical support 31)
An organic solvent such as methanol is added to a mixture of 100 parts by weight of aluminum nitride powder, 1 part by weight of yttrium oxide powder, 3 parts by weight of PVA binder, and appropriate amounts of a dispersant and a plasticizer, and mixed for 15 hours in a ball mill. did. The slurry thus obtained was granulated with a spray dryer and used as a raw material powder. Next, the raw material powder was filled in a state where the core 62 was disposed at the center of the rubber mold 61, and cold isostatic pressing was performed at a pressure of 200 MPa. As a result, a cylindrical molded body 63 having a through hole 34 and a recess 36 that later forms a void 41 was obtained. Here, a rubber mold 61 having an annular convex portion 64 for forming a concave portion on the inner surface was used, and the concave portion 36 was formed simultaneously with press molding. Instead of this method, the recess 36 may be formed by machining by press-molding.
得られた成形体63は垂直に立てて空気中にて600℃で脱脂し、脱脂体を得た。さらに、この脱脂体を窒素ガス雰囲気の焼成炉K2内にて吊り下げ、1850℃で5時間焼成した。その結果、外径60mm、内径40mm、長さ200mmの焼成体67(即ち筒状支持体31)を得た。 The obtained molded body 63 was vertically defatted at 600 ° C. in the air to obtain a defatted body. Further, this degreased body was suspended in a firing furnace K2 in a nitrogen gas atmosphere and fired at 1850 ° C. for 5 hours. As a result, a fired body 67 (that is, the cylindrical support 31) having an outer diameter of 60 mm, an inner diameter of 40 mm, and a length of 200 mm was obtained.
(保持体21及び筒状支持体31の接合)
上記のような準備工程を実施した後、下記の手順で接合工程を実施した。接合工程では、まず、保持体21の接合面(即ち裏面23)、筒状支持体31の接合面(即ち端面32)に対し、それぞれラッピング加工を行った。このラッピング加工では、表面粗さRaが1μm以下、平面度が10μm以下となるようにした。そして、保持体21または筒状支持体31の接合面に、希土類や有機溶剤等を混合してペースト状にした公知の接合剤を均一に塗布した後、脱脂処理した。次いで、保持体21の裏面23と筒状支持体31の端面32とを重ね合わせ、減圧した窒素ガスやアルゴンガス等の不活性ガス中、または真空中で、1400℃〜1850℃の温度、かつ0.5MPa〜10MPaの圧力にてホットプレス焼成を行った。ここでは、ホットプレス用焼成炉K3を用いて筒状支持体31の軸線方向に1MPaのプレス圧P1を加えながら、真空中にて1600℃の温度条件でホットプレス焼成を行い、保持体21と筒状支持体31とを接合した。
(Joining of the holding body 21 and the cylindrical support body 31)
After performing the preparatory process as described above, the bonding process was performed according to the following procedure. In the joining step, first, lapping was performed on the joining surface (that is, the back surface 23) of the holding body 21 and the joining surface (that is, the end surface 32) of the cylindrical support 31. In this lapping process, the surface roughness Ra was 1 μm or less and the flatness was 10 μm or less. A known bonding agent mixed with a rare earth, an organic solvent, or the like was uniformly applied to the bonding surface of the holder 21 or the cylindrical support 31, and then degreased. Next, the back surface 23 of the holding body 21 and the end surface 32 of the cylindrical support 31 are overlapped, and the temperature is 1400 ° C. to 1850 ° C. in an inert gas such as nitrogen gas or argon gas, or in a vacuum. Hot press firing was performed at a pressure of 0.5 MPa to 10 MPa. Here, hot press firing is performed in vacuum at a temperature condition of 1600 ° C. while applying a press pressure P1 of 1 MPa in the axial direction of the cylindrical support 31 using the firing furnace K3 for hot press. The cylindrical support 31 was joined.
(電極端子43の接合等)
接合工程の後、受電電極27の表面上に棒状の電極端子43をロウ付けするとともに、保持体21における熱電対固定用の穴内に熱電対42の先端部分44を埋設固定した。以上の工程により、図1に示す実施例1の加熱装置11を完成させた。
(Junction of electrode terminal 43, etc.)
After the joining step, the rod-shaped electrode terminal 43 was brazed on the surface of the power receiving electrode 27, and the tip portion 44 of the thermocouple 42 was embedded and fixed in the thermocouple fixing hole in the holding body 21. Through the above steps, the heating apparatus 11 of Example 1 shown in FIG. 1 was completed.
そして、同様の手順で、実施例2の加熱装置11A(図4参照)、実施例3の加熱装置11B(図5参照)、比較例2の加熱装置100(図6参照)をそれぞれ作製した。実施例1と実施例2、3とを比べると、空隙41,41A,41Bの形状がそれぞれ異なっている。例えば、実施例2の空隙41Aは、貫通孔34を包囲するようにリング状に配置された複数の円形状の凹部71(直径3mm〜4mm)によって形成されている。従って、貫通孔34が複数の空隙41Aにより非連続的に包囲されている。実施例3の空隙41Bは、貫通孔34を包囲するようにリング状に配置された複数の凹部72によって形成されている。なお、これら凹部72は、実施例1の凹部36を複数箇所(8箇所)で均等に分割したものと実質的に同じものである。従って、貫通孔34が複数の空隙41Bにより非連続的に包囲されている。一方、比較例2は実施例1と同じ空隙41を備えている。ただし、比較例2の加熱装置100においては、空隙41にて開口するガス供給路101が2箇所形成され、それらのガス供給路101を介して空隙41が外部とつながっている。そして、これらのガス供給路101を介して空隙41内に窒素ガスを流すことができるようになっている。なお、特に図示しないが、空隙を何ら形成していないものを比較例1として位置付けた。 Then, a heating device 11A (see FIG. 4) in Example 2, a heating device 11B in Example 3 (see FIG. 5), and a heating device 100 in Comparative Example 2 (see FIG. 6) were produced in the same procedure. When Example 1 is compared with Examples 2 and 3, the shapes of the air gaps 41, 41A, and 41B are different from each other. For example, the gap 41 </ b> A of the second embodiment is formed by a plurality of circular recesses 71 (diameter 3 mm to 4 mm) arranged in a ring shape so as to surround the through hole 34. Accordingly, the through hole 34 is discontinuously surrounded by the plurality of gaps 41A. The air gap 41 </ b> B of the third embodiment is formed by a plurality of concave portions 72 arranged in a ring shape so as to surround the through hole 34. These concave portions 72 are substantially the same as those obtained by equally dividing the concave portion 36 of Example 1 at a plurality of locations (eight locations). Accordingly, the through hole 34 is discontinuously surrounded by the plurality of gaps 41B. On the other hand, Comparative Example 2 includes the same gap 41 as that of Example 1. However, in the heating apparatus 100 of the comparative example 2, two gas supply paths 101 opened in the gap 41 are formed, and the gap 41 is connected to the outside through the gas supply paths 101. Then, nitrogen gas can be allowed to flow into the gap 41 through these gas supply paths 101. In addition, although not particularly illustrated, a case where no void was formed was positioned as Comparative Example 1.
上記の各実施例及び各比較例について下記の評価試験を行った。即ち、真空中で抵抗発熱体25に直流電圧200Vを印加し、保持体21の主面22側を設定温度(T0=450℃)に発熱させた。そのときの主面22の温度を赤外線サーモグラフィ装置にて測定した。そして、主面22内の最も温度が高い箇所と、筒状支持体31との接合部分B1の直上となるエリアのうち最も温度が低い箇所とを選択し、両者の温度を比較した。その結果を表1に示す。ちなみに、表1には、「面内の最高温度Tmax(℃)」、「接合部分直上での最低温度Tmin(℃)」、「温度差Tmax−Tmin(℃)」、「設定温度T0に対する温度差(%)」を記載した。なお、「設定温度T0に対する温度差(%)」は面内均熱性の良否を示すものである。 The following evaluation tests were conducted for each of the above examples and comparative examples. That is, a DC voltage of 200 V was applied to the resistance heating element 25 in a vacuum, and the main surface 22 side of the holding body 21 was heated to a set temperature (T 0 = 450 ° C.). The temperature of the main surface 22 at that time was measured with an infrared thermography apparatus. And the location where the temperature is the highest in the main surface 22 and the location where the temperature is the lowest among the areas directly above the joint portion B1 with the cylindrical support 31 are selected, and the temperatures of both are compared. The results are shown in Table 1. Incidentally, Table 1 shows “maximum in-plane temperature T max (° C.)”, “minimum temperature T min (° C.) immediately above the junction”, “temperature difference T max −T min (° C.)”, “setting”. temperature difference with respect to the temperature T 0 (percent) "described. “Temperature difference (%) with respect to set temperature T 0 ” indicates whether the in-plane heat uniformity is good or bad.
その結果、実施例1〜3では面内均熱性を±1.0%以内とすることができ、特に実施例1では±0.5%以内とすることができた。一方、空隙を形成していない比較例1では、いわゆる熱逃げの影響が大きく、面内均熱性を±1.0%以内とすることができなかった。また、比較例2では、空隙41を形成したにもかかわらずガス供給路101から熱が奪われることから、面内均熱性を±1.0%以内とすることができなかった。
従って、本実施の形態によれば以下の効果を得ることができる。 Therefore, according to the present embodiment, the following effects can be obtained.
(1)本実施形態の加熱装置11,11A,11Bでは、保持体21と筒状支持体31との間の接合部分B1に、外部から隔絶された気密性の空隙41,41A,41Bが存在しており、その部分が断熱構造となっている。その結果、保持体21から筒状支持体31への熱逃げ経路の断面積が減少し、保持体21の主面22の面内均熱性が改善される。従って、本実施形態の加熱装置11,11A,11Bによれば、半導体ウェハ15を均一に加熱処理することができ、半導体製造時の歩留まりの向上を達成することができる。 (1) In the heating devices 11, 11A, and 11B of the present embodiment, airtight gaps 41, 41A, and 41B that are isolated from the outside exist in the joint portion B1 between the holding body 21 and the cylindrical support body 31. The part has a heat insulating structure. As a result, the cross-sectional area of the heat escape path from the holding body 21 to the cylindrical support 31 is reduced, and the in-plane heat uniformity of the main surface 22 of the holding body 21 is improved. Therefore, according to the heating devices 11, 11A, and 11B of the present embodiment, the semiconductor wafer 15 can be uniformly heat-treated, and an improvement in yield during semiconductor manufacturing can be achieved.
(2)本実施形態の製造方法によると、保持体21の裏面23と筒状支持体31の端面32とを重ね合わせてホットプレス焼成を行う接合工程を経ることにより、保持体21と筒状支持体31とが接合される。このとき、保持体21及び筒状支持体31は真空中または減圧雰囲気中で接合されることから、両者を強固に接合することができる。それに加え、外部から隔絶された気密性の空隙41,41A,41Bを簡単にかつ確実に形成することができる。さらに、この方法によると、抵抗発熱体25が酸化されにくくなるので、抵抗発熱体25の劣化や抵抗値のばらつきを未然に防止することができる。しかも、非酸化物セラミックである窒化アルミニウム製の保持体21と筒状支持体31とを選択した場合であっても、接合工程の際にそれらの酸化、劣化を防ぐことができ、それら同士の接合を確実に行うことができる。 (2) According to the manufacturing method of the present embodiment, the holding body 21 and the cylindrical shape are obtained by performing a joining step in which the back surface 23 of the holding body 21 and the end surface 32 of the cylindrical support body 31 are superposed and subjected to hot press firing. The support 31 is joined. At this time, since the holding body 21 and the cylindrical support 31 are bonded in a vacuum or in a reduced pressure atmosphere, both can be firmly bonded. In addition, the airtight gaps 41, 41A, 41B isolated from the outside can be easily and reliably formed. Further, according to this method, the resistance heating element 25 is hardly oxidized, so that it is possible to prevent deterioration of the resistance heating element 25 and variations in resistance values. And even if it is a case where the support body 21 and the cylindrical support body 31 made of aluminum nitride which are non-oxide ceramics are selected, they can be prevented from being oxidized and deteriorated during the joining process. Bonding can be performed reliably.
なお、本発明の実施の形態は以下のように変更してもよい。 In addition, you may change embodiment of this invention as follows.
・図7に示す別の実施形態の加熱装置11Cのように、保持体21の裏面23に設けた凹部36Aによって、空隙41Cを形成してもよい。また、図8に示す別の実施形態の加熱装置11Dのように、保持体21の裏面23に設けた凹部36Bと、筒状支持体31の端面32に設けた凹部36Cとによって、空隙41Dを形成してもよい。 -You may form the space | gap 41C by the recessed part 36A provided in the back surface 23 of the holding body 21 like the heating apparatus 11C of another embodiment shown in FIG. Further, like the heating device 11D of another embodiment shown in FIG. 8, the gap 41D is formed by the recess 36B provided on the back surface 23 of the holding body 21 and the recess 36C provided on the end surface 32 of the cylindrical support 31. It may be formed.
・上記実施形態では、端面32に断面矩形状の凹部36を設けることで空隙41を形成したが、凹部断面形状はこれに限定されない。例えば、図9に示す別の実施形態の加熱装置11Eのように、端面32に断面二等辺三角形状の凹部36Dを設けることで空隙41Eを形成してもよい。あるいは、図10に示す別の実施形態の加熱装置11Fのように、端面32に断面半円形状の凹部36Eを設けることで空隙41Fを形成してもよい。 In the above embodiment, the gap 41 is formed by providing the recess 36 having a rectangular cross section on the end face 32, but the recess cross-sectional shape is not limited to this. For example, like the heating device 11E of another embodiment shown in FIG. 9, the gap 41E may be formed by providing the end surface 32 with a recess 36D having an isosceles cross section. Or you may form the space | gap 41F by providing the recessed part 36E of cross-sectional semicircle shape in the end surface 32 like the heating apparatus 11F of another embodiment shown in FIG.
・上記実施形態では、保持体21及び筒状支持体31をともに窒化アルミニウム製としたが、これに限定されず例えばともにアルミナ製としてもよい。また、このように同種のセラミックを用いるばかりでなく、異種のセラミックを組み合わせて保持体21及び筒状支持体31を構成してもよい。その一例を挙げると、例えば、保持体21を窒化アルミニウム製とし、筒状支持体31をそれよりも低熱伝導性であるアルミナ製としてもよい。 In the above embodiment, both the holding body 21 and the cylindrical support body 31 are made of aluminum nitride, but the invention is not limited to this. For example, both may be made of alumina. In addition to using the same type of ceramic as described above, the holding body 21 and the cylindrical support 31 may be configured by combining different types of ceramics. For example, the holding body 21 may be made of aluminum nitride, and the cylindrical support 31 may be made of alumina having a lower thermal conductivity.
次に、特許請求の範囲に記載された技術的思想のほかに、前述した実施の形態によって把握される技術的思想を以下に列挙する。 Next, in addition to the technical ideas described in the claims, the technical ideas grasped by the embodiments described above are listed below.
(1)上記手段1、2において、前記空隙内の気体の圧力は、常温で大気圧よりも低くなっていること。
(2)上記手段1、2において、前記空隙内の気体は、不活性ガスを主体とすること。
(3)上記手段1、2において、前記保持体及び前記筒状支持体は、ともに窒化物セラミック製であること。
(4)上記手段1、2において、前記凹部の幅は前記接合部分の幅の30%〜40%に設定されていること。
(5)上記手段1、2において、前記空隙の深さは3mm〜5mmであること。
(1) In the above means 1 and 2, the pressure of the gas in the gap is lower than atmospheric pressure at room temperature.
(2) In the above means 1 and 2, the gas in the gap is mainly composed of an inert gas.
(3) In the above means 1 and 2, the holding body and the cylindrical support are both made of nitride ceramic.
(4) In the above means 1 and 2, the width of the concave portion is set to 30% to 40% of the width of the joint portion.
(5) In the above means 1 and 2, the depth of the gap is 3 mm to 5 mm.
11,11A,11B,11C,11D,11E,11F…加熱装置
15…被処理基材としての半導体ウェハ
21…保持体
22…主面
23…裏面
25…抵抗発熱体
31…筒状支持体
32…端面
34…貫通孔
36,36A,36B,36C,36D,36E…凹部
41,41A,41B,41C,41D,41E,41F…空隙
B1…接合部分
DESCRIPTION OF SYMBOLS 11, 11A, 11B, 11C, 11D, 11E, 11F ... Heating device 15 ... Semiconductor wafer 21 as a to-be-processed base material 21 ... Holding body 22 ... Main surface 23 ... Back surface 25 ... Resistance heating element 31 ... Cylindrical support body 32 ... End face 34 ... Through hole 36,36A, 36B, 36C, 36D, 36E ... Recess 41,41A, 41B, 41C, 41D, 41E, 41F ... Gap B1 ... Junction part
Claims (6)
端面が前記裏面に接合されるセラミック製の筒状支持体と
を備え、
前記保持体と前記筒状支持体との間の接合部分に、外部から隔絶された気密性の空隙が形成されている
ことを特徴とする加熱装置。 A ceramic holder having a main surface and a back surface on which the substrate to be treated is placed, and a resistance heating element embedded therein;
A ceramic cylindrical support whose end face is joined to the back surface;
A heating apparatus, wherein an airtight gap isolated from the outside is formed at a joint portion between the holding body and the cylindrical support body.
前記空隙と前記貫通孔とを前記主面と平行な仮想平面に投影した投影面において、前記空隙は前記貫通孔を包囲するように形成されていることを特徴とする請求項1または2に記載の加熱装置。 The cylindrical support has a through hole that opens at the end face;
3. The projection according to claim 1, wherein the gap is formed so as to surround the through hole on a projection plane obtained by projecting the gap and the through hole onto a virtual plane parallel to the main surface. Heating device.
前記保持体及び前記筒状支持体を準備するとともに、前記保持体の前記裏面及び前記筒状支持体の前記端面のうちの少なくとも一方に、後に前記空隙となる凹部を形成しておく準備工程と、
前記保持体の前記裏面と前記筒状支持体の前記端面とを重ね合わせ、真空中または減圧雰囲気中で前記保持体と前記筒状支持体とのプレスを行って前記保持体と前記筒状支持体とを接合する接合工程と
を含むことを特徴とする加熱装置の製造方法。 A method for manufacturing an apparatus according to any one of claims 1 to 5,
A preparing step of preparing the holding body and the cylindrical support, and forming a recess that will later become the gap on at least one of the back surface of the holding body and the end surface of the cylindrical support; ,
The back surface of the holding body and the end surface of the cylindrical support body are overlapped, and the holding body and the cylindrical support body are pressed in a vacuum or a reduced pressure atmosphere by pressing the holding body and the cylindrical support body. The manufacturing method of the heating apparatus characterized by including the joining process which joins a body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015107102A JP6389802B2 (en) | 2015-05-27 | 2015-05-27 | Heating apparatus and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015107102A JP6389802B2 (en) | 2015-05-27 | 2015-05-27 | Heating apparatus and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016225015A true JP2016225015A (en) | 2016-12-28 |
JP6389802B2 JP6389802B2 (en) | 2018-09-12 |
Family
ID=57748391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015107102A Active JP6389802B2 (en) | 2015-05-27 | 2015-05-27 | Heating apparatus and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6389802B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018073657A (en) * | 2016-10-31 | 2018-05-10 | 信越化学工業株式会社 | Heating element |
JP2018121029A (en) * | 2017-01-27 | 2018-08-02 | 京セラ株式会社 | Sample holder |
JP2019094233A (en) * | 2017-11-24 | 2019-06-20 | 日本特殊陶業株式会社 | Method for producing ceramic joined body |
JP2019125516A (en) * | 2018-01-18 | 2019-07-25 | 助川電気工業株式会社 | Substrate heater |
JP7352765B1 (en) | 2020-09-09 | 2023-09-28 | ミコ セラミックス リミテッド | ceramic heater |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009182139A (en) * | 2008-01-30 | 2009-08-13 | Tokyo Electron Ltd | Mounting base structure, and treatment apparatus |
JP2010040422A (en) * | 2008-08-07 | 2010-02-18 | Ngk Insulators Ltd | Heater with shaft |
JP2013012413A (en) * | 2011-06-29 | 2013-01-17 | Taiheiyo Cement Corp | Ceramics heater |
-
2015
- 2015-05-27 JP JP2015107102A patent/JP6389802B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009182139A (en) * | 2008-01-30 | 2009-08-13 | Tokyo Electron Ltd | Mounting base structure, and treatment apparatus |
JP2010040422A (en) * | 2008-08-07 | 2010-02-18 | Ngk Insulators Ltd | Heater with shaft |
JP2013012413A (en) * | 2011-06-29 | 2013-01-17 | Taiheiyo Cement Corp | Ceramics heater |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018073657A (en) * | 2016-10-31 | 2018-05-10 | 信越化学工業株式会社 | Heating element |
JP2018121029A (en) * | 2017-01-27 | 2018-08-02 | 京セラ株式会社 | Sample holder |
JP2019094233A (en) * | 2017-11-24 | 2019-06-20 | 日本特殊陶業株式会社 | Method for producing ceramic joined body |
JP2019125516A (en) * | 2018-01-18 | 2019-07-25 | 助川電気工業株式会社 | Substrate heater |
JP7352765B1 (en) | 2020-09-09 | 2023-09-28 | ミコ セラミックス リミテッド | ceramic heater |
JP2023542288A (en) * | 2020-09-09 | 2023-10-06 | ミコ セラミックス リミテッド | ceramic heater |
US11937345B2 (en) | 2020-09-09 | 2024-03-19 | Mico Ceramics Ltd. | Ceramic heater |
Also Published As
Publication number | Publication date |
---|---|
JP6389802B2 (en) | 2018-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6389802B2 (en) | Heating apparatus and manufacturing method thereof | |
US6849938B2 (en) | Ceramic substrate for semiconductor production and inspection | |
TW523858B (en) | Semiconductor manufacturing apparatus having wafer holder for semiconductor manufacturing apparatus | |
KR100438881B1 (en) | Wafer holder for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus using the same | |
EP1422754A1 (en) | Ceramic joint body | |
US10615060B2 (en) | Heating device | |
WO2001097264A1 (en) | Hot plate | |
JP2011086919A (en) | Electrostatic chuck and manufacturing method of the same | |
US20040097359A1 (en) | Aluminum nitride sintered body, method for producing aluminum nitride sintered body, ceramic substrate and method for producing ceramic substrate | |
JP2004296254A (en) | Ceramic heater; and semiconductor or liquid crystal manufacturing device composed by mounting it | |
JP2005317749A (en) | Holding body for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus loaded therewith | |
JP6438352B2 (en) | Heating device | |
JP2006332068A (en) | Ceramic heater and apparatus mounted the same for manufacturing semiconductor or liquid crystal | |
US20170057880A1 (en) | Method for manufacturing large ceramic co-fired articles | |
US20050184054A1 (en) | Ceramics heater for semiconductor production system | |
JP2001007189A (en) | Electrostatic chuck and its manufacture | |
JP6672244B2 (en) | Manufacturing method of ceramic joined body | |
JP2000143349A (en) | Aluminum nitride-based sintered compact and electrostatic chuck using the same | |
JP2001077185A (en) | Electrostatic chuck and its manufacture | |
JP2002025912A (en) | Susceptor for semiconductor manufacturing device and semiconductor manufacturing device using the same | |
JP4529690B2 (en) | Wafer holder for semiconductor manufacturing apparatus, manufacturing method thereof, and semiconductor manufacturing apparatus | |
JP7265941B2 (en) | zygote | |
JP2001319967A (en) | Method for manufacturing ceramic substrate | |
JP3821075B2 (en) | Ceramic heater and manufacturing method thereof | |
JP6917180B2 (en) | Heating device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170309 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171226 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20171227 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180219 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180724 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180820 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6389802 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |