JP2016223900A - Pretreatment method for inspecting residual pesticide using immunoassay method and method for inspecting residual pesticide - Google Patents

Pretreatment method for inspecting residual pesticide using immunoassay method and method for inspecting residual pesticide Download PDF

Info

Publication number
JP2016223900A
JP2016223900A JP2015110192A JP2015110192A JP2016223900A JP 2016223900 A JP2016223900 A JP 2016223900A JP 2015110192 A JP2015110192 A JP 2015110192A JP 2015110192 A JP2015110192 A JP 2015110192A JP 2016223900 A JP2016223900 A JP 2016223900A
Authority
JP
Japan
Prior art keywords
pesticide
procedure
sample
solution
residual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015110192A
Other languages
Japanese (ja)
Other versions
JP6473662B2 (en
Inventor
香代 岩佐
Kayo Iwasa
香代 岩佐
精二 岩佐
Seiji Iwasa
精二 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Science & Technology Foundation
Toyohashi University of Technology NUC
Original Assignee
Aichi Science & Technology Foundation
Toyohashi University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Science & Technology Foundation, Toyohashi University of Technology NUC filed Critical Aichi Science & Technology Foundation
Priority to JP2015110192A priority Critical patent/JP6473662B2/en
Publication of JP2016223900A publication Critical patent/JP2016223900A/en
Application granted granted Critical
Publication of JP6473662B2 publication Critical patent/JP6473662B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pretreatment method for inspecting residual pesticide in an agricultural product containing polyphenol and a method for inspecting the residual pesticide in the agricultural product.SOLUTION: Provided is a pretreatment method for inspecting residual pesticide using the immunoassay method. To inspect residual pesticide attached to or absorbed in an agricultural product containing polyphenol, an extraction liquid is extracted from the agricultural product and an antigen-antibody reaction in which the residual pesticide contained in the extraction liquid works as an antigen is used to quantify the residual pesticide. Prior to the quantification, the extraction liquid is pretreated with the pretreatment method using the immunoassay method with casein mixed in the extraction liquid.SELECTED DRAWING: Figure 4

Description

本発明は、ポリフェノールを含む農作物に対する残留農薬検査の前処理方法、及び前記農作物の残留農薬検査方法に関する。   The present invention relates to a pretreatment method for a pesticide residue test for a crop containing polyphenol, and a method for testing a pesticide residue of the crop.

農作物に残留する農薬検査の自主検査において、イムノアッセイ法による検査は、機器分析法と比べ、迅速、簡便かつ安価な測定法であるため、注目されている。しかし、農作物に含まれる成分による測定の妨害が指摘されている。   In voluntary inspection of agricultural chemicals remaining on agricultural products, immunoassay inspection is attracting attention because it is a quick, simple and inexpensive measurement method compared to instrumental analysis. However, it has been pointed out that the measurement is disturbed by components contained in agricultural products.

例えば、茶の抽出液中の有機塩素系殺菌剤クロロタロニルをエライザ法により測定する場合、茶に由来する成分の影響により、クロロタロニルの抗体との反応性が変化することが明らかになっている。このような夾雑成分を取り除く手段として、ミニカラム(Oasis HLB60mg、waters社製)による前処理方法がある。このミニカラムを用いた前処理方法を用いて、クロロタロニルのような脂溶性の農薬に対する検査が行われている。   For example, when the chlorthalonil organochlorine fungicide in tea extract is measured by the Eliza method, it has been clarified that the reactivity of chlorothalonil with an antibody changes due to the influence of components derived from tea. As a means for removing such impurities, there is a pretreatment method using a minicolumn (Oasis HLB 60 mg, manufactured by Waters). Tests for fat-soluble pesticides such as chlorothalonil have been carried out using a pretreatment method using this mini-column.

畠山えり子、外3名、「エライザ法による茶葉中のクロロタロニルの残留分析」、日本農薬学会誌、日本農薬学会、平成20年11月20日、第33巻、第4号、pp.387−392Eriko Hatakeyama, 3 others, “Residual analysis of chlorothalonil in tea leaves by the Eliza method”, Journal of Pesticide Science Society of Japan, Japanese Pesticide Society, November 20, 2008, Vol. 33, No. 4, pp. 387-392

しかし、水溶性の農薬については、エライザ法を含むイムノアッセイ法を用いた前処理方法は確立されておらず、夾雑成分の影響により農薬の測定が妨害されるという問題があった。   However, for water-soluble pesticides, a pretreatment method using an immunoassay method including the Eliza method has not been established, and there has been a problem that the measurement of pesticides is hindered by the influence of contaminant components.

このような問題を解決するために、本発明者らは、茶に含まれる夾雑成分を捕捉する技術について検討し、その結果、農薬の測定が可能となる簡便な方法を見出した。
以下に説明する技術は上記知見に基づいて完成されたものであり、その目的の一つはポリフェノールを含む農作物に対する残留農薬検査のための前処理方法、及び前記農作物の残留農薬検査方法を提供することにある。
In order to solve such a problem, the present inventors have studied a technique for capturing a contaminating component contained in tea, and as a result, have found a simple method capable of measuring agricultural chemicals.
The technology described below has been completed based on the above knowledge, and one of its purposes is to provide a pretreatment method for the inspection of residual agricultural chemicals for crops containing polyphenols, and a method for inspection of residual agricultural chemicals of the crops. There is.

以下に説明する前処理方法は、ポリフェノールを含む農作物に付着又は浸透した残留農薬を対象とする残留農薬検査として、農作物から抽出された抽出液に対して、抽出液中に含まれる残留農薬を抗原とする抗原抗体反応を利用して残留農薬を定量するに当たって、当該定量を実施する前に抽出液に対して実施されるイムノアッセイ法を用いた残留農薬検査のための前処理方法であって、抽出液にカゼインを混合処理することを特徴とする。   In the pretreatment method described below, as a residual agricultural chemical test for residual agricultural chemicals attached to or penetrating into crops containing polyphenols, residual agricultural chemicals contained in the extract are extracted as antigens against the extracted liquid extracted from agricultural crops. In quantifying residual pesticides using the antigen-antibody reaction, a pretreatment method for residual pesticide inspection using an immunoassay method performed on the extract before performing the quantification, Casein is mixed with the liquid.

また、残留農薬検査方法は、ポリフェノールを含む農作物に付着又は浸透した残留農薬を対象とする残留農薬検査として、農作物から抽出された抽出液に対して、抽出液中に含まれる残留農薬を抗原とする抗原抗体反応を利用した定量方法で残留農薬を定量する残留農薬検査方法であり、定量を実施する前に、抽出液にカゼインを混合処理することを特徴とする。   In addition, the pesticide residue inspection method is a residue pesticide test for residue pesticides attached to or penetrated into crops containing polyphenols, with the residue pesticide contained in the extract as an antigen. A method for inspecting residual agricultural chemicals by a quantitative method using an antigen-antibody reaction, characterized in that casein is mixed with the extract before carrying out the quantitative determination.

図1(a)は、実施例1で得られたスキムミルク未処理の試料(試料1〜10)の測定結果を示すグラフである。図1(b)は、実施例1で得られたスキムミルク処理を行った試料(試料11〜20)の測定結果を示すグラフである。FIG. 1A is a graph showing the measurement results of samples (samples 1 to 10) that were not treated with skim milk obtained in Example 1. FIG. FIG.1 (b) is a graph which shows the measurement result of the sample (samples 11-20) which performed the skim milk process obtained in Example 1. FIG. 図2(a)は、実施例2でアセタミプリド0ppbの濃度から調製された試料の測定結果を示すグラフである。図2(b)は、実施例2でアセタミプリド50ppbの濃度から調製された試料の測定結果を示すグラフである。FIG. 2A is a graph showing the measurement results of the sample prepared from the concentration of acetamiprid 0 ppb in Example 2. FIG. 2B is a graph showing the measurement results of the sample prepared from the concentration of 50 ppb acetamiprid in Example 2. FIG. 図3は、実施例3で得られた試料(試料50〜61)の測定結果を示すグラフである。FIG. 3 is a graph showing the measurement results of the samples (samples 50 to 61) obtained in Example 3. 図4はイムノアッセイにおけるスキムミルク処理を行った模式図である。FIG. 4 is a schematic view of the skim milk treatment in the immunoassay.

以下に、本発明の作用効果を検証するために行った実施形態について説明するが、本発明はこの実施形態に限定されるものではない。
なお、以下に説明する実施形態においては、別に記載しない限り、以下の材料を用いる。アセタミプリドとしては、林純薬工業株式会社の52220を用いる。カテキンの粉末としては、和光純薬工業株式会社のコードNo.032−18231、カテキン混合物、緑茶由来を用いる。カゼインとしては、カゼインを含有するスキムミルクの粉末を用い、スキムミルクの粉末としては、和光純薬工業株式会社のコードNo.198−10605、スキムミルク粉末を用いる。
Hereinafter, an embodiment performed for verifying the operation and effect of the present invention will be described, but the present invention is not limited to this embodiment.
In the embodiments described below, the following materials are used unless otherwise specified. As acetamiprid, 52220 of Hayashi Junyaku Kogyo Co., Ltd. is used. As the catechin powder, Code No. of Wako Pure Chemical Industries, Ltd. 032-18231, catechin mixture, derived from green tea. As the casein, skim milk powder containing casein is used, and as the skim milk powder, code No. of Wako Pure Chemical Industries, Ltd. is used. 198-10605, skim milk powder is used.

[実施例1:茶の浸出液に対するアセタミプリドの濃度の測定]
検体試料は、ポリフェノールを含む農作物として茶を用い、一般的に市販されている緑茶を用意した。茶の抽出方法は、まず、100℃で湯煎しながら、茶葉3gに100℃の沸騰水50mL加え、5分放置した。その後、湯煎から外し、室温で1時間静置した後、4℃で一晩静置した。このような抽出方法によって湯中に抽出される茶の成分には、カテキンやタンニンなどのポリフェノールが含まれるものと考えられる。5000gで5分間遠心分離し、上清を回収し、上清を茶の浸出液(以下、浸出液Aと称する)とした。
[Example 1: Measurement of concentration of acetamiprid to tea exudate]
As a specimen sample, tea was used as an agricultural crop containing polyphenol, and commercially available green tea was prepared. In the tea extraction method, first, 50 mL of boiling water at 100 ° C. was added to 3 g of tea leaves and allowed to stand for 5 minutes while boiling at 100 ° C. Then, it removed from the hot water bath, left still at room temperature for 1 hour, and left still at 4 degreeC overnight. It is considered that the components of tea extracted into hot water by such an extraction method include polyphenols such as catechin and tannin. Centrifugation was performed at 5000 g for 5 minutes, and the supernatant was collected. The supernatant was used as tea infusion (hereinafter referred to as infusion A).

なお、厚生労働省医薬品食品局食品安全部長通知第012400号における通知法では、100℃の沸騰水50mLに検体試料1gを浸出させた抽出方法がある。以下に記載の実施形態では、この通知法よりもあえて濃度の高い茶の浸出液Aを用いた。これにより、抗原抗体反応を利用した残留農薬の測定において、夾雑成分による測定の妨害と、その夾雑成分の影響を排除する効果とを明瞭にし、また、各種茶に対応可能なことを確認した。   In addition, the notification method in the Ministry of Health, Labor and Welfare Ministry of Health, Labor and Welfare, Food Safety Department Notification No. 012400 includes an extraction method in which 1 g of a specimen sample is leached in 50 mL of boiling water at 100 ° C. In the embodiment described below, tea infusion A having a higher concentration than this notification method was used. As a result, in the measurement of residual agricultural chemicals using the antigen-antibody reaction, it was clarified that the measurement was disturbed by the contaminated component and the effect of eliminating the influence of the contaminated component, and it was confirmed that it was applicable to various types of tea.

以下の手順1−1、手順1−2、手順1−3、手順1−4、手順1−5、手順1−6、手順1−7、手順1−8を順に行い、各試料を対象にして吸光度を測定した。
手順1−1.蒸留水を使用して、蒸留水中のアセタミプリドの濃度が0.1、1、10、100、1000ppbとなるように試料を調製した。
手順1−2.上記浸出液Aを使用して、浸出液A中のアセタミプリドの濃度が0.1、1、10、100、1000ppbとなるように試料を調製した。
手順1−3.上記手順1−1で調製したアセタミプリド濃度0.1、1、10、100、1000ppbの各試料と、蒸留水とをそれぞれ等量ずつ混合した後、5分ゆっくり振とうし、それぞれ試料1、2、3、4、5とした。この試料1〜5をエライザ測定のサンプル液とした。
手順1−4.上記手順1−2で調製したアセタミプリド濃度0.1、1、10、100、1000ppbの各試料と、蒸留水とをそれぞれ等量ずつ混合した後、5分ゆっくり振とうし、それぞれ試料6、7、8、9、10とした。この試料6〜10をエライザ測定のサンプル液とした。
手順1−5.上記手順1−1で調製したアセタミプリド濃度0.1、1、10、100、1000ppbの各試料と、4%スキムミルクとをそれぞれ等量ずつ混合した後、5分ゆっくり振とうし、それぞれ試料11、12、13、14、15とした。この試料11〜15をエライザ測定のサンプル液とした。
手順1−6.上記手順1−2で調製したアセタミプリド濃度0.1、1、10、100、1000ppbの各試料と、4%スキムミルクとをそれぞれ等量ずつ混合した後、5分ゆっくり振とうし、それぞれ試料16、17、18、19、20とした。この試料16〜20をエライザ測定のサンプル液とした。
手順1−7.また、アセタミプリドを含有しない試料も用意した。具体的には、蒸留水に、蒸留水又は4%スキムミルクをそれぞれ等量ずつ混合した後、5分ゆっくり振とうし、エライザ測定のサンプル液とした。さらに、浸出液Aに、蒸留水又は4%スキムミルクをそれぞれ等量ずつ混合した後、5分ゆっくり振とうし、エライザ測定のサンプル液とした。
手順1−8.上記手順1−3、上記手順1−4、上記手順1−5、上記手順1−6、上記手順1−7から得られたエライザ測定のサンプル液を対象にして、エライザ法(間接競合法)により吸光度を測定した。なお、エライザ法(間接競合法)については後から詳述する。
Perform the following procedure 1-1, procedure 1-2, procedure 1-3, procedure 1-4, procedure 1-5, procedure 1-6, procedure 1-7, procedure 1-8 in order, and target each sample. The absorbance was measured.
Procedure 1-1. Using distilled water, samples were prepared so that the concentration of acetamiprid in distilled water was 0.1, 1, 10, 100, and 1000 ppb.
Procedure 1-2. Using the above leachate A, samples were prepared such that the concentration of acetamiprid in leachate A was 0.1, 1, 10, 100, and 1000 ppb.
Procedure 1-3. Each sample of acetamiprid concentration 0.1, 1, 10, 100, 1000 ppb prepared in the above procedure 1-1 was mixed with an equal amount of distilled water and then shaken slowly for 5 minutes. 3, 4, and 5. Samples 1 to 5 were used as sample solutions for the Eliza measurement.
Procedure 1-4. Each sample of acetamiprid concentration 0.1, 1, 10, 100, 1000 ppb prepared in the above procedure 1-2 and distilled water were mixed in equal amounts, and then shaken slowly for 5 minutes. , 8, 9, and 10. Samples 6 to 10 were used as sample solutions for the Eliza measurement.
Procedure 1-5. Each sample of acetamiprid concentration 0.1, 1, 10, 100, 1000 ppb prepared in the above procedure 1-1 and 4% skim milk were mixed in equal amounts, respectively, and then gently shaken for 5 minutes. 12, 13, 14, and 15. Samples 11 to 15 were used as sample solutions for the Eliza measurement.
Procedure 1-6. Each sample of acetamiprid concentration 0.1, 1, 10, 100, 1000 ppb prepared in the above procedure 1-2 and 4% skim milk were mixed in equal amounts, and then shaken gently for 5 minutes. 17, 18, 19, and 20. Samples 16 to 20 were used as sample solutions for the Eliza measurement.
Procedure 1-7. A sample containing no acetamiprid was also prepared. Specifically, distilled water or 4% skim milk was mixed with distilled water in equal amounts, and then gently shaken for 5 minutes to obtain a sample solution for Eliza measurement. Furthermore, after mixing equal amounts of distilled water or 4% skim milk with the leachate A, the mixture was gently shaken for 5 minutes to obtain a sample solution for Eliza measurement.
Procedure 1-8. The Eliza method (indirect competition method) for the sample solution of the Eliza measurement obtained from the procedure 1-3, the procedure 1-4, the procedure 1-5, the procedure 1-6, and the procedure 1-7. Absorbance was measured by. The Eliza method (indirect competition method) will be described in detail later.

その結果を図1(a)及び図1(b)に示す(ただし、図1(a)及び図1(b)は横軸が対数目盛のグラフであるため、各グラフ中には0.1、1、10、100、1000ppbの各試料について表記した)。なお、図1中の測定結果は、平均±標準偏差(n=4)で示した。   The results are shown in FIG. 1 (a) and FIG. 1 (b) (however, since FIG. 1 (a) and FIG. 1 (b) are graphs with logarithmic scale on the horizontal axis, 0.1% is included in each graph. 1, 10, 100, and 1000 ppb for each sample). In addition, the measurement result in FIG. 1 was shown by the average +/- standard deviation (n = 4).

図1(a)に示すようにスキムミルク未処理の場合(試料1〜10)、試料6〜10の吸光度は、試料1〜5の吸光度に比べて、低かった。この吸光度の低下は、アセタミプリドを抗原とする抗原抗体反応の反応性の低下を意味し、茶の浸出液A中のカテキン、タンニンなどの成分が抗原抗体反応を妨害していることが考えられた。一方、図1(b)に示すスキムミルク処理を行った場合(試料11〜20)、試料16〜20の吸光度は、試料11〜15の吸光度とほとんど一致した。このことは、スキムミルク処理を行うことにより、アセタミプリドが、茶の浸出液A中に存在していても、蒸留水中に存在しているときとほとんど同じ抗原抗体反応の反応性を示すことを意味する。すなわち、スキムミルク未処理の場合、茶の浸出液A中のカテキン、タンニンなどの夾雑成分により抗原抗体反応の妨害が生じるが、スキムミルク処理を行うことにより、この妨害が回避された。   As shown to Fig.1 (a), when skimmed milk was not processed (samples 1-10), the light absorbency of samples 6-10 was low compared with the light absorbency of samples 1-5. This decrease in absorbance means a decrease in the reactivity of the antigen-antibody reaction using acetamiprid as an antigen, and it was considered that components such as catechin and tannin in tea infusion A interfered with the antigen-antibody reaction. On the other hand, when the skim milk treatment shown in FIG. 1B was performed (samples 11 to 20), the absorbance of samples 16 to 20 almost coincided with the absorbance of samples 11 to 15. This means that by performing skim milk treatment, acetamiprid exhibits almost the same reactivity of antigen-antibody reaction as that when it exists in distilled water even if it exists in tea infusion A. That is, when skim milk was not treated, contamination of the antigen-antibody reaction was caused by contaminating components such as catechin and tannin in tea exudate A, but this interference was avoided by carrying out skim milk treatment.

さらに、試料16〜20の吸光度に基づいて検量線を作成したところ、試料11〜15の吸光度に基づいて作成された検量線とほぼ一致する検量線が得られた。したがって、スキムミルク処理を施せば、茶の浸出液A中の夾雑成分の影響を排除することができ、アセタミプリドの正確な測定が可能になるものと考えられる。つまり、アセタミプリド濃度が既知の試料に対してスキムミルク処理を施してから吸光度を測定し、その測定結果に基づいて検量線を作成すれば、茶の浸出液中のアセタミプリド濃度を定量するに当たっては、既知の試料に対して施したスキムミルク処理と同等なスキムミルク処理を茶の浸出液に対して施してから吸光度を測定し、その測定結果と上述の検量線とに基づいて、茶の浸出液中のアセタミプリド濃度を定量することができる。   Furthermore, when a calibration curve was created based on the absorbance of samples 16 to 20, a calibration curve almost identical to the calibration curve created based on the absorbance of samples 11 to 15 was obtained. Therefore, it is considered that if skim milk treatment is performed, the influence of contaminating components in tea infusion liquid A can be eliminated, and accurate measurement of acetamiprid is possible. In other words, if a sample with a known acetamiprid concentration is subjected to skim milk treatment and the absorbance is measured, and a calibration curve is created based on the measurement result, a known amount of acetamiprid in the tea infusion is known. Absorbance is measured after applying skim milk treatment equivalent to the skim milk treatment applied to the sample, and the concentration of acetamiprid in the tea leachate is determined based on the measurement results and the calibration curve described above. can do.

[実施例2:カテキン溶液に対するアセタミプリドの濃度の測定]
以下の手順2−1、手順2−2、手順2−3、手順2−4を順に行い、各試料を対象にして吸光度を測定した。
手順2−1.10%メタノール溶液を使用して、10%メタノール溶液中のカテキンの濃度が0、100、300、400、500、800、1000、3000μg/mLとなるように試料を調製した。
手順2−2.4%スキムミルク溶液を利用して、4%スキムミルク溶液中のアセタミプリドの濃度が0、50ppbとなるように試料を調製した。
手順2−3.蒸留水を利用して、蒸留水中のアセタミプリドの濃度が0、50ppbとなるように試料を調製した。
手順2−4.上記手順2−1で調製した各試料と、上記手順2−2で調製した各試料とを等量ずつ混合した後、15分静置し、エライザ測定のサンプル液とした。また、上記手順2−1で調製した各試料と、上記手順2−3で調製した各試料とを等量ずつ混合した後、15分静置し、エライザ測定のサンプル液とした。これらのサンプル液を対象にして、エライザ法(間接競合法)により吸光度を測定した。なお、エライザ法(間接競合法)については後から詳述する。
[Example 2: Measurement of concentration of acetamiprid with respect to catechin solution]
The following procedure 2-1, procedure 2-2, procedure 2-3, and procedure 2-4 were performed in order, and the absorbance was measured for each sample.
Procedure 2-1 Samples were prepared using a 1.10% methanol solution so that the concentration of catechin in the 10% methanol solution was 0, 100, 300, 400, 500, 800, 1000, 3000 μg / mL.
Procedure 2-2 Using a 2.4% skim milk solution, a sample was prepared so that the concentration of acetamiprid in the 4% skim milk solution was 0, 50 ppb.
Procedure 2-3. Samples were prepared using distilled water so that the concentration of acetamiprid in distilled water was 0, 50 ppb.
Procedure 2-4. Each sample prepared in the above procedure 2-1 and each sample prepared in the above procedure 2-2 were mixed in equal amounts and then allowed to stand for 15 minutes to obtain a sample solution for Eliza measurement. Moreover, after mixing each sample prepared by the said procedure 2-1 and each sample prepared by the said procedure 2-3 by equal amounts, it was left still for 15 minutes and it was set as the sample liquid of an Eliza measurement. The absorbance of these sample solutions was measured by the Eliza method (indirect competition method). The Eliza method (indirect competition method) will be described in detail later.

その結果を図2(a)及び図2(b)に示す。
図2(b)に示されるように、アセタミプリドを含有する試料の場合、スキムミルク処理を行わないと(図2(b)中の左側にあるグラフ参照。)、カテキン濃度0μg/mLに比べ、カテキン濃度が高くなるにしたがい、吸光度が大きく低下した。この吸光度の低下は、アセタミプリドを抗原とする抗原抗体反応の反応性が変化したことを意味する。アセタミプリドを含有する溶液では、カテキンの濃度が高くなるにしたがい抗原抗体反応の反応性が変化することから、カテキンが抗原抗体反応を妨害したと考えられた。一方、アセタミプリドを含有する試料の場合、スキムミルク処理を行うと(図2(b)中の右側にあるグラフ参照。)、カテキンの濃度が高くなっても、試料の吸光度はほとんど低下せず、カテキン濃度が0μg/mLのときの吸光度とほぼ同じ値を示した。このことは、スキムミルク処理を行えば、カテキン溶液の濃度が高くなっても、抗原抗体反応の反応性が変化しないことを意味する。すなわち、アセタミプリドを含有する溶液では、スキムミルク未処理の場合、夾雑成分であるカテキンにより抗原抗体反応の妨害が生じるが、スキムミルク処理を行うことにより、この抗原抗体反応の妨害が回避された。
The results are shown in FIGS. 2 (a) and 2 (b).
As shown in FIG. 2 (b), in the case of a sample containing acetamiprid, if the skim milk treatment is not performed (see the graph on the left side in FIG. 2 (b)), the catechin concentration is compared with the catechin concentration of 0 μg / mL. As the concentration increased, the absorbance decreased greatly. This decrease in absorbance means that the reactivity of the antigen-antibody reaction using acetamiprid as an antigen has changed. In the solution containing acetamiprid, the reactivity of the antigen-antibody reaction changed as the concentration of catechin increased, so it was considered that catechin hindered the antigen-antibody reaction. On the other hand, in the case of a sample containing acetamiprid, when the skim milk treatment is performed (see the graph on the right side in FIG. 2 (b)), the absorbance of the sample hardly decreases even when the concentration of catechin increases. The value was almost the same as the absorbance when the concentration was 0 μg / mL. This means that the skim milk treatment does not change the reactivity of the antigen-antibody reaction even when the concentration of the catechin solution is increased. That is, in the solution containing acetamiprid, when skim milk is not treated, the catechin, which is a contaminating component, interferes with the antigen-antibody reaction, but by performing the skim milk treatment, the interference with the antigen-antibody reaction was avoided.

また、図2(a)に示されるように、アセタミプリドを含有しない試料の場合も、アセタミプリドを含有する試料の場合(図2(b))と同様の吸光度の変動が示された。このようにアセタミプリドを含有していても含有していなくても、同様の吸光度の変動が示されたことから、スキムミルク処理を行わない場合(図2(a)中の左側及び図2(b)中の左側にあるグラフ参照。)、カテキン濃度が高くなるにしたがい、吸光度が低下するという原因が抗原抗体反応の低下である可能性が示された。   Further, as shown in FIG. 2 (a), in the case of the sample not containing acetamiprid, the same change in absorbance as in the case of the sample containing acetamiprid (FIG. 2 (b)) was shown. As described above, the same change in absorbance was shown regardless of whether or not acetamiprid was contained, and therefore, when skim milk treatment was not performed (left side in FIG. 2A and FIG. 2B). (Refer to the graph on the left side of the inside.) As the catechin concentration increased, it was shown that the cause of the decrease in the absorbance was the decrease in the antigen-antibody reaction.

さらに、このような抗原抗体反応の妨害の回避は、正確なアセタミプリドの濃度の定量を実現可能とする。つまり、アセタミプリド濃度が既知の試料に対してスキムミルク処理を施してから吸光度を測定し、その測定結果に基づいて検量線を作成すれば、カテキン溶液中のアセタミプリド濃度を定量するに当たっては、既知の試料に対して施したスキムミルク処理と同等なスキムミルク処理をカテキン溶液に対して施してから吸光度を測定し、その測定結果と上述の検量線とに基づいて、カテキン溶液中のアセタミプリド濃度を定量することができる。   Furthermore, avoiding such interference with the antigen-antibody reaction makes it possible to accurately determine the concentration of acetamiprid. In other words, if a sample with a known acetamiprid concentration is subjected to skim milk treatment and the absorbance is measured, and a calibration curve is created based on the measurement result, a known sample is used to quantify the acetamiprid concentration in the catechin solution. The absorbance is measured after applying a skim milk treatment equivalent to the skim milk treatment applied to the catechin solution, and based on the measurement result and the calibration curve described above, the concentration of acetamiprid in the catechin solution can be quantified. it can.

[実施例3:スキムミルク処理後、限外ろ過処理を行った試料に対するアセタミプリドの濃度の測定]
以下の手順3−1、手順3−2、手順3−3、手順3−4、手順3−5、手順3−6、手順3−7、手順3−8、手順3−9、手順3−10を順に行い、各試料を対象にして吸光度を測定した。
手順3−1.まず、遠心ろ過デバイス(略称:マイクロセップ10K、製品名:マイクロセップ アドバンス 遠心ろ過デバイスマイクロセップ10K、製造元コード:MCP010C41、PALL Corporation製)に1000μg/mLのカテキン溶液4mLを添加した後、7500gで5分間遠心分離した。さらに、蒸留水4mlを添加した後、7500gで5分間遠心分離して洗浄を行い、遠心ろ過デバイスのプレトリートメントを行った(プレトリートメントを行った遠心ろ過デバイスを、以下、遠心ろ過デバイスPと称する)。このプレトリートメントは、次に続く手順の限外ろ過処理において、茶成分中のカテキン及びタンニンなどの夾雑成分が、遠心ろ過デバイスに吸着するのを防ぐために行った。
手順3−2.蒸留水、実施例1で抽出した茶の浸出液A、1000μg/mLカテキン溶液の各溶液に対して、蒸留水を等量ずつ混合し、混合液を作製し、それぞれ混合液B、混合液C、混合液Dとした。次に、この混合液B、C、Dに対して、遠心ろ過デバイスPを用いて限外ろ過の処理を行う場合と限外ろ過の処理を行わない場合に分けた。
手順3−3.蒸留水、実施例1で抽出した茶の浸出液A、1000μg/mLカテキン溶液の各溶液に対して、4%スキムミルク溶液を等量ずつ混合し、混合液を作製し、それぞれ混合液E、混合液F、混合液Gとした。次に、この混合液E、F、Gに対して、遠心ろ過デバイスPを用いて限外ろ過の処理を行う場合と限外ろ過の処理を行わない場合に分けた。
手順3−4.限外ろ過処理を行う場合には、ろ過デバイスPに、1mLの上記手順3−2で混合した混合液Bを添加した後、7500gで50分間遠心分離し、ろ液Hを取り出した。また、限外ろ過処理を行う場合には、ろ過デバイスPに、1mLの上記手順3−2で混合した混合液Cを添加した後、7500gで50分間遠心分離し、ろ液Iを取り出した。また、同様に、限外ろ過処理を行う場合には、ろ過デバイスPに、1mLの上記手順3−2で混合した混合液Dを添加した後、7500gで50分間遠心分離し、ろ液Jを取り出した。
手順3−5.限外ろ過処理を行う場合には、ろ過デバイスPに、1mLの上記手順3−3で混合した混合液Eを添加した後、7500gで50分間遠心分離し、ろ液Kを取り出した。また、限外ろ過処理を行う場合には、ろ過デバイスPに、1mLの上記手順3−3で混合した混合液Fを添加した後、7500gで50分間遠心分離し、ろ液Lを取り出した。また、同様に、限外ろ過処理を行う場合には、ろ過デバイスPに、1mLの上記手順3−3で混合した混合液Gを添加した後、7500gで50分間遠心分離し、ろ液Mを取り出した。
手順3−6.上記手順3−2で混合した混合液Bを利用して、混合液B中のアセタミプリドの濃度が50ppbとなるように試料を調製し、試料50とした。また、上記手順3−2で混合した混合液Cを利用して、混合液C中のアセタミプリドの濃度が50ppbとなるように試料を調製し、試料54とした。また、同様に、上記手順3−2で混合した混合液Dを利用して、混合液D中のアセタミプリドの濃度が50ppbとなるように試料を調製し、試料58とした。これらの試料50、54、58をエライザ測定のサンプル液とした。
手順3−7.上記手順3−3で混合した混合液Eを利用して、混合液E中のアセタミプリドの濃度が50ppbとなるように試料を調製し、試料52とした。また、上記手順3−3で混合した混合液Fを利用して、混合液F中のアセタミプリドの濃度が50ppbとなるように試料を調製し、試料56とした。また、同様に、上記手順3−3で混合した混合液Gを利用して、混合液G中のアセタミプリドの濃度が50ppbとなるように試料を調製し、試料60とした。これらの試料52、56、60をエライザ測定のサンプル液とした。
手順3−8.上記手順3−4で限外ろ過処理をしたろ液Hを利用して、ろ液H中のアセタミプリドの濃度が50ppbとなるように試料を調製し、試料51とした。また、上記手順3−4で限外ろ過処理をしたろ液Iを利用して、ろ液I中のアセタミプリドの濃度が50ppbとなるように試料を調製し、試料55とした。また、同様に、上記手順3−4で限外ろ過処理をしたろ液Jを利用して、ろ液J中のアセタミプリドの濃度が50ppbとなるように試料を調製し、試料59とした。これらの試料51、55、59をエライザ測定のサンプル液とした。
手順3−9.上記手順3−5で限外ろ過処理をしたろ液Kを利用して、ろ液K中のアセタミプリドの濃度が50ppbとなるように試料を調製し、試料53とした。また、上記手順3−5で限外ろ過処理をしたろ液Lを利用して、ろ液L中のアセタミプリドの濃度が50ppbとなるように試料を調製し、試料57とした。また、同様に、上記手順3−5で限外ろ過処理をしたろ液Mを利用して、ろ液M中のアセタミプリドの濃度が50ppbとなるように試料を調製し、試料61とした。これらの試料53、57、61をエライザ測定のサンプル液とした。
手順3−10.上記手順3−6、上記手順3−7、上記手順3−8、上記手順3−9、から得られたエライザ測定のサンプル液を対象にして、エライザ法(間接競合法)により吸光度を測定した。なお、エライザ法(間接競合法)については後から詳述する。
[Example 3: Measurement of the concentration of acetamiprid on a sample subjected to ultrafiltration after skim milk treatment]
The following procedure 3-1, procedure 3-2, procedure 3-3, procedure 3-4, procedure 3-5, procedure 3-6, procedure 3-7, procedure 3-8, procedure 3-9, procedure 3- 10 was performed in order, and the absorbance was measured for each sample.
Procedure 3-1. First, 4 mL of a 1000 μg / mL catechin solution was added to a centrifugal filtration device (abbreviation: Microsep 10K, product name: Microsep Advance, Centrifugal Filtration Device Microsep 10K, manufacturer code: MCP010C41, manufactured by PALL Corporation), and then 7500 g to 5 Centrifuged for minutes. Furthermore, after adding 4 ml of distilled water, it was washed by centrifuging at 7500 g for 5 minutes, and a pre-treatment of the centrifugal filtration device was performed (the centrifugal filtration device subjected to the pre-treatment is hereinafter referred to as a centrifugal filtration device P). ). This pre-treatment was performed in order to prevent contaminant components such as catechin and tannin in the tea component from adsorbing to the centrifugal filtration device in the ultrafiltration treatment of the following procedure.
Procedure 3-2. Distilled water, tea infusion A extracted in Example 1, and 1000 μg / mL catechin solution were mixed in equal amounts with distilled water to prepare a mixed solution, and mixed solution B, mixed solution C, It was set as the liquid mixture D. Next, it divided into the case where the process of ultrafiltration is not performed with respect to this liquid mixture B, C, D using the centrifugal filtration device P, and the case where the process of ultrafiltration is not performed.
Procedure 3-3. Distilled water, tea infusion A extracted in Example 1, and 1000 μg / mL catechin solution were mixed with equal amounts of 4% skim milk solution to prepare mixed solutions, which were mixed solution E and mixed solution, respectively. F and liquid mixture G were used. Next, it divided into the case where the process of ultrafiltration is not performed with respect to this liquid mixture E, F, G using the centrifugal filtration device P, and the case where the process of ultrafiltration is not performed.
Procedure 3-4. In the case of performing ultrafiltration, 1 mL of the mixed solution B mixed in the above procedure 3-2 was added to the filtration device P, and then centrifuged at 7500 g for 50 minutes, and the filtrate H was taken out. Moreover, when performing ultrafiltration processing, after adding the liquid mixture C mixed by 1 mL said procedure 3-2 to the filtration device P, it centrifuged at 7500g for 50 minutes, and the filtrate I was taken out. Similarly, when performing ultrafiltration, 1 mL of the mixed solution D mixed in the above procedure 3-2 is added to the filtration device P, and then centrifuged at 7500 g for 50 minutes to obtain the filtrate J. I took it out.
Procedure 3-5. In the case of performing ultrafiltration, 1 mL of the mixed solution E mixed in the procedure 3-3 was added to the filtration device P, and then centrifuged at 7500 g for 50 minutes, and the filtrate K was taken out. Moreover, when performing ultrafiltration processing, after adding the liquid mixture F mixed by 1 mL said procedure 3-3 to the filtration device P, it centrifuged at 7500g for 50 minutes, and the filtrate L was taken out. Similarly, when performing ultrafiltration, 1 mL of the mixed solution G mixed in the above procedure 3-3 is added to the filtration device P, and then centrifuged at 7500 g for 50 minutes, and the filtrate M is obtained. I took it out.
Procedure 3-6. A sample was prepared by using the mixed solution B mixed in the above procedure 3-2 so that the concentration of acetamiprid in the mixed solution B was 50 ppb. In addition, a sample was prepared by using the mixed solution C mixed in the procedure 3-2 so that the concentration of acetamiprid in the mixed solution C was 50 ppb. Similarly, a sample was prepared by using the mixed solution D mixed in the above procedure 3-2 so that the concentration of acetamiprid in the mixed solution D was 50 ppb. These samples 50, 54, and 58 were used as sample solutions for the Eliza measurement.
Procedure 3-7. A sample was prepared by using the mixed solution E mixed in the above procedure 3-3 so that the concentration of acetamiprid in the mixed solution E was 50 ppb, and the sample 52 was obtained. In addition, a sample was prepared by using the mixed solution F mixed in the procedure 3-3 so that the concentration of acetamiprid in the mixed solution F was 50 ppb. Similarly, a sample was prepared by using the mixed solution G mixed in the procedure 3-3 so that the concentration of acetamiprid in the mixed solution G was 50 ppb. These samples 52, 56, and 60 were used as sample solutions for the Eliza measurement.
Procedure 3-8. A sample was prepared by using the filtrate H subjected to the ultrafiltration treatment in the above procedure 3-4 so that the concentration of acetamiprid in the filtrate H was 50 ppb. In addition, using the filtrate I subjected to the ultrafiltration treatment in the above procedure 3-4, a sample was prepared so that the concentration of acetamiprid in the filtrate I was 50 ppb. Similarly, a sample was prepared by using the filtrate J subjected to the ultrafiltration treatment in the above procedure 3-4 so that the concentration of acetamiprid in the filtrate J was 50 ppb. These samples 51, 55, and 59 were used as sample solutions for the Eliza measurement.
Procedure 3-9. Using the filtrate K subjected to the ultrafiltration treatment in the above procedure 3-5, a sample was prepared so that the concentration of acetamiprid in the filtrate K was 50 ppb, and the sample 53 was obtained. In addition, a sample was prepared by using the filtrate L subjected to the ultrafiltration treatment in the above procedure 3-5 so that the concentration of acetamiprid in the filtrate L was 50 ppb. Similarly, a sample was prepared by using the filtrate M subjected to the ultrafiltration treatment in the above procedure 3-5 so that the concentration of acetamiprid in the filtrate M was 50 ppb. These samples 53, 57, and 61 were used as sample solutions for the Eliza measurement.
Procedure 3-10. Absorbance was measured by the ELISA method (indirect competition method) for the sample solution of the ELISA measurement obtained from the procedure 3-6, the procedure 3-7, the procedure 3-8, and the procedure 3-9. . The Eliza method (indirect competition method) will be described in detail later.

その結果を図3に示す。なお、図3中の測定結果は、平均±標準偏差(n=4)で示した。
図3の結果について、スキムミルク処理と限外ろ過処理とをともに行わなかった場合、スキムミルク処理を行わずに限外ろ過処理を行った場合、スキムミルク処理を行った後に限外ろ過処理を行わなかった場合、及び、スキムミルク処理を行った後に限外ろ過処理を行った場合、をそれぞれ、条件1、条件2、条件3、条件4と称して、以下に説明する。
The result is shown in FIG. In addition, the measurement result in FIG. 3 was shown by the average +/- standard deviation (n = 4).
About the result of FIG. 3, when neither the skim milk process and the ultrafiltration process were performed, when the ultrafiltration process was performed without performing the skim milk process, the ultrafiltration process was not performed after the skim milk process was performed. The case and the case where the ultrafiltration treatment is performed after the skim milk treatment are referred to as Condition 1, Condition 2, Condition 3, and Condition 4, respectively, and will be described below.

図3に示すように、スキムミルク処理を行った試料52の吸光度は、スキムミルク処理後に限外ろ過処理を行う(条件4)(試料53)ことにより、吸光度が上がった。この結果から、スキムミルクは遠心ろ過デバイスに残渣として残り、試料からスキムミルクが除去されたことが分かった。   As shown in FIG. 3, the absorbance of the sample 52 subjected to the skim milk treatment was increased by performing the ultrafiltration treatment after the skim milk treatment (condition 4) (sample 53). From this result, it was found that skim milk remained as a residue in the centrifugal filtration device, and the skim milk was removed from the sample.

また、試料54の吸光度は、試料50の吸光度に比べて低下し、試料54に限外ろ過処理を行うと(試料55)、吸光度は上がるが、試料51の吸光度まで上昇しなかった。試料54の吸光度が試料50の吸光度に比べて低下したことは、茶の浸出液A中のカテキン、タンニンなどの成分が測定の妨害を行ったことによる。そして、茶由来のカテキンの吸着を防止する遠心ろ過デバイスのプレトリートメント処理をしたにもかかわらず、限外ろ過処理を行うと(試料55)、茶由来のカテキンが遠心ろ過デバイスに少し吸着することにより、吸光度が限外ろ過未処理の場合(試料54)に比べて少し上がり、測定の妨害が少なくなった。しかし、その上昇は試料51の吸光度まで上昇しなかったことから、遠心ろ過デバイスが茶由来の夾雑成分を完全には吸着せず、試料には夾雑成分が残っていることが分かった。   In addition, the absorbance of the sample 54 was lower than that of the sample 50, and when the sample 54 was subjected to ultrafiltration treatment (sample 55), the absorbance increased, but did not increase to the absorbance of the sample 51. The decrease in the absorbance of the sample 54 compared to the absorbance of the sample 50 is due to the fact that components such as catechin and tannin in the tea infusion liquid A interfered with the measurement. And, despite the pretreatment treatment of the centrifugal filtration device that prevents the adsorption of tea-derived catechins, when ultrafiltration treatment is performed (sample 55), tea-derived catechins are slightly adsorbed to the centrifugal filtration device. As a result, the absorbance slightly increased compared to the case where the ultrafiltration was not processed (sample 54), and the interference with the measurement was reduced. However, since the increase did not increase to the absorbance of the sample 51, it was found that the centrifugal filtration device did not completely adsorb the tea-derived contaminant components, and the contaminant components remained in the sample.

一方、試料56の吸光度は、試料52の吸光度とほとんど同じ値を示した。このことは、スキムミルク処理により茶の浸出液A中のカテキン、タンニンなどの成分による測定の妨害が回避され、蒸留水と同等の影響を受けたと考えられる。そして、試料56に限外ろ過処理を行うと(試料57)、吸光度は上昇し、試料53の吸光度にまで上昇した。つまり、スキムミルク処理後に限外ろ過処理を施すことにより(条件4)、測定の妨害が回避されたことは、スキムミルクと茶の浸出液A中のカテキン、タンニンなどの夾雑成分とが、遠心ろ過デバイスに残渣として残ったことを意味する。この点と上述のスキムミルクは遠心ろ過デバイスに残渣として残る点、及び、夾雑成分は遠心ろ過デバイスにほとんど吸着しないという点から、夾雑成分がスキムミルクに吸着することが分かった。そのため、試料56からカテキン、タンニンなどの夾雑成分を除去することができ、夾雑成分による測定への影響が省かれた。   On the other hand, the absorbance of the sample 56 showed almost the same value as the absorbance of the sample 52. This is considered to be due to the effect of the skim milk treatment, which was prevented from being disturbed by components such as catechin and tannin in the tea infusion A, and was affected in the same way as distilled water. When the ultrafiltration treatment was performed on the sample 56 (sample 57), the absorbance increased and increased to the absorbance of the sample 53. In other words, by performing ultrafiltration after skim milk treatment (condition 4), the interference with the measurement was avoided because the skim milk and contaminating components such as catechins and tannins in tea leachate A were added to the centrifugal filtration device. It means that it remained as a residue. From this point and the point that the skimmed milk described above remains as a residue in the centrifugal filtration device and that the contaminating component hardly adsorbs to the centrifugal filtration device, it was found that the contaminated component adsorbs to the skimmed milk. Therefore, contaminant components such as catechin and tannin can be removed from the sample 56, and the influence of the contaminant components on the measurement is omitted.

さらに、試料58〜61のカテキンの場合の結果は、試料54〜57の茶の場合の結果と同じような傾向を示した。したがって、カテキンがスキムミルクに吸着し、試料からカテキンを除去することにより、カテキンによる測定の妨害が回避されたことが分かった。また、試料54〜57の吸光度の変化が現れる要因は、茶中の成分であるカテキン及びカテキンと似た性質であるタンニンが含まれる、と推測された。   Furthermore, the results for the catechins of the samples 58 to 61 showed the same tendency as the results for the tea of the samples 54 to 57. Therefore, it was found that catechin was adsorbed on skim milk and catechin was removed from the sample, thereby preventing interference with measurement by catechin. Moreover, it was estimated that the factor which the change of the light absorbency of samples 54-57 appears includes tannin which is a property similar to catechin which is a component in tea and catechin.

[エライザ法(間接競合法)]
本実施形態で用いたエライザ法(間接競合法)の手順について以下に記載する。手順4−1、手順4−2、手順4−3、手順4−4、手順4−5、手順4−6、手順4−7を順に行い、エライザ法(間接競合法)によるサンプル液の測定を行った。
手順4−1.アセタミプリド−BSA溶液を0.01μg/mLの濃度で55mM、NaHCO3(pH9)に溶解した。この溶液を溶液4−1とした。なお、アセタミプリド−BSA溶液の作製方法については後から詳述する。
手順4−2.マイクロプレート(製品名:F96 MaxiSorp Nunc−Immuno Plate、カタログ番号442404、Thermo Scientific製)の各ウェルに、100μLずつ溶液4−1を添加した。4℃で1晩静置し、アセタミプリド−BSAをマイクロプレートに固相化した。1晩静置後の溶液を溶液4−2とした。
手順4−3.各ウィル内の溶液4−2を除き、0.01%Tween−20を含む洗浄液(略称:PBS、製品名:リン酸緩衝生理食塩水)で5回洗浄した。その後、ブロッキング液(略称:SB、製品名:Starting Block T20(PBS)Blocking Buffer、カタログ番号37539、Thermo Scientific製))を各ウェルに300μL添加して、室温で30分間静置した。静置後の溶液を溶液4−3とした。
手順4−4.各ウェル内の溶液4−3を除き、上述の実施例1〜3におけるエライザ測定のサンプル液を50μLと、ブロッキング液で2μg/mLに希釈した抗アセタミプリドモノクローナル抗体を50μLと、を添加し、カバー用フィルムを貼り、2時間室温で静置した。静置後の溶液を溶液4−4とした。
手順4−5.各ウェル内の溶液4−4を除き、洗浄液で5回洗浄後、ブロッキング液で10000倍希釈した2次抗体(製品名:ECL Anti−mouse IgG Horseradish Peroxidase linked whole antibody(from sheep)、カタログ番号NA931V、GE Healthcare Life Sciences製)を100μL添加し、1時間室温で静置した。静置後の溶液を溶液4−5とした。
手順4−6.各ウェル内の溶液4−5を除き、洗浄液で5回洗浄後、発色基質(略称:TMB、製品名:Sure Blue Reserve TMB Microwell Peroxidase Substrate、商品コード53−00−01、KPL製)を100μL添加し、暗所で30分静置した。静置後の溶液を溶液4−6とした。
手順4−7.溶液4−6に対して、反応停止液(製品名:TMBストップソリューション、商品コード50−85−05、KPL製)を100μL添加し、プレートリーダーを用いて吸光度(450nm)を測定した。
[Eliza method (indirect competition method)]
The procedure of the Eliza method (indirect competition method) used in this embodiment is described below. Procedure 4-1, procedure 4-2, procedure 4-3, procedure 4-4, procedure 4-5, procedure 4-6, and procedure 4-7 are performed in this order, and the sample solution is measured by the Eliza method (indirect competition method). Went.
Procedure 4-1. The acetamiprid-BSA solution was dissolved in 55 mM NaHCO 3 (pH 9) at a concentration of 0.01 μg / mL. This solution was designated as Solution 4-1. The method for preparing the acetamiprid-BSA solution will be described in detail later.
Procedure 4-2. 100 μL of the solution 4-1 was added to each well of a microplate (product name: F96 MaxiSorp Nunc-Immuno Plate, catalog number 442404, manufactured by Thermo Scientific). The mixture was allowed to stand at 4 ° C. overnight, and acetamiprid-BSA was immobilized on a microplate. The solution after standing overnight was designated as Solution 4-2.
Procedure 4-3. The solution 4-2 in each wheel was removed, and the plate was washed 5 times with a washing solution (abbreviation: PBS, product name: phosphate buffered saline) containing 0.01% Tween-20. Thereafter, 300 μL of blocking solution (abbreviation: SB, product name: Starting Block T20 (PBS) Blocking Buffer, catalog number 37539, manufactured by Thermo Scientific)) was added to each well and allowed to stand at room temperature for 30 minutes. The solution after standing was designated as Solution 4-3.
Procedure 4-4. Except for the solution 4-3 in each well, add 50 μL of the sample solution for ELISA measurement in Examples 1 to 3 above and 50 μL of anti-acetamipride monoclonal antibody diluted to 2 μg / mL with blocking solution, and cover. A film was attached and allowed to stand at room temperature for 2 hours. The solution after standing was designated as Solution 4-4.
Procedure 4-5. The secondary antibody (product name: ECL Anti-mouse IgG Horseradish linked whole antibody), catalog number NA931V was diluted 10,000 times with a blocking solution after removing the solution 4-4 in each well and washing 5 times with a washing solution. GE Healthcare Life Sciences) was added in an amount of 100 μL and allowed to stand at room temperature for 1 hour. The solution after standing was designated as Solution 4-5.
Procedure 4-6. After removing the solution 4-5 in each well and washing 5 times with a washing solution, 100 μL of a chromogenic substrate (abbreviation: TMB, product name: Sure Blue Reserve TMB Microwell Peroxidase Substrate, product code 53-00-01, manufactured by KPL) was added. And left to stand in the dark for 30 minutes. The solution after standing was designated as Solution 4-6.
Procedure 4-7. To the solution 4-6, 100 μL of a reaction stop solution (product name: TMB stop solution, product code 50-85-05, manufactured by KPL) was added, and the absorbance (450 nm) was measured using a plate reader.

[エライザ法(間接競合法):アセタミプリド−BSA溶液の作製方法]
エライザ法(間接競合法)で用いたアセタミプリド−BSA溶液の作製方法について以下に記載する。このアセタミプリド−BSA溶液は、エライザ法(間接競合法)で使用されるマイクロプレートの固相化のために用いられた。手順5−1、手順5−2、手順5−3、手順5−4を順に行い、アセタミプリド−BSA溶液を作製した。
手順5−1.アセタミプリドにカルボキシル基を導入した誘導体をジメチルスルホキシド(略称:DMSO)に20mg/mLの濃度で溶解した。この溶液を溶液5−1とした。
手順5−2.溶液5−1の液を200μLと、DMSOで調製した80mMの1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド(略称:EDC)を100μLと、DMSOで調製した80mMのN−ヒドロキシスクシンイミド(略称:NHS)を100μLと、を添加した。1.5時間室温でゆっくり撹拌し、溶液5−2とした。
手順5−3.150mM塩化ナトリウムを含む0.1Mのホウ酸緩衝液(略称:BB)(pH8.0)に溶解した10mg/mLのウシ血清アルブミン(略称:BSA)0.5mLに溶液5−2を200μLゆっくり添加し、室温で1晩ゆっくり撹拌した。この溶液を溶液5−3とする。
手順5−4.溶液5−3を遠心ろ過デバイス(略称:マイクロセップ10K、製品名:マイクロセップ アドバンス 遠心ろ過デバイスマイクロセップ10K、製造元コード:MCP010C41、PALL Corporation製)と10mMのリン酸ナトリウム緩衝液(pH7.3)(略称:PB)を用いて限外ろ過により精製し、アセタミプリド−BSA溶液とした。
[Eliser method (indirect competition method): Preparation method of acetamiprid-BSA solution]
A method for preparing an acetamiprid-BSA solution used in the Eliza method (indirect competition method) is described below. This acetamiprid-BSA solution was used for immobilizing a microplate used in the ELISA method (indirect competition method). Procedure 5-1, procedure 5-2, procedure 5-3, and procedure 5-4 were performed in this order to prepare an acetamiprid-BSA solution.
Procedure 5-1. A derivative in which a carboxyl group was introduced into acetamiprid was dissolved in dimethyl sulfoxide (abbreviation: DMSO) at a concentration of 20 mg / mL. This solution was designated as Solution 5-1.
Procedure 5-2. 200 μL of solution 5-1, 100 μL of 80 mM 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (abbreviation: EDC) prepared with DMSO, and 80 mM N-hydroxysuccinimide (DMDC) Abbreviation: NHS) was added to 100 μL. Stir slowly at room temperature for 1.5 hours to give solution 5-2.
Procedure 5-3. Solution 5 in 0.5 mL of 10 mg / mL bovine serum albumin (abbreviation: BSA) dissolved in 0.1 M borate buffer (abbreviation: BB) (pH 8.0) containing 150 mM sodium chloride 2 was slowly added and stirred slowly at room temperature overnight. This solution is designated as Solution 5-3.
Procedure 5-4. Solution 5-3 was subjected to centrifugal filtration device (abbreviation: Microsep 10K, product name: Microsep Advance, Centrifugal filtration device Microsep 10K, manufacturer code: MCP010C41, manufactured by PALL Corporation) and 10 mM sodium phosphate buffer (pH 7.3). (Abbreviation: PB) was purified by ultrafiltration to obtain an acetamiprid-BSA solution.

[イムノアッセイにおけるスキムミルク処理を行った模式図]
上記の結果を、図4の模式図を用いて以下に説明する。
アセタミプリド−BSA溶液により、アセタミプリド―タンパク、すなわち、農薬―タンパクを固相化したエライザのプレートを用いる。このプレートに農薬のアセタミプリド、及び、抗農薬抗体である抗アセタミプリドモノクローナル抗体、又は、茶の浸出液Aを添加する。茶の浸出液Aを添加しない場合、抗アセタミプリドモノクローナル抗体は、抗原であるアセタミプリドと結合し、抗原抗体反応を生じる。一方、茶の浸出液Aを添加する場合、茶の浸出液A中のカテキン等の夾雑成分が、抗アセタミプリドモノクローナル抗体や農薬―タンパクなどに付着する等により、抗原抗体反応を妨害する。しかし、スキムミルクを添加する処理を行うと、スキムミルクがカテキンなどの夾雑成分を捕捉することにより、夾雑成分による抗原抗体反応の妨害を回避することができる。このことから、茶抽出液中の残留農薬を定量する前にスキムミルク処理を行わなかった場合、夾雑成分による抗原抗体反応の妨害により正確な残留農薬の定量ができないが、スキムミルク処理を行うことにより、夾雑成分による抗原抗体反応の妨害が回避し、正確な定量が実現可能となる。つまり、ポリフェノールを含む農作物から抽出された抽出液中の農薬を定量する場合、スキムミルク処理を施してから吸光度を測定すれば、農薬が既知の試料も同様のスキムミルク処理を施してから作成された検量線に基づいて、農薬を定量することができる。
[Schematic of skim milk treatment in immunoassay]
The above results will be described below with reference to the schematic diagram of FIG.
A plate of Eliza in which acetamiprid-protein, that is, pesticide-protein is solid-phased with an acetamiprid-BSA solution is used. The acetamiprid pesticide and anti-acetamiprid monoclonal antibody, which is an anti-pesticide antibody, or tea infusion A are added to the plate. When the tea infusion A is not added, the anti-acetamipride monoclonal antibody binds to the antigen, acetamiprid, and causes an antigen-antibody reaction. On the other hand, when the tea exudate A is added, contaminant components such as catechin in the tea exudate A interfere with the antigen-antibody reaction by adhering to the anti-acetamipride monoclonal antibody or the agricultural chemical-protein. However, when the process of adding skim milk is performed, the skim milk captures a contaminating component such as catechin, thereby preventing interference of the antigen-antibody reaction by the contaminating component. From this, if the skim milk treatment is not performed before quantifying the residual pesticide in the tea extract, it is not possible to accurately determine the residual pesticide due to the interference of antigen-antibody reaction with contaminant components, but by performing the skim milk treatment, Interference with the antigen-antibody reaction by contaminating components is avoided, and accurate quantification can be realized. In other words, when quantifying pesticides in extracts extracted from crops that contain polyphenols, if the absorbance is measured after applying skim milk treatment, a sample prepared after the same skim milk treatment is applied to samples with known pesticides. Pesticides can be quantified based on the line.

[その他の実施形態]
以上、本発明の実施形態について説明したが、本発明は上記の具体的な一実施形態に限定されず、この他にも種々の形態で実施することができる。
[Other Embodiments]
As mentioned above, although embodiment of this invention was described, this invention is not limited to said specific one Embodiment, In addition, it can implement with a various form.

例えば、上記実施例では、検体試料の抽出液として、検体試料から浸出させる方法の例を示したが、抽出方法はこれに限定されるものではなく、他の抽出方法を用いてもよい。他の抽出方法としては、例えば、以下の方法などを用いることができる。検体試料の茶に倍量の水を加えフードプロセッサーなどで細切し均一化する。この細切し均一化したものをコニカルチューブに分取し、5倍量のメタノールを添加した後、30分、振とうさせながら抽出する。1880gで10分遠心分離し、上清を回収する。この上清をメタノール濃度が5%になるように希釈し、検体試料の抽出液とした。   For example, in the above-described embodiment, an example of a method of leaching from a specimen sample as an extraction liquid of the specimen sample has been described, but the extraction method is not limited to this, and other extraction methods may be used. As other extraction methods, for example, the following methods can be used. Add double the amount of water to the sample tea and chop it with a food processor to make it even. The chopped and homogenized material is dispensed into a conical tube, 5 times the amount of methanol is added, and then extracted with shaking for 30 minutes. Centrifuge for 10 minutes at 1880 g and collect the supernatant. The supernatant was diluted so that the methanol concentration was 5%, and used as an extract of the specimen sample.

また、検体試料として、緑茶の例を示したが、検体試料はこれに限定されるものではなく、ポリフェノールを含む農作物であればよい。ポリフェノールを含む農作物の例としては、例えば茶、ブドウ、リンゴ、ブルーベリー、柿、バナナ、イチゴ、ソルダム、ラズベリー、プルーン、桃、紫タマネギ、タマネギ、オリーブ、ホウレンソウ、ブロッコリー、クルミ、オレガノ、セージ、ローズマリー、アーモンド、ココアパウダー、及び、チョコレートなどが挙げられる。茶の例としては、例えば、日本茶(緑茶)、中国茶、及び、紅茶などが挙げられる。   Moreover, although the example of the green tea was shown as a specimen sample, a specimen sample is not limited to this, What is necessary is just a crop containing polyphenol. Examples of crops that contain polyphenols include, for example, tea, grapes, apples, blueberries, strawberries, bananas, strawberries, Soldam, raspberries, prunes, peaches, purple onions, onions, olives, spinach, broccoli, walnuts, oregano, sage, rose Examples include marie, almonds, cocoa powder, and chocolate. Examples of tea include, for example, Japanese tea (green tea), Chinese tea, and black tea.

また、ポリフェノールとして、カテキン、タンニンの例を示したが、ポリフェノールはこれに限定されるものではなく、他のポリフェノールであってもよい。
また、農薬として、アセタミプリドの例を示したが、残留農薬はこれに限定されるものではなく、イムノアッセイ法を用いて検査される農薬であればよい。イムノアッセイ法で用いられる農薬の例としては、例えば、アゾキシストロビン、エマメクチン、フェニトロチオン、イソキサチオン、マラチオン、トリフルミゾール、クロロフェナピル、イプロジオン、カルバリル、イソプロチオラン、ミクロブタニル、フルトラニル、ビテルタノール、ボスカリド、トルクロホスメチル、フィプロニル、クロラントラニリブロール、ピリダリル、メパニピリム、クレソキシムメチル、スピノサド、フルフェノクスロン、ブプロフェジン、ジペルメトリン、フェンバレレート、プロシミドン、メチダチオン、クロルピリホス、及び、ホスチアゼートなどが挙げられる。また、残留農薬は、水溶性の農薬及び脂溶性の農薬が挙げられる。水溶性の農薬の例としては、例えばネオニコチノイド系の農薬などが挙げられる。ネオニコチノイド系の農薬の例としては、例えばアセタミプリド、チアクロプリド、イミダクロプリド、チアメトキサム、クロチアニジン、ジノテフラン、ニテンピラムなどが挙げられる。
Moreover, although the example of catechin and tannin was shown as polyphenol, polyphenol is not limited to this, Other polyphenol may be sufficient.
Moreover, although the example of acetamiprid was shown as an agrochemical, a residual agrochemical is not limited to this, What is necessary is just an agrochemical tested using an immunoassay method. Examples of pesticides used in the immunoassay include, for example, azoxystrobin, emamectin, fenitrothion, isoxathion, malathion, triflumizole, chlorophenapyl, iprodione, carbaryl, isoprothiolane, microbutanyl, flutolanil, vitertanol, boscalid, toluclophosmethyl , Fipronil, chlorantranilibrol, pyridalyl, mepanipyrim, cresoxime methyl, spinosad, flufenoxuron, buprofezin, dipermethrin, fenvalerate, procymidone, methidathion, chlorpyrifos, and phostiazate. Examples of residual agricultural chemicals include water-soluble agricultural chemicals and fat-soluble agricultural chemicals. Examples of water-soluble pesticides include neonicotinoid pesticides. Examples of neonicotinoid pesticides include acetamiprid, thiacloprid, imidacloprid, thiamethoxam, clothianidin, dinotefuran, and nitenpyram.

また、前処理方法として、スキムミルクの混合処理の例を示したが、前処理方法はこれに限定されるものではなく、カゼインを含む溶液の混合処理であればよい。
上記実施例では、4%のスキムミルクを用いたが、1%−20%に調製されてもよく、特に1%−10%であってもよい。カゼインは0.3%−7%で使用してもよい。
Moreover, although the example of the mixing process of skim milk was shown as a pre-processing method, the pre-processing method is not limited to this, What is necessary is just a mixing process of the solution containing casein.
In the above examples, 4% skimmed milk was used, but it may be adjusted to 1% -20%, in particular 1% -10%. Casein may be used at 0.3% -7%.

また、イムノアッセイ法として、エライザ法(間接競合法)を用いたが、イムノアッセイ法はこれに限定されるものではなく、他のイムノアッセイを用いてもよい。他のイムノアッセイ法としては、例えば、エライザ法(直接競合法)、イムノクロマト法、ウエスタンブロッティング法、表面プラズモン共鳴法、ラテックス凝集法、免疫比濁法、及び、ルミネックス法などを用いることができる。   Moreover, although the ELISA method (indirect competition method) was used as the immunoassay method, the immunoassay method is not limited to this, and other immunoassays may be used. As other immunoassay methods, for example, Eliza method (direct competition method), immunochromatography method, Western blotting method, surface plasmon resonance method, latex agglutination method, immunoturbidimetric method, and Luminex method can be used.

Claims (9)

ポリフェノールを含む農作物に付着又は浸透した残留農薬を対象とする残留農薬検査として、前記農作物から抽出された抽出液に対して、前記抽出液中に含まれる前記残留農薬を抗原とする抗原抗体反応を利用して前記残留農薬を定量するに当たって、当該定量を実施する前に前記抽出液に対して実施されるイムノアッセイ法を用いた残留農薬検査のための前処理方法であって、
前記抽出液にカゼインを混合処理する前処理方法。
As a residual pesticide test for residual pesticides attached to or permeating a crop containing polyphenol, an antigen-antibody reaction using the residual pesticide contained in the extract as an antigen is performed on the extract extracted from the crop. In quantifying the pesticide residue using, a pretreatment method for pesticide residue inspection using an immunoassay method performed on the extract before performing the quantification,
A pretreatment method in which casein is mixed with the extract.
前記ポリフェノールは、カテキン及びタンニンのいずれか一方又は両方である
請求項1に記載の前処理方法。
The pretreatment method according to claim 1, wherein the polyphenol is one or both of catechin and tannin.
前記カゼインは、スキムミルク由来のカゼインである
請求項1又は請求項2に記載の前処理方法。
The pretreatment method according to claim 1, wherein the casein is casein derived from skim milk.
前記残留農薬は、水溶性の農薬である
請求項1−請求項3のいずれか一項に記載の前処理方法。
The pretreatment method according to any one of claims 1 to 3, wherein the residual pesticide is a water-soluble pesticide.
前記水溶性の農薬は、ネオニコチノイド系の農薬である
請求項4に記載の前処理方法。
The pretreatment method according to claim 4, wherein the water-soluble pesticide is a neonicotinoid-based pesticide.
前記ネオニコチノイド系の農薬は、アセタミプリド、チアクロプリド、イミダクロプリド、チアメトキサム、クロチアニジン、ジノテフラン、ニテンピラムである
請求項5に記載の前処理方法。
The pretreatment method according to claim 5, wherein the neonicotinoid pesticide is acetamiprid, thiacloprid, imidacloprid, thiamethoxam, clothianidin, dinotefuran, or nitenpyram.
前記ポリフェノールを含む農作物は、茶である
請求項1−請求項6のいずれか一項に記載の前処理方法。
The pretreatment method according to any one of claims 1 to 6, wherein the crop containing the polyphenol is tea.
ポリフェノールを含む農作物に付着又は浸透した残留農薬を対象とする残留農薬検査として、前記農作物から抽出された抽出液に対して、前記抽出液中に含まれる前記残留農薬を抗原とする抗原抗体反応を利用した定量方法で前記残留農薬を定量する残留農薬検査方法であり、
前記定量を実施する前に、前記抽出液にカゼインを混合処理する
残留農薬検査方法。
As a residual pesticide test for residual pesticides attached to or permeating a crop containing polyphenol, an antigen-antibody reaction using the residual pesticide contained in the extract as an antigen is performed on the extract extracted from the crop. It is a residual pesticide inspection method that quantifies the residual pesticide by a quantification method used,
A method for testing pesticide residues, wherein casein is mixed with the extract before carrying out the determination.
前記定量方法は、エライザ法(間接競合法)、エライザ法(直接競合法)、イムノクロマト法、及び、表面プラズモン共鳴法のうちいずれか1つである
請求項8に記載の残留農薬検査方法。
The residual agricultural chemical test method according to claim 8, wherein the quantification method is any one of an Eliza method (indirect competition method), an Eliza method (direct competition method), an immunochromatography method, and a surface plasmon resonance method.
JP2015110192A 2015-05-29 2015-05-29 Pretreatment method for pesticide residue inspection using immunoassay method, and pesticide residue test method Expired - Fee Related JP6473662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015110192A JP6473662B2 (en) 2015-05-29 2015-05-29 Pretreatment method for pesticide residue inspection using immunoassay method, and pesticide residue test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015110192A JP6473662B2 (en) 2015-05-29 2015-05-29 Pretreatment method for pesticide residue inspection using immunoassay method, and pesticide residue test method

Publications (2)

Publication Number Publication Date
JP2016223900A true JP2016223900A (en) 2016-12-28
JP6473662B2 JP6473662B2 (en) 2019-02-20

Family

ID=57747923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015110192A Expired - Fee Related JP6473662B2 (en) 2015-05-29 2015-05-29 Pretreatment method for pesticide residue inspection using immunoassay method, and pesticide residue test method

Country Status (1)

Country Link
JP (1) JP6473662B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113156104A (en) * 2021-04-22 2021-07-23 上海交通大学 Method for detecting small molecules based on indirect competition fluorescence ELISA (enzyme-linked immunosorbent assay) of platinum-coated gold nanoparticles and carbon dots
CN113176405A (en) * 2021-04-22 2021-07-27 上海交通大学 High-throughput detection method suitable for acetamiprid residue in tea
CN113826634A (en) * 2021-10-27 2021-12-24 安徽华星化工有限公司 Pesticide composition containing fipronil and boscalid and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06186229A (en) * 1992-09-14 1994-07-08 Sumitomo Chem Co Ltd Residual agricultural chemical analysis method
JP2001139552A (en) * 1999-11-11 2001-05-22 Kankyo Meneki Gijutsu Kenkyusho:Kk Haptenic compound and antibody to acetamiprid and method for assaying
JP2010535256A (en) * 2007-08-02 2010-11-18 ユニリーバー・ナームローゼ・ベンノートシヤープ Composition comprising polyphenol
JP2012217442A (en) * 2011-04-14 2012-11-12 Ogawa & Co Ltd Bitter and astringent taste inhibitor for drink or food

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06186229A (en) * 1992-09-14 1994-07-08 Sumitomo Chem Co Ltd Residual agricultural chemical analysis method
JP2001139552A (en) * 1999-11-11 2001-05-22 Kankyo Meneki Gijutsu Kenkyusho:Kk Haptenic compound and antibody to acetamiprid and method for assaying
JP2010535256A (en) * 2007-08-02 2010-11-18 ユニリーバー・ナームローゼ・ベンノートシヤープ Composition comprising polyphenol
JP2012217442A (en) * 2011-04-14 2012-11-12 Ogawa & Co Ltd Bitter and astringent taste inhibitor for drink or food

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
畠山えり子、他: "ELISA法による茶葉中のクロロタロニルの残留分析", 日本農薬学会誌, vol. 33, no. 4, JPN6018051543, 20 November 2008 (2008-11-20), JP, pages 387 - 392 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113156104A (en) * 2021-04-22 2021-07-23 上海交通大学 Method for detecting small molecules based on indirect competition fluorescence ELISA (enzyme-linked immunosorbent assay) of platinum-coated gold nanoparticles and carbon dots
CN113176405A (en) * 2021-04-22 2021-07-27 上海交通大学 High-throughput detection method suitable for acetamiprid residue in tea
CN113826634A (en) * 2021-10-27 2021-12-24 安徽华星化工有限公司 Pesticide composition containing fipronil and boscalid and preparation method thereof

Also Published As

Publication number Publication date
JP6473662B2 (en) 2019-02-20

Similar Documents

Publication Publication Date Title
JP6473662B2 (en) Pretreatment method for pesticide residue inspection using immunoassay method, and pesticide residue test method
Tao et al. Chemiluminescence competitive indirect enzyme immunoassay for 20 fluoroquinolone residues in fish and shrimp based on a single-chain variable fragment
Hendrickson et al. Lateral flow immunoassay for sensitive detection of undeclared chicken meat in meat products
Xie et al. Development and validation of an immunochromatographic assay for rapid multi-residues detection of cephems in milk
TWI570409B (en) Immunochromatographic assay, immunochromatographic assay, and immunochromatographic assay kits
Uclés et al. Benzimidazole and imidazole fungicide analysis in grape and wine samples using a competitive enzyme-linked immunosorbent assay
Anfossi et al. Occurrence of aflatoxin M1 in dairy products
US7045297B2 (en) Rapid prion-detection assay
Hashemi et al. Enhanced spectrofluorimetric determination of aflatoxin M1 in liquid milk after magnetic solid phase extraction
Pan et al. Indirect competitive ELISA and colloidal gold-based immunochromatographic strip for amantadine detection in animal-derived foods
Shelby et al. Comparison of thin-layer chromatography and competitive immunoassay methods for detecting fumonisin on maize
Turner et al. Interlaboratory comparison of two AOAC liquid chromatographic fluorescence detection methods for paralytic shellfish toxin analysis through characterization of an oyster reference material
Yang et al. A simple and rapid method for determination of patulin in juice by high performance liquid chromatography tandem mass spectrometry
Sheng et al. Development of an enzyme-linked immunosorbent assay for the detection of gentamycin residues in animal-derived foods
JP2018077171A (en) Method of detecting allergen in chocolate sample
WO2017126525A1 (en) Method for allergen detection by immunochromatographic assay
Wu et al. Sensitive enzyme‐linked immunosorbent assay and gold nanoparticle immunochromatocgraphic strip for rapid detecting chloramphenicol in food
CN106771273B (en) One kind detection Formoterol colloidal gold immuno-chromatography test paper strip and preparation method and application
Liu et al. Sensitive detection of thiacloprid in environmental and food samples by enhanced chemiluminescent enzyme immunoassay
Mørk et al. Postprandial Increase in Blood Plasma Levels of Tissue Factor–Bearing (and Other) Microvesicles Measured by Flow Cytometry: Fact or Artifact?
Garcés-García et al. Rapid immunoanalytical method for the determination of atrazine residues in olive oil
Thomas et al. Effect of pre-analytical treatments on bovine milk acute phase proteins
US20210285975A1 (en) Method of testing a blood for macrolide immunosuppressant
Goryacheva et al. Immunoaffinity pre-concentration combined with on-column visual detection as a tool for rapid aflatoxin M1 screening in milk
JP2017075902A (en) Pre-processing method for residual pesticide analysis by means of instrumental analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190128

R150 Certificate of patent or registration of utility model

Ref document number: 6473662

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees