JP2016223460A - Seal structure of slewing bearing and slewing bearing - Google Patents

Seal structure of slewing bearing and slewing bearing Download PDF

Info

Publication number
JP2016223460A
JP2016223460A JP2015107064A JP2015107064A JP2016223460A JP 2016223460 A JP2016223460 A JP 2016223460A JP 2015107064 A JP2015107064 A JP 2015107064A JP 2015107064 A JP2015107064 A JP 2015107064A JP 2016223460 A JP2016223460 A JP 2016223460A
Authority
JP
Japan
Prior art keywords
seal
bearing
ring
bearing space
lip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015107064A
Other languages
Japanese (ja)
Inventor
克典 曽根
Katsunori Sone
克典 曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2015107064A priority Critical patent/JP2016223460A/en
Publication of JP2016223460A publication Critical patent/JP2016223460A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/10Application independent of particular apparatuses related to size
    • F16C2300/14Large applications, e.g. bearings having an inner diameter exceeding 500 mm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/31Wind motors

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sealing With Elastic Sealing Lips (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a seal structure of a slewing bearing by which it can be visually confirmed whether or not a seal member is assembled while inclining to inner/outer rings, and the slewing bearing.SOLUTION: This seal structure is employed to a slewing bearing having elastic-body made seal members 7A, 7B which seal an axial end of a bearing space 6 between an inner ring 1 and an outer ring 2. Each of the seal members 7A, 7B has a base part 20 which is held to one bearing ring 2 out of the inner ring 1 and the outer ring 2, and three seal lips 21, 22 and 23 which extend from the base part 20 toward the other bearing ring 1 out of the inner ring 1 and the outer ring 2 in different orientations. The two seal lips 21, 22 which are close to at least the bearing space 6 out of the three seal lips contact with a peripheral face 1a which opposes the other bearing ring 1. The seal lip 23 which is farthest from the bearing ring 6 is formed into a shape at which it can be visually confirmed whether or not the seal member 7A is in a properly-assembled state.SELECTED DRAWING: Figure 1

Description

この発明は、例えば、風力発電装置のヨー、ブレード用の旋回座や、デッキクレーン、建設機械、物揚機械等、屋外または屋内に近接して使用される諸機械の旋回部に使用される旋回軸受のシール構造および旋回軸受に関する。   The present invention is, for example, a swivel used for a swivel part of various machines used in the vicinity of the outdoors or indoors, such as a swivel seat for a yaw and a blade of a wind power generator, a deck crane, a construction machine, and a lifting machine. The present invention relates to a seal structure of a bearing and a slewing bearing.

風力発電装置のヨー、ブレード用の旋回座等に使用される旋回軸受は、一般的にグリースにて潤滑される。この旋回軸受には、外部からの異物混入および軸受内部からのグリース漏れを防ぐためにゴム製のシール部材が装着されている(例えば特許文献1,2)。特許文献1,2の例にも見られるように、一般的なシール部材は2枚のシールリップを備えている。軸方向の内側に位置するシールリップは主リップであり、軸受内部からのグリース漏れを防ぐことが主な役割である。軸方向の外側に位置するシールリップは副リップであり、外部から水分、塵埃等の異物が軸受内部へ侵入するのを防ぐことが主な役割である。   A swivel bearing used for a yaw of a wind power generator, a swivel seat for a blade, or the like is generally lubricated with grease. A rubber seal member is mounted on the slewing bearing in order to prevent foreign matters from entering from outside and grease leakage from the inside of the bearing (for example, Patent Documents 1 and 2). As can be seen in the examples of Patent Documents 1 and 2, a general seal member is provided with two seal lips. The seal lip located on the inner side in the axial direction is the main lip, and its main role is to prevent grease leakage from the inside of the bearing. The seal lip located on the outer side in the axial direction is a secondary lip, and its main role is to prevent foreign matters such as moisture and dust from entering the bearing from the outside.

上記ヨー、ブレード用の旋回軸受は、軸および軸箱に組み込まれていないため、一般の軸受と比較して、軸受の周辺部の剛性が低い。また、軸受自体も、大きさの割には軸方向、径方向寸法(断面)が小さいため、内外輪の剛性が低い。このように周辺部および内外輪の剛性が低いため、運転時に内外輪の変形が発生し易い。   Since the slewing bearings for yaw and blade are not incorporated in the shaft and the housing, the rigidity of the peripheral portion of the bearing is lower than that of a general bearing. In addition, the bearing itself is small in axial and radial dimensions (cross-section) for its size, so the rigidity of the inner and outer rings is low. As described above, since the rigidity of the peripheral portion and the inner and outer rings is low, the inner and outer rings are likely to be deformed during operation.

一般的なシール部材は、ゴム材の内部に金属環からなる芯金を備えたものが多い。芯金を備えたシール部材は、金属の剛性があるため変形し難い。しかし、ヨー、ブレード用の旋回軸受では、内外輪間の狭い軸受空間内にシール部材を設ける必要があるため、芯金を備えたシール部材を採用することが難しい。   Many common sealing members include a metal core made of a metal ring inside a rubber material. The seal member provided with the metal core is difficult to be deformed due to the rigidity of the metal. However, in a slewing bearing for yaw and blade, since it is necessary to provide a seal member in a narrow bearing space between the inner and outer rings, it is difficult to employ a seal member having a cored bar.

また、一般的なシール部材では、シールリップの緊迫力を保つため、ガータスプリングを使用することも多い。しかし、ヨー、ブレード用の旋回軸受は、先に記載したように軸方向、径方向寸法(断面)が小さいため、シール部材の断面厚さが薄く、ガータスプリングを使用した構成とすることも難しい。   In general seal members, a garter spring is often used in order to maintain the tight force of the seal lip. However, as described above, the slewing bearing for yaw and blade has a small axial dimension and radial dimension (cross section), so the sectional thickness of the seal member is thin, and it is difficult to adopt a configuration using a garter spring. .

したがって、ヨー、ブレード用の旋回軸受のシール部材は、ニトリルゴム等のゴム材だけで構成せざるを得ない。このようなゴム材だけからなるシール部材は、芯金を備えたシール部材やガータスプリングを使用したシール部材よりも、ゴム材の経年寸法変化によるシールリップと軌道輪との締代の減少が大きい。そこで、ヨー、ブレード用の旋回軸受のシール部材では、前記内外輪の変形や、ゴム材の経年寸法変化による締代の減少を見込んで、初期締代を設定している。   Therefore, the seal member of the slewing bearing for the yaw and the blade must be composed only of a rubber material such as nitrile rubber. Such a seal member made of only a rubber material has a greater reduction in the tightening allowance between the seal lip and the bearing ring due to a change in the size of the rubber material over time than a seal member having a metal core or a seal member using a garter spring. . Therefore, in the seal member of the slewing bearing for yaw and blade, the initial tightening allowance is set in anticipation of a decrease in the tightening allowance due to the deformation of the inner and outer rings and the aging change of the rubber material.

特開2011−27235号公報JP 2011-27235 A 特開2012−112488号公報JP 2012-112488 A

しかし、シール部材の組込み精度に問題があると、シールリップの締代が不十分となりグリース漏れが発生する可能性がある。特に、ヨー、ブレード用の旋回軸受は、直径が1000mmを超えるものが大半であり、シール部材の組込みが人の手作業で行われるため、組込み精度のばらつきが生じ易い。このため、組込み精度のばらつきを十分に考慮した設計とすることが重要である。   However, if there is a problem with the assembly accuracy of the seal member, there is a possibility that the seal lip is insufficiently tightened and grease leakage occurs. In particular, most of the slewing bearings for yaw and blade have a diameter exceeding 1000 mm, and the assembly of the seal member is performed manually by humans, so that the assembling accuracy tends to vary. For this reason, it is important to design with sufficient consideration of variations in assembly accuracy.

組込み精度で問題となるのは、軌道輪に対するシール部材の傾斜、つまり軌道輪の軸心とシール部材の中心とが一致せずに組み込まれることである。ニトリルゴム等のゴム材は金属部品と比較すると弾性変形量が大きく、理想の組込み位置からのずれや、傾きが大きくなる可能性がある。ずれ、傾きの向きによっては、軸受内部からのグリース漏れに繋がる。   The problem in assembling accuracy is that the inclination of the seal member with respect to the race ring, that is, the shaft center of the race ring and the center of the seal member do not coincide with each other. A rubber material such as nitrile rubber has a large amount of elastic deformation as compared with a metal part, and there is a possibility that a deviation from an ideal installation position and an inclination become large. Depending on the direction of deviation and inclination, grease leakage from the inside of the bearing can result.

例えば、図10に示す特許文献1のシール構造の場合、シール部材7が取り付けられる一方の軌道輪、例えば外輪2に対してシール部材7が傾いていると、シールリップ21,22の接触不良が生じる。すなわち、図11(A)のように軸方向内側のシールリップ21が内輪1の外周面1aから離れるか、または図11(B)のように軸方向外側のシールリップ22が内輪1の外周面1aから離れる。図11(A)の場合には、軸受空間6からのグリース漏れが生じ、図11(B)の場合には、外部から水分、塵埃等の異物が軸受空間6へ侵入が生じる。   For example, in the case of the seal structure of Patent Document 1 shown in FIG. 10, if the seal member 7 is inclined with respect to one bearing ring to which the seal member 7 is attached, for example, the outer ring 2, poor contact between the seal lips 21 and 22 occurs. Arise. That is, the axially inner seal lip 21 is separated from the outer peripheral surface 1a of the inner ring 1 as shown in FIG. 11A, or the axially outer seal lip 22 is outer peripheral surface of the inner ring 1 as shown in FIG. Leave 1a. In the case of FIG. 11 (A), grease leakage from the bearing space 6 occurs, and in the case of FIG. 11 (B), foreign matter such as moisture and dust enters the bearing space 6 from the outside.

特に、主リップであるシールリップ21は副リップであるシールリップ22に隠れて外から見えないので、図11(A)のように、シールリップ21の接触不良があっても目視で確認することが難しい。そのため、シール部材7が正しく組み込まれているか否かを容易に確認できる方法が求められる。   In particular, the seal lip 21 as the main lip is hidden behind the seal lip 22 as the sub lip and cannot be seen from the outside. Therefore, even if there is a contact failure of the seal lip 21 as shown in FIG. Is difficult. Therefore, a method for easily confirming whether or not the seal member 7 is correctly assembled is required.

この発明の目的は、内外輪に対してシール部材が傾いて組み込まれているか否かを目視で確認することができる旋回軸受のシール構造および旋回軸受を提供することである。   An object of the present invention is to provide a slewing bearing seal structure and a slewing bearing capable of visually confirming whether or not a seal member is incorporated with an inclination relative to inner and outer rings.

この発明の旋回軸受のシール構造は、軌道輪である内輪および外輪の互いに対向する周面にそれぞれ軌道溝が形成され、これら内外輪の軌道溝間に複数の転動体が設けられ、前記内外輪間の軸受空間の軸方向端部を密封する弾性体製のシール部材を備え、前記シール部材は、前記内外輪のうちのいずれか一方の軌道輪に保持される基部と、この基部からそれぞれ異なる向きで前記内外輪のうちの他方の軌道輪に向かって延びる三つのシールリップとを有し、これら三つのシールリップのうちの少なくとも前記軸受空間に近い二つのシールリップが前記他方の軌道輪の前記対向する周面に接触し、前記軸受空間から最も遠いシールリップは、前記シール部材が正しい組込み状態か否かを目視で判断できる形態としたことを特徴とする。   In the seal structure of the slewing bearing according to the present invention, raceway grooves are formed on the mutually opposing peripheral surfaces of the inner ring and outer ring, which are race rings, and a plurality of rolling elements are provided between the race grooves of the inner and outer rings. A seal member made of an elastic body that seals an axial end portion of the bearing space between the base portion and a base portion held by any one of the inner and outer races, and a base portion that is different from the base portion. And three seal lips extending toward the other raceway of the inner and outer rings, and at least two seal lips of the three seal lips close to the bearing space of the other raceway The seal lip that is in contact with the opposed peripheral surfaces and is furthest from the bearing space is configured to be able to visually determine whether or not the seal member is in a correct assembled state.

この構成によると、三つのシールリップのうちの少なくとも軸受空間に最も近いシールリップおよび軸受空間に二番目に近いシールリップが他方の軌道輪の対向する周面に接触する。軸受空間に最も近いシールリップは、軸受空間からのグリース漏れを防止し、かつ軸受空間に二番目に近いシールリップは、外部から軸受空間への水分、塵埃等の異物の侵入を防止する。
軸受空間から最も遠いシールリップは、シール部材が正しい組込み状態か否かを目視で判断できる形態であるため、このシールリップの状態を観察することで、シール部材が正しい組込み状態か否かを目視で確認することができる。
According to this configuration, of the three seal lips, at least the seal lip closest to the bearing space and the seal lip second closest to the bearing space are in contact with the opposing peripheral surfaces of the other raceway ring. The seal lip closest to the bearing space prevents grease leakage from the bearing space, and the seal lip second closest to the bearing space prevents entry of foreign matters such as moisture and dust from the outside into the bearing space.
Since the seal lip farthest from the bearing space is in a form in which it can be visually determined whether or not the seal member is in the correct assembled state, by visually observing the state of this seal lip, it is visually determined whether or not the seal member is in the correct assembled state Can be confirmed.

この発明において、前記軸受空間から最も遠いシールリップは、前記シール部材が正しい組込み状態にあるとき前記他方の軌道輪の前記対向する周面に非接触であると良い。
この構成によると、シール部材の組込み時において、軸受空間から最も遠いシールリップが他方の軌道輪の対向する周面に非接触である場合は、シール部材が正しく組み込まれたと判断され、軸受空間から最も遠いシールリップが他方の軌道輪の対向する周面に接触している場合は、シール部材が傾いて組み込まれたと判断される。この判断は、目視により容易に行える。また、軸受空間から最も遠いシールリップが他方の軌道輪の対向する周面に非接触であると、通常運転時のトルクの増大を招かずに済む。
In this invention, it is preferable that the seal lip farthest from the bearing space is not in contact with the opposed peripheral surface of the other race ring when the seal member is in a properly assembled state.
According to this configuration, when the seal member is assembled, if the seal lip farthest from the bearing space is not in contact with the opposing peripheral surface of the other race ring, it is determined that the seal member has been installed correctly, and When the farthest seal lip is in contact with the opposing circumferential surface of the other race ring, it is determined that the seal member is incorporated at an angle. This determination can be easily made visually. Further, if the seal lip farthest from the bearing space is not in contact with the opposing circumferential surface of the other raceway ring, it is not necessary to increase the torque during normal operation.

上記構成において、前記内輪および外輪が互いに相対的に傾斜して、前記三つのシールリップのうちの前記軸受空間に最も近いシールリップが前記他方の軌道輪の前記対向する周面から離れた状態となった場合に、前記軸受空間から最も遠いシールリップが前記他方の軌道輪の前記対向する周面に接触する形態とすると良い。
この構成によると、内輪および外輪が互いに相対的に傾斜した場合に、軸受空間に最も近いシールリップが他方の軌道輪の対向する周面から離れた状態となっても、軸受空間から最も遠いシールリップが他方の軌道輪の対向する周面に接触することで、軸受空間からのグリース漏れを防止できる。この場合、軸受空間から最も遠いシールリップが他方の軌道輪の対向する周面に接触することによりトルクが増大するが、軸受空間に最も近いシールリップが他方の軌道輪の対向する周面から離れたことによりトルクが減少するため、全体としてのトルクはほとんど変動しない。
In the above-described configuration, the inner ring and the outer ring are inclined relative to each other, and the seal lip closest to the bearing space among the three seal lips is separated from the opposing circumferential surface of the other race ring; In this case, it is preferable that the seal lip farthest from the bearing space is in contact with the opposing circumferential surface of the other race.
According to this configuration, when the inner ring and the outer ring are inclined relative to each other, even if the seal lip closest to the bearing space is separated from the opposing circumferential surface of the other race ring, the seal farthest from the bearing space Grease leakage from the bearing space can be prevented by the lip coming into contact with the opposing circumferential surface of the other race ring. In this case, the torque increases when the seal lip farthest from the bearing space comes into contact with the opposing circumferential surface of the other race ring, but the seal lip closest to the bearing space moves away from the opposing circumferential surface of the other race ring. As a result, the torque decreases, so that the overall torque hardly fluctuates.

この発明において、前記一方の軌道輪は前記シール部材を保持するための嵌合凹部を有し、前記シール部材は、前記嵌合凹部に一部分を嵌め込むことで前記基部が保持されると良い。
この構成は、シール部材を一方の軌道輪の正しい位置に正しい姿勢で取り付けるのに有効である。
In this invention, it is preferable that the one bearing ring has a fitting recess for holding the seal member, and the base part is held by fitting a part of the seal member into the fitting recess.
This configuration is effective for attaching the seal member to the correct position of one of the race rings in the correct posture.

この発明において、前記三つのシールリップのうちの前記軸受空間に最も近いシールリップは、前記基部から前記他方の軌道輪に向かうに従い前記軸受空間に近づく傾斜姿勢であり、残りの二つのシールリップは、前記基部から前記他方の軌道輪に向かうに従い前記軸受空間から遠ざかる傾斜姿勢であっても良い。   In this invention, of the three seal lips, the seal lip closest to the bearing space is in an inclined posture that approaches the bearing space as it goes from the base toward the other raceway ring, and the remaining two seal lips are Further, it may be an inclined posture that moves away from the bearing space as it goes from the base to the other raceway.

軸受空間に最も近いシールリップは、主に軸受空間からのグリース漏れを防止する役割を持つ。同シールリップが軸受空間に近づく傾斜姿勢であると、運転時に軸受空間の内圧を受けた場合に、他方の軌道輪の対向する周面に強く押し付けられて、グリース漏れの防止に有効に作用する。
軸受空間に2番目に近いシールリップは、主に外部から軸受空間への異物の侵入を防止する役割を持つ。同シールリップが軸受空間から遠ざかる傾斜姿勢であると、外圧を受けた場合に、他方の軌道輪の対向する周面に強く押し付けられて、異物の侵入防止に有効に作用する。
軸受空間から最も遠いシールリップは、主にシール部材が正しい組込み状態か否かの判断材料となる役割を持つ。同シールリップは、通常時はグリース漏れの防止にも異物の侵入防止にも関与しないので、シール性能に関しては傾斜の向きは特に問われない。同シールリップを、軸受空間に2番目に近いシールリップと同じ向きの傾斜姿勢とすることで、シール部材をコンパクトな構成とすることができる。
The seal lip closest to the bearing space mainly serves to prevent grease leakage from the bearing space. When the seal lip is inclined so as to approach the bearing space, when it receives the internal pressure of the bearing space during operation, it is strongly pressed against the opposing circumferential surface of the other race ring, effectively preventing grease leakage. .
The seal lip that is the second closest to the bearing space mainly has a role to prevent foreign matter from entering the bearing space from the outside. When the seal lip is in an inclined posture away from the bearing space, when the external pressure is applied, the seal lip is strongly pressed against the opposing circumferential surface of the other race ring, and effectively acts to prevent the entry of foreign matter.
The seal lip farthest from the bearing space mainly serves as a material for determining whether or not the seal member is in the correct assembled state. Since the seal lip is not involved in preventing grease leakage and preventing foreign matter from entering normally, the direction of the inclination is not particularly limited with respect to the sealing performance. By making the seal lip into an inclined posture in the same direction as the seal lip that is the second closest to the bearing space, the seal member can be made compact.

上記構成において、前記三つのシールリップのうちの前記軸受空間に最も近いシールリップの先端面は、前記他方の軌道輪の前記対向する周面に接触する接点から内向きに延びる内向き面と、前記接点から外向きに延びる外向き面とを有し、前記内向き面と前記対向する周面とが成す角度よりも、前記外向き面と前記対向する周面とが成す角度の方が小さく、
前記軸受空間に2番目に近いシールリップの先端面は、前記他方の軌道輪の前記対向する周面に接触する接点から内向きに延びる内向き面と、前記接点から外向きに延びる外向き面とを有し、前記内向き面と前記対向する周面とが成す角度の方が、前記外向き面と前記対向する周面とが成す角度よりも小さく、
前記軸受空間から最も遠いシールリップの先端面は、前記内輪および外輪が互いに相対的に傾斜したときに前記他方の軌道輪の前記対向する周面に接触する接点から内向きに延びる内向き面と、前記接点から外向きに延びる外向き面とを有し、前記内向き面と前記対向する周面とが成す角度よりも、前記外向き面と前記対向する周面とが成す角度の方が小さいのが望ましい。
In the above configuration, the tip surface of the seal lip closest to the bearing space among the three seal lips is an inward surface extending inward from a contact point that contacts the opposing circumferential surface of the other race ring, An outward surface extending outward from the contact, and an angle formed by the outward surface and the opposed peripheral surface is smaller than an angle formed by the inward surface and the opposed peripheral surface. ,
The front end surface of the seal lip that is second closest to the bearing space has an inward surface extending inward from a contact point that contacts the opposing circumferential surface of the other race ring, and an outward surface extending outwardly from the contact point. The angle formed by the inward surface and the opposed peripheral surface is smaller than the angle formed by the outward surface and the opposed peripheral surface,
The front end surface of the seal lip farthest from the bearing space has an inward surface extending inward from a contact point that contacts the opposing circumferential surface of the other race ring when the inner ring and the outer ring are inclined relative to each other. And an outward surface extending outward from the contact, and an angle formed by the outward surface and the opposed peripheral surface is larger than an angle formed by the inward surface and the opposed peripheral surface. Small is desirable.

軸受空間に最も近いシールリップは、前述のように、軸受空間からのグリース漏れを防止する役割を持つ。また、軸受空間から最も遠いシールリップは、シール部材が正しい組込み状態か否かの判断材料となる役割の他に、内輪および外輪が互いに相対的に傾斜した場合に軸受空間からのグリース漏れを防止する役割を併せ持つ。このように、軸受空間からのグリース漏れを防止する役割を持つシールリップについては、前記内向き面と前記対向する周面とが成す角度よりも、前記外向き面と前記対向する周面とが成す角度の方が小さいことが、グリース漏れの防止に有効である。
軸受空間に2番目に近いシールリップは、前述のように、外部から軸受空間への異物の侵入を防止する役割を持つ。このシールリップについては、前記内向き面と前記対向する周面とが成す角度の方が、前記外向き面と前記対向する周面とが成す角度よりも小さいことが、異物の侵入防止に有効である。
As described above, the seal lip closest to the bearing space serves to prevent grease leakage from the bearing space. Also, the seal lip farthest from the bearing space serves as a material for determining whether or not the seal member is properly assembled, and prevents grease leakage from the bearing space when the inner and outer rings are inclined relative to each other. Also has a role to play. As described above, for the seal lip having the role of preventing grease leakage from the bearing space, the outward surface and the opposing peripheral surface are more than the angle formed by the inward surface and the opposing peripheral surface. A smaller angle is effective in preventing grease leakage.
As described above, the seal lip that is second closest to the bearing space serves to prevent foreign matter from entering the bearing space from the outside. For this seal lip, the angle formed by the inward surface and the opposed peripheral surface is smaller than the angle formed by the outward surface and the opposed peripheral surface, which is effective in preventing foreign matter from entering. It is.

この発明の旋回軸受は、前記いずれかのシール構造を適用したものであり、風力発電装置のブレードを主軸に対して、主軸軸心に略垂直な軸心回りに旋回自在に支持するものであっても良く、また風力発電装置のナセルを支持台に対して旋回自在に支持するものであっても良い。   The slewing bearing according to the present invention is one in which any of the above-described seal structures is applied, and supports the blade of the wind power generator so as to be rotatable about an axis substantially perpendicular to the main axis with respect to the main axis. Alternatively, the nacelle of the wind power generator may be supported so as to be rotatable with respect to the support base.

この発明の旋回軸受のシール構造は、軌道輪である内輪および外輪の互いに対向する周面にそれぞれ軌道溝が形成され、これら内外輪の軌道溝間に複数の転動体が設けられ、前記内外輪間の軸受空間の軸方向端部を密封する弾性体製のシール部材を備えた旋回軸受のシール構造において、前記シール部材は、前記内外輪のうちのいずれか一方の軌道輪に保持される基部と、この基部からそれぞれ異なる向きで前記内外輪のうちの他方の軌道輪に向かって延びる三つのシールリップとを有し、これら三つのシールリップのうちの少なくとも前記軸受空間に近い二つのシールリップが前記他方の軌道輪の前記対向する周面に接触し、前記軸受空間から最も遠いシールリップは、前記シール部材が正しい組込み状態か否かを目視で判断できる形態としたため、内外輪に対してシール部材が傾いて組み込まれているか否かを目視で確認することができる。   In the seal structure of the slewing bearing according to the present invention, raceway grooves are formed on the mutually opposing peripheral surfaces of the inner ring and outer ring, which are race rings, and a plurality of rolling elements are provided between the race grooves of the inner and outer rings. In the seal structure of the slewing bearing provided with the seal member made of an elastic body that seals the axial end of the bearing space between, the seal member is a base portion that is held by one of the inner and outer rings And three seal lips extending toward the other raceway of the inner and outer rings in different directions from the base, and at least two seal lips close to the bearing space among these three seal lips The seal lip that is in contact with the opposing circumferential surface of the other race ring and is furthest from the bearing space is capable of visually judging whether or not the seal member is in a correctly assembled state. It was therefore possible to confirm whether or not incorporated inclined seal member relative to the inner and outer races visually.

この発明の一実施形態にかかるシール構造が適用された旋回軸受の断面図に部分拡大図を付け加えた図である。It is the figure which added the partial enlarged view to sectional drawing of the slewing bearing to which the seal structure concerning one Embodiment of this invention was applied. 同旋回軸受のシール構造の分解図である。It is an exploded view of the seal structure of the slewing bearing. 同シール構造のシール部材の各シールリップの詳細を示す図である。It is a figure which shows the detail of each seal lip of the sealing member of the seal structure. 同シール構造の作用の説明図その1である。It is explanatory drawing 1 of the effect | action of the seal structure. 同シール構造の作用の説明図その2である。It is explanatory drawing 2 of the effect | action of the seal structure. 同シール構造の異なる適用例の作用の説明図である。It is explanatory drawing of an effect | action of the application example from which the seal structure differs. 同シール構造のさらに異なる適用例の作用の説明図である。It is explanatory drawing of an effect | action of the application example from which the seal structure differs further. 風力発電装置の一例の一部を切り欠いて表わした斜視図である。It is the perspective view which notched and represented a part of example of the wind power generator. 同風力発電装置の破断側面図である。It is a fracture side view of the wind power generator. 従来の旋回軸受のシール構造の断面図である。It is sectional drawing of the seal structure of the conventional slewing bearing. 同旋回軸受のシール構造の作用の説明図である。It is explanatory drawing of an effect | action of the seal structure of the turning bearing.

この発明の一実施形態を図1ないし図5と共に説明する。
この旋回軸受は、例えば風力発電装置のブレードを主軸に対して主軸軸心に略垂直な軸心回りに旋回自在に支持する軸受、または風力発電装置のナセルを支持台に対して旋回自在に支持する軸受として使用される。
An embodiment of the present invention will be described with reference to FIGS.
This slewing bearing is, for example, a bearing that supports a blade of a wind power generator so as to be rotatable about an axis substantially perpendicular to the main shaft axis with respect to the main shaft, or a nacelle of the wind power generator is supported so as to be rotatable with respect to a support base. Used as a bearing.

図1に示すように、旋回軸受は、軌道輪である内輪1および外輪2と、これら内外輪1,2の互いに対向する周面である外周面1aおよび内周面2aにそれぞれ形成された軌道溝1b,2b間に転動自在に介在する複数の転動体としてのボール3とを備える。周方向に隣合うボール3,3間には、間座または保持器が介在している(図示せず)。   As shown in FIG. 1, the slewing bearings are formed on the inner ring 1 and the outer ring 2 that are race rings and the outer circumferential surface 1 a and the inner circumferential surface 2 a that are circumferential surfaces of the inner and outer rings 1 and 2 that face each other. A ball 3 as a plurality of rolling elements is provided between the grooves 1b and 2b so as to freely roll. A spacer or a cage is interposed between the balls 3 and 3 adjacent in the circumferential direction (not shown).

前記内外輪1,2の軌道溝1b,2bは、いずれも二つの曲面で構成されている。各軌道溝1b,2bを構成する二つの曲面は、それぞれボール3よりも曲率半径が大きく、曲率中心が互いに異なるゴシックアーチ状の断面円弧状である。各ボール3は、内輪1の軌道溝1bおよび外輪2の軌道溝2bの前記各曲面に接点で接して4点接触する。つまり、この旋回軸受は4点接触玉軸受として構成されている。前記間座は例えば樹脂材料からなる。この間座は、両側の転動体接触面が、中心部に至るに従って深く凹む球面を成す凹面形状とされている。前記保持器は、例えば鉄板から製造される。この鉄板からなる保持器は、内外輪1,2間に配置され、ボール3が入るポケットを有している。   Each of the raceway grooves 1b and 2b of the inner and outer rings 1 and 2 is composed of two curved surfaces. The two curved surfaces constituting each raceway groove 1b, 2b are Gothic arch-shaped arcs having a larger radius of curvature than that of the ball 3 and different centers of curvature. Each ball 3 is in contact with the curved surfaces of the raceway groove 1b of the inner ring 1 and the raceway groove 2b of the outer ring 2 at a contact point and makes contact at four points. That is, this slewing bearing is configured as a four-point contact ball bearing. The spacer is made of a resin material, for example. The spacer has a concave shape in which the rolling element contact surfaces on both sides form a spherical surface that is deeply recessed toward the center. The cage is manufactured from, for example, an iron plate. The cage made of this iron plate is disposed between the inner and outer rings 1 and 2 and has a pocket for the ball 3 to enter.

内輪1には、複数の貫通孔4が円周方向一定間隔おきに設けられている。これら貫通孔4は、例えば、内輪1を後述のナセルのケーシング等に連結固定するために用いられる。外輪2にも、複数の貫通孔5が円周方向一定間隔おきに設けられている。これら貫通孔5は、例えば、外輪2を後述の支持台等に連結固定するために用いられる。内外輪1,2の各貫通孔4,5は、軸受軸方向に平行に形成されている。   A plurality of through holes 4 are provided in the inner ring 1 at regular intervals in the circumferential direction. These through holes 4 are used, for example, for connecting and fixing the inner ring 1 to a casing or the like of a nacelle described later. The outer ring 2 is also provided with a plurality of through holes 5 at regular intervals in the circumferential direction. These through-holes 5 are used, for example, for connecting and fixing the outer ring 2 to a support base described later. The through holes 4 and 5 of the inner and outer rings 1 and 2 are formed in parallel to the bearing axial direction.

シール構造について説明する。
内外輪1,2間の軸受空間6にはグリースが充填され、前記軸受空間6の軸方向の両端すなわち上下端がシール部材7A,7Bによりそれぞれ密封されている。軸受空間6の上端のシール構造も下端のシール構造も同じ構造であるので、代表して上端のシール構造について説明する。
The seal structure will be described.
The bearing space 6 between the inner and outer rings 1 and 2 is filled with grease, and both axial ends, that is, upper and lower ends of the bearing space 6 are sealed by seal members 7A and 7B, respectively. Since the seal structure at the upper end and the seal structure at the lower end of the bearing space 6 are the same structure, the seal structure at the upper end will be described as a representative.

図2は軸受空間6の上端のシール構造の分解図である。同図に示すように、外輪2の内周面2aの上端部には、シール部材7Aを取り付けるための環状切欠き10が設けられている。環状切欠き10は、外輪2の内周面2aから上端面2cに渡る断面形状が略長方形の主部11と、この主部11の径方向中間部から下方に延びる嵌合凹部12とで構成される。主部11の底面となる外輪2の上面の高さは嵌合凹部12の両側で異なっており、内径側上面13の方が外径側上面14よりも低く形成されている。内径側上面13は水平面であり、外径側上面14は外径側に行くに従い低位となる傾斜面である。嵌合凹部12の外周側の壁面には、圧入代としての環状溝15が形成されている。この例の場合、環状溝15は、嵌合凹部12の軸方向の中間部よりも若干上側に位置し、断面形状が円弧状である。   FIG. 2 is an exploded view of the seal structure at the upper end of the bearing space 6. As shown in the figure, an annular notch 10 for attaching a seal member 7A is provided at the upper end portion of the inner peripheral surface 2a of the outer ring 2. The annular notch 10 includes a main portion 11 having a substantially rectangular cross-sectional shape from the inner peripheral surface 2a to the upper end surface 2c of the outer ring 2 and a fitting recess 12 extending downward from a radial intermediate portion of the main portion 11. Is done. The height of the upper surface of the outer ring 2 serving as the bottom surface of the main portion 11 is different on both sides of the fitting recess 12, and the inner diameter side upper surface 13 is formed lower than the outer diameter side upper surface 14. The inner diameter side upper surface 13 is a horizontal plane, and the outer diameter side upper surface 14 is an inclined surface that becomes lower as it goes to the outer diameter side. An annular groove 15 as a press-fitting allowance is formed on the outer peripheral wall surface of the fitting recess 12. In the case of this example, the annular groove 15 is positioned slightly above the intermediate portion in the axial direction of the fitting recess 12 and has a circular arc cross-sectional shape.

シール部材7Aは、ニトリル系、アクリル系等の弾性体からなり、前記環状切欠き10に取り付けられる基部20と、この基部20からそれぞれ異なる向きで内径側に延びる三つのシールリップ21,22,23とからなる。軸受空間6に最も近いシールリップ21は、外輪2の軸方向の内側に延び、残りの二つのシールリップ22,23は前記軸方向の外側に延びている。なお、前記軸方向の「内側」、「外側」とは、軸受空間6に対して内側であるか外側であるかを指す。   The seal member 7A is made of an elastic material such as nitrile or acrylic, and has a base 20 attached to the annular notch 10 and three seal lips 21, 22, 23 extending from the base 20 to the inner diameter side in different directions. It consists of. The seal lip 21 closest to the bearing space 6 extends inward in the axial direction of the outer ring 2, and the remaining two seal lips 22, 23 extend outward in the axial direction. The “inner side” and “outer side” in the axial direction indicate whether they are inside or outside the bearing space 6.

前記三つのシールリップのうちの軸受空間6に近い二つのシールリップ21,22は、図1に示すシール部材7Aの正しい組込み状態において内輪1の外周面1aに接触する。軸受空間6に最も近いシールリップ21は、主に軸受空間6からのグリース漏れを防ぐ主リップであり、軸受空間6に2番目に近いシールリップ22は、主に外部から水分、塵埃等の異物が軸受空間6へ侵入するのを防ぐ副リップである。軸受空間6から最も遠いシールリップ23は、図1に示すシール部材7Aの正しい組込み状態において内輪1の外周面1aに非接触である。このシールリップ23は、シール部材7Aが正しく組み込まれた否かを判断する傾斜検知用リップである。   Of the three seal lips, the two seal lips 21 and 22 close to the bearing space 6 are in contact with the outer peripheral surface 1a of the inner ring 1 when the seal member 7A shown in FIG. The seal lip 21 closest to the bearing space 6 is a main lip that mainly prevents grease leakage from the bearing space 6, and the seal lip 22 closest to the bearing space 6 is mainly a foreign matter such as moisture or dust from the outside. This is a secondary lip that prevents intrusion into the bearing space 6. The seal lip 23 farthest from the bearing space 6 is not in contact with the outer peripheral surface 1a of the inner ring 1 when the seal member 7A shown in FIG. The seal lip 23 is an inclination detection lip for determining whether or not the seal member 7A is correctly assembled.

シール部材7Aの基部20は、前記環状切欠き10の主部11に配置される基部本体20aと、この基部本体20aから軸方向の内側に突出し前記嵌合凹部12に嵌まり込む嵌合凸部20bとからなる。嵌合凸部20bの軸方向の突出長さは、嵌合凹部12の軸方向深さよりも寸法が短い。また、嵌合凸部20bの径方向の幅は、嵌合凹部12の径方向の幅よりも若干狭い。   The base portion 20 of the seal member 7A includes a base portion main body 20a disposed in the main portion 11 of the annular notch 10, and a fitting convex portion that protrudes inward in the axial direction from the base portion main body 20a and fits into the fitting concave portion 12. 20b. The protruding length in the axial direction of the fitting convex portion 20 b is shorter than the axial depth of the fitting concave portion 12. Further, the radial width of the fitting convex portion 20 b is slightly narrower than the radial width of the fitting concave portion 12.

嵌合凸部20bの外径側の面には、嵌合凹部12の前記環状溝15に圧入嵌合させる第1の環状突起25が突出している。この第1の環状突起25は、環状溝15に対応する軸方向の位置にあり、かつ断面形状が円弧状である。また、嵌合凸部20bの内径側の面には、第1の環状突起25よりも径方向寸法および軸方向寸法が共に小さい第2の環状突起26が突出している。   A first annular protrusion 25 that press fits into the annular groove 15 of the fitting recess 12 protrudes from the outer diameter side surface of the fitting protrusion 20b. The first annular protrusion 25 is located at an axial position corresponding to the annular groove 15 and has a circular cross section. Further, a second annular protrusion 26 having a smaller radial dimension and smaller axial dimension than the first annular protrusion 25 protrudes from the inner diameter side surface of the fitting convex portion 20b.

シール部材7Aを外輪2の環状切欠き10に組み込むにあたっては、図1のように、基部本体20aを環状切欠き10(図2)の主部11(図2)に配置させ、かつ嵌合凸部20bを環状切欠き10の嵌合凹部12に圧入により嵌め込む。嵌合凸部20bを嵌合凹部12に嵌め込んだ状態において、環状切欠き10の主部11の周面16にシール部材7Aの基部本体20aの端面29が当接する。環状切欠き10の前記内径側上面13とシール部材7Aの基部本体20aの内径側下面27とは互いに離れている。また、環状切欠き10の前記外径側上面14とシール部材7Aの基部本体20aの外径側下面28も互いに離れている。さらに、嵌合凹部12の底面17と嵌合凸部20bの下面30も互いに離れている。   In assembling the seal member 7A into the annular notch 10 of the outer ring 2, as shown in FIG. 1, the base body 20a is disposed on the main portion 11 (FIG. 2) of the annular notch 10 (FIG. 2), and the fitting protrusion The portion 20b is fitted into the fitting recess 12 of the annular notch 10 by press fitting. In a state where the fitting convex portion 20 b is fitted into the fitting concave portion 12, the end surface 29 of the base body 20 a of the seal member 7 </ b> A contacts the peripheral surface 16 of the main portion 11 of the annular notch 10. The inner diameter side upper surface 13 of the annular notch 10 and the inner diameter side lower surface 27 of the base body 20a of the seal member 7A are separated from each other. The outer diameter side upper surface 14 of the annular notch 10 and the outer diameter side lower surface 28 of the base body 20a of the seal member 7A are also separated from each other. Further, the bottom surface 17 of the fitting recess 12 and the lower surface 30 of the fitting projection 20b are also separated from each other.

このシール部材7Aの組込み状態では、嵌合凹部12に嵌合凸部20bが嵌まり込むことで、シール部材7Aの基部20が外輪2の環状切欠き10に保持される。このとき、第1の環状突起25が環状溝15に係合することで、嵌合凹部12から嵌合凸部20bが抜けなくしている。また、第2の環状突起26が嵌合凹部12の内周側の壁面に押されて変形し、圧入代として機能する。これにより、シール部材7Aの嵌合凸部20bは、外輪2に対して周方向、径方向、および軸方向に完全に固定された状態となる。嵌合凹部12を嵌合凸部20bの底面および壁面に接着剤で固定すれば、嵌合凸部20bの固定力がより一層高まる。   In the assembled state of the seal member 7A, the base 20 of the seal member 7A is held in the annular notch 10 of the outer ring 2 by fitting the fitting convex portion 20b into the fitting concave portion 12. At this time, since the first annular protrusion 25 is engaged with the annular groove 15, the fitting convex portion 20 b is prevented from coming off from the fitting concave portion 12. Further, the second annular protrusion 26 is pushed and deformed by the inner peripheral wall surface of the fitting recess 12 and functions as a press-fitting allowance. Accordingly, the fitting convex portion 20b of the seal member 7A is completely fixed to the outer ring 2 in the circumferential direction, the radial direction, and the axial direction. If the fitting concave portion 12 is fixed to the bottom surface and the wall surface of the fitting convex portion 20b with an adhesive, the fixing force of the fitting convex portion 20b is further increased.

この実施形態の場合、環状切欠き10の主部11の周面16が、組込み状態においてシール部材7Aを適正姿勢に維持させる基準面となる。周面16は、軸方向に沿う面である。この基準面に当接させるシール部材7Aの当接面は、基部本体20aの端面29である。図の例では、基準面が前記周面16だけであるが、基準面を2面以上としてもよい。その場合、基準面は、軸方向に沿う面であってもよく、軸方向と垂直な面であっても良い。   In the case of this embodiment, the peripheral surface 16 of the main part 11 of the annular notch 10 serves as a reference surface for maintaining the seal member 7A in an appropriate posture in the assembled state. The peripheral surface 16 is a surface along the axial direction. The contact surface of the seal member 7A that is in contact with the reference surface is the end surface 29 of the base body 20a. In the example of the figure, the reference surface is only the peripheral surface 16, but the reference surface may be two or more. In that case, the reference plane may be a plane along the axial direction or a plane perpendicular to the axial direction.

図3は、各リールリップ21,22,23の詳細を示す図である。
軸受空間6に最も近い主リップとしてのシールリップ21は、基部20から外輪2の軸方向の内側に斜めに延びている。つまり、先端側に行くに従い軸受空間6に近づく傾斜姿勢である。また、このシールリップ21の先端面は、内輪1の外周面1aに接触する接点P1から内向きに延びる内向き面21aと、外向きに延びる外向き面21bとで構成される。内向き面21aと内輪1の外周面1aとが成す角度をθ1a、外向き面21bと内輪1の外周面1aとが成す角度をθ1bとした場合、θ1a>θ1bの関係となるようにしてある。
FIG. 3 is a diagram showing details of the reel lips 21, 22, and 23. As shown in FIG.
A seal lip 21 as a main lip closest to the bearing space 6 extends obliquely from the base portion 20 to the inner side in the axial direction of the outer ring 2. That is, the inclined posture approaches the bearing space 6 as it goes to the tip side. The front end surface of the seal lip 21 includes an inward surface 21a that extends inward from a contact P1 that contacts the outer peripheral surface 1a of the inner ring 1, and an outward surface 21b that extends outward. When the angle formed by the inward surface 21a and the outer peripheral surface 1a of the inner ring 1 is θ1a, and the angle formed by the outer surface 21b and the outer peripheral surface 1a of the inner ring 1 is θ1b, the relationship θ1a> θ1b is established. .

主リップであるシールリップ21は、前述のように、軸受空間6からのグリース漏れを防止する役割を持つ。シールリップ22が軸受空間6の中心に近づく傾斜姿勢であると、運転時に軸受空間6の内圧を受けた場合に、内輪1の外周面1aに強く押し付けられて、グリース漏れの防止に有効に作用する。また、内向き面21aと内輪1の外周面1aとが成す角度θ1aよりも、外向き面21bと内輪1の外周面1aとが成す角度θ1bの方が小さいと、グリース漏れの防止に有利である。   The seal lip 21 as the main lip has a role of preventing grease leakage from the bearing space 6 as described above. When the seal lip 22 is inclined so as to approach the center of the bearing space 6, it is strongly pressed against the outer peripheral surface 1 a of the inner ring 1 when it receives the internal pressure of the bearing space 6 during operation, and effectively acts to prevent grease leakage. To do. Further, if the angle θ1b formed by the outward surface 21b and the outer peripheral surface 1a of the inner ring 1 is smaller than the angle θ1a formed by the inward surface 21a and the outer peripheral surface 1a of the inner ring 1, it is advantageous for preventing grease leakage. is there.

軸受空間6に2番目に近い副リップとしてのシールリップ22は、基部20から外輪2の軸方向の外側に延びている。つまり、先端側に行くに従い軸受空間6の中心から遠ざかる傾斜姿勢である。また、このシールリップ22の先端面は、内輪1の外周面1aに接触する接点P2から内向きに延びる内向き面22aと、外向きに延びる外向き面22bとで構成される。内向き面22aと内輪1の外周面1aとが成す角度をθ2a、外向き面22bと内輪1の外周面1aとが成す角度をθ2bとした場合、θ2a<θ2bの関係となるようにしてある。   A seal lip 22 as a secondary lip closest to the bearing space 6 extends from the base portion 20 to the outer side in the axial direction of the outer ring 2. That is, it is an inclined posture that moves away from the center of the bearing space 6 as it goes to the tip side. The front end surface of the seal lip 22 includes an inward surface 22a that extends inward from a contact P2 that contacts the outer peripheral surface 1a of the inner ring 1, and an outward surface 22b that extends outward. When the angle formed by the inward surface 22a and the outer peripheral surface 1a of the inner ring 1 is θ2a and the angle formed by the outer surface 22b and the outer peripheral surface 1a of the inner ring 1 is θ2b, the relationship θ2a <θ2b is established. .

副リップであるシールリップ22は、前述のように、外部から軸受空間6への異物の侵入を防止する役割を持つ。シールリップ22が軸受空間6の中心から遠ざかる傾斜姿勢であると、外力を受けた場合に、内輪1の外周面1aに強く押し付けられて、異物の侵入防止に有効に作用する。また、内向き面22aと内輪1の外周面1aとが成す角度θ2aの方が、外向き面22bと内輪1の外周面1aとが成す角度θ2bよりも小さいと、異物の侵入防止に有利である。   As described above, the seal lip 22 which is a sub lip has a role of preventing foreign matter from entering the bearing space 6 from the outside. When the seal lip 22 is in an inclined posture away from the center of the bearing space 6, it is strongly pressed against the outer peripheral surface 1 a of the inner ring 1 when it receives an external force, and effectively acts to prevent foreign matter from entering. Further, if the angle θ2a formed by the inward surface 22a and the outer peripheral surface 1a of the inner ring 1 is smaller than the angle θ2b formed by the outer surface 22b and the outer peripheral surface 1a of the inner ring 1, it is advantageous for preventing foreign matter from entering. is there.

軸受空間から最も遠い傾斜検知用リップとしてのシールリップ23も、シールリップ22と同様に、基部20から外輪2の軸方向の外側に延びている。つまり、先端側に行くに従い軸受空間6の中心から遠ざかる傾斜姿勢である。また、このシールリップ23の先端面は、内輪1の外周面1aに接触した場合の接点P3から内向きに延びる内向き面23aと、外向きに延びる外向き面23bとで構成される。内向き面23aと内輪1の外周面1aとが成す角度をθ3a、外向き面23bと内輪1の外周面1aとが成す角度をθ3bとした場合、θ3a>θ3bの関係となるようにしてある。   Similarly to the seal lip 22, the seal lip 23 as the tilt detection lip farthest from the bearing space also extends outward from the base portion 20 in the axial direction of the outer ring 2. That is, it is an inclined posture that moves away from the center of the bearing space 6 as it goes to the tip side. The front end surface of the seal lip 23 includes an inward surface 23a that extends inward from the contact P3 when it contacts the outer peripheral surface 1a of the inner ring 1, and an outward surface 23b that extends outward. When the angle formed by the inward surface 23a and the outer peripheral surface 1a of the inner ring 1 is θ3a and the angle formed by the outer surface 23b and the outer peripheral surface 1a of the inner ring 1 is θ3b, the relationship θ3a> θ3b is established. .

傾斜検知用リップであるシールリップ23は、前述のシール部材7Aが正しい組込み状態か否かの判断材料となる役割の他に、後述するように内輪1および外輪2が互いに相対的に傾斜した場合に軸受空間6からのグリース漏れを防止する役割を併せ持つ。但し、通常時には、シールリップ23は、グリース漏れの防止に関与しない。そのため、グリース漏れの防止には不利であるが、シール部材7Aのコンパクト化を図るのに有利なように、シールリップ22と同じ軸受空間6の中心から遠ざかる傾斜姿勢としてある。一方で、グリース漏れの防止に有利なように、内向き面23aと内輪1の外周面1aとが成す角度θ3aよりも、外向き面23bと内輪1の外周面1aとが成す角度θ3bの方が小さくしてある。   The seal lip 23 that is an inclination detection lip has a role of determining whether or not the seal member 7A is in a correct assembled state, and in addition, when the inner ring 1 and the outer ring 2 are inclined relative to each other as described later. In addition, it has a role of preventing leakage of grease from the bearing space 6. However, normally, the seal lip 23 is not involved in preventing grease leakage. Therefore, although it is disadvantageous for prevention of grease leakage, the inclined posture is away from the center of the bearing space 6, which is the same as the seal lip 22, so that the seal member 7 </ b> A can be made compact. On the other hand, in order to prevent grease leakage, the angle θ3b formed by the outward surface 23b and the outer peripheral surface 1a of the inner ring 1 is more than the angle θ3a formed by the inward surface 23a and the outer peripheral surface 1a of the inner ring 1. Is made smaller.

このシール構造の作用を図4、図5と共に説明する。
シール部材7Aの正しい組込み状態では、図4(A)のように、外輪2の基準面である周面16にシール部材7Aの当接面である端面29が当接することで、固定状態の嵌合凸部20bを除くシール部材7Aの部分が外側へ浮き上がるのを規制する。つまり、軸受空間6の内圧上昇により、シールリップ21,22,23が外側へ変位するように弾性変形するのを規制する。これにより、主リップであるシールリップ21が内輪1の外周面1aに接触する状態に保たれて、軸受空間6からのグリース漏れが防止される。このようにシール部材7Aが正しく組み込まれた状態での運転時には、シールリップ23が内輪1の外周面1aに非接触であるため、トルクの増大を招かない。
The operation of this seal structure will be described with reference to FIGS.
In the correct assembled state of the seal member 7A, as shown in FIG. 4A, the end surface 29, which is the contact surface of the seal member 7A, contacts the peripheral surface 16, which is the reference surface of the outer ring 2, so The portion of the seal member 7A excluding the joint convex portion 20b is prevented from floating outward. That is, the elastic deformation of the seal lips 21, 22, 23 to be displaced outwards due to the increase in the internal pressure of the bearing space 6 is restricted. As a result, the seal lip 21 as the main lip is kept in contact with the outer peripheral surface 1a of the inner ring 1, and grease leakage from the bearing space 6 is prevented. Thus, during operation with the seal member 7A correctly assembled, the seal lip 23 is not in contact with the outer peripheral surface 1a of the inner ring 1, so that torque is not increased.

組込み時に外力が加わることで、図4(B)のように、シール部材7Aが軸受空間6の内側へ倒れ込むことがある。その場合、傾斜検知用リップであるシールリップ23が内輪1の外周面1aに接触する。このようにシールリップ23が内輪1の外周面1aに接触した場合、シール部材7Aが正しく組み込まれていないと判断する。逆に、シールリップ23が内輪1の外周面1aに非接触である場合は、シール部材7Aが正しく組み込まれたと判断する。このように、シールリップ23が内輪1の外周面1aに接触しているか接触していないかを観察するだけで良いので、この判断は目視により容易に行える。   When an external force is applied during assembly, the seal member 7A may fall into the bearing space 6 as shown in FIG. In that case, the seal lip 23 which is an inclination detection lip contacts the outer peripheral surface 1 a of the inner ring 1. Thus, when the seal lip 23 contacts the outer peripheral surface 1a of the inner ring 1, it is determined that the seal member 7A is not properly assembled. On the other hand, when the seal lip 23 is not in contact with the outer peripheral surface 1a of the inner ring 1, it is determined that the seal member 7A has been correctly assembled. Thus, since it is only necessary to observe whether the seal lip 23 is in contact with the outer peripheral surface 1a of the inner ring 1 or not, this determination can be easily made by visual observation.

また、図5のように、運転中に内輪1および外輪2が互いに相対的に傾斜することがある。その場合、主リップであるシールリップ21が内輪1の外周面1aから離れた状態となる。しかし、傾斜検知用リップであるシールリップ23が内輪1の外周面1aに接触することで、軸受空間6からのグリース漏れを防止できる。この場合、シールリップ23が内輪1の外周面1aに接触することによりトルクが増大するが、シールリップ21が内輪1の外周面1aから離れたことによりトルクが減少するため、全体としてのトルクはほとんど変動しない。   Further, as shown in FIG. 5, the inner ring 1 and the outer ring 2 may be inclined relative to each other during operation. In that case, the seal lip 21 as the main lip is in a state of being separated from the outer peripheral surface 1 a of the inner ring 1. However, grease leakage from the bearing space 6 can be prevented when the seal lip 23, which is an inclination detection lip, contacts the outer peripheral surface 1 a of the inner ring 1. In this case, the torque increases as the seal lip 23 comes into contact with the outer peripheral surface 1a of the inner ring 1. However, the torque decreases as the seal lip 21 moves away from the outer peripheral surface 1a of the inner ring 1, so that the overall torque is Almost no change.

以上に説明した上端のシール構造では、シール部材7Aを取り付けるための環状切欠き10が外輪2に設けられ、シール部材7Aのシールリップ21,22が内輪1の外周面1aに接触する。つまり、外輪2が請求項で言う一方の軌道輪であり、内輪1が請求項で言う他方の軌道輪である。
対して、下端のシール構造では、シール部材7Bを取り付けるための環状切欠き10が内輪1に設けられ、シール部材7Bのシールリップ21,22が外輪2の内周面に接触する。つまり、内輪1が請求項で言う一方の軌道輪であり、外輪2が請求項で言う他方の軌道輪である。
但し、これはこの実施形態に限ってのことであり、一方の軌道輪は内輪1、外輪2のいずれであっても良く、他方の軌道輪は外輪2、内輪1のいずれであっても良い。
In the upper end seal structure described above, the annular notch 10 for attaching the seal member 7A is provided in the outer ring 2, and the seal lips 21, 22 of the seal member 7A are in contact with the outer peripheral surface 1a of the inner ring 1. That is, the outer ring 2 is one of the bearing rings referred to in the claims, and the inner ring 1 is the other bearing ring referred to in the claims.
On the other hand, in the seal structure at the lower end, an annular notch 10 for attaching the seal member 7B is provided in the inner ring 1, and the seal lips 21, 22 of the seal member 7B are in contact with the inner peripheral surface of the outer ring 2. That is, the inner ring 1 is one of the bearing rings referred to in the claims, and the outer ring 2 is the other bearing ring referred to in the claims.
However, this is limited to this embodiment. One of the race rings may be either the inner ring 1 or the outer ring 2, and the other race ring may be either the outer ring 2 or the inner ring 1. .

以上のように、このシール構造は、主リップ(21)および副リップ(22)の外側に傾斜検知用リップ(23)を設けたことにより、シール部材7Aが正しい組込み状態か否か判断することができると共に、内輪1および外輪2が互いに相対的に傾斜した場合における軸受空間6からのグリース漏れを防止することができる。このシール構造に用いられるシール部材7A,7Bは、主リップ(21)および副リップ(22)だけからなるシール部材に比べて、傾斜検知用リップ(23)の分だけ多くの材料を要するが、製造工程は変わらないので、わずかなコストアップにしかならない。   As described above, in this seal structure, it is determined whether or not the seal member 7A is properly assembled by providing the inclination detection lip (23) outside the main lip (21) and the sub lip (22). In addition, grease leakage from the bearing space 6 when the inner ring 1 and the outer ring 2 are inclined relative to each other can be prevented. The seal members 7A and 7B used in this seal structure require more material for the inclination detection lip (23) than the seal member consisting only of the main lip (21) and the sub lip (22). Since the manufacturing process does not change, there is only a slight increase in cost.

図6は上記シール構造の異なる適用例を示す。この適用例では、内輪1の上端の高さが、シール部材7Aの傾斜検知用リップであるシールリップ23の先端の高さよりも低い。そのため、図6(B)のように、シール部材7Aが傾斜して組み込まれていても、シールリップ23の先端が内輪1の外周面1aに接触しない。そこで、この適用例の場合は、シールリップ23の先端の径方向位置を直接測定し、この測定値φxxxと、予め分かっている内輪1の外周面1aの径方向位置とを比較することで、シール部材7Aが傾斜しているか否かを判断する。   FIG. 6 shows different application examples of the seal structure. In this application example, the height of the upper end of the inner ring 1 is lower than the height of the tip of the seal lip 23 that is the lip for detecting the inclination of the seal member 7A. Therefore, as shown in FIG. 6B, the tip of the seal lip 23 does not come into contact with the outer peripheral surface 1 a of the inner ring 1 even if the seal member 7 </ b> A is incorporated with an inclination. Therefore, in the case of this application example, the radial position of the tip of the seal lip 23 is directly measured, and this measured value φxxx is compared with the radial position of the outer peripheral surface 1a of the inner ring 1 that is known in advance. It is determined whether or not the seal member 7A is inclined.

上記のように、シールリップ23の先端の径方向位置を直接測定するのに代えて、図7のように傾斜検知用治具40を用いても良い。傾斜検知用治具40は、例えば内輪1と同径の円形体であり、内輪1の上に内輪1と軸心を一致させて載置して使用される。この場合、シール部材7Aが傾斜していると、シールリップ23の先端が傾斜検知用治具40の外周面40aに接触する。すなわち、傾斜検知用治具40を用いることで、図4に示す適用例と同様に、シール部材7Aが傾斜しているか否かを目視で判断することができる。   As described above, instead of directly measuring the radial position of the tip of the seal lip 23, an inclination detection jig 40 may be used as shown in FIG. The tilt detection jig 40 is, for example, a circular body having the same diameter as the inner ring 1, and is used by being placed on the inner ring 1 with the inner ring 1 aligned with the axis. In this case, when the seal member 7 </ b> A is inclined, the tip of the seal lip 23 comes into contact with the outer peripheral surface 40 a of the inclination detection jig 40. That is, by using the tilt detection jig 40, it is possible to visually determine whether or not the seal member 7A is tilted, as in the application example shown in FIG.

図8および図9は風力発電装置の一例を示す。この風力発電装置51は、支持台52上にナセル53を水平旋回自在に設け、このナセル53のケーシング54内に主軸55を回転自在に支持し、この主軸55のケーシング54外に突出した一端に、旋回翼であるブレード56を取り付けてなる。主軸55の他端は増速機57に接続され、増速機57の出力軸58が発電機59のロータ軸に結合されている。   8 and 9 show an example of a wind power generator. This wind power generator 51 is provided with a nacelle 53 on a support base 52 so as to be able to turn horizontally, and a main shaft 55 is rotatably supported in a casing 54 of the nacelle 53, and at one end of the main shaft 55 protruding outside the casing 54. The blade 56 which is a swirl wing is attached. The other end of the main shaft 55 is connected to a speed increaser 57, and the output shaft 58 of the speed increaser 57 is coupled to the rotor shaft of the generator 59.

ナセル53は、旋回軸受BR1により旋回自在に支持される。前記各実施形態のうちのいずれかのシール構造が適用された旋回軸受において、例えば、外輪2の外周面にギヤ等が設けられたものが、前記ナセル53用の旋回軸受BR1に用いられる。図8に示すように、ケーシング54に複数の駆動源60が設置され、各駆動源60に図示しない減速機を介してピニオンギヤが固定される。外輪2(図1)の前記ギヤが前記ピニオンギヤに噛み合うように配置される。例えば、外輪2が複数の貫通孔5により支持台52に連結固定され、内輪1(図1)がケーシング54に固定される。複数の駆動源60を同期して駆動させ、この旋回駆動力を外輪2へ伝達する。よって、支持台52に対してナセル53が相対的に旋回可能となる。   The nacelle 53 is rotatably supported by the slewing bearing BR1. In the slewing bearing to which any one of the seal structures of the above embodiments is applied, for example, a slewing bearing BR1 for the nacelle 53 having a gear or the like provided on the outer peripheral surface of the outer ring 2 is used. As shown in FIG. 8, a plurality of drive sources 60 are installed in the casing 54, and pinion gears are fixed to the drive sources 60 via reduction gears (not shown). It arrange | positions so that the said gear of the outer ring | wheel 2 (FIG. 1) may mesh | engage with the said pinion gear. For example, the outer ring 2 is connected and fixed to the support base 52 through the plurality of through holes 5, and the inner ring 1 (FIG. 1) is fixed to the casing 54. The plurality of drive sources 60 are driven in synchronization, and this turning driving force is transmitted to the outer ring 2. Therefore, the nacelle 53 can turn relative to the support base 52.

ブレード56は、旋回軸受BR2により旋回自在に支持される。この旋回軸受BR2は、前記各実施形態のうちのいずれかのシール構造が適用された旋回軸受において、例えば、内輪1の内周面にギヤを設けたものが適用される。主軸55の突出した先端部55aには、ブレード56を旋回駆動する駆動源が設けられる。前記先端部55aにこの旋回軸受の外輪2が連結固定され、内輪1の内周面に設けたギヤが、前記駆動軸のピニオンギヤに噛み合っている。この駆動源を駆動させ、この旋回駆動力を内輪1に伝達することで、ブレード56が旋回可能となる。したがって、旋回軸受BR2は、風力発電装置のブレード56を主軸55に対して、主軸軸心L1に略垂直な軸心L2回りに旋回自在に支持する。このように、ブレード56の角度およびナセル53の向きを風の状態に合わせて随時変更する。   The blade 56 is rotatably supported by the swing bearing BR2. This slewing bearing BR2 is a slewing bearing to which any one of the seal structures of the above-described embodiments is applied. For example, a bearing provided with a gear on the inner circumferential surface of the inner ring 1 is applied. A driving source for rotating the blade 56 is provided at the protruding end portion 55 a of the main shaft 55. The outer ring 2 of the slewing bearing is connected and fixed to the distal end portion 55a, and a gear provided on the inner peripheral surface of the inner ring 1 meshes with the pinion gear of the drive shaft. By driving this drive source and transmitting this turning drive force to the inner ring 1, the blade 56 can turn. Therefore, the slewing bearing BR2 supports the blade 56 of the wind power generator with respect to the main shaft 55 so as to be rotatable about an axis L2 substantially perpendicular to the main shaft axis L1. In this way, the angle of the blade 56 and the direction of the nacelle 53 are changed at any time according to the wind state.

この発明の旋回軸受を、風力発電装置以外の油圧ショベル、クレーン等の建設機械、工作機械の回転テーブル、砲座、パラボラアンテナ等にも適用できる。   The slewing bearing of the present invention can be applied to construction machines such as hydraulic excavators and cranes other than wind power generators, rotary tables of machine tools, gun seats, parabolic antennas, and the like.

以上、実施例に基づいて本発明を実施するための形態を説明したが、ここで開示した実施の形態はすべての点で例示であって制限的なものではない。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   As mentioned above, although the form for implementing this invention based on the Example was demonstrated, embodiment disclosed here is an illustration and restrictive at no points. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1…内輪(他方の軌道輪)
1a…外周面(対向する周面)
1b…軌道溝
2…外輪(一方の軌道輪)
1b…内周面(対向する周面)
2b…軌道溝
3…ボール(転動体)
6…軸受空間
7A,7B…シール部材
12…嵌合凹部
20…基部
21,22,23…シールリップ
21a,22a,23a…内向き面
21b,22b,23b…外向き面
53…ナセル
56…ブレード
BR1,BR2…旋回軸受
P1,P2,P3…接点
1 ... Inner ring (the other race)
1a ... outer peripheral surface (opposing peripheral surface)
1b ... raceway groove 2 ... outer ring (one raceway)
1b ... Inner peripheral surface (opposing peripheral surface)
2b ... raceway groove 3 ... ball (rolling element)
6 ... Bearing space 7A, 7B ... Seal member 12 ... Fitting recess 20 ... Base parts 21, 22, 23 ... Seal lips 21a, 22a, 23a ... Inward faces 21b, 22b, 23b ... Outward face 53 ... Nacelle 56 ... Blade BR1, BR2 ... slewing bearings P1, P2, P3 ... contacts

Claims (8)

軌道輪である内輪および外輪の互いに対向する周面にそれぞれ軌道溝が形成され、これら内外輪の軌道溝間に複数の転動体が設けられ、前記内外輪間の軸受空間の軸方向端部を密封する弾性体製のシール部材を備えた旋回軸受のシール構造において、
前記シール部材は、前記内外輪のうちのいずれか一方の軌道輪に保持される基部と、この基部からそれぞれ異なる向きで前記内外輪のうちの他方の軌道輪に向かって延びる三つのシールリップとを有し、これら三つのシールリップのうちの少なくとも前記軸受空間に近い二つのシールリップが前記他方の軌道輪の前記対向する周面に接触し、前記軸受空間から最も遠いシールリップは、前記シール部材が正しい組込み状態か否かを目視で判断できる形態としたことを特徴とする旋回軸受のシール構造。
A raceway groove is formed on each of the circumferential surfaces of the inner ring and the outer ring that are raceways opposite to each other, and a plurality of rolling elements are provided between the raceway grooves of the inner and outer rings, and an axial end portion of the bearing space between the inner and outer rings is provided. In a seal structure of a slewing bearing provided with a sealing member made of an elastic body for sealing,
The seal member includes a base portion held by any one of the inner and outer rings, and three seal lips extending from the base portion toward the other of the inner and outer rings in different directions. Of these three seal lips, at least two seal lips close to the bearing space are in contact with the opposing circumferential surfaces of the other bearing ring, and the seal lip farthest from the bearing space is the seal lip. A seal structure for a slewing bearing characterized in that it can be visually judged whether or not a member is in a correctly assembled state.
請求項1に記載の旋回軸受のシール構造において、前記軸受空間から最も遠いシールリップは、前記シール部材が正しい組込み状態にあるとき前記他方の軌道輪の前記対向する周面に非接触である旋回軸受のシール構造。   The seal structure of the slewing bearing according to claim 1, wherein the seal lip farthest from the bearing space is in non-contact with the opposing circumferential surface of the other race ring when the seal member is in a properly assembled state. Bearing seal structure. 請求項2に記載の旋回軸受のシール構造において、前記内輪および外輪が互いに相対的に傾斜して、前記三つのシールリップのうちの前記軸受空間に最も近いシールリップが前記他方の軌道輪の前記対向する周面から離れた状態となった場合に、前記軸受空間から最も遠いシールリップが前記他方の軌道輪の前記対向する周面に接触する形態とした旋回軸受のシール構造。   The seal structure of the slewing bearing according to claim 2, wherein the inner ring and the outer ring are inclined relative to each other, and the seal lip closest to the bearing space among the three seal lips is the one of the other race ring. A seal structure for a slewing bearing in which a seal lip farthest from the bearing space comes into contact with the opposing peripheral surface of the other race ring when being separated from the opposing peripheral surface. 請求項1ないし請求項3のいずれか1項に記載の旋回軸受のシール構造において、前記一方の軌道輪は前記シール部材を保持するための嵌合凹部を有し、前記シール部材は、前記嵌合凹部に一部分を嵌め込むことで前記基部が保持される旋回軸受のシール構造。   4. The seal structure for a slewing bearing according to claim 1, wherein the one bearing ring has a fitting recess for holding the seal member, and the seal member is fitted with the fitting. A seal structure of a slewing bearing in which the base is held by fitting a part into a mating recess. 請求項1ないし請求項4のいずれか1項に記載の旋回軸受のシール構造において、前記三つのシールリップのうちの前記軸受空間に最も近いシールリップは、前記基部から前記他方の軌道輪に向かうに従い前記軸受空間に近づく傾斜姿勢であり、残りの二つのシールリップは、前記基部から前記他方の軌道輪に向かうに従い前記軸受空間から遠ざかる傾斜姿勢である旋回軸受のシール構造。   5. The seal structure for a slewing bearing according to claim 1, wherein a seal lip closest to the bearing space among the three seal lips is directed from the base portion to the other raceway ring. And the remaining two seal lips are inclined to move away from the bearing space toward the other raceway from the base. 請求項5に記載の旋回軸受のシール構造において、前記三つのシールリップのうちの前記軸受空間に最も近いシールリップの先端面は、前記他方の軌道輪の前記対向する周面に接触する接点から内向きに延びる内向き面と、前記接点から外向きに延びる外向き面とを有し、前記内向き面と前記対向する周面とが成す角度よりも、前記外向き面と前記対向する周面とが成す角度の方が小さく、
前記軸受空間に2番目に近いシールリップの先端面は、前記他方の軌道輪の前記対向する周面に接触する接点から内向きに延びる内向き面と、前記接点から外向きに延びる外向き面とを有し、前記内向き面と前記対向する周面とが成す角度の方が、前記外向き面と前記対向する周面とが成す角度よりも小さく、
前記軸受空間から最も遠いシールリップの先端面は、前記内輪および外輪が互いに相対的に傾斜したときに前記他方の軌道輪の前記対向する周面に接触する接点から内向きに延びる内向き面と、前記接点から外向きに延びる外向き面とを有し、前記内向き面と前記対向する周面とが成す角度よりも、前記外向き面と前記対向する周面とが成す角度の方が小さい、
旋回軸受のシール構造。
6. The seal structure for a slewing bearing according to claim 5, wherein a tip end surface of the seal lip that is closest to the bearing space among the three seal lips is from a contact point that contacts the opposing circumferential surface of the other race ring. An inward surface extending inward and an outward surface extending outward from the contact point, the outer surface and the opposing circumference more than an angle formed by the inward surface and the opposing peripheral surface The angle formed by the surface is smaller,
The front end surface of the seal lip that is second closest to the bearing space has an inward surface extending inward from a contact point that contacts the opposing circumferential surface of the other race ring, and an outward surface extending outwardly from the contact point. The angle formed by the inward surface and the opposed peripheral surface is smaller than the angle formed by the outward surface and the opposed peripheral surface,
The front end surface of the seal lip farthest from the bearing space has an inward surface extending inward from a contact point that contacts the opposing circumferential surface of the other race ring when the inner ring and the outer ring are inclined relative to each other. And an outward surface extending outward from the contact, and an angle formed by the outward surface and the opposed peripheral surface is larger than an angle formed by the inward surface and the opposed peripheral surface. small,
Slewing bearing seal structure.
請求項1ないし請求項6のいずれか1項に記載のシール構造を有し、風力発電装置のブレードを主軸に対して、主軸軸心に略垂直な軸心回りに旋回自在に支持する旋回軸受。   A slewing bearing having the seal structure according to any one of claims 1 to 6, wherein the slewing bearing supports the blade of the wind power generator with respect to the main shaft so as to be rotatable about an axis substantially perpendicular to the main shaft axis. . 請求項1ないし請求項6のいずれか1項に記載のシール構造を有し、風力発電装置のナセルを支持台に対して旋回自在に支持する旋回軸受。   A slewing bearing having the seal structure according to any one of claims 1 to 6, wherein the slewing bearing supports the nacelle of the wind turbine generator with respect to a support base.
JP2015107064A 2015-05-27 2015-05-27 Seal structure of slewing bearing and slewing bearing Pending JP2016223460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015107064A JP2016223460A (en) 2015-05-27 2015-05-27 Seal structure of slewing bearing and slewing bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015107064A JP2016223460A (en) 2015-05-27 2015-05-27 Seal structure of slewing bearing and slewing bearing

Publications (1)

Publication Number Publication Date
JP2016223460A true JP2016223460A (en) 2016-12-28

Family

ID=57747997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015107064A Pending JP2016223460A (en) 2015-05-27 2015-05-27 Seal structure of slewing bearing and slewing bearing

Country Status (1)

Country Link
JP (1) JP2016223460A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI670434B (en) * 2017-11-13 2019-09-01 龔婉蓉 Seals
CN111894992A (en) * 2020-08-06 2020-11-06 中国铁建重工集团股份有限公司 Engineering machine, main bearing and sealing element
CN113586600A (en) * 2021-07-23 2021-11-02 江苏大学 Novel double-layer dustproof and leakproof sealed turntable bearing
CN113638964A (en) * 2021-08-13 2021-11-12 三一重能股份有限公司 Bearing and wind generating set
CN114135585A (en) * 2021-12-09 2022-03-04 中国铁建重工集团股份有限公司 Main bearing and sealing structure of heading machine
EP3967905A1 (en) * 2020-09-11 2022-03-16 Siemens Gamesa Renewable Energy A/S Sealing ring arrangement, bearing and wind turbine
CN114876961A (en) * 2022-05-30 2022-08-09 马鞍山经纬回转支承有限公司 High-bearing impact-resistant slewing bearing for mining machinery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI670434B (en) * 2017-11-13 2019-09-01 龔婉蓉 Seals
CN111894992A (en) * 2020-08-06 2020-11-06 中国铁建重工集团股份有限公司 Engineering machine, main bearing and sealing element
EP3967905A1 (en) * 2020-09-11 2022-03-16 Siemens Gamesa Renewable Energy A/S Sealing ring arrangement, bearing and wind turbine
CN113586600A (en) * 2021-07-23 2021-11-02 江苏大学 Novel double-layer dustproof and leakproof sealed turntable bearing
CN113586600B (en) * 2021-07-23 2022-07-22 江苏大学 Novel double-layer dustproof and leakproof sealed turntable bearing
CN113638964A (en) * 2021-08-13 2021-11-12 三一重能股份有限公司 Bearing and wind generating set
CN114135585A (en) * 2021-12-09 2022-03-04 中国铁建重工集团股份有限公司 Main bearing and sealing structure of heading machine
CN114876961A (en) * 2022-05-30 2022-08-09 马鞍山经纬回转支承有限公司 High-bearing impact-resistant slewing bearing for mining machinery
CN114876961B (en) * 2022-05-30 2023-01-03 马鞍山经纬回转支承有限公司 Impact-resistant slewing bearing for mining machinery

Similar Documents

Publication Publication Date Title
JP2016223460A (en) Seal structure of slewing bearing and slewing bearing
JP5606972B2 (en) Slewing bearing seal structure and slewing bearing
KR101483871B1 (en) Tilting Insensitive Seal Bearing And The Design Method Thereof
JP6065459B2 (en) Sealed rolling bearing
WO2017065238A1 (en) Seal structure of slewing bearing
CN109424635B (en) Crossed roller bearing
WO2011013551A1 (en) Seal structure of slewing bearing and slewing support apparatus
US6796713B2 (en) Instrumented antifriction bearing provided with a sealing device
JP5235392B2 (en) Double row angular contact ball bearings
JP2012112488A (en) Seal structure of turning bearing and turning bearing
JP2016211601A (en) Seal structure of swivel bearing and swivel bearing
JP2017096424A (en) Worm gear slewing bearing
WO2012128103A1 (en) Seal structure for slewing bearing, and slewing bearing
US9995343B2 (en) Rolling bearing
JP2009097616A (en) Rolling bearing device
JP5926061B2 (en) Sealed rolling bearing
JP2017008990A (en) Seal structure of slewing bearing and slewing bearing
JP2019060465A (en) Seal structure of pivot bearing and pivot bearing
JP2011220368A (en) Seal structure of turning bearing
CN110905915B (en) Self-aligning roller bearing
JP2020051448A (en) Slewing bearing seal structure and slewing bearing
JP2010090986A (en) Sealed rolling bearing
JP2005320983A (en) Rolling bearing
JP2006022867A (en) Rolling bearing with sealing plate
JP6435672B2 (en) Roller bearing