JP2016223297A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2016223297A
JP2016223297A JP2015107256A JP2015107256A JP2016223297A JP 2016223297 A JP2016223297 A JP 2016223297A JP 2015107256 A JP2015107256 A JP 2015107256A JP 2015107256 A JP2015107256 A JP 2015107256A JP 2016223297 A JP2016223297 A JP 2016223297A
Authority
JP
Japan
Prior art keywords
urea water
amount
water consumption
target
addition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015107256A
Other languages
Japanese (ja)
Other versions
JP6499921B2 (en
Inventor
高橋 淳一
Junichi Takahashi
淳一 高橋
高宏 清藤
Takahiro Kiyofuji
高宏 清藤
光一朗 福田
Koichiro Fukuda
光一朗 福田
浩 蜷川
Hiroshi Ninagawa
浩 蜷川
敦 城所
Atsushi Kidokoro
敦 城所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Motor Corp
Original Assignee
Toyota Industries Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Toyota Motor Corp filed Critical Toyota Industries Corp
Priority to JP2015107256A priority Critical patent/JP6499921B2/en
Publication of JP2016223297A publication Critical patent/JP2016223297A/en
Application granted granted Critical
Publication of JP6499921B2 publication Critical patent/JP6499921B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust emission control device capable of reducing a consumption amount of urea water.SOLUTION: An exhaust emission control device 1 for purifying exhaust gas exhausted from a diesel engine 3 of a vehicle 2 includes a selective reduction catalyst 7 for reducing and purifying NOx contained in the exhaust gas, an addition valve 10 for adding urea water A to the selective reduction catalyst 7, a target determination section 15 for determining a target urea water consumption amount on the basis of a driving state of the vehicle 2, an integrated amount calculating section 16 for calculating a urea water consumption management integrated amount for managing consumption of the urea water A by comparing an addition amount of the urea water A from the addition valve 10 with the target urea water consumption amount, and a control section 17 for controlling the addition valve 10 so as to reduce the addition amount of the urea water A from the addition valve 10 when the urea water consumption management integrated amount is equal to or more than a prescribed flag ON threshold.SELECTED DRAWING: Figure 1

Description

本発明は、排気浄化装置に関する。   The present invention relates to an exhaust emission control device.

従来の排気浄化装置としては、例えば特許文献1に記載されている装置が知られている。特許文献1に記載の排気浄化装置は、排気ガスが流通する排気管の途中に装備されたNOx還元触媒と、尿素水タンク内の尿素水をNOx還元触媒の上流側に添加する添加弁と、制御装置とを備えている。制御装置は、NOx発生量の推定値に見合う尿素水の添加量を算出し、NOx低減量の推定値に見合うアンモニア(NH)の消費量を算出し、尿素水の添加量の積算値からNHの消費量の積算値を減算してNOx還元触媒に対するNHの吸着量を推定し、そのNHの吸着量に見合う補正係数で尿素水の添加量を補正し、その補正した尿素水の添加量を添加弁への添加指示値とする。 As a conventional exhaust purification device, for example, a device described in Patent Document 1 is known. The exhaust purification device described in Patent Document 1 includes a NOx reduction catalyst equipped in the middle of an exhaust pipe through which exhaust gas flows, an addition valve for adding urea water in a urea water tank to the upstream side of the NOx reduction catalyst, And a control device. The control device calculates an addition amount of urea water corresponding to the estimated value of the NOx generation amount, calculates a consumption amount of ammonia (NH 3 ) corresponding to the estimated value of the NOx reduction amount, and calculates from the integrated value of the added amount of urea water. The amount of NH 3 consumption is subtracted to estimate the amount of NH 3 adsorbed on the NOx reduction catalyst, the amount of urea water added is corrected with a correction coefficient commensurate with the amount of NH 3 adsorption, and the corrected urea water The addition amount of is the addition instruction value to the addition valve.

特開2005−226504号公報JP 2005-226504 A

しかしながら、上記従来技術においては、例えばコールドスタート時にもNOx還元触媒によるNOx浄化率を高くするために、NOx還元触媒に対するNH吸着量を十分に確保する必要がある。このため、尿素水の消費量が多くなる。この場合には、例えばユーザが定期的に尿素水を補充する必要性が生じ、ランニングコストが増加するといった問題が発生する。 However, in the above prior art, for example, in order to increase the NOx purification rate by the NOx reduction catalyst even at a cold start, it is necessary to sufficiently secure the NH 3 adsorption amount with respect to the NOx reduction catalyst. For this reason, the consumption of urea water increases. In this case, for example, it becomes necessary for the user to regularly replenish the urea water, which causes a problem that the running cost increases.

本発明の目的は、尿素水の消費量を低減することができる排気浄化装置を提供することである。   An object of the present invention is to provide an exhaust purification device that can reduce the consumption of urea water.

本発明の一態様は、車両のエンジンから排出される排気ガスを浄化する排気浄化装置において、排気ガスに含まれるNOxを還元して浄化する選択還元触媒と、選択還元触媒に尿素水を添加する添加弁と、車両の運転状態に基づいて目標尿素水消費量を決定する目標決定部と、添加弁からの尿素水の添加量と目標尿素水消費量とを比較して、尿素水の消費を管理するための尿素水消費管理積算量を算出する積算量算出部と、尿素水消費管理積算量が予め決められた閾値以上になったときに、添加弁からの尿素水の添加量を減少させるように添加弁を制御する制御部とを備えることを特徴とする。   One aspect of the present invention is an exhaust purification device that purifies exhaust gas exhausted from an engine of a vehicle. A selective reduction catalyst that reduces and purifies NOx contained in exhaust gas, and urea water is added to the selective reduction catalyst. Compare the amount of urea water added from the addition valve, the target determination unit that determines the target urea water consumption based on the driving state of the vehicle, and the amount of urea water added from the addition valve to the target urea water consumption, An integrated amount calculation unit for calculating an integrated amount of urea water consumption management for management, and when the integrated amount of urea water consumption management exceeds a predetermined threshold, the amount of urea water added from the addition valve is decreased. And a control unit for controlling the addition valve.

このような排気浄化装置においては、車両の運転状態に基づいて目標尿素水消費量を決定し、添加弁からの尿素水の添加量と目標尿素水消費量とを比較して尿素水消費管理積算量を算出し、尿素水消費管理積算量が閾値以上になったときに、添加弁からの尿素水の添加量を減少させる。これにより、過剰な尿素水の添加を抑制し、尿素水の消費量を低減することができる。   In such an exhaust purification device, the target urea water consumption is determined based on the driving state of the vehicle, and the urea water consumption management integration is performed by comparing the urea water addition amount from the addition valve with the target urea water consumption. The amount is calculated, and the urea water addition amount from the addition valve is decreased when the urea water consumption management integrated amount is equal to or greater than the threshold value. Thereby, addition of excess urea water can be suppressed and consumption of urea water can be reduced.

積算量算出部は、添加弁からの尿素水の添加量が目標尿素水消費量よりも多いときは、尿素水の添加量と目標尿素水消費量との差に対応する分を尿素水消費管理積算量に加算することで新たな尿素水消費管理積算量を算出し、添加弁からの尿素水の添加量が目標尿素水消費量よりも少ないときは、尿素水の添加量と目標尿素水消費量との差に対応する分を尿素水消費管理積算量から減算することで新たな尿素水消費管理積算量を算出してもよい。添加弁から選択還元触媒に尿素水が添加されると、選択還元触媒にアンモニアが吸着されるが、添加弁からの尿素水の添加量が減少すると、選択還元触媒に吸着されるアンモニア量が少なくなる。添加弁からの尿素水の添加量が目標尿素水消費量よりも少ないときは、尿素水の添加量と目標尿素水消費量との差に対応する分を尿素水消費管理積算量から減算することにより、尿素水消費管理積算量が閾値に達するまでの期間が長くなる。従って、選択還元触媒に対して所望のアンモニア吸着量が維持される期間を長くすることができる。   When the amount of urea water added from the addition valve is greater than the target urea water consumption, the integrated amount calculation unit manages the amount of urea water consumption corresponding to the difference between the amount of urea water added and the target urea water consumption. A new urea water consumption management integrated amount is calculated by adding to the integrated amount. When the amount of urea water added from the addition valve is less than the target urea water consumption, the amount of urea water added and the target urea water consumption A new urea water consumption management integrated amount may be calculated by subtracting the amount corresponding to the difference from the amount from the urea water consumption management integrated amount. When urea water is added to the selective reduction catalyst from the addition valve, ammonia is adsorbed to the selective reduction catalyst. However, when the amount of urea water added from the addition valve decreases, the amount of ammonia adsorbed to the selective reduction catalyst decreases. Become. When the amount of urea water added from the addition valve is less than the target urea water consumption, subtract the amount corresponding to the difference between the urea water addition amount and the target urea water consumption from the urea water consumption management integrated amount. Thus, the period until the urea water consumption management integrated amount reaches the threshold value becomes longer. Therefore, the period during which the desired ammonia adsorption amount is maintained for the selective reduction catalyst can be lengthened.

目標決定部は、車両の運転状態として車両の車速に基づいて目標尿素水消費量を決定してもよい。この場合には、車両が単位時間走行するときの目標尿素水消費量を高精度に求めることができる。   The target determining unit may determine the target urea water consumption based on the vehicle speed as the driving state of the vehicle. In this case, the target urea water consumption when the vehicle travels for a unit time can be obtained with high accuracy.

目標決定部は、車両の運転状態としてエンジンの状態量に基づいて目標尿素水消費量を決定してもよい。この場合には、特に車速情報が無くても、目標尿素水消費量を得ることができる。   The target determination unit may determine the target urea water consumption based on the state quantity of the engine as the driving state of the vehicle. In this case, the target urea water consumption can be obtained without any vehicle speed information.

本発明によれば、尿素水の消費量を低減することができる排気浄化装置が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the exhaust gas purification apparatus which can reduce the consumption of urea water is provided.

第1実施形態に係る排気浄化装置を示す概略構成図である。1 is a schematic configuration diagram illustrating an exhaust emission control device according to a first embodiment. 図1に示されたECUにより実行される尿素水添加制御処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the urea water addition control process performed by ECU shown by FIG. 図2に示された手順S103の詳細を示すフローチャートである。It is a flowchart which shows the detail of procedure S103 shown by FIG. 図2に示されたフローチャートにより実行される尿素水添加制御処理のタイミングチャートを示すチャート図である。It is a chart figure which shows the timing chart of the urea water addition control process performed with the flowchart shown by FIG. 第2実施形態に係る排気浄化装置を示す概略構成図である。It is a schematic block diagram which shows the exhaust gas purification apparatus which concerns on 2nd Embodiment. 図5に示されたECUにより実行される尿素水添加制御処理において使用される目標尿素水消費量マップを示す表である。It is a table | surface which shows the target urea water consumption map used in the urea water addition control process performed by ECU shown by FIG. 図5に示されたECUにより実行される尿素水添加制御処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the urea water addition control process performed by ECU shown by FIG.

以下、本発明の実施形態について、図面を参照して詳細に説明する。なお、図面において、同一または同等の要素には同じ符号を付し、重複する説明を省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or equivalent elements are denoted by the same reference numerals, and redundant description is omitted.

図1は、第1実施形態に係る排気浄化装置を示す概略構成図である。図1において、本実施形態の排気浄化装置1は、車両2に搭載され、車両2のディーゼルエンジン3(以下、単にエンジン3という)から排出される排気ガスを浄化する。エンジン3は、燃焼室(図示せず)に燃料を噴射するインジェクタ4を有している。   FIG. 1 is a schematic configuration diagram illustrating an exhaust emission control device according to the first embodiment. In FIG. 1, an exhaust emission control device 1 of this embodiment is mounted on a vehicle 2 and purifies exhaust gas discharged from a diesel engine 3 (hereinafter simply referred to as an engine 3) of the vehicle 2. The engine 3 has an injector 4 that injects fuel into a combustion chamber (not shown).

排気浄化装置1は、ディーゼル酸化触媒(DOC:DieselOxidation Catalyst)5、ディーゼル排気微粒子除去フィルタ(DPF:Diesel Particulate Filter)6、選択還元触媒(SCR:Selective Catalytic Reduction)7及びアンモニアスリップ触媒(ASC:Ammonia Slip Catalyst)8を備えている。DOC5、DPF6、SCR7及びASC8は、エンジン3に接続された排気通路9に上流側から下流側に向けて順に配設されている。   The exhaust gas purification apparatus 1 includes a diesel oxidation catalyst (DOC) 5, a diesel exhaust particulate removal filter (DPF) 6, a selective catalytic catalyst (SCR) 7, and an ammonia slip catalyst (ASC). Slip Catalyst) 8. The DOC 5, DPF 6, SCR 7 and ASC 8 are sequentially arranged in the exhaust passage 9 connected to the engine 3 from the upstream side toward the downstream side.

DOC5は、排気ガスに含まれるHC及びCO等を酸化して浄化する。DPF6は、排気ガスに含まれる粒子状物質(PM:Particulate Matter)を捕集することで、排気ガスからPMを取り除く。SCR7は、排気ガスに含まれるNOxを還元して浄化する。ASC8は、SCR7を通過したアンモニア(NH)を酸化する。 The DOC 5 oxidizes and purifies HC and CO contained in the exhaust gas. The DPF 6 removes PM from the exhaust gas by collecting particulate matter (PM) contained in the exhaust gas. The SCR 7 reduces and purifies NOx contained in the exhaust gas. The ASC 8 oxidizes ammonia (NH 3 ) that has passed through the SCR 7.

また、排気浄化装置1は、排気通路9におけるSCR7の上流側、具体的にはDPF6とSCR7との間に配設された添加弁10及びNOxセンサ11を備えている。添加弁10は、供給管10aを介して尿素水タンク12と接続され、SCR7に尿素水Aを添加する。尿素水タンク12内の尿素水Aは、ポンプ(図示せず)によって供給管10aを通って添加弁10に供給される。NOxセンサ11は、NOx濃度を検出することにより、排気ガス中に含まれるNOx量を算出する。   Further, the exhaust purification device 1 includes an addition valve 10 and a NOx sensor 11 disposed on the upstream side of the SCR 7 in the exhaust passage 9, specifically, between the DPF 6 and the SCR 7. The addition valve 10 is connected to the urea water tank 12 through the supply pipe 10a, and adds the urea water A to the SCR 7. The urea water A in the urea water tank 12 is supplied to the addition valve 10 through a supply pipe 10a by a pump (not shown). The NOx sensor 11 calculates the amount of NOx contained in the exhaust gas by detecting the NOx concentration.

添加弁10により尿素水AがSCR7に添加されると、尿素水AがNHとなってSCR7に吸着され、そのNHが排気ガス中のNOxと反応することで、NOxが還元される。 When the urea water A is added to the SCR 7 by the addition valve 10, the urea water A becomes NH 3 and is adsorbed on the SCR 7, and the NH 3 reacts with NOx in the exhaust gas, whereby NOx is reduced.

さらに、排気浄化装置1は、車両2の車速を検出する車速センサ13と、NOxセンサ11及び車速センサ13と接続されたECU(Electronic Control Unit)14とを備えている。ECU14は、NOxセンサ11及び車速センサ13の検出値に基づいて所定の処理を行い、その処理結果に応じて添加弁10から尿素水Aを添加させるように添加弁10を制御する。ECU14は、目標決定部15と、積算量算出部16と、制御部17とを有している。   The exhaust emission control device 1 further includes a vehicle speed sensor 13 that detects the vehicle speed of the vehicle 2, and an ECU (Electronic Control Unit) 14 that is connected to the NOx sensor 11 and the vehicle speed sensor 13. ECU14 performs a predetermined | prescribed process based on the detected value of NOx sensor 11 and vehicle speed sensor 13, and controls addition valve 10 so that urea water A may be added from addition valve 10 according to the processing result. The ECU 14 includes a target determination unit 15, an integrated amount calculation unit 16, and a control unit 17.

目標決定部15は、車両2の運転状態として車両2の車速に基づいて目標尿素水消費量を決定する。積算量算出部16は、添加弁10からの尿素水Aの添加量と目標決定部15により決定された目標尿素水消費量とを比較して、尿素水Aの消費を管理するための尿素水消費管理積算量を算出する。制御部17は、積算量算出部16により算出された尿素水消費管理積算量が予め決められた閾値以上になったときに、添加弁10からの尿素水Aの添加量を減少させるように添加弁10を制御する。   The target determination unit 15 determines the target urea water consumption based on the vehicle speed of the vehicle 2 as the driving state of the vehicle 2. The integrated amount calculation unit 16 compares the amount of urea water A added from the addition valve 10 with the target urea water consumption determined by the target determination unit 15 to manage urea water A consumption. Calculate the consumption management integrated amount. The control unit 17 adds the urea water A added from the addition valve 10 so as to decrease when the urea water consumption management integrated amount calculated by the integrated amount calculating unit 16 exceeds a predetermined threshold. The valve 10 is controlled.

図2は、ECU14により実行される尿素水添加制御処理の手順を示すフローチャートである。なお、本処理の開始時は、尿素水消費管理フラグはOFFとなっており、尿素水消費管理積算量はゼロとなっている。   FIG. 2 is a flowchart showing a procedure of urea water addition control processing executed by the ECU 14. At the start of this process, the urea water consumption management flag is OFF, and the urea water consumption management integrated amount is zero.

図2において、ECU14は、まず車速センサ13の検出値を入力する(手順S101)。続いて、ECU14は、車速センサ13により検出された車速に基づいて目標尿素水消費量を算出する(手順S102)。具体的には、尿素水Aの単位体積(1L)当たりの車両2の走行可能距離をC(例えば1000)km/Lとすると、尿素水Aの比重は1090g/Lであるため、車両2が1時間走行するときの目標尿素水消費量は下記式で表される。
目標尿素水消費量(g)=車速/(C/1090)
In FIG. 2, the ECU 14 first inputs a detection value of the vehicle speed sensor 13 (step S101). Subsequently, the ECU 14 calculates a target urea water consumption based on the vehicle speed detected by the vehicle speed sensor 13 (step S102). Specifically, when the travelable distance of the vehicle 2 per unit volume (1 L) of the urea water A is C (for example, 1000) km / L, the specific gravity of the urea water A is 1090 g / L. The target urea water consumption when traveling for 1 hour is expressed by the following equation.
Target urea water consumption (g) = vehicle speed / (C / 1090)

続いて、ECU14は、添加弁10からの尿素水Aの添加量(以下、単に尿素水添加量という)と手順S102で算出された目標尿素水消費量とを比較して、尿素水消費管理積算量を算出する(手順S103)。   Subsequently, the ECU 14 compares the addition amount of the urea water A from the addition valve 10 (hereinafter simply referred to as the urea water addition amount) with the target urea water consumption calculated in step S102 to calculate the urea water consumption management integration. The amount is calculated (procedure S103).

尿素水添加量は、ECU14から添加弁10に送られる添加量指令値から得られる。添加弁10は、添加量指令値に応じた量の尿素水Aを添加する。通常の添加量指令値は、排気ガスに含まれるNOxの浄化に必要な分に相当する添加量設定値と、コールドスタート時におけるSCR7に対するNH吸着量の維持に必要な分に相当する添加量設定値との加算値である。NOxの浄化に必要な分に相当する添加量設定値は、NOxセンサ11により検出されたNOx量に基づいて算出される。なお、NOx量は、エンジン3の回転数及びエンジン3の負荷等から推定してもよい。SCR7に対するNH吸着量の維持に必要な分に相当する添加量設定値は、予め決められている。 The urea water addition amount is obtained from the addition amount command value sent from the ECU 14 to the addition valve 10. The addition valve 10 adds urea water A in an amount corresponding to the addition amount command value. The normal addition amount command value is an addition amount setting value corresponding to the amount necessary for purifying NOx contained in the exhaust gas, and an addition amount corresponding to the amount necessary for maintaining the NH 3 adsorption amount for the SCR 7 at the cold start. It is an addition value with the set value. The addition amount set value corresponding to the amount necessary for NOx purification is calculated based on the NOx amount detected by the NOx sensor 11. The NOx amount may be estimated from the rotational speed of the engine 3, the load of the engine 3, and the like. An addition amount set value corresponding to the amount necessary for maintaining the NH 3 adsorption amount for the SCR 7 is determined in advance.

尿素水消費管理積算量は、下記式で表される。
尿素水消費管理積算量=α×(尿素水添加量−目標尿素水消費量)+前回値 ……(A)
The urea water consumption management integrated amount is expressed by the following equation.
Urea water consumption management integrated amount = α x (urea water addition amount-target urea water consumption amount) + previous value (A)

なお、係数αは、SCR7の床温を引数とするマップ値でもよい。また、係数αは、尿素水添加量が目標尿素水消費量よりも大きいときと、尿素水添加量が目標尿素水消費量よりも小さいときとで、別マップを用いて設定してもよい。   The coefficient α may be a map value with the bed temperature of the SCR 7 as an argument. The coefficient α may be set using another map when the urea water addition amount is larger than the target urea water consumption amount and when the urea water addition amount is smaller than the target urea water consumption amount.

尿素水消費管理積算量を算出する手順(手順S103)の詳細を図3に示す。図3において、ECU14は、まず尿素水添加量が目標尿素水消費量よりも多いかどうかを判断する(手順S201)。   The details of the procedure for calculating the urea water consumption management integrated amount (procedure S103) are shown in FIG. In FIG. 3, the ECU 14 first determines whether or not the urea water addition amount is larger than the target urea water consumption amount (step S201).

ECU14は、尿素水添加量が目標尿素水消費量よりも多いときは、図4(a),(b)に示されるように、上記(A)式に従い、尿素水添加量と目標尿素水消費量との差に対応する分を前回得られた現在の尿素水消費管理積算量に加算することで、新たな尿素水消費管理積算量を算出する(手順S202)。   When the urea water addition amount is larger than the target urea water consumption amount, the ECU 14 performs the urea water addition amount and the target urea water consumption according to the above formula (A) as shown in FIGS. 4 (a) and 4 (b). A new urea water consumption management integrated amount is calculated by adding the amount corresponding to the difference from the amount to the current urea water consumption management integrated amount obtained last time (step S202).

ECU14は、尿素水添加量が目標尿素水消費量よりも多くないときは、尿素水添加量が目標尿素水消費量よりも少ないかどうかを判断する(手順S203)。ECU14は、尿素水添加量が目標尿素水消費量よりも少ないときは、図4(a),(b)に示されるように、上記(A)式に従い、尿素水添加量と目標尿素水消費量との差に対応する分を前回得られた現在の尿素水消費管理積算量から減算することで、新たな尿素水消費管理積算量を算出する(手順S204)。   When the urea water addition amount is not larger than the target urea water consumption amount, the ECU 14 determines whether or not the urea water addition amount is smaller than the target urea water consumption amount (step S203). When the urea water addition amount is smaller than the target urea water consumption amount, the ECU 14 performs the urea water addition amount and the target urea water consumption according to the above equation (A) as shown in FIGS. 4 (a) and 4 (b). A new urea water consumption management integrated amount is calculated by subtracting the amount corresponding to the difference from the current amount from the current urea water consumption management integrated amount obtained last time (step S204).

ECU14は、尿素水添加量が目標尿素水消費量よりも少なくない、つまり尿素水添加量が目標尿素水消費量と等しいときは、前回得られた現在の尿素水消費管理積算量をそのまま新たな尿素水消費管理積算量に設定する(手順S205)。   When the urea water addition amount is not smaller than the target urea water consumption amount, that is, when the urea water addition amount is equal to the target urea water consumption amount, the ECU 14 sets the current urea water consumption management integrated amount obtained last time as a new value. The urea water consumption management integrated amount is set (step S205).

図2に戻り、手順S103が実行された後、ECU14は、尿素水消費管理積算量が予め決められたフラグON閾値以上であるかどうかを判断する(手順S104)。ECU14は、尿素水消費管理積算量がフラグON閾値以上であるときは、図4(b),(c)に示されるように、尿素水消費管理フラグをONにする(手順S105)。   Returning to FIG. 2, after step S103 is executed, the ECU 14 determines whether or not the urea water consumption management integrated amount is equal to or greater than a predetermined flag ON threshold (step S104). When the urea water consumption management integrated amount is not less than the flag ON threshold, the ECU 14 turns on the urea water consumption management flag as shown in FIGS. 4B and 4C (step S105).

ECU14は、尿素水消費管理積算量がフラグON閾値以上でないときは、尿素水消費管理積算量が予め決められたフラグOFF閾値以下であるかどうかを判断する(手順S106)。フラグOFF閾値は、ゼロよりも大きく、且つフラグON閾値よりも小さい。ECU14は、尿素水消費管理積算量がフラグOFF閾値以下であるときは、尿素水消費管理フラグをOFFにする(手順S107)。   When the urea water consumption management integrated amount is not equal to or greater than the flag ON threshold, the ECU 14 determines whether the urea water consumption management integrated amount is equal to or less than a predetermined flag OFF threshold (step S106). The flag OFF threshold is larger than zero and smaller than the flag ON threshold. The ECU 14 turns off the urea water consumption management flag when the urea water consumption management integrated amount is equal to or less than the flag OFF threshold (step S107).

ECU14は、尿素水消費管理積算量がフラグOFF閾値以下でない、つまり尿素水消費管理積算量がフラグOFF閾値よりも大きく且つフラグON閾値よりも小さいときは、尿素水消費管理フラグをそのままの状態に維持する(手順S108)。   The ECU 14 keeps the urea water consumption management flag as it is when the urea water consumption management integrated amount is not less than or equal to the flag OFF threshold, that is, when the urea water consumption management integrated amount is larger than the flag OFF threshold and smaller than the flag ON threshold. Maintain (step S108).

ECU14は、手順S105,107,S108の何れかを実行した後、尿素水消費管理フラグがONであるかどうかを判断する(手順S109)。   After executing any one of the steps S105, 107, and S108, the ECU 14 determines whether or not the urea water consumption management flag is ON (step S109).

ECU14は、尿素水消費管理フラグがONであるときは、図4(c),(d)に示されるように、尿素水添加制御モードを尿素水添加量減少モードとし、尿素水添加量を減少させるような添加量指令値を添加弁10に送出し(手順S110)、手順S101に戻る。   When the urea water consumption management flag is ON, the ECU 14 sets the urea water addition control mode to the urea water addition amount reduction mode and decreases the urea water addition amount as shown in FIGS. 4 (c) and 4 (d). The amount command value to be added is sent to the addition valve 10 (step S110), and the procedure returns to step S101.

このとき、ECU14は、NOxの浄化に必要な分に相当する添加量設定値を添加量指令値として添加弁10に送出する。つまり、SCR7に対するNH吸着量の維持に必要な分に相当する添加量設定値は、添加量指令値には含まれない。ECU14は、例えば手順S102で得られた目標尿素水消費量を添加量指令値として設定する。 At this time, the ECU 14 sends an addition amount set value corresponding to the amount necessary for NOx purification to the addition valve 10 as an addition amount command value. That is, the addition amount setting value corresponding to the amount necessary for maintaining the NH 3 adsorption amount for the SCR 7 is not included in the addition amount command value. For example, the ECU 14 sets the target urea water consumption obtained in step S102 as the addition amount command value.

ECU14は、尿素水消費管理フラグがONではなくOFFであるときは、図4(c),(d)に示されるように、尿素水添加制御モードをNH吸着量維持モードとし、SCR7に対するNH吸着量を維持するような添加量指令値を添加弁10に送出し(手順S111)、手順S101に戻る。つまり、ECU14は、上述したように、NOxの浄化に必要な分に相当する添加量設定値と、SCR7に対するNH吸着量の維持に必要な分に相当する添加量設定値との加算値を、添加量指令値として添加弁10に送出する。 When the urea water consumption management flag is OFF instead of ON, the ECU 14 sets the urea water addition control mode to the NH 3 adsorption amount maintenance mode, as shown in FIGS. 3 An addition amount command value that maintains the adsorption amount is sent to the addition valve 10 (step S111), and the procedure returns to step S101. That is, as described above, the ECU 14 calculates the addition value of the addition amount setting value corresponding to the amount necessary for NOx purification and the addition amount setting value corresponding to the amount necessary for maintaining the NH 3 adsorption amount for the SCR 7. , And sent to the addition valve 10 as an addition amount command value.

以上において、目標決定部15は、手順S101,S102を実行する。積算量算出部16は、手順S103を実行する。制御部17は、手順S104〜S111を実行する。   In the above, the target determination unit 15 executes steps S101 and S102. The integrated amount calculation unit 16 executes step S103. The control unit 17 executes steps S104 to S111.

以上のように本実施形態においては、車両2の運転状態に基づいて目標尿素水消費量を決定し、尿素水添加量と目標尿素水消費量とを比較して尿素水消費管理積算量を算出し、尿素水消費管理積算量がフラグON閾値以上になったときに、尿素水添加量を減少させるように添加弁10を制御する。これにより、過剰な尿素水Aの添加を抑制し、尿素水Aの消費量を低減することができる。その結果、尿素水Aを補充するインターバルが長くなるため、ランニングコストを削減することが可能となる。   As described above, in the present embodiment, the target urea water consumption is determined based on the driving state of the vehicle 2, and the urea water consumption management integrated amount is calculated by comparing the urea water addition amount with the target urea water consumption. When the urea water consumption management integrated amount becomes equal to or greater than the flag ON threshold value, the addition valve 10 is controlled so as to decrease the urea water addition amount. Thereby, addition of excess urea water A can be suppressed and the consumption of urea water A can be reduced. As a result, since the interval for replenishing the urea water A becomes longer, the running cost can be reduced.

また、本実施形態では、尿素水添加量が目標尿素水消費量よりも多いときは、尿素水添加量と目標尿素水消費量との差に対応する分を現在の尿素水消費管理積算量に加算することで新たな尿素水消費管理積算量を算出し、尿素水添加量が目標尿素水消費量よりも少ないときは、尿素水添加量と目標尿素水消費量との差に対応する分を現在の尿素水消費管理積算量から減算することで新たな尿素水消費管理積算量を算出する。このように尿素水添加量が目標尿素水消費量よりも少ないときは、尿素水添加量と目標尿素水消費量との差に対応する分を減算するので、尿素水消費管理積算量がフラグON閾値に達するまでの期間が長くなる。従って、SCR7に対して所望のNH吸着量を維持する期間を長くすることができる。 In this embodiment, when the urea water addition amount is larger than the target urea water consumption amount, the amount corresponding to the difference between the urea water addition amount and the target urea water consumption amount is set as the current urea water consumption management integrated amount. A new urea water consumption management integrated amount is calculated by adding, and when the urea water addition amount is smaller than the target urea water consumption amount, an amount corresponding to the difference between the urea water addition amount and the target urea water consumption amount is calculated. A new urea water consumption management integrated amount is calculated by subtracting from the current urea water consumption management integrated amount. As described above, when the urea water addition amount is smaller than the target urea water consumption amount, the amount corresponding to the difference between the urea water addition amount and the target urea water consumption amount is subtracted. The period until the threshold is reached becomes longer. Therefore, it is possible to lengthen the period for maintaining the desired NH 3 adsorption amount with respect to the SCR 7.

また、車両2の運転状態として車両2の車速に基づいて目標尿素水消費量を決定するので、車両2が単位時間走行するときの目標尿素水消費量を高精度に求めることができる。   Moreover, since the target urea water consumption is determined based on the vehicle speed of the vehicle 2 as the driving state of the vehicle 2, the target urea water consumption when the vehicle 2 travels for a unit time can be obtained with high accuracy.

図5は、第2実施形態に係る排気浄化装置を示す概略構成図である。図5において、本実施形態の排気浄化装置20は、第1実施形態における車速センサ13に代えて、エンジン回転数センサ21及びアクセル開度センサ22を備えている。   FIG. 5 is a schematic configuration diagram illustrating an exhaust emission control device according to the second embodiment. In FIG. 5, the exhaust purification device 20 of the present embodiment includes an engine speed sensor 21 and an accelerator opening sensor 22 instead of the vehicle speed sensor 13 in the first embodiment.

エンジン回転数センサ21は、エンジン3の回転数を検出する。アクセル開度センサ22は、アクセル開度をエンジン3の負荷として検出する。エンジン3の回転数及びエンジン3の負荷は、エンジン3の状態量に含まれる。   The engine speed sensor 21 detects the speed of the engine 3. The accelerator opening sensor 22 detects the accelerator opening as a load of the engine 3. The rotational speed of the engine 3 and the load of the engine 3 are included in the state quantity of the engine 3.

また、排気浄化装置50は、第1実施形態におけるECU14に代えて、ECU23を備えている。ECU23は、上記の目標決定部15、積算量算出部16及び制御部17に加え、噴射量決定部24を有している。噴射量決定部24は、エンジン回転数センサ21及びアクセル開度センサ22の検出値に基づいてインジェクタ4からの燃料噴射量を決定する。燃料噴射量は、エンジントルクに相当する。   The exhaust purification device 50 includes an ECU 23 instead of the ECU 14 in the first embodiment. The ECU 23 includes an injection amount determination unit 24 in addition to the target determination unit 15, the integrated amount calculation unit 16, and the control unit 17. The injection amount determination unit 24 determines the fuel injection amount from the injector 4 based on the detection values of the engine speed sensor 21 and the accelerator opening sensor 22. The fuel injection amount corresponds to the engine torque.

目標決定部15には、図6に示すような目標尿素水消費量マップMが記憶されている。目標尿素水消費量マップMは、エンジン3の回転数とインジェクタ4からの燃料噴射量と目標尿素水消費量との関係を表すマップである。   A target urea water consumption map M as shown in FIG. 6 is stored in the target determination unit 15. The target urea water consumption map M is a map that represents the relationship among the rotational speed of the engine 3, the fuel injection amount from the injector 4, and the target urea water consumption.

図7は、ECU23により実行される尿素水添加制御処理の手順を示すフローチャートである。なお、本処理において、図2に示すフローチャートと同じ手順には、同じ符号を付している。   FIG. 7 is a flowchart showing a procedure of urea water addition control processing executed by the ECU 23. In this process, the same steps as those in the flowchart shown in FIG.

図7において、ECU23は、まずエンジン回転数センサ21及びアクセル開度センサ22の検出値を入力する(手順S121)。続いて、ECU23は、エンジン回転数センサ21により検出されたエンジン3の回転数とアクセル開度センサ22により検出されたアクセルの開度(エンジン3の負荷)とに基づいて、インジェクタ4からの燃料噴射量を求める(手順S122)。続いて、ECU23は、図6に示す目標尿素水消費量マップMを用いて、エンジン3の回転数及び燃料噴射量に対応する目標尿素水消費量を求める(手順S123)。その後の手順については、図2に示すフローチャートと同様である。   In FIG. 7, the ECU 23 first inputs detection values of the engine speed sensor 21 and the accelerator opening sensor 22 (step S121). Subsequently, the ECU 23 determines the fuel from the injector 4 based on the engine speed detected by the engine speed sensor 21 and the accelerator opening (engine 3 load) detected by the accelerator opening sensor 22. An injection amount is obtained (procedure S122). Then, ECU23 calculates | requires the target urea water consumption corresponding to the rotation speed of the engine 3, and fuel injection quantity using the target urea water consumption map M shown in FIG. 6 (procedure S123). The subsequent procedure is the same as the flowchart shown in FIG.

ところで、車両の開発では、車両を台上モードで試験することで、車両の評価を実施することがある。このとき、乗用車は台上に載置可能であるため、車速情報を用いて各種試験を行うことができる。しかし、大型車は台上に載置不可能であるため、大型車のエンジンを台上に載せて、エンジンの評価を行う。この場合には、車速情報を用いた試験を行うことはできない。   By the way, in vehicle development, the vehicle may be evaluated by testing the vehicle in a tabletop mode. At this time, since the passenger car can be placed on a table, various tests can be performed using the vehicle speed information. However, since a large vehicle cannot be mounted on a table, the engine of the large vehicle is mounted on the table and the engine is evaluated. In this case, a test using vehicle speed information cannot be performed.

本実施形態においては、車両2の運転状態としてエンジン3の状態量に基づいて目標尿素水消費量を決定するので、特に車速情報が無くても、目標尿素水消費量を得ることができる。その結果、エンジンを台上に載せての評価が基本となる大型車の開発が行いやすくなる。   In this embodiment, since the target urea water consumption is determined based on the state quantity of the engine 3 as the driving state of the vehicle 2, the target urea water consumption can be obtained even if there is no vehicle speed information. As a result, it becomes easier to develop a large vehicle based on the evaluation with the engine mounted on the table.

なお、本実施形態では、エンジン3の回転数と燃料噴射量と目標尿素水消費量との関係を表した目標尿素水消費量マップMを用いて、目標尿素水消費量を求めているが、特にそれには限られず、エンジン3の回転数及び燃料噴射量に加えて排気ガスの温度等を含む目標尿素水消費量マップを用いてもよいし、或いはエンジン3の回転数及び燃料噴射量に加えてギヤ比、デフ比及びタイヤ動半径等の車両の諸元またはシフト位置等を含む目標尿素水消費量マップを用いてもよい。   In the present embodiment, the target urea water consumption amount is obtained using the target urea water consumption map M that represents the relationship among the engine speed, the fuel injection amount, and the target urea water consumption. In particular, the present invention is not limited thereto, and a target urea water consumption map including the exhaust gas temperature and the like in addition to the engine speed and the fuel injection amount may be used, or in addition to the engine speed and the fuel injection amount. Alternatively, a target urea water consumption map including vehicle specifications such as gear ratio, differential ratio and tire moving radius or shift position may be used.

以上、本発明の実施形態について説明してきたが、本発明は上記実施形態には限定されない。例えば、上記実施形態では、積算量算出部16は、新たな尿素水消費管理積算量を算出する際に、尿素水添加量が目標尿素水消費量よりも少ないときは、尿素水添加量と目標尿素水消費量との差に対応する分を現在の尿素水消費管理積算量から減算しているが、特にその形態には限られない。積算量算出部16は、尿素水添加量が目標尿素水消費量よりも少ないときは、尿素水消費管理積算量を変えずにそのままとしてもよいし、或いは尿素水添加量が目標尿素水消費量よりも多いときに比べて尿素水消費管理積算量の増加率を小さくしてもよい。   As mentioned above, although embodiment of this invention has been described, this invention is not limited to the said embodiment. For example, in the above-described embodiment, the integrated amount calculation unit 16 calculates the new urea water consumption management integrated amount, and when the urea water addition amount is smaller than the target urea water consumption amount, the urea water addition amount and the target Although the amount corresponding to the difference from the urea water consumption amount is subtracted from the current urea water consumption management integrated amount, the form is not particularly limited. When the urea water addition amount is smaller than the target urea water consumption amount, the integrated amount calculation unit 16 may leave the urea water consumption management integrated amount unchanged, or the urea water addition amount may be the target urea water consumption amount. The increase rate of the urea water consumption management integrated amount may be reduced as compared with the case where the amount is larger than the above.

また、上記実施形態は、ディーゼルエンジン3に接続された排気通路9に配設された選択還元触媒(SCR)7を備えた排気浄化装置であるが、本発明は、排気ガスに含まれるNOxを還元する選択還元触媒を備えていれば、いかなるエンジンにも適用可能である。   Moreover, although the said embodiment is an exhaust-gas purification apparatus provided with the selective reduction catalyst (SCR) 7 arrange | positioned by the exhaust passage 9 connected to the diesel engine 3, this invention does NOx contained in exhaust gas. The present invention can be applied to any engine provided that a selective reduction catalyst for reduction is provided.

1…排気浄化装置、3…ディーゼルエンジン(エンジン)、7…選択還元触媒、10…添加弁、15…目標決定部、16…積算量算出部、17…制御部、20…排気浄化装置、A…尿素水。   DESCRIPTION OF SYMBOLS 1 ... Exhaust gas purification device, 3 ... Diesel engine (engine), 7 ... Selective reduction catalyst, 10 ... Addition valve, 15 ... Target determination part, 16 ... Integrated amount calculation part, 17 ... Control part, 20 ... Exhaust gas purification apparatus, A ... urea water.

Claims (4)

車両のエンジンから排出される排気ガスを浄化する排気浄化装置において、
前記排気ガスに含まれるNOxを還元して浄化する選択還元触媒と、
前記選択還元触媒に尿素水を添加する添加弁と、
前記車両の運転状態に基づいて目標尿素水消費量を決定する目標決定部と、
前記添加弁からの尿素水の添加量と前記目標尿素水消費量とを比較して、前記尿素水の消費を管理するための尿素水消費管理積算量を算出する積算量算出部と、
前記尿素水消費管理積算量が予め決められた閾値以上になったときに、前記添加弁からの尿素水の添加量を減少させるように前記添加弁を制御する制御部とを備えることを特徴とする排気浄化装置。
In an exhaust purification device that purifies exhaust gas discharged from a vehicle engine,
A selective reduction catalyst that reduces and purifies NOx contained in the exhaust gas;
An addition valve for adding urea water to the selective reduction catalyst;
A target determining unit that determines a target urea water consumption based on the driving state of the vehicle;
An integrated amount calculator that compares the amount of urea water added from the addition valve with the target urea water consumption and calculates a urea water consumption management integrated amount for managing the consumption of the urea water;
A control unit that controls the addition valve so as to reduce the addition amount of the urea water from the addition valve when the urea water consumption management integrated amount is equal to or greater than a predetermined threshold value. Exhaust purification device.
前記積算量算出部は、前記添加弁からの尿素水の添加量が前記目標尿素水消費量よりも多いときは、前記尿素水の添加量と前記目標尿素水消費量との差に対応する分を前記尿素水消費管理積算量に加算することで新たな尿素水消費管理積算量を算出し、前記添加弁からの尿素水の添加量が前記目標尿素水消費量よりも少ないときは、前記尿素水の添加量と前記目標尿素水消費量との差に対応する分を前記尿素水消費管理積算量から減算することで新たな尿素水消費管理積算量を算出することを特徴とする請求項1記載の排気浄化装置。   When the amount of urea water added from the addition valve is larger than the target urea water consumption, the integrated amount calculation unit determines the amount corresponding to the difference between the urea water addition amount and the target urea water consumption. Is added to the urea water consumption management integrated amount to calculate a new urea water consumption management integrated amount, and when the urea water addition amount from the addition valve is smaller than the target urea water consumption amount, the urea water consumption management integrated amount is calculated. The new urea water consumption management integrated amount is calculated by subtracting the amount corresponding to the difference between the added amount of water and the target urea water consumption amount from the urea water consumption management integrated amount. The exhaust emission control device described. 前記目標決定部は、前記車両の運転状態として前記車両の車速に基づいて前記目標尿素水消費量を決定することを特徴とする請求項1または2記載の排気浄化装置。   The exhaust emission control device according to claim 1 or 2, wherein the target determining unit determines the target urea water consumption based on a vehicle speed of the vehicle as an operation state of the vehicle. 前記目標決定部は、前記車両の運転状態として前記エンジンの状態量に基づいて前記目標尿素水消費量を決定することを特徴とする請求項1または2記載の排気浄化装置。   The exhaust emission control device according to claim 1, wherein the target determination unit determines the target urea water consumption based on a state quantity of the engine as an operation state of the vehicle.
JP2015107256A 2015-05-27 2015-05-27 Exhaust purification equipment Active JP6499921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015107256A JP6499921B2 (en) 2015-05-27 2015-05-27 Exhaust purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015107256A JP6499921B2 (en) 2015-05-27 2015-05-27 Exhaust purification equipment

Publications (2)

Publication Number Publication Date
JP2016223297A true JP2016223297A (en) 2016-12-28
JP6499921B2 JP6499921B2 (en) 2019-04-10

Family

ID=57747735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015107256A Active JP6499921B2 (en) 2015-05-27 2015-05-27 Exhaust purification equipment

Country Status (1)

Country Link
JP (1) JP6499921B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014516128A (en) * 2011-05-13 2014-07-07 アークイス アンド アークイス エス アー Device for measuring a reducing agent, preferably NH3, contained in a container

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014516128A (en) * 2011-05-13 2014-07-07 アークイス アンド アークイス エス アー Device for measuring a reducing agent, preferably NH3, contained in a container

Also Published As

Publication number Publication date
JP6499921B2 (en) 2019-04-10

Similar Documents

Publication Publication Date Title
US10107163B2 (en) Exhaust gas purification apparatus for an internal combustion engine
JP5120464B2 (en) Exhaust purification device abnormality detection device and exhaust purification device abnormality detection method
JP4179386B2 (en) NOx purification system and control method of NOx purification system
WO2014087763A1 (en) System for determining deterioration of exhaust purification device
JP5723453B2 (en) A method for detecting urea deposits in an exhaust line of a vehicle such as an automobile, a method for desorbing urea deposits, and a vehicle such as an automobile adapted to such a method
JP4305643B2 (en) Exhaust gas purification device for internal combustion engine
US8540953B2 (en) Exhaust gas control apparatus and reductant dispensing method for internal combustion engine
JP2012219662A (en) Exhaust purification system for internal combustion engine
JP5910759B2 (en) Exhaust gas purification system for internal combustion engine
EP2873823B1 (en) Exhaust gas purification system for an internal combustion engine
JP2010261388A (en) Exhaust emission control device of internal combustion engine
JP6344259B2 (en) Urea addition control device, learning device
JP5194590B2 (en) Engine exhaust purification system
JP2012036840A (en) Device for diagnosing abnormality in quality of urea water
JP2009156159A (en) Device for determining abnormal section of exhaust emission control system
US10364727B2 (en) Exhaust gas purification apparatus for an internal combustion engine
JP5880593B2 (en) Exhaust gas purification device for internal combustion engine
JP6499921B2 (en) Exhaust purification equipment
WO2013190657A1 (en) Exhaust purification device for internal combustion engine
JP5949918B2 (en) Exhaust gas purification device for internal combustion engine
JP2005171809A (en) Exhaust emission control device for internal combustion engine
JP2019044706A (en) Exhaust emission control system of internal combustion engine and exhaust emission control method of internal combustion engine
KR101610114B1 (en) Control method for maintaining performance of lnt and the control system thereof
JP2014181669A (en) Failure determination system for exhaust emission control device
JP4798049B2 (en) Exhaust gas purification system for internal combustion engine and oxygen remaining level estimation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190318

R150 Certificate of patent or registration of utility model

Ref document number: 6499921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250