JP2016221443A - Method for processing liquid - Google Patents

Method for processing liquid Download PDF

Info

Publication number
JP2016221443A
JP2016221443A JP2015109111A JP2015109111A JP2016221443A JP 2016221443 A JP2016221443 A JP 2016221443A JP 2015109111 A JP2015109111 A JP 2015109111A JP 2015109111 A JP2015109111 A JP 2015109111A JP 2016221443 A JP2016221443 A JP 2016221443A
Authority
JP
Japan
Prior art keywords
liquid
concentration
concentrated
acrylonitrile
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015109111A
Other languages
Japanese (ja)
Other versions
JP6455318B2 (en
Inventor
俊介 木内
Shunsuke Kiuchi
俊介 木内
慎二 岩出
Shinji Iwade
慎二 岩出
健治 末岡
Kenji Sueoka
健治 末岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2015109111A priority Critical patent/JP6455318B2/en
Publication of JP2016221443A publication Critical patent/JP2016221443A/en
Application granted granted Critical
Publication of JP6455318B2 publication Critical patent/JP6455318B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for processing liquid for preventing foam formation of a concentrated liquid when concentrating a liquid containing a quinone compound.SOLUTION: The method for processing liquid is a processing method for a liquid including a concentration process of concentrating a liquid containing a quinone compound and the liquid is concentrated with mass concentration of the quinone compound in a concentrated liquid after concentration of 500 ppm or less in the concentration process.SELECTED DRAWING: None

Description

本発明はキノン化合物を含む液体の処理方法に関する。   The present invention relates to a method for treating a liquid containing a quinone compound.

炭化水素、アンモニア及び酸素含有ガスを原料とし、気相流動床反応によって不飽和ニトリル類を製造する方法は、アンモ酸化反応として広く知られており、中でもプロピレンのアンモ酸化反応によるアクリロニトリルの製造は、工業的に広く実施されている。アンモ酸化反応によるアクリロニトリルを含む反応ガスは、未反応のアンモニアをアンモニア吸収塔で吸収除去後、アクリロニトリル吸収塔、回収塔、精製塔、精留塔に順次、工程液を送ることで製品アクリロニトリルの精製を行っている。前記精製では主にアンモニア吸収塔及びアクリロニトリル回収塔で廃水が発生する。特許文献1には、プロピレン又はイソブチレンをアンモオキシデーションしてアクリロニトリル又はメタアクリロニトリルを製造する際に生ずるプロセス廃液に含まれるシアン類及び有機汚濁物質(COD)を予め前処理を行なってシアン濃度50〜300ppm、COD100〜500ppmの工程廃液にした後、オゾンによる酸化処理を行なう廃水の処理方法が記載されている。   A method of producing unsaturated nitriles by gas phase fluidized bed reaction using hydrocarbon, ammonia and oxygen-containing gas as raw materials is widely known as an ammoxidation reaction, and in particular, production of acrylonitrile by ammoxidation reaction of propylene, Widely used industrially. The reaction gas containing acrylonitrile by the ammoxidation reaction is used to remove unreacted ammonia by the ammonia absorption tower and then send the process liquid to the acrylonitrile absorption tower, recovery tower, purification tower, and rectification tower in order to purify the product acrylonitrile. It is carried out. In the purification, waste water is generated mainly in the ammonia absorption tower and the acrylonitrile recovery tower. In Patent Document 1, cyanides and organic pollutants (COD) contained in a process waste liquid produced when ammonitrile is used to produce acrylonitrile or methacrylonitrile by ammoxidation of propylene or isobutylene, a cyan concentration of 50 to A wastewater treatment method is described in which the process wastewater of 300 ppm and COD of 100 to 500 ppm is oxidized and then oxidized with ozone.

特許文献2には、メチル基、エチル基、プロピル基、ブチル基、およびフェニル基からなる群の中から選ばれた同一または互いに異なる2個の炭化水素基が窒素原子に結合しているとともに前記プロピル基またはブチル基が直鎖状のものであっても分枝を有するものであってもよいジチオカルバミン酸マンガン塩のうちの少なくとも1種を有効成分として含む、ビニル化合物の重合禁止剤が記載されている。   In Patent Document 2, two identical or different hydrocarbon groups selected from the group consisting of a methyl group, an ethyl group, a propyl group, a butyl group, and a phenyl group are bonded to a nitrogen atom and A vinyl compound polymerization inhibitor containing, as an active ingredient, at least one of dithiocarbamic acid manganese salt, which may be a linear or branched propyl group or butyl group, is described. ing.

特開平6−154771号公報Japanese Patent Application Laid-Open No. 6-154771 特開平5−51403号公報JP-A-5-51403

アクリロニトリル等の製造プラントを停止するとき等、廃水タンクに回収した廃水を濃縮する際に、濃縮中の濃縮液が発泡することがある。   When the wastewater collected in the wastewater tank is concentrated, for example, when a production plant for acrylonitrile or the like is stopped, the concentrated solution being concentrated may foam.

本願発明者は、アクリロニトリルを精製する際に重合禁止剤として使用していたメトキノンの残留液を廃水タンクに入れた後に濃縮液が発泡したことから、発泡の原因がメトキノンであると着眼した。そして、CE(キャピラリー電気泳動法)による酸成分分析及びGC−MS(ガスクロマトグラフ−質量分析法)による分析によって、高濃度のメトキノンが廃水中に含まれていたことを確認した。以上のことから、濃縮液の発泡の起因物質がメトキノンであることを特定した。   The inventor of the present application noticed that the cause of foaming was methoquinone because the concentrated liquid foamed after the residual liquid of methoquinone used as a polymerization inhibitor when purifying acrylonitrile was placed in a wastewater tank. And it confirmed that high concentration methoquinone was contained in waste water by the analysis by the acid component analysis by CE (capillary electrophoresis) and the analysis by GC-MS (gas chromatograph-mass spectrometry). From the above, it was specified that the substance causing foaming of the concentrate was methoquinone.

また、メトキノンの他に、ハイドロキノン等のキノン化合物が濃縮液中に存在することにより、発泡する可能性があると考えられる。   In addition to methoquinone, quinone compounds such as hydroquinone are considered to be foamed when present in the concentrate.

本発明は、このような問題に鑑みて成された発明であり、その目的は、キノン化合物を含む廃水を濃縮する際に、濃縮液の発泡を防ぐ廃水の処理方法を提供することにある。   The present invention has been made in view of such problems, and an object of the present invention is to provide a wastewater treatment method that prevents foaming of a concentrate when concentrating wastewater containing a quinone compound.

前記の課題を解決するために、本発明者が鋭意検討した結果、以下の本発明に達した。   In order to solve the above-mentioned problems, the present inventors have intensively studied, and as a result, have reached the following present invention.

すなわち、本発明に係る液体の処理方法では、キノン化合物を含む液体を濃縮する濃縮工程を含む液体の処理方法であって、前記濃縮工程では、濃縮後の濃縮液中のキノン化合物の質量濃度が500ppm以下となるように前記液体を濃縮することを特徴としている。   That is, the liquid processing method according to the present invention is a liquid processing method including a concentration step of concentrating a liquid containing a quinone compound, and in the concentration step, the mass concentration of the quinone compound in the concentrated liquid after concentration is The liquid is concentrated so as to be 500 ppm or less.

また、本発明に係る液体の処理方法では、前記液体が、アンモ酸化反応によりアクリロニトリル又はメタアクリロニトリルを製造する装置から生じた廃水であることを特徴としている。   In the liquid treatment method according to the present invention, the liquid is waste water generated from an apparatus for producing acrylonitrile or methacrylonitrile by an ammoxidation reaction.

また、本発明に係る液体の処理方法では、前記キノン化合物がハイドロキノン及びメトキノンのうち少なくともいずれかであることを特徴としている。   In the liquid treatment method according to the present invention, the quinone compound is at least one of hydroquinone and methoquinone.

また、本発明に係る液体の処理方法では、前記濃縮工程の後に、前記キノン化合物の質量濃度が500ppm以下である濃縮液に対して、濃縮とは異なる他の処理を行なう後処理工程を含むことを特徴としている。   Further, the liquid treatment method according to the present invention includes a post-treatment step of performing, after the concentration step, another treatment different from the concentration on the concentrate having a mass concentration of the quinone compound of 500 ppm or less. It is characterized by.

更に、本発明に係る液体の処理方法では、前記後処理工程は、前記濃縮液を焼却する焼却工程又は前記濃縮液と活性汚泥とを混合する活性汚泥処理工程であることを特徴としている。   Further, in the liquid treatment method according to the present invention, the post-treatment step is an incineration step of incinerating the concentrate or an activated sludge treatment step of mixing the concentrate and activated sludge.

本発明は、キノン化合物を含む廃水を濃縮する際に、濃縮液の発泡を防ぐことができるという効果を奏する。   The present invention has an effect of preventing foaming of a concentrated liquid when concentrating waste water containing a quinone compound.

本発明に係る液体の処理方法で処理するための廃水を生じさせるアンモ酸化反応によるアクリロニトリル又はメタアクリロニトリルの製造工程を示すフロー図である。It is a flowchart which shows the manufacturing process of the acrylonitrile or methacrylonitrile by the ammoxidation reaction which produces the waste water for processing with the processing method of the liquid which concerns on this invention. 本発明に係る液体の処理方法で処理する廃水の、濃縮試験に先立つ発泡試験で得られたメトキノン水溶液のpHとメトキノン水溶液の表面の泡の最大高さとの関係を示すグラフである。It is a graph which shows the relationship between the pH of the methoquinone aqueous solution obtained by the foaming test prior to the concentration test, and the maximum height of the foam on the surface of the aqueous methoquinone solution of wastewater treated by the liquid treatment method according to the present invention. 本発明に係る液体の処理方法による濃縮中の濃縮液に対する泡立ち性試験で得られた、濃縮液に添加したメトキノン及びハイドロキノンの質量濃度と泡立ち量との関係を示すグラフである。It is a graph which shows the relationship between the mass concentration and the amount of foaming of the methoquinone and hydroquinone added to the concentrate obtained by the foamability test with respect to the concentrate during concentration by the liquid processing method according to the present invention.

<液体の処理方法>
本発明に係る液体の処理方法は、キノン化合物を含む液体を濃縮する濃縮工程を含む液体の処理方法であって、前記濃縮工程では、濃縮後の濃縮液中のキノン化合物の質量濃度が500ppm以下となるように前記液体を濃縮する。これにより、キノン化合物を含む液体を濃縮する際に、濃縮液の発泡を防ぐことができる。
<Liquid processing method>
The liquid treatment method according to the present invention is a liquid treatment method including a concentration step of concentrating a liquid containing a quinone compound, and in the concentration step, the mass concentration of the quinone compound in the concentrated solution after concentration is 500 ppm or less. The liquid is concentrated so that Thereby, when condensing the liquid containing a quinone compound, foaming of a concentrate can be prevented.

〔キノン化合物を含む液体〕
本発明に係る液体の処理方法は、キノン化合物を含む液体であれば様々な液体を処理することができる。
[Liquid containing quinone compound]
The liquid treatment method according to the present invention can treat various liquids as long as the liquid contains a quinone compound.

キノン化合物としては、o−ベンゾキノン又はp−ベンゾキノンの構造を有する化合物及びその誘導体であればよい。キノン化合物の具体例としては、例えば、ハイドロキノン、メトキノン、1,4−ベンゾキノン、1,4−ナフトキノン等が挙げられる。処理する液体に含まれるキノン化合物は1種でもよく複数種でもよい。キノン化合物が複数種含まれる場合、濃縮工程では、キノン化合物の総量の質量濃度が500ppm以下となるように液体を濃縮する。   The quinone compound may be a compound having a structure of o-benzoquinone or p-benzoquinone and a derivative thereof. Specific examples of the quinone compound include hydroquinone, methoquinone, 1,4-benzoquinone, 1,4-naphthoquinone, and the like. The quinone compound contained in the liquid to be treated may be one kind or plural kinds. When a plurality of quinone compounds are contained, in the concentration step, the liquid is concentrated so that the total mass concentration of the quinone compounds is 500 ppm or less.

キノン化合物を含む液体としては、例えば、アンモ酸化反応によりアクリロニトリル又はメタアクリロニトリル(以下、「アクリロニトリル等」ともいう。)を製造する装置から生じた廃水が挙げられる。本発明は、このような廃水に対して好適に利用できる。   Examples of the liquid containing a quinone compound include waste water generated from an apparatus for producing acrylonitrile or methacrylonitrile (hereinafter also referred to as “acrylonitrile”) by an ammoxidation reaction. The present invention can be suitably used for such waste water.

なお、「製造する装置から生じた廃水」は、アクリロニトリル等を製造するときに装置から生じる廃水のみを意味するものではない。アクリロニトリル等を製造していないときに装置をメンテナンスしているとき、製造を停止するための操作をしているとき、製造を開始するために装置を立ち上げているとき等、アクリロニトリル等を製造しているか否かにかかわらず、製造を行なうための装置から出る廃水全てを意味している。   The “waste water generated from the manufacturing apparatus” does not mean only the waste water generated from the apparatus when acrylonitrile or the like is manufactured. Manufacture acrylonitrile, etc., when the equipment is being maintained when acrylonitrile, etc. is not being manufactured, when operations are being performed to stop manufacturing, when the equipment is being started up to start manufacturing, etc. It means all the waste water from the equipment for manufacturing, whether or not.

〔濃縮工程〕
濃縮工程は、キノン化合物を含む液体を濃縮する工程である。
[Concentration process]
A concentration process is a process of concentrating the liquid containing a quinone compound.

濃縮工程では、最終的に得られる濃縮後の濃縮液中のキノン化合物の質量濃度が500ppm以下となるように廃水を濃縮すればよい。さらには、質量濃度が300ppm以下となるように濃縮することが好ましい。   In the concentration step, the waste water may be concentrated so that the mass concentration of the quinone compound in the concentrated liquid obtained after concentration is 500 ppm or less. Furthermore, it is preferable to concentrate so that mass concentration may be 300 ppm or less.

また、濃縮は一段階で行なってもよく、二段階以上の複数回に分けて行なってもよい。二段階で濃縮を行なう方法としては、例えば、次のような方法が挙げられる。つまり、一段階目で濃縮した後に得られた第一濃縮液と、濃縮した際に蒸発した気体とを気液分離器に通して第一濃縮液と気体とを分離する。第一濃縮液に対して、さらに二段階目の濃縮を行なう。気液分離器で分離された気体は圧縮して液化し、一段階目の濃縮を行なう濃縮器に戻してもよいし、二段階目の濃縮を行なう濃縮器に入れてもよい。そして、二段階濃縮した第二濃縮液を最終的に得られた濃縮液として回収する。   Further, the concentration may be performed in one step, or may be performed in multiple steps of two or more steps. Examples of the method for concentration in two stages include the following methods. That is, the first concentrated liquid obtained after concentration in the first stage and the gas evaporated when concentrated are passed through a gas-liquid separator to separate the first concentrated liquid and the gas. A second stage of concentration is performed on the first concentrated liquid. The gas separated by the gas-liquid separator may be compressed and liquefied, and returned to the concentrator that performs the first-stage concentration, or may be put into the concentrator that performs the second-stage concentration. Then, the second concentrated liquid concentrated in two stages is recovered as the finally obtained concentrated liquid.

二段階で廃水を濃縮する場合、一段階目に廃水を濃縮した後の第一濃縮液中のキノン化合物の質量濃度が500ppm以下となるように濃縮することが好ましい。二段階目に廃水を濃縮した後の第二濃縮液中のキノン化合物の質量濃度についても500ppm以下であるように濃縮すればよい。   When the wastewater is concentrated in two stages, it is preferable to concentrate so that the mass concentration of the quinone compound in the first concentrated liquid after the concentration of the wastewater in the first stage is 500 ppm or less. What is necessary is just to concentrate so that it may also be 500 ppm or less also about the mass concentration of the quinone compound in the 2nd concentrate after condensing wastewater at the 2nd step.

濃縮するための具体的な方法については、特に限定されないが、加熱による加熱濃縮が好ましい。短時間に効率的に濃縮できるからである。   Although the specific method for concentrating is not particularly limited, heating concentration by heating is preferable. It is because it can concentrate efficiently in a short time.

加熱濃縮する場合の加熱温度としては、85℃以上、110℃以下の範囲であることが好ましい。   The heating temperature for heat concentration is preferably in the range of 85 ° C. or higher and 110 ° C. or lower.

加熱する際には加圧することが好ましい。加える圧力としては6kPa以上、300kPa以下の範囲であることが好ましい。   It is preferable to apply pressure when heating. The applied pressure is preferably in the range of 6 kPa to 300 kPa.

濃縮によって減少させる廃水の容積、質量については、キノン化合物の質量濃度が500ppm以下である限り、可能な限り減少させることがより好ましい。濃縮の後に行なう処理が容易になるからである。   As for the volume and mass of wastewater to be reduced by concentration, it is more preferable to reduce as much as possible as long as the mass concentration of the quinone compound is 500 ppm or less. This is because the treatment performed after the concentration is facilitated.

〔後処理工程〕
本発明に係る液体の処理方法は、濃縮工程の後に、キノン化合物の質量濃度が500ppm以下である濃縮液に対して、濃縮とは異なる他の処理を行なう後処理工程を含んでもよい。
[Post-treatment process]
The liquid treatment method according to the present invention may include a post-treatment step of performing another treatment different from the concentration on the concentrate having a mass concentration of the quinone compound of 500 ppm or less after the concentration step.

濃縮工程後の濃縮液は、発泡して飛沫同伴することが抑制されている。そのため、例えば、廃水を処理するための他の工程を、発泡に起因するトラブルが起こる可能性をより低くした上で、行なうことができる。   The concentrated solution after the concentration step is suppressed from foaming and entraining. Therefore, for example, another process for treating waste water can be performed with a lower possibility of troubles caused by foaming.

後処理工程としては、液体の処理の目的に応じて適宜選択すればよいが、例えば、濃縮液を焼却する焼却処理、濃縮液と活性汚泥とを混合する活性汚泥処理などが挙げられる。後処理工程は、一種類の処理のみ単独で行なってもよく、複数の種類の処理を共に行なってもよい。   The post-treatment process may be appropriately selected according to the purpose of the liquid treatment, and examples thereof include an incineration treatment in which the concentrated liquid is incinerated, and an activated sludge treatment in which the concentrated liquid and activated sludge are mixed. In the post-processing step, only one type of processing may be performed alone, or a plurality of types of processing may be performed together.

焼却処理をする際の温度としては、例えば、800℃以上、1100℃以下の範囲であることが好ましい。   The temperature at the time of incineration is preferably in the range of 800 ° C. or higher and 1100 ° C. or lower, for example.

活性汚泥処理については、公知の方法に従って、濃縮液と活性汚泥とを混合して、汚泥の種類に応じて適宜曝気する等して汚泥を活性化させればよい。また、焼却処理で生じた塵を集塵して活性汚泥に加えてもよい。   About activated sludge processing, according to a well-known method, a concentrated liquid and activated sludge should be mixed, and a sludge should be activated by aeration suitably according to the kind of sludge. Further, dust generated by the incineration process may be collected and added to the activated sludge.

〔アンモ酸化反応によるアクリロニトリル等の製造装置の一例〕
次に、アンモ酸化反応によるアクリロニトリル又はメタアクリロニトリルを製造する装置の一例について図1を用いて説明する。これにより、本発明に係る液体の処理方法で処理する液体の一例である廃水について説明する。
[Example of equipment for producing acrylonitrile by ammoxidation reaction]
Next, an example of an apparatus for producing acrylonitrile or methacrylonitrile by an ammoxidation reaction will be described with reference to FIG. Thereby, the waste water which is an example of the liquid processed with the processing method of the liquid which concerns on this invention is demonstrated.

まず、反応器11に、炭化水素A、アンモニアB、及び酸素含有ガスCを導入し、アンモ酸化触媒を用いてアンモ酸化反応を行なう。   First, hydrocarbon A, ammonia B, and oxygen-containing gas C are introduced into the reactor 11, and an ammoxidation reaction is performed using an ammoxidation catalyst.

炭化水素Aとしては、例えば、プロピレン等のオレフィン、プロパン、イソブチレン又はこれらの混合ガス等が挙げられる。また、酸素含有ガスCとしては、通常は低コストである空気が用いられるが、必要濃度の酸素を含有しているガスであれば、残成分を不活性ガスで組成される混合ガスで構成することも可能である。   Examples of the hydrocarbon A include olefins such as propylene, propane, isobutylene, or a mixed gas thereof. In addition, as the oxygen-containing gas C, air that is usually low-cost is used, but if the gas contains a necessary concentration of oxygen, the remaining components are composed of a mixed gas composed of an inert gas. It is also possible.

アンモ酸化触媒としては、例えば、リン、モリブデン、鉄又はアンチモン等の元素を含む周知の複合金属酸化物触媒を使用することができる。   As the ammoxidation catalyst, for example, a well-known composite metal oxide catalyst containing an element such as phosphorus, molybdenum, iron or antimony can be used.

反応器11から抜き出されたアンモ酸化反応ガスDは、アンモニア吸収塔12に供給される。アンモニア吸収塔12には、硫酸水Eも供給される。アンモ酸化反応ガスDは硫酸水Eに直接接触して冷却される。硫酸水Eと接触してアンモ酸化反応ガスD中の未反応のアンモニアガスが中和されて硫酸アンモニウム水溶液Fとして系外へ取り除かれる。   The ammoxidation reaction gas D extracted from the reactor 11 is supplied to the ammonia absorption tower 12. The ammonia absorption tower 12 is also supplied with sulfuric acid water E. The ammoxidation reaction gas D is cooled in direct contact with the sulfuric acid water E. In contact with the sulfuric acid water E, the unreacted ammonia gas in the ammoxidation reaction gas D is neutralized and removed from the system as an aqueous ammonium sulfate solution F.

未反応のアンモニアを除去した分離ガスGは、アクリロニトリル吸収塔13へ供給される。供給された分離ガスGは、アクリロニトリル吸収塔13に供給されるアクリロニトリル吸収溶剤H中へ吸収される。具体的には、アクリロニトリル吸収溶剤Hは、アクリロニトリル、青酸、アセトニトリル及びアクロレイン等の副生成物を吸収する。その後、アクリロニトリル及び青酸等を吸収したアクリロニトリル吸収溶剤H(缶出液I)は、塔底より抜き出される。アクリロニトリル吸収溶剤Hとしては、後段のプロセスに悪影響を与えないような溶剤であればよく、有機溶媒を溶解した水溶液及び水が好ましい。   The separation gas G from which unreacted ammonia has been removed is supplied to the acrylonitrile absorption tower 13. The supplied separation gas G is absorbed into the acrylonitrile absorption solvent H supplied to the acrylonitrile absorption tower 13. Specifically, the acrylonitrile absorbing solvent H absorbs by-products such as acrylonitrile, hydrocyanic acid, acetonitrile, and acrolein. Thereafter, the acrylonitrile-absorbing solvent H (bottom liquor I) that has absorbed acrylonitrile, hydrocyanic acid and the like is withdrawn from the bottom of the column. The acrylonitrile absorbing solvent H may be any solvent that does not adversely affect the subsequent process, and an aqueous solution and water in which an organic solvent is dissolved are preferable.

アクリロニトリル吸収塔13の塔底より抜き出された缶出液Iは、アクリロニトリル回収塔14に供給される。アクリロニトリル回収塔14では、ストリッピング又は蒸留等の手段により、ガス状のアクリロニトリルを主成分として青酸及びアクリロニトリルとの共沸組成分量の水蒸気が塔頂より塔頂液Kとして回収され、次工程に送られる。   The bottoms I extracted from the bottom of the acrylonitrile absorption tower 13 is supplied to the acrylonitrile recovery tower 14. In the acrylonitrile recovery column 14, water vapor having an azeotropic composition amount of gaseous acrylonitrile and hydrocyanic acid and acrylonitrile as a main component is recovered as a column top liquid K from the column top by means such as stripping or distillation and sent to the next step. It is done.

アクリロニトリル回収塔14では、上段部から中段部付近において、アセトニトリル等のガス状の不純物を、混合ガスJとして抜き出す。これは、アセトニトリル分離塔21に送られ、アセトニトリル等のガス成分を分離し、残液Nである水は、アクリロニトリル回収塔14に戻されて使用される。さらに、アクリロニトリル回収塔14に残留する不純物が増加してきた場合、適宜、塔内液を抜き出し不純物Mとして抜き出すことにより、アクリロニトリル回収塔14内の不純物の蓄積を防止する。   In the acrylonitrile recovery tower 14, gaseous impurities such as acetonitrile are extracted as a mixed gas J from the upper stage to the vicinity of the middle stage. This is sent to the acetonitrile separation column 21 to separate gas components such as acetonitrile, and the residual water N is returned to the acrylonitrile recovery column 14 for use. Furthermore, when impurities remaining in the acrylonitrile recovery tower 14 increase, the accumulation of impurities in the acrylonitrile recovery tower 14 is prevented by appropriately extracting the liquid in the tower as the impurities M.

アクリロニトリル回収塔14において、塔頂液K、混合ガスJを取り除いた後の塔底液は適宜抜き出される。アクリロニトリル回収塔14から抜き出される廃水Lが本発明に係る液体の処理方法によって処理される。後述するようにキノン化合物は後のプロセスで重合禁止剤として用いるため、製造過程では、キノン化合物が廃水Lに含まれる可能性は低い。しかし、製造の停止操作中に、重合禁止剤(キノン化合物)を回収したときの廃水Lは本発明に係る液体の処理方法で好適に処理される。つまり、装置の運転を停止して、装置が備える各塔、各タンクの残留物を、アクリロニトリル回収塔14を介して廃水タンク(図示せず)に集める際に、キノン化合物の濃度を管理することで、濃縮によって発泡飛沫することを抑制することができる。なお、ここで、本発明者らが得たキノン化合物の発泡性に基づいて、廃水L中のキノン化合物の濃度を管理してもよい。   In the acrylonitrile recovery tower 14, the bottom liquid after removing the top liquid K and the mixed gas J is appropriately extracted. The waste water L extracted from the acrylonitrile recovery tower 14 is treated by the liquid treatment method according to the present invention. As will be described later, since the quinone compound is used as a polymerization inhibitor in a later process, the possibility that the quinone compound is contained in the waste water L is low in the production process. However, the waste water L when the polymerization inhibitor (quinone compound) is recovered during the production stop operation is suitably treated by the liquid treatment method according to the present invention. That is, the concentration of the quinone compound is controlled when the operation of the apparatus is stopped and the residue of each tower and each tank provided in the apparatus is collected in a wastewater tank (not shown) via the acrylonitrile recovery tower 14. Thus, foaming and splashing can be suppressed by concentration. Here, based on the foamability of the quinone compound obtained by the present inventors, the concentration of the quinone compound in the wastewater L may be controlled.

塔頂液Kは、脱青酸塔15に供給されて、塔頂液K中の青酸Oが分離される。青酸Oが分離された後の残りの液を塔底より缶出液Pとして取り出す。脱青酸塔15では、アクリロニトリルの重合抑制のために、キノン化合物であるハイドロキノンが供給される。ハイドロキノンは別のタンク(図示せず)に貯留されており、必要に応じて脱青酸塔15に供給される。   The tower top liquid K is supplied to the dehydrating acid tower 15 to separate the hydrocyanic acid O in the tower top liquid K. The remaining liquid after the cyanide O is separated is taken out as a bottoms P from the tower bottom. In the dehydration acid tower 15, hydroquinone, which is a quinone compound, is supplied in order to suppress polymerization of acrylonitrile. Hydroquinone is stored in another tank (not shown), and is supplied to the dehydration acid tower 15 as necessary.

次いで、缶出液Pはアクリロニトリル精製塔16に供給されて脱水される。脱水された液は、塔底より脱水缶出液Qとして取り出される。   Next, the bottoms P is supplied to the acrylonitrile purification tower 16 and dehydrated. The dehydrated liquid is taken out from the bottom of the tower as dehydrated canned liquid Q.

アクリロニトリル精製塔16では、アクリロニトリルの重合抑制のために、ハイドロキノンが供給される。ハイドロキノンは別のタンク(図示せず)に貯留されており、必要に応じてアクリロニトリル精製塔16に供給される。   In the acrylonitrile purification tower 16, hydroquinone is supplied in order to suppress polymerization of acrylonitrile. Hydroquinone is stored in another tank (not shown), and is supplied to the acrylonitrile purification tower 16 as necessary.

精留塔17に送られた脱水缶出液Qは精製されて、アクリロニトリルRが得られる。精留塔17では、アクリロニトリルの重合抑制のために、キノン化合物であるメトキノンが供給される。メトキノンは別のタンク(図示せず)に貯留されており、必要に応じて精留塔17に供給される。   The dewatered effluent Q sent to the rectification column 17 is purified to obtain acrylonitrile R. In the rectification column 17, methoquinone, which is a quinone compound, is supplied to suppress polymerization of acrylonitrile. Metoquinone is stored in a separate tank (not shown) and is supplied to the rectification column 17 as necessary.

本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。   The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.

<発泡試験>
メトキノンの質量濃度とメトキノン水溶液の表面の泡の高さとの関係を調べた。具体的には、水溶液中のメトキノンの質量濃度が互いに異なる3種類のメトキノン水溶液を用いて発泡試験を行なった。
<Foaming test>
The relationship between the mass concentration of methoquinone and the height of bubbles on the surface of the aqueous solution of methoquinone was investigated. Specifically, the foaming test was performed using three types of aqueous methoquinone solutions having different mass concentrations of methoquinone in the aqueous solution.

各水溶液のpHを5.5から10.0まで変化させて、各pHにおける泡の最大高さを、吹き込み管発泡試験装置を用いて測定した。   The pH of each aqueous solution was changed from 5.5 to 10.0, and the maximum height of bubbles at each pH was measured using a blow tube foaming test apparatus.

メトキノン水溶液のpHとメトキノン水溶液の表面の泡の最大高さとの関係をグラフにプロットした。結果を図2に示す。図2は、メトキノン水溶液のpHとメトキノン水溶液の表面の泡の最大高さとの関係を示す図であり、横軸がpH、縦軸が泡の最大高さ(cm)を示し、白丸が50ppm、黒三角が1000ppm、白三角が1500ppmのときの結果を示す。   The relationship between the pH of the aqueous solution of methoquinone and the maximum height of bubbles on the surface of the aqueous solution of methoquinone was plotted on a graph. The results are shown in FIG. FIG. 2 is a graph showing the relationship between the pH of the aqueous solution of methoquinone and the maximum height of bubbles on the surface of the aqueous solution of methoquinone, where the horizontal axis indicates pH, the vertical axis indicates the maximum height of bubbles (cm), the white circle is 50 ppm, The results when the black triangle is 1000 ppm and the white triangle is 1500 ppm are shown.

図2に示すように、水溶液中のメトキノンの質量濃度が高いと発泡することが示された。   As shown in FIG. 2, it was shown that foaming occurs when the mass concentration of methoquinone in the aqueous solution is high.

<廃水の濃縮試験>
〔実施例1〕
廃水中のハイドロキノンの質量濃度が15ppmの回収塔廃水1kgを、ジャケット付で1Lのガラス製セパラブルフラスコに投入し、215kPaで加圧しながら、101℃で加熱することで0.05kgまで濃縮した。
<Concentration test of wastewater>
[Example 1]
1 kg of recovery tower waste water with a hydroquinone mass concentration of 15 ppm in waste water was charged into a 1 L glass separable flask with a jacket, and concentrated to 0.05 kg by heating at 101 ° C. while pressurizing at 215 kPa.

濃縮中の濃縮液表面の泡の高さは約3.0cmで泡が飛沫同伴することなく、安定して濃縮することができた。   The height of the foam on the concentrated liquid surface during concentration was about 3.0 cm, and the foam could be stably concentrated without entrainment of bubbles.

〔実施例2〕
廃水中のハイドロキノンの質量濃度が15ppmの回収塔廃水1kgに、添加後の回収塔廃水中のメトキノンの質量濃度が50ppmとなるようにメトキノンを添加した。メトキノンを添加後の回収塔廃水を、ジャケット付で1Lのガラス製セパラブルフラスコに投入し、213.5kPaで加圧しながら、100℃で加熱することで0.33kgまで濃縮した。
[Example 2]
Metoquinone was added to 1 kg of recovery tower wastewater having a mass concentration of hydroquinone in the wastewater of 15 ppm so that the mass concentration of methoquinone in the recovery tower wastewater after the addition was 50 ppm. The recovery tower wastewater after the addition of methoquinone was put into a 1 L glass separable flask with a jacket, and concentrated to 0.33 kg by heating at 100 ° C. while being pressurized at 213.5 kPa.

濃縮中の濃縮液表面の泡の高さは約2.5cmで泡が飛沫同伴することなく、安定して濃縮することができた。   The height of the foam on the concentrated liquid surface during the concentration was about 2.5 cm, and the foam could be stably concentrated without entrainment of the foam.

〔実施例3〕
廃水中のハイドロキノンの質量濃度が15ppmの回収塔廃水1kgに、添加後の回収塔廃水中のメトキノンの質量濃度が100ppmとなるようにメトキノンを添加した。メトキノンを添加後の回収塔廃水を、ジャケット付で1Lのガラス製セパラブルフラスコに投入し、216.0kPaで加圧しながら、101℃で加熱することで0.46kgまで濃縮した。
Example 3
Metoquinone was added to 1 kg of recovery tower waste water having a hydroquinone mass concentration of 15 ppm so that the mass concentration of methoquinone in the recovery tower waste water after addition was 100 ppm. The recovery tower waste water after the addition of methoquinone was put into a 1 L glass separable flask with a jacket, and it was concentrated to 0.46 kg by heating at 101 ° C. while being pressurized at 216.0 kPa.

濃縮中の濃縮液表面の泡の高さは約3cmで泡が飛沫同伴することなく、安定して濃縮することができた。   The height of the foam on the concentrated liquid surface during the concentration was about 3 cm, and the foam could be stably concentrated without entrainment of bubbles.

〔実施例4〕
廃水中のハイドロキノンの質量濃度が15ppmの回収塔廃水1kgを、希釈後の回収塔廃水中のハイドロキノンの質量濃度が1ppmとなるように、純水で15倍に希釈した。希釈後の回収塔廃水を、ジャケット付で1Lのガラス製セパラブルフラスコに投入し、215.6kPaで加圧しながら、101℃で加熱することで0.05kgまで濃縮した。
Example 4
1 kg of recovery tower waste water having a hydroquinone mass concentration of 15 ppm in waste water was diluted 15 times with pure water so that the hydroquinone mass concentration in the recovered recovery tower waste water was 1 ppm. The recovered waste water after dilution was put into a 1 L glass separable flask with a jacket, and concentrated to 0.05 kg by heating at 101 ° C. while being pressurized at 215.6 kPa.

濃縮中の濃縮液表面の泡の高さは約1.5cmで泡が飛沫同伴することなく、安定して濃縮することができた。   The height of the foam on the concentrated liquid surface during the concentration was about 1.5 cm, and the foam could be stably concentrated without entrainment of bubbles.

〔比較例1〕
廃水中のハイドロキノンの質量濃度が15ppmの回収塔廃水1kgに、添加後の回収塔廃水中のメトキノンの質量濃度が600ppmとなるようにメトキノンを添加した。メトキノンを添加後の回収塔廃水を、ジャケット付で1Lのガラス製セパラブルフラスコに投入し、215.6kPaで加圧しながら、101℃で加熱することで濃縮した。
[Comparative Example 1]
Metoquinone was added to 1 kg of recovery tower waste water having a hydroquinone mass concentration of 15 ppm so that the mass concentration of methoquinone in the recovery tower waste water after addition was 600 ppm. The recovery tower waste water after the addition of methoquinone was put into a 1 L glass separable flask with a jacket, and concentrated by heating at 101 ° C. while being pressurized at 215.6 kPa.

濃縮中の濃縮液表面の泡の高さは約5cmで濃縮廃水の一部が泡状となって流出液に流出したので濃縮を中断した。   During the concentration, the height of the foam on the surface of the concentrated liquid was about 5 cm, and a part of the concentrated wastewater was foamed and flowed into the effluent, so the concentration was interrupted.

〔比較例2〕
廃水中のハイドロキノンの質量濃度が15ppmの回収塔廃水1kgに、添加後の回収塔廃水中のメトキノンの質量濃度が1000ppmとなるようにメトキノンを添加した。メトキノンを添加後の回収塔廃水を、ジャケット付で1Lのガラス製セパラブルフラスコに投入し、215.6kPaで加圧しながら、101℃で加熱することで濃縮した。
[Comparative Example 2]
Metoquinone was added to 1 kg of recovery tower waste water having a hydroquinone mass concentration of 15 ppm so that the mass concentration of methoquinone in the recovery tower waste water after addition was 1000 ppm. The recovery tower waste water after the addition of methoquinone was put into a 1 L glass separable flask with a jacket, and concentrated by heating at 101 ° C. while being pressurized at 215.6 kPa.

濃縮中の濃縮液表面の泡の高さは約9cmで濃縮廃水の大半が泡状となって流出液に流出したので濃縮を中断した。   During the concentration, the height of the foam on the surface of the concentrated liquid was about 9 cm, and most of the concentrated wastewater was foamed and flowed into the effluent, so the concentration was interrupted.

〔比較例3〕
廃水中のハイドロキノンの質量濃度が15ppmの回収塔廃水1kgに、添加後の回収塔廃水中のメトキノンの質量濃度が1500ppmとなるようにメトキノンを添加した。メトキノンを添加後の回収塔廃水を、ジャケット付で1Lのガラス製セパラブルフラスコに投入し、215.6kPaで加圧しながら、101℃で加熱することで濃縮した。
[Comparative Example 3]
Metoquinone was added to 1 kg of recovery tower wastewater having a hydroquinone mass concentration of 15 ppm so that the mass concentration of methoquinone in the recovery tower wastewater after addition was 1500 ppm. The recovery tower waste water after the addition of methoquinone was put into a 1 L glass separable flask with a jacket, and concentrated by heating at 101 ° C. while being pressurized at 215.6 kPa.

濃縮中の濃縮液表面の泡の高さは約9cmで濃縮廃水の大半が泡状となって流出液に流出したので濃縮を中断した。   During the concentration, the height of the foam on the surface of the concentrated liquid was about 9 cm, and most of the concentrated wastewater was foamed and flowed into the effluent, so the concentration was interrupted.

<濃縮液にメトキノン及びハイドロキノンを添加したときの泡立ち性試験>
濃縮液中に添加するメトキノン及びハイドロキノンの質量濃度の管理基準値を設けるために、アクリロニトリルの製造プラントの回収塔から回収した廃水(廃液)を一次濃縮した濃縮液に、メトキノン及びハイドロキノンをそれぞれ添加して泡立ち性試験を行なった。
<Bubbling test when methoquinone and hydroquinone are added to the concentrate>
In order to establish a control standard value for the mass concentration of methoquinone and hydroquinone added to the concentrate, methoquinone and hydroquinone were respectively added to the concentrate obtained by first concentrating waste water (waste liquid) collected from the recovery tower of the acrylonitrile production plant. The foaming property test was conducted.

前記製造プラントの回収塔は、前工程である吸収塔の工程液から有効成分であるアクリロニトリル、アセトニトリル及び青酸を回収し、分離精製するプラントである。また、一次濃縮とは廃水を加熱条件下で0.01〜0.9倍に濃縮することを指す。   The recovery tower of the manufacturing plant is a plant that recovers, purifies, and purifies acrylonitrile, acetonitrile, and hydrocyanic acid, which are active ingredients, from the process liquid of the absorption tower that is the preceding process. Moreover, primary concentration refers to concentrating waste water 0.01 to 0.9 times under heating conditions.

なお、プラントの立ち上げ直後に回収した廃水を一次濃縮した濃縮液には発泡現象が見られなかった。   In addition, the foaming phenomenon was not seen in the concentrate which concentrated the waste water collect | recovered immediately after the start-up of a plant.

濃縮液に対してメトキノンを添加して、メトキノンの質量濃度が100ppmから800ppmの範囲の溶液を調製した。比較のためメトキノンを添加しない濃縮液についても以降の試験に供した。   Metoquinone was added to the concentrate to prepare a solution having a mass concentration of methoquinone in the range of 100 ppm to 800 ppm. For comparison, a concentrated solution to which no methoquinone was added was also subjected to subsequent tests.

また、濃縮液に対してハイドロキノンを添加して、ハイドロキノンの質量濃度が200ppmから800ppmの範囲の溶液を調製した。   In addition, hydroquinone was added to the concentrated solution to prepare a solution having a hydroquinone mass concentration in the range of 200 ppm to 800 ppm.

メトキノン又はハイドロキノンを添加した各溶液について、メトキノン及びハイドロキノンの各質量濃度における泡立ち量(cm)を測定した。泡立ち量は泡の高さを計測することで測定した。   About each solution which added methoquinone or hydroquinone, the foaming amount (cm) in each mass concentration of methoquinone and hydroquinone was measured. The amount of foaming was measured by measuring the height of the foam.

結果を図3に示す。図3は、濃縮液中のキノン化合物の濃度に対する泡立ち量を調べた結果を示す図であり、白丸がメトキノンを添加したとき、白四角がハイドロキノンを添加したときの結果を示す。また、図3には、実際に前記製造プラントの運転、停止等の作業をしている際に、発泡が生じたときの濃縮液のメトキノン濃度も黒四角にて示す。   The results are shown in FIG. FIG. 3 is a diagram showing the results of examining the amount of foaming with respect to the concentration of the quinone compound in the concentrated liquid. When white circles add methoquinone, the white squares show results when hydroquinone is added. Further, in FIG. 3, the concentration of methoquinone in the concentrated liquid when foaming occurs during actual operation of the production plant, such as operation and stoppage, is also indicated by black squares.

また、泡立ち量を4cm程度に抑えるためには、ハイドロキノンの濃度が500ppm以下が好ましいことが分かった。   Moreover, in order to suppress the foaming amount to about 4 cm, it was found that the concentration of hydroquinone is preferably 500 ppm or less.

また、濃縮液中のハイドロキノンの質量濃度が500ppmのときの泡立ち量と同じ泡立ち量であるメトキノンの最大質量濃度は100ppmであり、これらの濃度を、製造プラントを管理するときの基準とすることがより好ましいことが分かった。   In addition, the maximum mass concentration of methoquinone, which is the same foaming amount as the foaming amount when the hydroquinone mass concentration in the concentrate is 500 ppm, is 100 ppm, and these concentrations may be used as a reference when managing the manufacturing plant. It turned out to be more preferable.

本発明は、キノン化合物を含む液体の処理方法に利用することができる。   The present invention can be used in a method for treating a liquid containing a quinone compound.

11 反応器
12 アンモニア吸収塔
13 アクリロニトリル吸収塔
14 アクリロニトリル回収塔
15 脱青酸塔
16 アクリロニトリル精製塔
17 精留塔
21 アセトニトリル分離塔
A 炭化水素
B アンモニア
C 酸素含有ガス
D アンモ酸化反応ガス
E 硫酸水
F 硫酸アンモニウム水溶液
G 分離ガス
H アクリロニトリル吸収溶剤
I 缶出液
J 混合ガス
K 塔頂液
L 廃水
M 抜き出し不純物
N 残液
O 青酸
P 缶出液
Q 脱水缶出液
R アクリロニトリル
DESCRIPTION OF SYMBOLS 11 Reactor 12 Ammonia absorption tower 13 Acrylonitrile absorption tower 14 Acrylonitrile recovery tower 15 Dehydration acid tower 16 Acrylonitrile purification tower 17 Rectification tower 21 Acetonitrile separation tower A Hydrocarbon B Ammonia C Oxygen-containing gas D Ammoxidation reaction gas E Sulfate water F Ammonium sulfate Aqueous solution G Separation gas H Acrylonitrile absorbing solvent I Bottom liquid J Mixed gas K Tower top liquid L Waste water M Drained impurities N Residual liquid O Blue acid P Bottom liquid Q Dehydrated bottom liquid R Acrylonitrile

Claims (5)

キノン化合物を含む液体を濃縮する濃縮工程を含む液体の処理方法であって、
前記濃縮工程では、濃縮後の濃縮液中のキノン化合物の質量濃度が500ppm以下となるように前記液体を濃縮する液体の処理方法。
A liquid treatment method comprising a concentration step of concentrating a liquid containing a quinone compound,
In the concentration step, the liquid treatment method of concentrating the liquid so that the mass concentration of the quinone compound in the concentrated liquid after concentration is 500 ppm or less.
前記液体が、アンモ酸化反応によりアクリロニトリル又はメタアクリロニトリルを製造する装置から生じた廃水である請求項1に記載の液体の処理方法。   The liquid treatment method according to claim 1, wherein the liquid is wastewater generated from an apparatus for producing acrylonitrile or methacrylonitrile by an ammoxidation reaction. 前記キノン化合物がハイドロキノン及びメトキノンのうち少なくともいずれかである請求項1又は請求項2に記載の液体の処理方法。   The liquid treatment method according to claim 1, wherein the quinone compound is at least one of hydroquinone and methoquinone. 前記濃縮工程の後に、前記キノン化合物の質量濃度が500ppm以下である濃縮液に対して、濃縮とは異なる他の処理を行なう後処理工程を含む請求項1〜3のいずれか1項に記載の液体の処理方法。   4. The post-treatment step according to claim 1, further comprising a post-treatment step of performing another treatment different from the concentration on the concentrate having a mass concentration of the quinone compound of 500 ppm or less after the concentration step. Liquid processing method. 前記後処理工程は、前記濃縮液を焼却する焼却工程又は前記濃縮液と活性汚泥とを混合する活性汚泥処理工程である請求項4に記載の液体の処理方法。   The liquid processing method according to claim 4, wherein the post-treatment step is an incineration step of incinerating the concentrate or an activated sludge treatment step of mixing the concentrate and activated sludge.
JP2015109111A 2015-05-28 2015-05-28 Method for treating liquid and method for producing acrylonitrile or methacrylonitrile Active JP6455318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015109111A JP6455318B2 (en) 2015-05-28 2015-05-28 Method for treating liquid and method for producing acrylonitrile or methacrylonitrile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015109111A JP6455318B2 (en) 2015-05-28 2015-05-28 Method for treating liquid and method for producing acrylonitrile or methacrylonitrile

Publications (2)

Publication Number Publication Date
JP2016221443A true JP2016221443A (en) 2016-12-28
JP6455318B2 JP6455318B2 (en) 2019-01-23

Family

ID=57745280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015109111A Active JP6455318B2 (en) 2015-05-28 2015-05-28 Method for treating liquid and method for producing acrylonitrile or methacrylonitrile

Country Status (1)

Country Link
JP (1) JP6455318B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5091154A (en) * 1973-12-18 1975-07-21
US4720566A (en) * 1986-10-23 1988-01-19 Betz Laboratories, Inc. Method and composition for inhibiting acrylonitrile polymerization
JPH06148391A (en) * 1992-11-06 1994-05-27 Hitachi Ltd Equipment and method for treating liquid waste
JP2002159963A (en) * 2000-11-28 2002-06-04 National Institute For Materials Science Device for concentrating water-soluble liquid waste
JP2005334867A (en) * 2004-04-28 2005-12-08 Sumitomo Chemical Co Ltd Treatment method for organic matter-containing wastewater
JP2006272123A (en) * 2005-03-29 2006-10-12 Sumitomo Chemical Co Ltd Phenols-containing waste water treatment method
JP2012106956A (en) * 2010-11-18 2012-06-07 Asahi Kasei Chemicals Corp Purification method of polymerizable compound
JP2013151455A (en) * 2012-01-25 2013-08-08 Mitsubishi Chemicals Corp Method of producing (meth)acrylic acid

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5091154A (en) * 1973-12-18 1975-07-21
US4720566A (en) * 1986-10-23 1988-01-19 Betz Laboratories, Inc. Method and composition for inhibiting acrylonitrile polymerization
JPH06148391A (en) * 1992-11-06 1994-05-27 Hitachi Ltd Equipment and method for treating liquid waste
JP2002159963A (en) * 2000-11-28 2002-06-04 National Institute For Materials Science Device for concentrating water-soluble liquid waste
JP2005334867A (en) * 2004-04-28 2005-12-08 Sumitomo Chemical Co Ltd Treatment method for organic matter-containing wastewater
JP2006272123A (en) * 2005-03-29 2006-10-12 Sumitomo Chemical Co Ltd Phenols-containing waste water treatment method
JP2012106956A (en) * 2010-11-18 2012-06-07 Asahi Kasei Chemicals Corp Purification method of polymerizable compound
JP2013151455A (en) * 2012-01-25 2013-08-08 Mitsubishi Chemicals Corp Method of producing (meth)acrylic acid

Also Published As

Publication number Publication date
JP6455318B2 (en) 2019-01-23

Similar Documents

Publication Publication Date Title
JP4732366B2 (en) Method for producing (meth) acrylic acid
JP4056429B2 (en) Method for producing (meth) acrylic acid
JP2008507469A (en) An improved method for recovering and recycling ammonia from a vapor stream.
JP2000351749A (en) Production of (meth)acrylic acid
US8212067B2 (en) Method for recovering (meth)acrylonitrile
US20130014645A1 (en) Method for removal of organic compounds from waste water streams in a progress for production of (meth)acrylic acid
JP6382969B2 (en) Method for separating methacrolein
US20130317253A1 (en) Process for continuous recovering (meth) acrylic acid and apparatus for the process (as amended)
CN1902154B (en) Process for the purification of (meth)acrylic acid obtained from an oxidation of a gaseous substrate
JP4901883B2 (en) Method of distillatively removing dinitrotoluene in process wastewater from the process of producing dinitrotoluene by nitrating toluene with nitration acid
WO2014034500A1 (en) Method for purifying acetonitrile
JP6455318B2 (en) Method for treating liquid and method for producing acrylonitrile or methacrylonitrile
KR102182457B1 (en) Method for removing acrolein from the process gas of a heterogeneously catalysed oxidation of propene
JP4124391B2 (en) Wastewater treatment method
KR20220052985A (en) Removal of formaldehyde in wastewater through oxidation treatment
EP1484310A2 (en) Method for production of acrylic acid
JP2007063153A (en) Method for recovering acetic acid in process for producing aromatic carboxylic acid
JP2013082672A (en) Method for recovering propylene glycol
JPH0834757A (en) Purification of acrylic acid
KR20160057928A (en) Process for continuous recovering (meth)acrylic acid and apparatus for the process
JP2022508281A (en) Purification of formaldehyde-containing aqueous solutions and use of purified aqueous solutions in the manufacture of acrylic acid products
KR100744753B1 (en) Recovering method of acetic acid according to azeotropic distillation using butanol as entrainer
WO2022214860A1 (en) A process for recovering methacrolein from a reactor effluent stream containing methacrolein and methacrylic acid
JP2005154328A (en) Method for producing unsaturated nitrile compound
JP2004359613A (en) Method for preparing acrylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181203

R151 Written notification of patent or utility model registration

Ref document number: 6455318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151